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1 Introduction

In this paper we present several curvature estimates for solutions of the Ricci flow

∂g

∂t
= −2Ric

and its normalized versions, such as the volume normalized Ricci flow

∂g

∂t
= −2Ric+

2

n
Sg (1.1)

with S denoting the total scalar curvature and n denoting the dimension of the
manifold, and the λ-normalized Ricci flow

∂g

∂t
= −2Ric+ λg (1.2)

with a constant λ. (Since Einstein metrics are stationary solutions of the volume
normalized Ricci flow, they are included as a special case.) These estimates depend
on the smallness of certain local L

n
2 integrals of the norm of the Riemann curvature

tensor. A key common property of these integrals is scaling invariance, thanks to
the critical exponent n

2
. Because of this property, they are very natural and con-

tain particularly rich geometric information. (Note that in dimension 4, the norm
square of the Riemann curvature tensor is closely related to the Gauss-Bonnet-Chern
integrand.)

To formulate our results, we need some terminologies. Consider a connected
Riemannian manifold (M, g) (g denotes the metric) possibly with boundary, and
x ∈ M . If x is in the interior of M , we define the distance d(x, ∂M) to be sup{r >
0 : B(x, r) is compact and contained in the interior of M}, where B(x, r) denotes the
closed geodesic ball of center x and radius r. If M has a boundary and x ∈ ∂M ,
then d(x, ∂M) is the ordinary distance from x to ∂M and equals zero. (For example,
d(x, ∂M) = ∞ if M is closed.)
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Let g = g(t) be a family of metrics on M . Then d(x, y, t) denotes the distance
between x, y ∈ M with respect to the metric g(t), and B(x, r, t) denotes the closed
geodesic ball of center x ∈M and radius r with respect to the metric g(t).

For a family U(t), 0 ≤ t < T of open sets of M for some T > 0, we define its
direct limit limt→TU(t) as follows. A point x of M lies in limt→TU(t), if there is a
neighborhood U of x and some t ∈ [0, T ) such that U ⊂ U(t′) for all t′ ∈ [t, T ).

We set αn = 1
40(n−1)

, ε0 = 1
84

and ε1 = ε0

8
√

1+2αnε20
. (These constants are not meant

to be optimal. One can improve them by carefully examing the proofs.)

Our first result involves the concept of κ-noncollapsedness due to Perelman. By
[Theorem 4.1, P], a smooth solution of the Ricci flow on M × [0, T ] for a closed man-
ifold M and a finite T is κ-noncollapsed on the scale

√
T , where κ depends on the

initial metric and T .

Theorem A For each positive number κ and each natural number n ≥ 3 there are
positive constants δ0 = δ0(κ, n) and C0 = C0(n, κ) depending only on κ and n with the
following property. Let g = g(t) be a smooth solution of the Ricci flow or the volume
normalized Ricci flow on M × [0, T ) for a connected manifold M of dimension n ≥ 3
and some (finite or infinite) T > 0, which is κ-noncollapsed on the scale of ρ for some
κ > 0 and ρ > 0. Consider x0 ∈ M and 0 < r0 ≤ ρ, which satisfy r0 ≤ diamg(t)(M)
and r0 < dg(t)(x0, ∂M) for each t ∈ [0, T ). Assume that∫

B(x0,r0,t)
|Rm|

n
2 (·, t)dvolg(t) ≤ δ0 (1.3)

for all t ∈ [0, T ). Then we have

|Rm|(x, t) ≤ αnt
−1 + (ε0r0)

−2 (1.4)

whenever t ∈ (0, T ) and d(x0, x, t) < ε0r0, and

|Rm|(x, t) ≤ C0 max{r−2
0 , t−1} sup

0≤t<T
(
∫

B(x0,r0,t)
|Rm|

n
2 (·, t)dvolg(t))

2
n (1.5)

whenever 0 < t < T and d(x0, x, t) ≤ ε1 min{r0,
√
t}. (Obviously, it follows that if the

assumptions hold on [0, T ], then the estimates (1.4) and (1.5) hold on [0, T ]. This
remark also applies the the results below.)

If T is finite, then g(t) converges smoothly to a smooth metric g(T ) on limt→T B̊(x0,
ε0r0, t). Moreover, B̊(x0, ε0r0, T ) = limt→T B̊(x0, ε0r0, t). (Here and below, smooth
convergence means smooth convergence on each compact subset.) If T = ∞, then we
have similar smooth subconvergence of g(t) as t→ T .

The same results hold for the λ-normalized Ricci flow, with δ0 and C0 also de-
pending on |λ|.
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Corollary A Let g = g(t) be a smooth solution of the Ricci flow, the volume nor-
malized Ricci flow or the λ-normalized Ricci flow on M × [0, T ) for an n-dimensional
connected manifold M and some finite T > 0, such that g(t) is complete for each
t ∈ [0, T ). There is a positive constant δ0 = δ0(n, T, g(0)) depending only on n, T and
g(0) with the following property. Assume that (1.3) holds true for all x0 ∈ M , all

t ∈ [0, T ), and some r0 satisfying r0 ≤ T
1
2 and r0 ≤ diamg(t)(M) for all t ∈ [0, T ).

Then (1.4) holds for all x ∈M and t ∈ [0, T ). Consequently, g(t) extends to a smooth
solution of the Ricci flow over [0, T ′] for some T ′ > T .

Our second result does not use the condition of κ-noncollapsedness. Instead,
smallness of L

n
2 integrals of Rm over balls of varying center and radius measured

against a volume ratio is assumed.

Theorem B For each natural number n ≥ 3 there are positive constants δ0 = δ0(n)
and C0 = C0(n) depending only on n with the following property. Let g = g(t) be a
smooth solution of the Ricci flow or the volume normalized Ricci flow on M × [0, T )
for a connected manifold M of dimension n ≥ 3 and some (finite or infinite) T > 0.
Consider x0 ∈ M and r0 > 0,which satisfy r0 ≤ diamg(t)(M) and r0 < dg(t)(x0, ∂M)
for each t ∈ [0, T ). Assume that

∫
B(x,r,t)

|Rm|
n
2 (·, t)dvolg(t) ≤ δ0

volg(t)(B(x, r, t))

rn
(1.6)

whenever t ∈ [0, T ), 0 < r ≤ r0

2
and x ∈ B(x0,

r0

2
, t). Then we have

|Rm|(x, t) ≤ αnt
−1 + (ε0r0)

−2 (1.7)

whenever t ∈ (0, T ) and d(x0, x, t) < ε0r0, and

|Rm|(x, t) ≤ C0 sup
0≤t<T

∫B(x0,2r1,t) |Rm|
n
2 (·, t)dvolg(t)

volg(t)(B(x0, 2r1, t))

 2
n

(1.8)

whenever 0 < t < T and d(x0, x, t) ≤ r1, where r1 = ε1 min{r0,
√
t}.

If T is finite, then g(t) converges smoothly to a smooth metric g(T ) on limt→T B̊(x0,
ε0r0, t). Moreover, B̊(x0, ε0r0, T ) = limt→T B̊(x0, ε0r0, t). If T = ∞, then we have
similar smooth subconvergence of g(t) as t→ T .

The same results hold for the λ-normalized Ricci flow, with δ0 and C0 also de-
pending on |λ|.

Corollary B Let g = g(t) be a smooth solution of the Ricci flow, the volume nor-
malized Ricci flow or the λ-normalized Ricci flow on M × [0, T ) for an n-dimensional
connected manifold M and some (finite or infinite) T > 0,such that g(t) is complete
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for each t ∈ [0, T ). Assume that (1.6) holds true for all x0 ∈M , all t ∈ [0, T ), and all
0 < r ≤ r0 for some positive number r0 satisfying r0 ≤ diamg(t)(M) for all t ∈ [0, T ).
Then (1.7) and (1.8) hold for all x ∈ M and t ∈ [0, T ). Consequently, g(t) extends
to a smooth solution of the Ricci flow over [0, T ′] for some T ′ > T if T is finite. If
T = ∞, then g(t) subconverges smoothly as t→ T .

Our third result does not use the condition of κ-noncollapsedness, and involves
only a fixed center and a fixed radius for L

n
2 integrals of the norm of the Riemann

curvature tensor. But a lower bound for the Ricci curvature is assumed.

Theorem C For each natural number n ≥ 3 there are positive constants δ0 = δ0(n)
and C0 = C0(n) depending only on n with the following property. Let g = g(t) be a
smooth solution of the Ricci flow or the normalized Ricci flow on M × [0, T ) for a
connected manifold of dimension n ≥ 3 and some (finite or infinite) T > 0. Consider
x0 ∈ M and r > 0, which satisfy r0 ≤ diamg(t)(M) and r0 < dg(t)(x0, ∂M) for each
t ∈ [0, T ]. Assume that

Ric(x, t) ≥ −n− 1

r2
0

g(x, t) (1.9)

whenever t ∈ [0, T ) and d(x0, x, t) ≤ r0 (g(x, t) = g(t)(x) and Ric(x, t) is the Ricci
tensor of g(t) at x), and that∫

B(x0,r0,t)
|Rm|

n
2 (·, t)dvolg(t) ≤ δ0

volg(t)(B(x0, r0, t))

rn
0

(1.10)

for all t ∈ [0, T ]. Then we have

|Rm|(x, t) ≤ αnt
−1 + (ε0r0)

−2 (1.11)

whenever t ∈ (0, T ) and d(x0, x, t) < ε0r0, and

|Rm|(x, t) ≤ C0 sup
0≤t<T

∫B(x0,2r1,t) |Rm|
n
2 (·, t)dvolg(t)

volg(t)(B(x0, 2r1, t))

 2
n

(1.12)

whenever 0 < t < T and d(x0, x, t) ≤ r1, where r1 = ε1 min{r0,
√
t}.

If T is finite, then g(t) converges smoothly to a smooth metric g(T ) on limt→T B̊(x0,
ε0r0, t). Moreover, B̊(x0, ε0r0, T ) = limt→T B̊(x0, ε0r0, t). If T = ∞, then we have
similar smooth subconvergence of g(t) as t→ T .

The same results hold for the λ-normalized Ricci flow, with δ0 and C0 also de-
pending on |λ|.

Note that an elliptic analogue of (1.12) for Einstein metrics can be found in [An].
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Corollary C Let g = g(t) be a smooth solution of the Ricci flow, the volume nor-
malized Ricci flow or the λ-normalized Ricci flow on M × [0, T ) for an n-dimensional
connected manifold M and some (finite or infinite) T > 0, such that g(t) is complete
for each t ∈ [0, T ). Assume that (1.9) and (1.10) hold true for all x0 ∈M and some
positive number r0 satisfying r0 ≤ diamg(t)(M) for all t ∈ [0, T ). Then (1.11) and
(1.12) holds for all x ∈ M and t ∈ [0, T ). Consequently, g(t) extends to a smooth
solution of the Ricci flow over [0, T ′] for some T ′ > T , if T is finite. If T = ∞, then
g(t) subconverges smoothly as t→ T .

The above curvature estimates can be used to deduce convergence results under
the condition of finite L

n
2 integrals of the norm of the Riemann curvature tensor. This

will be presented elsewhere.
Similar results also hold for many other evolution equations. This will be presented

elsewhere.
The results in this paper were obtained some time ago.
Analogous results involving other types of Lp integrals of |Rm|, including the case

p < n
2

and space-time integrals, will be presented in sequels of this paper.

2 A Linear Parabolic Estimate

In this section we present a linear parabolic estimate based on Moser’s iteration,
which will be needed for establishing our curvature estimates. First we fix some
notations. Consider a Riemannian manifold (M, g) of dimension n. The Sobolev
constant CS,g(M) is defined to be the smallest number CS,g(M) such that

‖f‖ n
n−1

≤ CS,g(M)‖∇f‖1 (2.1)

for all Lipschitz functions f on M with compact support, where ‖ · ‖p means the
Lp-norm. More precisely,

CS,g(M) = sup{‖f‖ n
n−1

: f ∈ C1
c (M), ‖∇f‖1 = 1}.

CS,g(M) equals the isoperimetric constant CI,g(M) of (M, g), which is defined to

be sup{vol(Ω)
n−1

n

vol(∂Ω)
: Ω ⊂ M is a C1 domain with compact closure.} The L2-Sobolev

constant CS,2,g(M) is defined to be the smallest number CS,2,g(M) such that

‖f‖ 2n
n−2

≤ CS,2,g(M)‖∇f‖2.

Note that CS,2,g(M) ≤ 2(n−1)
n−2

CS,g(M). Indeed, applying (2.1) to |f |
2(n−1)

n−2 we deduce

(
∫

M
|f |

2n
n−2dvolg)

n−1
n ≤ CS,g(M)

∫
|∇|f |

2(n−1)
n−2 |dvolg

≤ CS,g(M)
2(n− 1)

n− 2
‖∇f‖2(

∫
M
|f |

2n
n−2dvolg)

1
2 .
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Hence the claimed inequality follows.
The following result is taken from [Ye2]. We include the proof for the convenience

of the reader, and for the reason of verifying the explicit dependence on the Sobolev
constant, which is important for the curvature estimates in this paper.

Theorem 2.1 Let M be a smooth manifold of dimension n and g = g(t) a smooth
family of Riemannian metrics on M for t ∈ [0, T ]. Let f be a nonnegative Lipschitz
continuous function on M × [0, T ] satisfying

∂f

∂t
≤ ∆f + af (2.2)

on M× [0, T ] in the weak sense, where a is a nonnegative constant and ∆ = ∆g(t). Let
x0 be an interior point of M . Then we have for each p0 > 1 and 0 < R < dg(0)(x0, ∂M)

|f(x, t)| ≤ (1 +
2

n
)

σn
p0 C

n
p0
S,2

(
ap0 +

γ

2
+
n

2
(1 +

n

2
)2 · 1

t
+

(n+ 2)2e−λ∗T

4R2

)n+2
2p0

·
(∫ T

0

∫
B(x0,R,0)

fp0(·, t)dvolg(t)dt
) 1

p0 , (2.3)

whenever 0 < t ≤ T and dg(0)(x0, x) ≤ R
2
, where σn =

∑∞
0

2k
(1+ 2

n
)k , γ denotes the

maximum value of the trace of ∂g
∂t

on B(x0, R, 0) × [0, T ], λ∗ denotes the minimum

eigenvalue of ∂g
∂t

on B(x0, R, 0)× [0, T ], and

CS,2 = max
0≤t≤T

CS,g(t),2(B(x0, R, 0)).

The same estimate holds if we replace B(x0, R, 0) by B(x0, R, T ), and −λ∗ by λ∗,
which denotes the maximum eigenvalue of ∂g

∂t
on B(x0, R, T )× [0, T ].

Proof. We handle the case of B(x0, R, 0), while the other case is similar. Let η be a
non-negative Lipschitz function on M whose support is contained in B(x0, R, 0). The
partial differential inequality (2.2) implies for p ≥ 2

1

p

∂

∂t

∫
fpη2dvolg(t) ≤ −

∫
∇(η2fp−1)·∇f dvolg(t)+

∫
bfpη2dvolg(t)+

1

p

∫
fpη2 ∂

∂t
dvolg(t) .

We’ll omit the notation dvolg(t) below. We have

−
∫
∇(η2fp−1) · ∇f = −4(p− 1)

p2

∫
|∇(ηfp/2)|2 +

4

p2

∫
|∇η|2fp

+
4(p− 2)

p2

∫
∇(ηfp/2)fp/2∇η

≤ −2

p

∫
|∇(ηfp/2)|2 +

2

p

∫
|∇η|2fp,
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where ∇ = ∇g(t). Therefore

∂

∂t

∫
fpη2 + 2

∫
|∇(ηfp/2)|2 ≤ 2

∫
|∇η|2fp + (pa+

γ

2
)
∫
fpη2 . (2.4)

Next we define for 0 < τ < τ ′ < T

ψ(t) =


0 0 ≤ t ≤ τ ,
(t− τ)/(τ ′ − τ) τ ≤ t ≤ τ ′ ,
1 τ ′ ≤ t ≤ T .

Multiplying (2.4) by ψ, we obtain

∂

∂t

(
ψ
∫
fpη2

)
+ 2ψ

∫
|∇(ηfp/2)|2 ≤ 2ψ

∫
|∇η|2fp + ((pa+

γ

2
)ψ + ψ′)

∫
fpη2 .

Integrating this with respect to t we get∫
t
fpη2 + 2

∫ t

τ ′

∫
|∇(ηfp/2)|2 ≤ 2

∫ T

τ

∫
|∇η|2fp +

(
pa+

γ

2
+

1

τ ′ − τ

) ∫ T

τ

∫
fpη2

for τ ′ ≤ t ≤ T . Applying this estimate and the Sobolev inequality we deduce

∫ T

τ ′

∫
fp(1+ 2

n
)η2+ 1

n ≤
∫ T

τ ′

(∫
fpη2

)2/n (∫
f

pn
n−2η

2n
n−2

)n−2
n

≤ C2
S,2

(
sup

τ ′≤t≤T

∫
fpη2

)2/n
∫ T

τ ′

∫ ∣∣∣∇(ηfp/2)
∣∣∣2

≤ C2
S,2

[
2
∫ T

τ

∫
|∇η|2fp +

(
pa+

γ

2
+

1

τ ′ − τ

) ∫ T

τ

∫
fpη2

]1+ 2
n

.

(2.5)

We put

H(p, τ, R) =
∫ T

τ

∫
B(x0,R,0)

fp

for 0 < τ < T and 0 < R < dg(0)(x0, ∂M). Given 0 < R′ < R < dg(0)(x0, ∂M),
we define η(x) = 1 for d(x0, x, 0) leqR′, η(x) = 1 − 1

R−R′ (d(x0, x, 0) − R′) for R′ ≤
d(x0, x, 0) ≤ R, and η(x) = 0 for d(x0, x, 0) ≥ R. Noticing |∇η|t ≤ 1

R−R′ e
− 1

2
λ∗t we

derive from (2.5)

H
(
p
(
1 +

2

n

)
, τ ′, R′

)
≤ C2

S

[
pa+

γ

2
+

1

τ ′ − τ
+

2e−λ∗T

(R−R′)2

]1+ 2
n

H(p, τ, R)1+ 2
n .

(2.6)
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Now we fix 0 < R < dg(0)(x0, ∂M) and set µ = 1 + 2
n
, pk = p0µ

k, τk = (1 − 1
µk+1 )t

and Rk = R
2
(1 + 1

µk ) with R = 1
2
distg(0)(x, ∂N). Then it follows from (2.6) that

H(pk+1, τk+1, Rk+1)
1

pk+1 ≤

C
2

pk+1

S

[
apk +

γ

2
+

µ2

µ− 1
· 1

t
+

2e−λ∗Tµ2

R2(µ− 1)2

] 1
pk

µ
k

pkH(pk, τk, Rk)
1

pk ≤

C
2

pk+1

S

[
ap0 +

γ

2
+

µ2

µ− 1
· 1

t
+

2e−λ∗Tµ2

R2(µ− 1)2

] 1
pk

µ
2k
pkH(pk, τk, Rk)

1
pk .

Hence

H(pm+1, τm+1, Rm+1)
1

pm+1 ≤ C

∑m

0
2

pk+1

S µ
∑m

0
2k
pk

·
[
ap0 +

γ

2
+

µ2

µ− 1
· 1

t
+

e−λ∗Tµ2

R2(µ− 1)2

]∑m

0
1

pk

H(p0, τ0, R0)
1

p0 .

Letting m→∞ we arrive at (2.3).

3 Proof of Theorem A

For the convenience of the reader, we state Perelman’s definition of κ-noncollapsedness.

Definition Let g be a Riemannian metric on a manifold M of dimension n. Let
κ and ρ be positive numbers. We say that g is κ-noncollapsed, if there holds
volg(B(x, r)) ≥ κrn for each geodesic ball B(x, r) of (M, g) satisfying sup{|Rm|(x) :
x ∈ B(x, r)} ≤ r−2.

Proof of Theorem A

We present the case of the Ricci flow. The cases of the volume normalized Ricci
flow and the λ-normalized Ricci flow are similar.

Proof of the estimate (1.4)

By rescaling, we can assume r0 = 1. Assume that the estimate (1.4) does not
hold. Then we can find for each ε > 0 a Ricci flow solution g = g(t) on M × [0, T ]
for some M and T > 0 with the properties as postulated in the statement of the
theorem, such that |Rm|(x, t) > αnt

−1 + ε−2 for some (x, t) ∈ M × [0, T ] satisfying
d(x0, x, t) < ε.
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We denote by Mαn the set of pairs (x, t) such that |Rm|(x, t) ≥ αnt
−1. For an

arbitary positive number A > 1 such that (2A + 1)ε ≤ 1
2
, we choose as in [Proof of

Theorem 10.1, P] (x̄, t̄) ∈ Mαn with 0 < t̄ ≤ ε2, d(x0, x̄, t̄) < (2A + 1)ε, such that
|Rm|(x̄, t̄) > αnt̄

−1 + ε−2 and

|Rm|(x, t) ≤ 4|Rm|(x̄, t̄) (3.1)

whenever

(x, t) ∈Mαn , 0 < t ≤ t̄, d(x0, x, t) ≤ d(x0, x̄, t̄) + A|Rm|(x̄, t̄)−
1
2 . (3.2)

We set Q = |Rm|(x̄, t̄).

Claim 1 If

t̄− 1

2
αnQ

−1 ≤ t ≤ t̄, d(x̄, x, t̄) ≤ 1

10
AQ−

1
2 , (3.3)

then

d(x0, x, t) ≤ d(x0, x̄, t̄) +
1

2
AQ−

1
2 . (3.4)

Note that (3.4) implies

d(x0, x, t) ≤ (2A+ 1)ε+
1

2
AQ−

1
2 ≤ (

5

2
A+ 1)ε (3.5)

for (x, t) satisfying (3.3).

Proof of Claim 1

Since (x̄, t̄) ∈Mαn , we have Q ≥ αnt̄
−1, so

t̄− 1

2
αnQ

−1 ≥ 1

2
t̄. (3.6)

Consider (x̂, t̂) satisfying (3.3). By the triangular inequality, we have d(x0, x̂, t̄) ≤
d(x0, x̄, t̄) + 1

10
AQ−

1
2 . We estimate d(x0, x̂, t̂). For this purpose, consider the set I of

t∗ ∈ [t̂, t̄] such that

d(x0, x̂, t) ≤ d(x0, x̄, t̄) +
1

2
AQ−

1
2 (3.7)

for all t ∈ [t∗, t̄]. Obviously, I is closed and t̄ ∈ I. We claim that it is open in [t̂, t̄].
Consider t∗ ∈ I. For each t ∈ [t∗, t̄], we follow [P] and apply [Lemma 8.3(b),P] to x0, x̂.
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We set R = 1
2
AQ−

1
2 . For x ∈ B(x0, R, t) we have |Rm|(x, t) ≤ 4Q if (x, t) ∈ Mαn . If

x 6∈Mαn , we have by (3.6)

|Rm|(x, t) ≤ αnt
−1 ≤ 2αt̄−1 ≤ 2Q. (3.8)

For x ∈ B(x̂, R, t), we have d(x0, x, t) ≤ d(x0, x̂, t) + d(x̂, x, t) ≤ d(x0, x̄, t̄) + AQ−
1
2 .

Hence |Rm|(x, t) ≤ 4Q, if (x, t) ∈ Mαn . If (x, t) 6∈ Mαn , we obtain (3.8) as in the
previous case. By [Lemma 8.3(b), P], we have

d

dt
d(x0, x̂, t) ≥ −2(n− 1)(

2

3
· 4Q · 1

2
AQ−

1
2 + 2A−1Q

1
2 ) ≥ −4(n− 1)(A+

1

A
)Q

1
2 .

Hence

d(x0, x̂, t
∗) ≤ d(x0, x̂, t̄) +

1

2
αnQ

−1 · 4(n− 1)(A+
1

A
)Q

1
2

= d(x0, x̂, t̄) + 2(n− 1)α(1 +
1

A2
)AQ−

1
2 )

≤ d(x0, x̄, t̄) +
1

3
AQ−

1
2 .

By the continuity of the distance function, the inequality (3.7) holds true in an open
neighborhood of t∗ in [t̂, t̄]. It follows that I is open in [t̂, t̄]. Henc we conclude that

I = [t̂, t̄]. Consequently, we have d(x0, x̂, t̂) ≤ d(x0, x̄, t̄) + 1
2
AQ−

1
2 .

Claim 2 If (x, t) satisfies (3.3), then the estimate (3.1) holds.

Indeed, consider (x, t) satisfying (3.3). If (x, t) ∈Mαn , then (3.4) implies that the
estimate (3.1) holds. If (x, t) 6∈ Mαn , then we have |Rm|(x, t) ≤ 2Q as in the above
argument. So (3.1) also holds.

Now we take ε = 1
42

and A = 10. Then 1
10
A < 1 and (5

2
A + 1)ε = 1. So (3.5)

implies

B(x̄, Q−
1
2 , t̄) ⊂ B(x0, 1, t) (3.9)

for t ∈ [t̄− 1
2
αnQ

−1, t̄], and hence∫
B(x̄,Q− 1

2 ,t̄)
|Rm|

n
2 |t ≤ δ0 (3.10)

for t ∈ [t̄ − 1
2
αnQ

−1, t̄]. Moreover, Claim 2 implies that the estimate (3.1) holds on

B(x̄, Q−
1
2 , t̄)× [t̄− 1

2
αnQ

−1, t̄]. We shift t̄ to the time origin and rescale g by the factor
Q to obtain a Ricci flow solution ḡ = Qg on M × [−1

2
αn, 0]. Then we have

|Rm|(x̄, 0) = 1, (3.11)

10



and

|Rm|(x, t) ≤ 4 (3.12)

whenever

−1

2
αn ≤ t ≤ 0, d(x̄, x, 0) ≤ 1.

Moreover there holds ∫
B(x̄,1,0)

|Rm|
n
2 |t ≤ δ0 (3.13)

for t ∈ [−1
2
αn, 0]. By the κ-noncollapsedness assumption, we have

volḡ(t)(B(x̄,
1

4
, t)) ≥ κ

4n
. (3.14)

It follows that there is a positive constant C1(κ, n) depending only on κ and n such
that

CS,ḡ(t)(B(x̄,
1

16
, t)) ≤ C1(κ, n). (3.15)

By the curvature bound (3.12) and the argument in [Ye1] for evolution of the Sobolev
constant, we then infer

CS,2,ḡ(t)(B(x̄,
1

16
, 0)) ≤ C2(κ, n) (3.16)

for t ∈ [−1
2
αn, 0], where C2(κ, n) is a positive constant depending only on κ and n.

(One can also replace 1
16

by a smaller radius r1 such that B(x̄, r1, 0) ⊂ B(x̄, 1
16
, t).)

On the other hand, the curvature bound (3.12) and the Ricci flow equation imply
that B(x̄, 1

16
, 0) ⊂ B(x̄, 1, t) for t ∈ [−ᾱn, 0], where ᾱn ≤ 1

2
αn is a positive constant

depending only on n. It follows that∫
B(x̄, 1

16
,0)
|Rm|

n
2 |t ≤ δ0 (3.17)

for t ∈ [−ᾱn, 0].
Now we appeal to the evolution equation of Rm associated with the Ricci flow

∂Rm

∂t
= ∆Rm+B(Rm,Rm), (3.18)

where B is a certain quadratic form. It implies

∂

∂t
|Rm| ≤ ∆|Rm|+ c(n)|Rm|2 (3.19)

11



for a positive constant c(n) depending only on n. On account of (3.12), (3.16) and
(3.17) we can apply Theorem 2.1 to (3.19) with p0 = n

2
to deduce

|Rm|(x̄, 0) ≤ (1 +
2

n
)

2σn
n C2(κ, n)2C3(n)

(∫ 0

−ᾱn

∫
B(x0, 1

16
,0)

|Rm|
n
2

) 2
n

≤ (1 +
2

n
)

2σn
n C2(κ, n)2C3(n)(ᾱnδ0)

2
n , (3.20)

where

C3(n) =
(
2c(n)n+ 2n(n− 1) +

n

2
(1 +

n

2
)2 · 1

ᾱn

+ 64(n+ 2)2e4(n−1)ᾱn

)n+2
n .

We deduce |Rm|(x̄, 0) ≤ 1
2
, provided that we define

δ0 =
1

2
n
2
(1 +

2

n
)−σnC2(κ, n)−nC3(n)−

n
2 ᾱ−1

n .

But this contradicts (3.11). Hence the estimate (1.4) has been established.

Proof of the estimate (1.5)

Consider a fixed t0 ∈ (0, T ). If the ratio
r2
0

t0
≥ 1, we rescale g by t−1

0 . If
r2
0

t0
≤ 1,

we rescale g by r2
0. We handle the former case, while the latter is similar. For the

rescaled flow t−2
0 g on [0, t−2

0 T ) we have by (1.4)

|Rm|(x, t) ≤ 2αn + ε−2
0 (3.21)

whenever 1
2
≤ t < t−2

0 T and d(x0, x, t) < t
− 1

2
0 r0ε0. We rescale the flow further by the

factor λn ≡ 2αn + ε−2
0 to obtain ḡ = λnt

−2
0 g on [0, λnt

−2
0 T ). Note that the time t0 is

transformed to t̄0 = λn. We have for ḡ

|Rm|(x, t) ≤ 1 (3.22)

whenever λn

2
≤ t < λnt

−2
0 T and d(x0, x, t) <

√
λnt

− 1
2

0 r0ε0. Note
√
λnt

− 1
2

0 r0ε0 > 1. By
the κ-noncollapsedness we then deduce

volḡ(t)(B(x0, 1, t)) ≥ κ (3.23)

whenever λn

2
≤ t < λnt

−2
0 T . Now we can argue as in the above proof of the estimate

(1.4) and apply Theorem 2.1 on B(x0,
1
4
, λn)× [λn − 1, λn] to derive

|Rm|(x, λn) ≤ C0(n, κ) sup
λn
2
−1≤t≤λn

(
∫

B(x0, 1
4
,t)
|Rm|

n
2 (·, t)dvolḡ(t))

2
n , (3.24)

12



whenever d(x0, x, λn) ≤ 1
8
. Scaling back to g we then arrive at the desired estimate

(1.5) (with t0 in place of t).

Finally, the smooth convergence result stated in the theorem follows from the es-
timate (1.4) and an estimate of the distance via the Ricci flow.

4 Proof of Theorem B

Proof of Theorem B

Proof of the estimate (1.7)

We present the case of the Ricci flow, while the other two cases are similar.
Assume that the estimate (1.7) fails to hold. Then we carry out the same con-

struction as in the proof of Theorem A-1. We choose again ε = 1
42

and A = 10.
Then

d(x0, x̄, t̄) <
1

2
(4.1)

for g. By (1.6) we have for ḡ∫
B(x̄, 1

2
,t)
|Rm|

n
2 |t ≤ 2nδ0volḡ(t)(B(x̄,

1

2
, t)) (4.2)

for all t ∈ (−1
2
αn, 0]. As before, we also have for ḡ

|Rm|(x̄, 0) = 1 (4.3)

and

|Rm|(x, t) ≤ 4 (4.4)

whenever

−1

2
αn ≤ t ≤ 0, d(x̄, x, 0) ≤ 1. (4.5)

By [Theorem 4.1, An] and (4.4) we have

CS,2,ḡ(t)(B(x̄,
1

2
, t)) ≤ C5(n)

volḡ(t)(B(x̄, 1
2
, t)))

1
n

(4.6)

13



for t ∈ [−1
2
αn, 0], with a positive constant C5(n) depending only on n. On the other

hand, (4.4) implies

B(x̄,
1

4
, t1) ⊂ B(x̄,

1

3
, t2) ⊂ B(x̄,

1

2
, t3) (4.7)

for all t1, t2, t3 ∈ [−ᾱn, 0], with a positive constant ᾱn ≤ 1
2
αn depending only on n.

Consequently, we have∫
B(x̄, 1

4
,0)
|Rm|

n
2 |t ≤ 3nδ0volḡ(t)(B(x̄,

1

3
, t)) (4.8)

and

CS,2,ḡ(t)(B(x̄,
1

4
, 0)) ≤ C5(n)

volḡ(t)(B(x̄, 1
2
, t)))

1
n

(4.9)

for all t ∈ [−ᾱn, 0]. Moreover, (4.7) combined with (4.4) leads via the Ricci flow
equation to

min
−ᾱn≤t≤0

volḡ(t)(B(x̄,
1

2
, t)) ≥ e−4n(n−1)ᾱn max

−ᾱn≤t≤0
volḡ(t)(B(x̄,

1

3
, t)) (4.10)

for each t ∈ [−ᾱn, 0]. Now we apply Theorem 2.1 to deduce

|Rm|(x̄, 0) ≤ (1 +
2

n
)

2σn
n

C5(n)2

min
−ᾱn≤t≤0

volḡ(t)(B(x̄, 1
2
, t)))

2
n

C6(n)
(∫ 0

−ᾱn

∫
B(x̄, 1

4
,0)

|Rm|
n
2

) 2
n

≤
9(1 + 2

n
)

2σn
n C5(n)2C6(n)(δ0ᾱn)

n
2

min
−ᾱn≤t≤0

volḡ(t)(B(x̄, 1
2
, t)))

2
n

max
−ᾱn≤t≤0

volḡ(t)(B(x̄,
1

3
, t))

2
n

≤ 9(1 +
2

n
)

2σn
n C5(n)2C6(n)(ᾱnδ0)

2
n e8(n−1)ᾱn , (4.11)

with a suitable positive constant C6(n) depending only on n. Choosing

δn =
1

3n
(1 +

2

n
)−σnC5(n)−nC6(n)−

n
2 ᾱ−1

n e−8(n−1)ᾱn

we then obtain |Rm|(x̄, 0) ≤ 1
2
, contradicting (4.3).

Proof of the estimate (1.8)

Consider a fixed t0 ∈ (0, T ). As in the corresponding part of the proof of Theorem

A, we present the case
r2
0

t0
≥ 1, and rescale g by t−1

0 . Again we have for the rescaled

flow t−2
0 g on [0, t−2

0 T )

|Rm|(x, t) ≤ 2αn + ε−2
0 (4.12)
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whenever 1
2
≤ t < t−2

0 T and d(x0, x, t) < t
− 1

2
0 r0ε0. As before, we rescale the flow

further by the factor λn ≡ 2αn + ε−2
0 to obtain ḡ = λnt

−2
0 g on [0, λnt

−2
0 T ). Again, the

time t0 is transformed to t̄0 = λn. We have for ḡ

|Rm|(x, t) ≤ 1 (4.13)

whenever λn

2
≤ t < λnt

−2
0 T and d(x0, x, t) ≤

√
λnt

− 1
2

0 r0ε0. Since
√
λnt

− 1
2

0 r0ε0 > 1, we
can argue in the same way as in the above proof of (1.7), using the radius 1

4
, 1

3
and 1

2
.

Note that the time λn corresponds to 0 there. We deduce

|Rm|(x, λn) ≤ C̄0(n) sup
λn
2
−1≤t≤λn

∫B(x0, 1
4
,t) |Rm|

n
2 (·, t)

volḡ(B(x0,
1
4
, t))

 2
n

, (4.14)

with a positive constant C̄0(n) depending only on n, whenever d(x0, x, λn) ≤ 1
8
. Scal-

ing back to g we then arrive at the desired estimate (1.5) (with t0 in place of t).

5 Proof of Theorem C

Proof of Theorem C

We establish the condition (1.6). Then the theorem follows from Theorem B. By
rescaling we can assume r0 = 1. Then (1.9) becomes

Ric ≥ −(n− 1)g. (5.1)

By (1.10), we have now∫
B(x,r,1)

|Rm|
n
2 dvolg(t) ≤ δ0volg(t)(B(x, r, 1)) (5.2)

for all t ∈ [0, T ]. By Bishop-Gromov relative volume comparison, we have

volg(t)(B(x,R, t)) ≤ v−1(R)

v−1(r)
volg(t)(B(x, r, t)) ≤ C(n)

volg(t)(B(x, r, t))

rn
, (5.3)

with a positive constant C(n) depending only on n, provided that t ∈ [0, T ], d(x0, x, t) <
1, and 0 < r < R ≤ 1 − d(x0, x, t). Here v−1(r) denotes the volume of a geodesic
ball of radius r in Hn, the n-dimensional hyperbolic space (of sectional curvature
−1). If t ∈ [0, T ], d(x0, x, t) ≤ 1

4
, we then have B(x0,

1
4
, t) ⊂ B(x, 1

2
, t) ⊂ B(x0, 1, t).

Consequently,

volg(t)(B(x, r, t)) ≥ C(n)−1rnvolg(t)(B(x,
1

2
, t)) ≥ C(n)−1rnvolg(t)(B(x0,

1

4
, t))

≥ 4−nC(n)−2rnvolg(t)(B(x0, 1, t)) (5.4)

15



for 0 < r ≤ 1
2
. Hence we infer∫

B(x,r,t)
|Rm|

n
2 dvolg(t) ≤

∫
B(x0,1,t)

|Rm|
n
2 dvolg(t) ≤ δ0volg(t)(B(x0, 1, t))

≤ 4nC(n)2δ0
volg(t)(B(x, r, t))

rn
(5.5)

whenever t ∈ [0, T ], d(x0, x, t) ≤ 1
4
r0 and 0 < r < 1

2
r0. Choosing δ0 to be the δ0 in

Theorem B-1 multiplied by 4−nC(n)−2 and replacing r0 by r0

2
we then have all the

conditions of Theorem B-1. The desired estimate follows. By the proof of Theorem
B-1, (1.7) actually holds with ε0 = 1

42
. Hence we obtain ε0 = 1

84
now.
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