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Abstract: The concept of κ-solutions of the Ricci flow plays an important role in
Perelman’s work on the Ricci flow, the Poincaré conjecture and the geometrization
conjecture. In this paper we present a number of results on κ-solutions and a concise
picture of this role .
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1 Introduction

Let M be a smooth manifold of dimension n ≥ 2. The Ricci flow

∂g

∂t
= −2Ric (1.1)

was introduced by R. Hamilton in his seminar paper [H1] on 3-dimensional manifolds
of positive Ricci curvature. Here, g = g(t) is a smooth family of Riemannian metrics
on M and Ric the Ricci curvature tensor of g = g(t). (For basics and general
information on the Ricci flow we refer to [H1], [H5], [CK] and [CLN].) The concept
of κ-solutions of the Ricci flow was introduced by G. Perelman in his seminar papers
[P1] and [P2], and plays a crucial role in the analysis of the structures of blow-
up singularities of the Ricci flow, and thereby a crucial role in Perelman’s work in
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[P1],[P2] and [P3] on Poincaré conjecture and Thurston’s geometrization conjecture on
3-dimensional manifolds. See Section 1 for the definition of this concept. (Perelman’s
terminology for this concept is ancient κ-solutions.) In the Ricci flow approach to
the Poincaré conjecture and the geometrization conjecture, which was initiated by
Hamilton, one chooses a Riemannian metric g0 on an arbitrary compact 3-dimensional
manifold M and considers the smooth solution g = g(t) of the Ricci flow (1.1) with
initial value g(0) = g0. This smooth solution exists on a maximal time interval [0, T ),
where T can be finite or infinite. Without special geometric conditions on g0, in
general one expects T to be finite. If one chooses a reference point p̄ ∈ M for the
purpose of measuring geometric quantities with respect to distance from p̄, then we
have a pointed Ricci flow (g = g(t),M × [0, T ), p̄). Assume T < ∞. As t → T , the
Ricci flow g(t) will blow up, i.e. the norm of the Riemann curvature tensor |Rm| will
become infinite at least in some places of M . In order to gain information on the
geometric and topological structures of the manifold M , it is crucial to analyze the
structures of the blow singularities of the flow g(t) as t→ T .

A general method for carrying out this analysis is to rescale the Ricci flow g(t)
and obtain blow-up limits from g(t). Let’s consider the general case n ≥ 3. For a
positive number λ and a number T̄ ∈ (0, T ), the rescaled flow gλ,T̄ (t) with scaling
factor λ and scaling center time T̄ is defined to be

gλ,T̄ (t) = λg(T̄ + λ−1t) (1.2)

for t ∈ [−λT̄ , λ(T − T̄ )). By the scaling invariance of the Ricci flow, gλ,T̄ is a smooth
solution of the Ricci flow on M . For a sequence of scaling factors λk → ∞ and
scaling center times Tk, we have a sequence of rescaled Ricci flows gk = gλk,Tk . If
we also choose a sequence of reference points pk, then we have a sequence of pointed
Ricci flows (gk,M × [−λTk, λk(T − Tk)), pk). Now the basic idea is to choose λk, Tk
and pk suitably such that we can extract from this sequence of pointed Ricci flows
subsequences which point converge (i.e. converge smoothly with the reference points
pk as centers) to smooth limits, which are called blow-up limits. These limits are
pointed Ricci flows on limit manifolds with limit reference points, which we denote
by (g∞,M∞×(−∞, 0], p∞). They are ancient solutions of the Ricci flow, namely they
are defined on the time interval (−∞, 0] and consist of complete Riemannian metrics.
Moreover, they enjoy some special geometric properties.

In dimension n = 3, the blow-up limits turn out to be κ-solutions. Since they
arise as blow-up limits of the Ricci flow g = g(t), they model the structures of the
blow-up singularities of g = g(t) (as t → T ). Indeed, the results in [P1] and [P2]
on structures of blow-up singularities of the Ricci flow are deduced by employing the
special geometric and topological properties of κ-solutions. In the above account we
assumed T <∞. The general arguments of blow-up analysis as described above also
work in the case T = ∞, with a major difference between T < ∞ and T = ∞.
Namely, in the case T <∞, the Ricci flow g = g(t) is always κ-noncollapsed. In the
case T =∞, it may collapse as t→ T , and hence the rescaled flows may degenerate to

2



lower dimensional objects. For this reason, the blow-up analysis is more complicated
in the case T =∞. Fortunately, Perelman’s solution of the Poincaré conjecture and
the geometrization conjecture do not require analysis of blow-up limits for T =∞ in
the collapsing case.

Once the structures of the blow-up singularities as t → T are well-understood,
namely their topological and geometric types are classified and well under control, as
presented in [P1] and [P2], one can perform surgery at t = T to remove singularities
and construct a manifold M̄ with surgery out of M and a metric ḡ with surgery out of
a partial limit of g at T , as done in [P2]. (Earlier work on surgeries of the Ricci flow
was done by Hamilton [H8].) Then one considers the Ricci flow on M̄ with the initial
metric ḡ. If ḡ runs into blow-up singularities at some finite time, the above blow-up
analysis can be repeated for ḡ. By induction, one then obtains a Ricci flow g∗ = g∗(t)
with surgeries which consists of a sequence of smooth solutions of the Ricci flow on a
sequence of smooth manifolds, as done in [P2]. This Ricci flow with surgeries exists
on a maximal time interval [0, T ∗). An important special case is included in this
scheme. If the Ricci flow g = g(t) blows up on the whole M as t → ∞, then there
is nothing left from M for performing surgery. In this case, the topological structure
of M is immediately classified in consistence with the Poincaré conjecture. The same
kind of picture can also occur at a later stage of the Ricci flow g∗ with surgeries. In
either case, the Ricci flow with surgeries g∗ is said to be extinct (at a finite time), and
the goal of classifying the topological structure of M is achieved. For convenience,
we extend g∗ to be the empty solution on [T̄ ,∞) if T̄ is an extinction time. By an
intricate argument, Perelman shows that in general T ∗ =∞ (without assuming finite
time extinction), see [P2] and the expositions in [MT] and [KL].

The next stage of Perelman’s work goes as follows. On the one hand, he shows
in [P3] that under the condition of the Poincaré conjecture, g∗ has to be extinct at
a finite time (see also [CM]). This leads to his proof of the Poincaré conjecture as
presented in [P2] and [P3]. On the other hand, in the general situation he shows in
[P2] that as t → ∞, the Ricci flow with surgeries g∗ leads to the geometrization of
M , i.e. a suitable decomposition of M into finite many pieces, such that each piece
carries a standard geometric structure. This includes the Poincaré conjecture as a
special case. Here Perelman applies an important argument of Hamilton in [H8] for
obtaining hyperbolic manifolds as limits as t→∞ from the noncollapsing part of the
Ricci flow, and appeals to his own results on locally collapsing manifolds for obtaining
the desired topological and geometric structures on the collapsing part of the Ricci
flow. (See [SY] for relevant results on collapsed manifolds.)

It should be clear from the above accounts that κ-solutions play a crucial role
in Perelman’s work. Although Perelman only needs the case n = 3, the prospect of
applying the Ricci flow in higher dimensions looks promising, and hence it is of great
interests to understand κ-solutions also in higher dimensions. Indeed, many results
of Perelman on κ-solutions are valid in general dimensions.

The contents of this paper are organized as follows. In Section 1, we present the
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concept of κ-noncollpasedness, a basic result on blow-up limits of the Ricci flow and
the concept of κ-solutions. In Section 2, we present the concept of gradient shrinking
solitons and Perelman’s theorem on gradient shrinking solitons as blow-down limits
of κ-solutions, which plays an important role for understanding the structures of κ-
solutions. In [P1], a sketch of the proof for this theorem was given. The complete
proof of this theorem was presented in the author’s papers [Y2] and [Y3] (see also
[MT] and [KL]). In this section, two important tools, the l-function (the reduced
length) and the reduced volume, are also presented. In Section 3, we present the
classification of 2-dimensional κ-solutions. This result is crucial for carrying out the
argument of dimension reduction, in which a 3-dimensional Ricci flow splits into the
product of a 2-dimensional Ricci flow with the 1-dimensional Ricci flow. This argu-
ment plays an important role in a number of places, e.g. in classifying 3-dimensional
κ-solutions. The proof of the classification of 2-dimensional κ-solutions presented in
[P1] is incomplete. The first complete proof was given in the author’s paper [Y4].
This proof is reproduced here. (The proof in [Y4] was later adapted in [CZ]. Different
arguments were presented in [KL] and [MT].) In Section 4, we present Perelman’s
classification of 3-dimensional κ-solutions and his compactness theorem for the space
of 3-dimensional noncompact κ-solutions. In Section 5, we present Perelman’s the-
orem on canonical neighborhoods of solutions of the Ricci flow, which is a central,
culminating result. By using this result we demonstrate that the blow-up limits
(g∞,M∞× (−∞, 0], p∞) discussed above must be κ-solutions in dimension 3. We also
present Perelman’s result on obtaining bounded curvature at bounded distance and
a result on obtaining suitable scaling parameters (λk, Tk, pk) as discussed above such
that the blow-up sequence gk subconverges.

Our goal is to present a concise picture of the theory of κ-solutions and its role in
Perelman’s work on the Ricci flow, the Poincaré conjecture and the geometrization
conjecture. We do not attempt to include all results on κ-solutions. In a number of
places we stay away from complicated technical details of the proofs. The complete
details can be found in Perelman’s papers [P1] and [P2], the excellent book [MT]
and notes [KL], the paper [CZ], and the papers [Y1], [Y2], [Y3], [Y4] and [Y5]. (The
specific references are always given.) On the other hand, we include complete proofs
in a number of other places, e.g. in Section 4, because these proofs are relatively
short and can provide a good help for understanding the concepts and methods, or
because we cannot find suitable references for the complete details.

2 Blow-up limits of the Ricci flow and κ-solutions

Definition 1 ([P1]) Let (M, g) be a complete Riemannian manifold of dimension
n ≥ 1. Consider positive numbers κ and ρ. We say that (M, g) is κ-noncollapsed on
the scale ρ, provided that every geodesic ball B(x, r) of radius r < ρ in (M, g), on
which |Rm| ≤ r−2 holds, has volume at least κrn.
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Definition 2 ([P1]) A κ-solution (of the Ricci flow (1.1)) is an ancient nonflat so-
lution of the Ricci flow (1.1) on a manifold M with bounded nonnegative curvature
operator which is κ-noncollapsed for some κ > 0 on all scales. More precisely, a
κ-solution is a smooth solution g = g(t) of the Ricci flow for −∞ < t ≤ 0 on some
manifold M such that for each t, the metric g(t) is complete, nonflat, has bounded
and nonnegative curvature operator, and is κ-noncollapsed on all scales.

Round spheres give rise to obvious examples of κ-solutions. Consider the sphere
Sn, n ≥ 1. Let g0 denote a constant multiple of the standand round sphere metric
gSn of sectional curvature 1 on Sn. Then g(t) = (1 − 2

n
Rg0t)g0, t ∈ (−∞, 0] is a κ-

solution on Sn, where Rg0 denotes the scalar curvature of g0. In dimension 2, we have
κ = 8π(1− cos 1√

2
). If M is a manifold diffeomorphic to Sn, we can pull back g to M

by a (time independent) diffeomorphism to obtain a κ-solution on M . We call these
κ-solutions round sphere κ-solutions or simply round spheres. By the uniqueness of
the solution of the Ricci flow with a given initial value, a smooth solution of the Ricci
flow on a compact, simply connected manifold which has positive constant sectional
curvature extends to a round sphere κ-solution.

By the following lemma and nonnegativity of curvature operator, the scalar cur-
vature R of a κ-solution g at t = 0 controls the norm of its curvature operator for all
time t ≤ 0. Hence g has uniformly bounded curvature operator on the entire time
interval (−∞, 0].

Lemma 2.1 Let g be a smooth solution of the Ricci flow on M × (−Λ, 0) for a
manifold M and some Λ > 0. Assume that for each t ∈ (−Λ, 0), g(t) is complete and
has bounded and nonnegative curvature operator. Then ∂R

∂t
≥ 0 everywhere.

Proof. The trace form [1.2, H4] of Hamilton’s differential Harnack inequality says

∂R

∂t
+
R

t
+ 2∇R ·X + 2Ric(X,X) ≥ 0 (2.1)

for arbitary smooth vector fields X. Taking X = 0 we then deduce ∂R
∂t
≥ −R

t
≥ 0.

The cornerstone for performing blow-up analysis for the Ricci flow is Perelman’s
non-collapsing result in [P1] for the Ricci flow for finite time. The original κ-
noncollapsing result of Perelman in [P1] is formulated relative to bounds for |Rm|.
Later, a κ-noncollapsing result for bounded time measured relative to upper bounds
of the scalar curvature R was obtained independently by Perelman (see [KL]) and
the present author (see [Y1]). More recently, the present author obtained in [Y5] new
κ-noncollapsing estimates which improve these earlier results. We state these new
estimates below.
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Theorem 2.2 Let g = g(t) be a smooth solution of the Ricci flow (1.1) on M× [0, T )
for a compact manifold M of dimension n ≥ 3 and some T <∞. There are positive
constants A and B depending only on the initial metric g0 = g(0) in terms of its
logarithmic Sobolev inequality and an upper bound of T with the following properties.
Let L > 0 and t ∈ [0, T ). Consider the Riemannian manifold (M, g) with g = g(t).
Assume R ≤ 1

r2
on a geodesic ball B(x, r) with 0 < r ≤ L. Then there holds

vol(B(x, r)) ≥
(

1

2n+3A+ 2BL2

)n
2

rn. (2.2)

Next let λ0(g0) denote the first eigenvalue of the operator −∆ + R
4

for the initial
metric. Assume λ0(g0) > 0. Then the above estimate (2.2) can be improved to (under
the same condition on B(x, r))

vol(B(x, r)) ≥
(

1

2n+3A

)n
2

rn, (2.3)

where A > 0 depends only on the initial metric g0 in terms of its logarithmic Sobolev
inequality and λ0(g0) (without depending on T ) and the assumption r < L is not
needed.

In other words, the flow g = g(t), t ∈ [0, T ) is κ-noncollapsed relative to upper
bounds of the scalar curvature on all scales.

Next we present a general result on blow-up limits of the Ricci flow based on the
κ-noncollapsing results described above.

Theorem 2.3 Let g = g(t) be a smooth solution of the Ricci flow (1.1) on M× [0, T )
for a compact manifold M of dimension n ≥ 3 and some T < ∞. Let λk → ∞ be a
sequence of scaling factors, Tk ∈ (0, T ) a sequence of scaling center times, and pk ∈M
a sequence of reference points. Consider the rescaled flows gk(t) = gλk,Tk . Assume
that for each L > 0 there are numbers KL > 0 and 0 < TL < T such that |Rm| ≤ KL

holds true for gk(t) with Tk > TL on the geodesic ball of center pk and radius L, where
t ∈ (−λk(Tk−TL), 0] is arbitrary. Then a subsequence of (gk,M×(−λk(Tk−TL), 0], xk)
point converges smoothly to a pointed Ricci flow (g∞,M∞ × (−T∞, 0], p∞) for some
manifold M∞ and p∞ ∈ M∞, such that g∞(t) is complete for each t. The flow g∞
is κ-noncollapsed relative to upper bounds of the scalar curvature on all scales, where

κ = 2−
n(n+3)

2 A−
n
2 and A is from Theorem 2.2. Moreover, there holds for g∞ at all t(∫

M∞
|u|

2n
n−2dvol

)n−2
n

≤ A
∫
M∞

(|∇u|2 +
R

4
u2)dvol (2.4)

for all u ∈ W 1,2(M∞). (By [Y5], this constant A is the same as the A in Theorem 2.2.)
In other words, blow-up limits of the Ricci flow always satisfy the Sobolev inequality
(2.4).
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Proof. Note that pointed convergence means convergence on geodesic balls of center
pk and any given radius. By pulling back of metrics, this means convergence on
geodesic balls of center p∞ and any given radius with respect to g∞. By Theorem
2.2 the rescaled flow gk satisfies for any given L > 0 and any given time t the volume
estimate

vol(B(p, r)) ≥
(

1

2n+3A+ 2BλkL2

)n
2

rn, (2.5)

provided that r ≤ L and R ≤ r−2 on B(pk, r) at time t. By the assumption on
|Rm| we have for any given time TL ≤ t ≤ Tk the estimate R ≤ c(n)KL on B(pk, L)
for a positive constant c(n) depending on n. Hence the volume estimate (2.5) holds

true for p = pk, provided that r ≤ min{L,
√
c(n)KL}. By Bishop-Gromov volume

comparison, we then obtain at any t ∈ [−λk(Tk − TL), 0]

vol(B(p, r)) ≥ C(L, n)
(

1

2n+3A+ 2BλkL2

)n
2

rn (2.6)

for all p ∈ B(pk, L/2), where C(L, n) is a positive constant depending on L and n.
By [CGT] (see also [Lemma B.1, Y1]), we obtain a positive constant δ(n, L,A,B)
depending on n, L,A and B such that at any t ∈ [−λk(Tk − TL), 0]

i(p) ≥ δ(n, L,A,B) (2.7)

for all p ∈ B(pk, L/2), where i(p) denotes the injectivity radius at p.
Now we have for gk upper bounds for |Rm| and positive lower bounds for the

injectivity radius on balls of center pk and radius L/2, over the time interval [−λk(Tk−
TL), 0], where L > 0 is arbitrary. Note that these bounds hold uniformly for all gk
for a given L. Moreover, the time interval approaches (−∞, 0] for each L. Now it is
quite easy to apply the basic arguments of Gromov-Cheeger-Hamilton compactness
theorem [H6] to obtain a subsequence of (gk,M×(−λkTk, 0], pk) which point converges
smoothly to a smooth pointed Ricci flow g∞,M∞ × (−∞, 0], p∞).

The stated κ-noncollapsing property of g∞ follows from (2.2) by passing to the
limit. The Sobolev inequality (2.4) follows from the Sobolev inequalities established
in [Y5].

Two important issues are prompted by this general result. On the one hand,
Theorem 2.3 allows one to obtain smooth blow-up limits for the Ricci flow at a blow-
up time, provided that one can choose λk, Tk and pk such that the needed curvature
bounds hold. There is a simple situation in which the needed curvature bounds are
obviously valid. This is the situation when we choose pk such that the |Rm| of g
achieves at (pk, Tk) its maximal value on the domain M × [0, Tk] (one can also use
a suitable subinterval of [0, Tk]), and choose λk = |Rm|(pk, Tk)−1. Of course, this
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can only yield information about blow-up singularities at maximal curvature points.
There can be blow-up singularities in other places, however. Indeed, one needs to
understand the structures of the Ricc flow in any region of large curvature. This
issue is handled by Perelman in [P1] by using some delicate arguments. His main
result in dimension 3 is the canonical neighborhood theorem, which will be presented
in Section 6.10, along with a result on obtaining parameters λk, Tk and pk with the
properties assumed in Theorem 2.3.

On the other hand, Theorem 2.3 says that the blow-up limits are ancient solutions
and κ-noncollapsed on all scales. A natural and important question is when the blow-
up limits are κ-solutions, namely when they have bounded nonnegative curvature
operator and are non-flat. (Note that the curvature bounds in Theorem 2.3 are not
assumed to be uniform with respect to L, so they only lead to bounded curvature
at bounded distance, and do not yield directly globally bounded curvature.) The
following theorem follows from Perelman’s results.

Theorem 2.4 Assume n = 3 and

|Rm|(pk, Tk) = 1 (2.8)

for each gk. then g∞ has bounded nonnegative curvature operator and is nonflat.
Consequently, g∞ is a κ-solution.

This theorem is proved by using the canonical neighborhood theorem and the
Hamilton-Ivey pinching, or the Hamilton pinching, see Section 6.10.

3 Asymptotical solitons, the l-function and the re-

duced volume

As we have seen in the last section, blow-up singularities of the Ricci flow in di-
mension 3 are modeled by κ-solutions. Hence it is important to analyze structures
of κ-solutions. It turns out that to a large degree κ-solutions can be understood in
terms of gradient shrinking Ricci solitons.

Definition 3 Let g be a smooth solution of the Ricci flow on M × I for a smooth
manifold M and an interval I. We say that g is a shrinking Ricci soliton (or simply
shrinking soliton) with time origin t0 ≥ sup I on an open subset O of M×I, provided
that g satisfies the gradient shrinking soliton equation

Ric+
1

2(t− t0)
g +

1

2
LXf = 0 (3.1)

in O for a smooth (time-dependent) vector filed X on O. (Obviously, a translation in
time produces from a given shrinking soliton a new shrinking soliton with a different
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time origin.) We say that g is complete, if g(t) is a complete a metric for some
each t ∈ I (equivalently, for some t ∈ I). If X = ∇f for a smooth (time-dependent)
function f on O, then g is called a gradient shrinking Ricci soliton (or simply gradient
shrinking soliton) and f is called a potential function of f . Note that in this case the
equation (3.1) becomes

Ric+
1

2(t− t0)
g +∇2f = 0. (3.2)

A fixed metric g0 satisfying

Ric+
1

2
LXg0 = λg0 (3.3)

for a fixed vector field X and a constant λ > 0 will be called a slice shrinking soliton,
with “ slice” meaning space slice. (It is also called a shrinking soliton in the literature.
Our terminology is for the sake of clarity and convenience.) If X = ∇f , i.e.

Ric+∇2g0 = λg0, (3.4)

then g0 will be called a slice gradient shrinking soliton. It is easy to see that a slice
gradient shrinking soliton generates a gradient shrinking soliton g which equals g0

at a time determined by λ and t0. (A similar statement holds true for general slice
shrinking solitons on compact manifolds.)

A shrinking soliton g evolves by the pullback of a family of diffeomorphisms cou-
pled with scaling. More precisely, we have

g(t) =
t− t0
t̄− t0

φ∗g(t̄), (3.5)

where t̄ is an arbitary point in I and φ is the solution of the equation

∂φ

∂t
= −X (3.6)

with φ(t̄) = id (id denotes the identity map of M). (Conversely, any g(t) given this
way is a shrinking soliton.) Indeed, we have

∂g

∂t
= −2Ric =

1

t− t0
g + LXg. (3.7)

Hence
∂

∂t
φ∗g =

1

t− t0
φ∗g. (3.8)

The equation (3.5) follows.
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As will be seen later (Theorem 6.4), κ-solutions will be used to model large curva-
ture regions of solutions of the Ricci flow in dimension 3. To establish this modeling,
one needs to understand the asymptotical structures of κ-solutions as t→ −∞. Let
g be a κ-solution on a manifold M of dimension n ≥ 2. To analyze its asymptotical
structure as t → −∞, we blow it down as t → −∞. The idea of blowing-down is
suggested by the Ricci flow equation (1.1). Since g has nonnegative curvature oper-
ator, this equation says that g has a non-positive rate of change for forward time,
hence g(t) shrinks as t increases. This means the same as saying that g(t) expands
as t decreases. To obtain a smooth limit from g(t) near −∞ one then needs to blow
it down. For a > 0 we consider the rescaled flow ga(t) = a−1g(at), which is also
a κ-solution. Let ak be a sequence of positive numbers approaching ∞. Then we
consider the blow-down flows gak(t). In order to extract smooth limits from gak , we
need geometric estimates for κ-solutions. A basic tool here is the reduced distance,
or the l-function of Perelman. In [P1], the l-function is formulated for solutions of
the backward Ricci flow

∂g

∂t
= 2Ric. (3.9)

By the time reversal t→ −t, solutions of the Ricci flow can be converted into solutions
of the backward Ricci flow. Hence the theory of the l-function developed in [P1] can
be applied. On the other hand, we can formulate the theory of the l-function directly
for solutions of the Ricci flow. For simplicity we’ll do this in the context of ancient
solutions.

Consider an ancient solution g = g(t) of the Ricci flow on M for some manifold
M of dimension n ≥ 2. Thus, for each t ≤ 0, g(t) is defined and complete. For t < 0,
we consider Perelman’s L-energy for piecewise C1 curves γ : [t, 0]→M,

L(γ) =
∫ 0

t

√
−τ(R(γ(τ), τ) + |γ̇|2)dτ, (3.10)

where | · | = | · |g(τ).
Next we choose a reference point p ∈ M and define L(q, t) = Lg(q, t) to be the

infimum of L(γ) for γ : [t, 0] → M with γ(0) = p and γ(t) = q. (We write Lg(q, t) if
we need to indicate the dependence on g.)

Definition 4 We define the reduced distance or the l-function (of Perelman) to be

l(q, t) = lg(q, t) =
L(q, t)

2
√
−t

. (3.11)

The reference point p will be called the l-base.

We have the following geometric estimates for κ-solutions. Let d(·, ·, t) denote the
distance with respect to g(t).
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Theorem 3.1 There is a positive constant C depending only on the dimension n
such that

R ≤ Cl

|t|
(3.12)

everywhere on M × (−∞, 0],

|∇l|2 ≤ Cl

|t|
(3.13)

almost everywhere in M for each t ∈ (−∞, 0],

|
√
l(q1, τ)−

√
l(q2, t)| ≤

√
C

4|t|
d(q1, q2, t) (3.14)

for all t ∈ (−∞, 0] and all q1, q2 ∈M , and

|lt| ≤
Cl

|t|
(3.15)

almost everywhere in (−∞, 0] for each q ∈ M . Moreover, we have the following
Harnack inequality

(
t1
t2

)C ≤ l(q, t2)

l(q, t1)
≤ (

t2
t1

)C (3.16)

for all q ∈M and t1, t2 ∈ (−∞, 0] with |t2| > |t1|.

Proof. This follows from [Theorem 2.18, Y2], which is based on Perelman’s estimates
in [P1] and the analytic properties of the l-function established in [Y2].

Lemma 3.2 For each t ∈ (−∞, 0], there is a minimum point p(t) of l(·, t). Moreover,
there holds l(p(t), t) ≤ n/2.

Proof. The upper bound follows from Section 7.1 of [P1], see also [Lemma 3.1, Y2].
The existence of pt follows from [Lemma 2.3, Y2].

Based on the above geometric estimates we can now extract smooth blow-down
limits from a κ solution g(t). The following theorem is formulated in [Y3] as part of
[Proposition 11.2, P1].

Theorem 3.3 Let g = g(t) be a κ-solution on a manifold M of dimension n ≥ 2 as
before. Let tk → −∞ be given. For each tk, let p(tk) be a minimum point of l(·, t).
Then the pointed flows (g|tk|,M×(0,∞), p(tk)) subconverge smoothly to pointed smooth
solutions (g∞,M∞× (−∞, 0), p∞) of the Ricci flow, which will be called asymptotical
limits of g. These limits are κ-noncollapsed on all scales.
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Proof. We reproduce the proof given in [Y3]. The various quantities associated with
g|tk| will be indicated by the subscript k or g|tk|, e.g. lk = lg|tk| and dk = dg|gk| . By
Lemma 3.2 and the scaling invariance of the l-function we have

lk(p(tk),−1) ≤ n

2
. (3.17)

By this estimate and [Lemma 3.2, Y2] we infer

lk(q,−1) ≤ C2d
2
k(x(τk), q,−1) + n (3.18)

for all q ∈ M , where C2 is a positive constant depending only on the dimension n.
Then it follows from the Harnack inequality (3.16) that

lk(q, t) ≤ |t|±C(C2(d2
k(p(tk), q,−1) + n), (3.19)

where ± = + if |t| ≥ 1, ± = − if |t| < 1, and C is a positive constant depending
only on n. Consequently, we obtain from (3.12) and the nonnegativity of curvature
operator the estimate

|Rm|k(q, t) ≤ C|t|−1±C(d2
k(p(tk), q,−1) + 1). (3.20)

By the κ-noncollapsing property of gk we then obtain the desired pointed smooth
convergence to pointed solutions (g∞,M∞ × (0,∞), x∞) of the Ricci flow as in the
proof of Theorem 2.3. The κ-noncollapsing property of g∞ follows from the κ-
noncollapsing property of gk and the smooth convergence.

The next stage of the process of understanding κ-solutions is to identify asymp-
totical limits to be gradient shrinking solitons. A crucial tool for this purpose is the
reduced volume of Perelman. For convenience we again formulate it for the Ricci flow
rather than the backward Ricci flow as in [P1], and restrict the discussion to ancient
solutions.

Definition 5 Let g be an ancient solution of the Ricci flow on a manifold M of
dimension n ≥ 2. Choose a point p as the l-base. We define the reduced volume (of
Perelman) to be

Ṽ (t) = Ṽg(t) =
∫
M
|t|−

n
2 e−l(q,t)dvolg(t). (3.21)

It is easy to see that Ṽ is invariant under the rescaling g → ga. The key properties
of the reduced volume are its monotonicity, upper bounds, and the associated rigidi-
ties. The following results were obtained in [Y2] (in the formulation of the backward
Ricci flow), which include Perelman’s results on the reduced volume in [P1] as special
cases. The basis for these results is Perelman’s differential inequality [P1]

d

dt
(|t|−

n
2 e−l(v,t)J(t)(v)) ≥ 0 (3.22)

12



and the analytic properties of the l-function established in [Y2]. Here v is a tangent
vector at p which lies in the injectivity domain of the L-exponential map (the expo-
nential map associated with the L-geodesics), l(v, t) = l(γv(t), t) with γv denoting the
L-geodesic determined by the initial tangent vector v, and J(t) denotes the Jacobian
of the L-exponential map.

Theorem 3.4 If the Ricci curvature is bounded from below on [T, 0] for each T < 0,
then Ṽ (t) is a nondecreasing function.

Theorem 3.5 Assume that the Ricci curvature is nonnegative for s ∈ [t, 0]. Then
Ṽ (t) < (4π)

n
2 unless (M, g(0)) is isometric to Rn and g(s) = g(0) for all s ∈ [t, 0], in

which case Ṽ (t) = (4π)
n
2 .

The next theorem is formulated in [Y3] as the remaining part of [Proposition 11.2,
P1].

Theorem 3.6 Let (g∞,M∞ × (0,∞), p∞) be an asymptotical limit of a κ-solution
g. Then g∞ is a nonflat gradient shrinking soliton with time origin 0. Moreover,
the limit l-function l∞ is a potential function. Henceforth asymptotical limits will be
called “asymptotical solitons”.

Here the limit l-function l∞ refers to the limit of the sequence of l-functions lg|tk|
for the associated sequence of rescaled flows g|tk| (as in Theorem 3.3). The application
of the reduced volume in the proof of this theorem as presented in [Y3] is in terms of
the asymptotical reduced volume Ṽ∞ of g∞, which is the limit of the reduced volume
of g|tk|. By the monotonicity of the reduced volume (Theorem 3.4) and a delicate

convergence argument one deduces that Ṽ∞(t) is independent of time t. On the other
hand, one has

Ṽ∞(t2)− Ṽ∞(t1) = −
∫ t2

t1

∫
M∞

(
∂l∞
∂t

+R∞ +
n

2t
)e−l∞ |t|−

n
2 dqdt (3.23)

for t1 < t2, which follows from another delicate argument about absolute convergence
of improper integrals. (The subscript ∞ for various quantities refers to g∞.) Thus
we have ∫ t2

t1

∫
M∞

(
∂l∞
∂t

+R∞ +
n

2t
)e−l∞|t|−

n
2 dqddt = 0. (3.24)

Besides this identity, another important tool employed in the proof of Theorem
3.6 is the following lemma.

Lemma 3.7 The equation

∂l∞
∂t

+
R∞
2
− |∇l∞|

2

2
+
l∞
2t

= 0 (3.25)
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holds true almost everywhere on M∞ × (0,∞). The inequality

∆l∞ −
|∇l∞|2

2
+
R∞
2

+
l∞ − n

2τ
≤ 0 (3.26)

holds true for each t < 0 in the weak sense, i.e.∫
M∞
{−∇l∞ · ∇φ+

1

2
(−|∇l∞|2 +R∞ −

l∞ − n
t

)φ}dq ≤ 0 (3.27)

for all nonnegative Lipschitz functions φ with compact support. Finally, the inequality

∂l∞
∂t

+ ∆l∞ − |∇l∞|2 +R∞ +
n

2t
≤ 0 (3.28)

holds true on M∞ × (0,∞) when ∆ is interpreted in the weak sense, i.e.

Qt1,t2(φ) ≤ 0 (3.29)

for arbitray t1 < t2 < 0 and nonnegative Lipschitz functions φ on M∞ × [t1, t2] with
compact support, where

Qt1,t2(φ) =
∫ t2

t1

∫
M∞
{−∇l∞ · ∇φ+ (

∂l∞
∂t
− |∇l∞|2 +R∞ +

n

2t
)φ}dqdt. (3.30)

This lemma is derived in two stages. First a similar lemma is derived for gk,
based on Perelman’s differential inequalities in [P1] and the analytic properties of
the l-function established in [Y2]. Then Lemma 3.7 is derived via a convergence
argument. Here, a lemma about strong convergence of Sobolev functions established
in [Y3] is needed. (see [Y3] for details.) (In [Y3], this lemma is formulated in terms
of the variable τ = −t.)

Now we have all the ingredients needed to finish the proof of Theorem 3.6. Note
that the identity (3.24) means Qt1,t2(|t|−

n
2 e−l∞) = 0. Combining this with Lemma

3.7 one infers that the inequalities in Lemma 3.7 become equalities, and the function
l∞ is smooth (as a consequence of parabolic regularity). Then one appeals to the
characterization of gradient shrinking solitons in terms of these differential equalities
(see [P1] and [Y2]) to conclude that g∞ is a gradient shrinking soliton with potential
functional l∞. The nonflat property of l∞ is derived by using the strict upper bound
for the reduced volume of gk provided by Theorem 3.5. We refer to [Y3] for details.

4 Classification of 2-dimensional κ-solutions

As shown in [P1][P2] and will be discussed in Sections 5 and 6, the following result
plays an important role in analyzing structures of 3-dimensional κ-solutions and blow-
up singularities of the Ricci flow in dimension 3.
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Theorem 4.1 In dimension 2 round spheres are the only orientable κ-solutions.

This theorem is precisely [Corrolary 11.3, P1]. Its proof given in [P1] is incom-
plete, since it leaves out the case of noncompact 2-dimensional κ-solutions. Here we
reproduce the first complete proof of this result which is presented in the present au-
thor’s paper [Y4]. (This paper has been available at the author’s website and through
the website of B. Kleiner and J. Lott and the references in their notes on Perelman’s
papers on the Ricci flow [KL] since early 2004.)

There is a gradient shrinking Ricci soliton g∗ with time origin 0 on S2 which is given
by g∗(t) = −2tgS2 . Its potential functions are the constant functions. We can shift
its time origin, rescale it by a constant factor, and pull it back by a diffeomorphism.
The shrinking Ricci solitons obtained this way will be called round sphere solitons.
By a round sphere metric on a manifold M diffeomorphic to S2 we mean λF ∗gS2 ,
where λ is a positive number and F is a smooth diffeomorphism from M onto S2.

Lemma 4.2 Let M be diffeomorphic to S2 and g a shrinking Ricci soliton on M .
Then g is a round sphere soliton.

Proof. This follows from [Theorem 10.1, H1]. For a different proof based on [BSY],
we refer to [Y4].

Lemma 4.3 Let g be a smooth solution of the Ricci flow on M × (a, b) for a 2-
dimensional manifold M and some time interval (a, b), such that for each t ∈ (a, b),
the metric g(t) is complete and has nonnegative scalar curvature. Moreover, assume
∂R
∂t
≥ 0. Let t0 ∈ (a, b). Assume that g(t0) is κ-noncollapsed on the scale ρ for some

κ > 0 and ρ > 0. Then g(t0) has bounded scalar curvature.

Proof. The proof is along the lines of arguments in several places in [P1]. Our
argument for point picking is more direct. We’ll add the notation t explicitly to
various quantities to indicate the metric g(t) at time t, e.g. B(p, r, t) is the geodesic
ball of center p and radius r with respect to the metric g(t). Assume that g(t0)
has unbounded scalar curvature. Choose a sequence of points pk ∈ M such that
R(pk, t0) > 0 for each k and R(pk, t0) → ∞. Choose qk ∈ B(pk, 1, t0) such that the
function d(·, ∂B(pk, 1, t0), t0)2R(·, t0) on B(pk, 1, t0) achieves its maximum at qk. We
set rk = d(qk, ∂B(pk, 1, t0), t0)/2. For q ∈ B(qk, rk, t0) we have d(q, ∂B(pk, 1, t0), t0) ≥
rk and hence the maximum property of qk implies

r2
kR(q, t0) ≤ d(q, ∂B(pk, 1, t0), t0)2R(q, t0) ≤ 4r2

kR(qk, t0). (4.1)

It follows that

R(q, t0) ≤ 4R(qk, t0) (4.2)
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onB(qk, rk, t0). By the maximum property of qk we also infer r2
kR(qk, t0) ≥ R(pk, t0)/4,

so rk > 0 for each k and r2
kR(qk, t0) → ∞. On the other hand, it is obvious that

qk → ∞. Now we consider the rescaled flows gk(t) = R(qk, t0)g(t0 + R(qk, t0)t). Set

ρk = rk
√
R(qk, t0). There holds R(qk, 0) = 1 and R(·, 0) ≤ 4 on B(qk, ρk, 0) for gk. By

the property ∂R
∂t
≥ 0 we can control the curvature for t ≤ 0 as well. Combining this

with the κ-noncollapsing condition we then obtain from (M, gk, qk) a smooth limit
(g∞,M∞, p∞). By Splitting Lemma in [Appendix, Y4] or [Appendix G, KL] this limit
splits off a line, i.e. is the isometric product of a lower dimensional manifold with
R. (We only need the splitting at t = 0, although it holds for the flow.) Since M∞
is 2-dimensional, it follows that g∞ is flat. But the scalar curvature of R(qk, t0)g(t0)
at qk is 1, hence the scalar curvature of g∞(0) at q∞ is also 1. This is a contradiction.

Note that by Lemma 2.1 and smooth convergence asymptotical solitons have non-
decreasing scalar curvature, i.e. satisfy ∂R

∂t
≥ 0.

Lemma 4.4 Let g be a 2-dimensional asymptotical soliton, or, more generally, a
complete nonflat κ-noncollapsed gradient shrinking soliton with non-negative and non-
decreasing scalar curvature. Then it is a round sphere soliton.

Proof. By time translations we may assume that 0 is the time origin of g. Hence g
satisfies the soliton equation

Ric+
1

2t
g +∇2f = 0. (4.3)

By Lemma 4.3, g has bounded scalar curvature for each t < 0. We also observe that
R is everywhere positive. Indeed, if R is zero at some point p and some time t, then
the strong maximum principle applied to the evolution equation of R

∂R

∂t
= ∆R +R2 (4.4)

implies that R is everywhere zero, which contradicts the nonflatness of g.
We claim that M is compact. To prove the claim, fix a point p0 ∈ M . Following

[(1.2), P2] we have, as a consequence of (4.3) the following equation

dR = 2Ric(∇f, ·) = Rg(∇f, ·) = Rdf. (4.5)

Let θ(q, t, γ) denote the (smaller) angle between∇f(q, t) and γ′(l), where l = d(p0, q, t)
and γ is a unit speed shortest geodesic with respect to g(t) such that γ(0) = p0 and
γ(l) = q. This angle is defined to be 2π if ∇f(q, t) = 0. By the arguments in the
proof of [Lemma 1.2, P2] in [P2], there is a positive number A0 such that

θ(q,−1, γ) ≤ π

4
(4.6)
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whenever d(p0, q,−1) ≥ A0.
Let γ be a shortest geodesic from p0 to a point q with d(p0, q,−1) > A0. We have

by (6.8) and (4.6)

d

dt
R(γ(t),−1) = ∇R · γ′(t) = R∇f · γ′(t) > 0, (4.7)

as long as t ≥ A. Thus R(γ(t),−1) increases along the portion of γ which lies outside
of the geodesic ball B(p0, A0,−1). Consequently, we obtain the following estimate

R(q,−1) ≥ αA0 (4.8)

for all q ∈ M , where αA0 = min{R(q,−1) : q ∈ B(p0, A0,−1)}. Since R > 0
everywhere, αA is positive. By Bonnet theorem, M must be compact.

Now we apply Gauss-Bonnet theorem to infer that M is diffeomorphic to S2. Then
we apply Lemma 4.2 to conclude that (M, g) is a round sphere soliton.

Remark This result extends to other classes of shrinking solitons, see [Y4].

Proof of Theorem 4.1
Let (M, g∗) be an orientable 2-dimensional κ-solution. Consider an arbitary

asymptotic soliton (M∞, g∞, q∞) of g∗ given by Theorem 3.3 and Theorem 3.6. By
Lemma 4.4, (M∞, g∞) is a round sphere soliton. Consequently, M is diffeomorphic
to S2. Moreover, modulo smooth diffeomorphisms of M , the metrics 1

|t|g
∗(t) converge

smoothly on M to metrics of positive constant scalar curvature as t→ −∞.
We set g(τ) = λ(t)g∗(t) with λ(t) = exp(

∫ t
−1 r

∗) and τ =
∫ t
−1 λ, where r∗(t) denotes

the average scalar curvature of g∗(t). Then g = g(τ) satisfies the volume-normalized
Ricci flow

∂g

∂τ
= (r −R)g (4.9)

with r denoting the average scalar curvature of g. There holds τ ∈ (Λ1,Λ2], where
Λ1 = limt→−∞ τ(t) and Λ2 = τ(0), Then, modulo smooth diffeomorphisms of M , g(τ)
converges to metrics of positive constant scalar curvature as τ → Λ1. Following [H1],
let f be the solution of ∆f = R− r with mean value zero, and set H = ∇2f − 1

2
∆fg

(Hij is the Mij in [H1]). By [(9.1), H1] we have

∂|H|2

∂τ
= ∆|H|2 − 2|∇H|2 − 2R|H|2. (4.10)

Hence the maximum principle implies that max |H|2 is nonincreasing. Since g con-
verges modulo smooth diffeomorphisms of M to metrics of positive constant scalar
curvature as τ → Λ1, we have H → 0 as τ → Λ1, whence H ≡ 0. Now, pulling back
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g by a family of diffeomorphisms φ(t) generated by ∇f with φ(−1) = id, we obtain
ĝ which satisfies

∂ĝ

∂τ
= 2H = 0. (4.11)

Thus ĝ is independent of time. Since its scalar curvature approaches a positive con-
stant as τ → Λ1, we infer that ĝ has positive constant scalar curvature. It follows
that g and hence g∗ has positive constant scalar curvature. We conclude that g∗ is
a round sphere κ-solution. Note that we have f ≡ 0 because g has constant scalar
curvature. Consequently, g = ĝ. We deduce that g∗(t) = λ(t)ĝ for positive scalars
λ(t). This immediately yields g∗(t) = (1 − 2

n
R0t)g

∗(0), where R0 denotes the scalar
curvature of g∗(0).

5 Classification of 3-dimensional κ-solutions and

Perelman’s compactness theorem

In [P2], Perelman obtained the classification of 3-dimensional κ-solutions based on
a classification of 3-dimensional gradient shrinking solitons. One ingredient in this
classifications is the classification of 2-dimensional κ-solutions and gradient shrink-
ing solitons presented in the last section. Perelman’s classification of 3-dimensional
gradient shrinking solitons in [P2] is as follows.

Theorem 5.1 Let g be a complete, κ-noncollapsed gradient shrinking soliton with
bounded nonnegative sectional curavture on a 3-dimensional manifold M . Then the
universal cover of (M, g) is isometric to R3, S3 or S2×R, where S2 is equipped with
a constant multiple of the round sphere metric of sectional curvature 1.

The key ingredient for establishing this theorem is Lemma 1.2 in [P2] which we
state below as a theorem.

Theorem 5.2 There is no 3-dimensional complete, noncompact and nonflat gradient
shrinking soliton which is κ-noncollapsed and has bounded positive sectional curvature.

One argument in the proof of this theorem in [P2] uses Theorem 4.1. (The above
proof of Lemma 4.4 offers some aspect of this argument.) Another argument is in
terms of the level surfaces of the potential function of the soliton. We refer to [P2]
for details.

Proof of Theorem 5.1 By Theorem 5.2, one is left to handle a compact universal
cover or a noncompact universal cover whose sectional curvature is not strictly posi-
tive everywhere. In the former case, the Ricci curvature must be positive. Otherwise,
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Hamilton’s strong maximum principle [H2] implies a splitting, i.e. the universal cover
(M̃, g̃) is the isometric product of a 1-dimensional factor and a 2-dimensional factor.
This is impossible because the only possible 1-dimensional factor is S1, which is ex-
cluded by the simple connectedness. Then the conclusion follows from Hamilton’s
theorem on the Ricci flow on compact 3-manifolds of positive Ricci curvature in [H1].
In the latter case, by Hamilton’s strong maximum principle the universal cover (M̃, g̃)
splits off a line. If the 2-dimensional factor is flat, then it must be R2. It follows that
(M̃, g̃) is isometric to R3. If the 2-dimensional factor is nonflat, then it is a round
sphere soliton by Lemma 4.4 and Lemma 2.1. Thus (M̃, g̃) is isometric to S2×R.

Recently, Perelman’s classification was extended by L. Ni-N. Wallach [NiW] and
A. Naber [Na] to 3-dimensional complete shrinking solitons of bounded nonnega-
tive Ricci curvature by using different methods. Ni and Wallach used an evolution
equation of curvature quantities associated with the Ricci flow and an integration
argument, while Naber used the l-function, the reduced volume and the potential
function. (Ni-Wallach only treated gradient shrinking solitons. But they allow un-
bounded curvature which satisfies a certain growth condition.) We state their result
in the following theorem.

Theorem 5.3 Let g be a complete shrinking soliton of bounded nonnegative Ricci
curvature on a 3-dimensional manifold M . Then the universal cover of (M, g) is
isometric to R3, S3 or S2 ×R.

Based on the 3-dimensional classification of gradient shrinking solitons and the
results on asymptotical solitons (namely Theorem 3.3 and Theorem 3.6) Perelman
obtained the following classification of 3-dimensional κ-solutions.

Theorem 5.4 Let (M, g) be a 3-dimensional κ-solution. Then it falls into one of the
following three mutually exclusive cases:
1. It has an asymptotical soliton which is isometric to a metric quotient of the round
3-dimensional sphere. In this case, (M, g) is isometric to a metric quotient of the
round 3-dimensional sphere. (This case is the same as the case that (M, g) has a
compact aymptotical soliton.)
2. It has an asymptotical soliton which is isometric to the nontrivial Z2 quotient of
S2 ×R. In this case, a nontrivial isometric Z2 cover of (M, g) has an asymptotical
soliton which is isometric to the round cylinder S2×R. (This case is the same as the
case that (M, g) has an asymptotical soliton which contains the one-sided projective
plane.)
3. It has an asymptotical soliton which is isometric to the round cylinder S2×R. In
this case, M can be noncompact or compact.
Finally, if (M, g) is compact, but has a noncompact asymptotical soliton, then M is
diffeomorphic to S3 or RP3.
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Proof. The three types of asymptotical solitons follow from Theorem 5.1. In Case 1,
M is obviously compact. By Theorem 3.3 and Theorem 3.6, there is a sequence of
times tk →∞, such that |tk|−1g(tk) approaches a metric of constant positive sectional
curvature. By Hamilton’s results in [H1] the Ricci curvature is positive for all t ≤ tk.
Moreover, the pinching of the Ricci curvature improves along g in the forward time
direction. Hence the Ricci curvature is no less pinched at t ≥ tk than at tk. For a
fixed t we let k → ∞ and conclude that the Ricci curvature is zero pinched at t. It
follows that (M, g) is isometric to a metric quotient of the round 3-sphere.

The last statement does not seem to be in Perelman’s papers. It is [Lemma 59.3,
KL]. We refer to [KL] for its proof.

Examples in Case 3 include the round cylinder itself and Bryant soliton which
is a steady Ricci soliton on R3. In [1.4, P2] Perelman presented a construction of
compact examples. More detailed classifications of κ-solutions are certainly desirable,
but Theorem 5.4 is sufficient for the purposes in [P1], [P2] and [P3].

Next we would like to present Perelman’s compactness theorem for the space of
3-dimensional noncompact κ-solutions. This result is very useful for deriving geo-
metric estimates for κ-solutions themselves and general solutions of the Ricci flow in
dimension 3. Before stating the compactness theorem, we state Perelman’s result on
the asymptotical volume ratio, which is a tool for proving the compactness theorem.
Let (M, g) be an n-dimensional noncompact, complete Riemannian manifold of non-
negative Ricci curvature and p ∈ M . By Bishop-Gromov volume comparison, the
ratio function vol(B(p, r))/rn is nonincreasing in r. Let V = V(M, g) denote its limit
as t→∞. It is independent of p and called the asymptotical volume ratio of (M, g).

Theorem 5.5 Let (M, g) be a κ-solution of dimension n ≥ 3. Then V(M, g(t)) = 0
for each t.

The proof of this theorem given in [P1] is by induction on the dimension. It
uses the concept of asymptotical scalar curvature ratio, rescaling limits and splitting
arguments. We refer to [P1], [KL] and [MT] for details.

Theorem 5.6 The space of 3-dimensional noncompact κ-solutions is compact modulo
scaling. More precisely, let (Mk, gk) be a sequence of 3-dimensional noncompact κ-
solutions, and let pk be a point of Mk for each k. Let λk denote the scalar curvature
of gk(0) at pk. (By the strong maximum principle, λk > 0.) Then a subsequence
of the pointed κ-solutions (Mk, ḡk, pk) with ḡk = λkgk point converges smoothly to a
κ-solution (M∞, ḡ∞, p∞).

Proof. It suffices to consider orientable κ-solutions, because we can pass to the ori-
entable double cover for an unorientable κ-solution. Note that R(pk, 0) = 1 for ḡk. In
the first part of the proof given in [P1] one shows that for each given (finite) radius
L the scalar curvature R is bounded on B(pk, L, 0). This is done by a contradiction
argument involving Theorem 5.5. We refer to [P1], [KL] and [MT] for details.
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Given the result of bounded scalar curvature at bounded distances, we also have
bounded curvature operator at bounded distance because the curvature operator
is nonnegative. Hence we can argue as in Theorem 2.3 to obtain a pointed limit
(M∞, ḡ∞, p∞) from a subsequence of (Mk, gk, pk). This limit is κ-noncollapsed on all
scales and has nonnegative curvature operator. Moreover, it satisfies ∂R

∂t
≥ 0. To

obtain the desired κ-solution property, it remains to show that it has bounded scalar
curvature at t = 0. Assume the contrary. Then we can find a sequence of points
pk in M∞ going to ∞, such that R(pk, 0) → ∞. Then we choose points qk as in
the proof of Lemma 4.3. Now we set λk = R(qk, 0) and consider the rescaled flows
g∞,k(t) = λkg∞(λ−1

k t). Then we have R(qk, 0) = 1 and R(·, 0) ≤ 4 on B(qk, ρk, 0) for
gk, where ρk →∞. By the property ∂R

∂t
≥ 0 we can control R for t < 0 as well. Com-

bining this with the κ-noncollapsing property we can then obtain a smooth pointed
limit flow (M∞

∞ , g∞,∞), which is obviously a κ-solution. By the splitting argument
alluded to in the proof of Lemma 4.3, this limits splits off a line. By Theorem 4.1,
the 2-dimensional factor must be a round sphere. It follows that this limit is the
round cylinder S2 ×R. Consequently, qk is contained in a neck-like region Zk which
approaches the round cylinder after the dilation by the factor λk, which approaches
∞. (So Zk is getting thinner and thinner, while getting longer and longer relative to
the cross size.) This is impossible in a noncompact, complete manifold of nonnegative
sectional curvature, see e.g. [46.1, KL]. (A result in [S] is used here.)

6 Achieving bounded curvature and the canonical

neighborhood theorem

As a preparation for the main content of this seciton, we first present the concept
of Hamilton-Ivey pinching and Hamilton pinching, which is a key property of the
Ricci flow in dimension 3. The Hamilton pinching condition is an improvement of
the Hamilton-Ivey pinching condition and contains additional useful information for
large time. For bounded time, it suffices to use the Hamilton-Ivey pinching condition.

Defintion 6 Let M be a manifold of dimension 3.
A. Let g be a smooth metric M . Let ν(p) denote the smallest eigenvalue of the
curvature operator of g at p. We say that g satisfies the Hamilton-Ivey pinching
condition, if R(p) ≥ −1, and

f−1(R) ≥ −ν(p), (6.1)

for all p ∈M , where f denotes the function x lnx− x defined for x ≥ 1.
B. Let g be a smooth metric on M and t a nonnegative number. We say that g
satisfies the Hamilton pinching condition at time t, if there holds at each p

R(p) ≥ − 3

1 + t
(6.2)
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and one of the following two inequalities holds true
1) ν(p) ≥ 0,
2)

R(p) ≥ |ν(p)| (ln |ν(p)|+ ln(1 + t)− 3) . (6.3)

The first theorem below is due to Hamilton [H5] and Ivey [I]. The second is due
to Hamilton [H5].

Theorem 6.1 The Ricci flow preserves the Hamilton-Ivey pinching condition on
closed 3-manifolds. It also preserves the Hamilton-Ivey pinching condition among
complete metrics with bounded sectional curvatures on noncompact 3-manifolds.

Theorem 6.2 The Ricci flow preserves the Hamilton pinching condition on closed
3-manifolds. More precisely, let g0 be a metric on a closed manifold M satisfying the
Hamilton time-t0 pinching condition. Let g = g(t) be a smooth solution of the Ricci
flow on M× [t0, T ) for some T > t0 with g(0) = g0. Then g = g(t), t ∈ [t0, T ) satisfies
the Hamilton pinching condition.

The Ricci flow also preserves the Hamilton pinching condition among complete
metrics with bounded sectional curvatures on noncompact 3-manifolds.

These two results are proved by employing the maximum principle. They depend
in a strong way on the special structures of the curvature operator in dimension 3.
The present author is not aware of any counterexample in higher dimensions. So one
may wonder to what extent they can be extended to higher dimensions. The following
simple lemma demonstrates why Hamilton-Ivey pinching and Hamilton pinching are
so useful.

Lemma 6.3 For each k let gk be a smooth metric on a 3-manifold Mk satisfying
the Hamilton-Ivey pinching condition. Let λk → ∞ and pk ∈ Mk. Assume that
(λkgk,Mk, pk) point converge smoothly to a pointed Riemannian manifold (M∞, g∞, p∞).
Then g has nonnegative curvature operator. We have the same conclusion if the
Hamilton-Ivey pinching is replaced by the Hamilton pinching at a fixed t.

Proof. We treat the case of the Hamilton-Ivey pinching. The case of the Hamilton
pinching is similar. Note that the pinching condition (6.1) means

R ≥ |ν|(ln |ν| − 1) (6.4)

when ν ≤ −1. So the ratio of R over |ν| for gk goes to ∞ when ν is negative and
|ν| goes to ∞ along gk and some points. After scaling gk by the factor λk, and hence
scaling its curvature quantities by λ−1

k , R converges and hence is bounded by the
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assumption. Consequently, the rescaled |ν| must go to zero because it is scaled by
the same factor as R. On the other hand, if ν is negative but does not go to ∞,
then the rescaled ν must go to zero because λk → ∞. In the remaining case, ν is
nonnegative, then the limit of the rescaled ν is obviously nonnegative. These three
cases may happen along different subsequences, and this argument is applied to each
situation.

Next we present Perelman’s theorem on canonical neighborhoods of solutions of
the Ricci flow in dimension 3. It is based on two results, one is Perelman’s theorem
of modeling large curvature regions of the Ricci flow by κ-solutions. The other is
Perelman’s theorem on the canonical neighborhood property of κ-solutions. The
former is [Theorem 12.1, P1], with a slight modification given in [Theorem 52.3, KL],
the latter is a result presented in Section 1.5 of [P2]. We state them below in this
order. (In the statements of Theorem 6.4 we make a simplification by dropping the
T which appears in [Theorem 12.1, P1] and [Theorem 52.3, KL].)

Theorem 6.4 Given ε > 0, κ > 0 and ρ > 0, one can find r0 > 0 with the following
property. If g = g(t), 0 ≤ t ≤ t0 with t0 ≥ 1 is a smooth solution of the Ricci flow
on a closed 3-manifold M , which satisfies the Hamilton-Ivey pinching condition (or
the Hamilton pinching condition) and is κ-noncollapsed on scales < ρ, then for any
point p0 with Q = R(p0, t0) ≥ r−2

0 , the solution in {(p, t) : d2(p, p0, t0) < (εQ)−1, t0 −
(εQ)−1 ≤ t ≤ t0}, is, after scaling by the factor Q, ε-close to the corresponding subset
of some κ-solution.

This theorem is proved by an intricate contradiction argument involving delicate
limiting arguments. Here two metrics are said to be ε-close if the Cε-norm (mea-
sured with respect to one of the two metrics) of the difference of the two metrics
does not exceed ε. (For two metrics on two different manifolds this involves pulling
back of metrics.) Note that e.g. C3.14 means the Hölder space C3,0.14. Perelman’s
arguments for proving this theorem extend to noncompact, complete manifolds with
an assumption on curvature bounds, see e.g. [KL]. It is for simplicity of statements
that this theorem is only formulated for closed manifolds. For convenience, we state
the implication of Theorem 6.4 for the case 0 < t0 < 1 as a theorem.

Theorem 6.5 Given ε > 0, κ > 0 and ρ > 0, one can find r0 > 0 with the
following property. If g = g(t), 0 ≤ t ≤ t0 with 0 < t0 ≤ 1 is a smooth solu-
tion of the Ricci flow on a closed 3-manifold M , which satisfies the Hamilton-Ivey
pinching condition (or the Hamilton pinching condition) and is κ-noncollapsed on
scales < ρ

√
t0, then for any point p0 with Q = R(p0, t0) ≥ t−1

0 r−2
0 , the solution in

{(p, t) : d2(p, p0, t0) < (εQ)−1, t0 − (εQ)−1 ≤ t ≤ t0}, is, after scaling by the factor Q,
ε-close to the corresponding subset of some κ-solution.

Proof. Consider the rescaled solution ḡ = t−1
0 g(t0t). Applying Theorem 6.4 and

scaling the result back to g.
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Theorem 6.6 Part A. (the universal κ property) There is κ0 > 0 such that every
3-dimensional κ-solution is either a κ0-solution or a metric quotient of the round
sphere.
Part B. (the universal derivative estimates) There is a universal constant η > 0,
such that each 3-dimensional κ-solution satisfies

|∇R| < ηR
3
2 , |Rt| < ηR2 (6.5)

everywhere.
Part C. (the canonical neighborhood property) There is a positive constant ε0 with
the following property. For each 0 < ε ≤ ε0 one can find C1 = C1(ε) > 0 and
C2 = C2(ε) > 0 such that for each point (p, t) in every 3-dimensional κ-solution there

is a radius r, 0 < r < C1R(p, t)−
1
2 , and a neighborhood B, B(p, r, t) ⊂ B ⊂ B(p, 2r, t)

(B(p, r, t) is the open geodesic ball of radius r with respect to g(t)), which falls into
one of the four categories:
(a) B is the slice of a strong ε-neck at its maximal time,
(b) B is an ε-cap,
(c) B is a closed manifolds diffeomorphic to S3 or RP3, or
(d) B is a closed manifold of constant positive sectional curvature.
Furthermore, the scalar curvature in B at time t is between C−1

2 R(p, t) and C2R(p, t),

its volume in cases (a), (b) or (c) is greater than C−1
2 R(p, t)−

3
2 , and in case (c) the

sectional curvature in B at time t is greater than C−1
2 R(p, t).

This theorem is a consequence of the result on asymptotical solitons of κ-solutions
(Theorem 3.3 and Theorem 3.6), the classification result Theorem 5.4 and the com-
pactness theorem (Theorem 5.6. Here, ε-caps and strong ε-necks are defined as follows.
Consider a smooth family of metrics g = g(t) on a 3-dimensional manifold, e.g. a
smooth solution of the Ricci flow. Let Ω be a domain in M . The domain with metric
(Ω, g(t)) for some t is called an ε-neck, if, after scaling the metric by the factor r−2, it
is ε-close to the standard neck S2× (−ε−1, ε−1), where S2 is equipped with the round
sphere metric of sectional curvature 1. Let Ω be a domain diffeomorphic to the open
ball B3 in R3 or diffeomorphic to RP3 minus a closed 3-ball in the interior. The
domain with metric (Ω, g(t)) for some t is called an ε-cap, if each point outsides some
compact subset is contained in an ε-neck, and the scalar curvature stays bounded on
the end of Ω. Next consider a parabolic neighborhood P (p, r, t,∆t), which is the set
of all points (q, s) with q ∈ B(p, r, t) and s ∈ [t, t + ∆t] or s ∈ [t + ∆t, t], depend-
ing on the sign of ∆t. A parabolic neighborhood P (p, ε−1r, t, r2) (with the metric
g(s), t ≤ s ≤ t + r2) is called a strong ε-neck, if, after scaling by the factor r−2 and
a time shift, it is ε-close to the evolving standard neck S2 × (−ε−1, ε−1) on the time
interval [−1, 0], which is part of a shrinking soliton isometric to S2×R. Here we also
assume that the scalar curvature of the evolving standard neck equals (1 − s)−1 for
each s ∈ [−1, 0].
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Definition 7 The above neighborhood B with the properties described in Part C and
the property (6.5) is called a “canonical neighborhood” of (p, t), or more precisely, an
(ε, C1, C2, η)-canonical neighborhood of size r.

Thus Part B and Part C of Theorem 6.6 can be restated as follows. Some authors
call this result the canonical neighborhood theorem. In our terminology, the canonical
neighborhood theorem refers to Theorem 6.8 below.

Theorem 6.7 (the canonical neighborhood property of κ-solutions) There is a posi-
tive number ε0 with the following property. For each 0 < ε ≤ ε0, every point (p, t) in
every 3-dimensional κ-solution has an (ε, C1, C2, η)-canonical neighborhood of size r,

where C1 and C2 depend on ε and 0 < r < C1R(p, t)−
1
2 .

The number ε0 will be used in the results below. Combining these two theorems
one arrives at the canonical neighborhood theorem of Perelman, cf. the first paragraph
in Section 3 of [P2]. This theorem and the analysis around it play a central role in
Perelman’s work on the Ricci flow, the Poincaré conjecture and the geometrization
conjecture. Again, we state only the case of closed manifolds for the sake of simplicity.

Theorem 6.8 (the canonical neighborhood theorem) Given 0 < ε ≤ ε0, κ > 0 and
ρ > 0, one can find r0 > 0 with the following property. If g = g(t), 0 ≤ t ≤ r0

with t0 ≥ 1 is a smooth solution of the Ricci flow on a closed 3-manifold M , which
satisfies the Hamilton-Ivey pinching condition (or the Hamilton pinching condition)
and is κ-noncollapsed on scales < ρ, then any point (p0, t0) with R(p0, t0) ≥ r−2

0 has
an (ε, C1, C2, 2η)-canonical neighborhood of size r, where C1 and C2 depend on ε and

0 < r < C1R(p0, t0)−
1
2 . We’ll say that g has the canonical neighborhood property, or

g has the (ε, C1, C2)-canonical neighborhood property.

As before, we state the implication for the case 0 < t0 ≤ 1 as a theorem.

Theorem 6.9 Given 0 < ε ≤ ε0, κ > 0 and ρ > 0, one can find r0 > 0 with the
following property. If g = g(t), 0 ≤ t ≤ t0 with 0 < t0 ≤ 1 is a smooth solution of
the Ricci flow on a closed 3-manifold M , which satisfies the Hamilton-Ivey pinching
condition (or the Hamilton pinching condition) and is κ-noncollapsed on scales <
ρ
√
t0, then any point (p0, t0) with R(p0, t0) ≥ t−1

0 r−2
0 has an (ε, C1, C2, 2η)-canonical

neighborhood of size r, where C1 and C2 depend on ε and 0 < r < C1R(p0, t0)−
1
2 . We’ll

say that g has the canonical neighborhood property, or g has the (ε, C1, C2)-canonical
neighborhood property.

Now we employ the canonical neighborhood theorem to prove Theorem 2.4.

Proof of Theorem 2.4 Consider a blow-up limit flow g∞ of a smooth solution g of the
Ricci flow as given in Theorem 2.3. By Theorem 6.1 (or Theorem 6.2) and Lemma
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6.3, g∞ has nonnegative curvature operator. By the curvature assumption (2.8) we
have |Rm|(p∞, 0) = 1 for g∞. By Theorem 2.3, g∞ is κ-noncollapsed on all scales.
It remains to show that g∞ has bounded curvature at every time. But the condition
∂R
∂t
≥ 0 is not available, in contrast to the situation in the proof of Theorem 5.6 (or

Theorem 4.3). So we have to appeal to a different argument.
By Theorem 6.8 or Theorem 6.9, g has the canonical neighborhood property. As

a blow-up limit of g, g∞ also has the canonical neighborhood property, as is easy
to see. Now we assume that for some t0, g∞(t0) does not have bounded curvature.
Then M∞ is noncompact and we can find sequence pk such that R(pk, t0)→ for g∞.
Then each pk has a canonical neighborhood. The cases (c) and (d) of the canonical
neighborhood are excluded. In the remaining two cases we can find an ε-neck inside
of the canonical neighborhood. Hence we can find a sequence of ε-necks Zk going off
to ∞, with R on Zk going to ∞ as k →∞. This can be ruled out as in the proof of
Theorem 5.6.

Note that in the above contradiction argument we can assume positive curva-
ture operator for g∞. Indeed, if the curvature operator of g∞ has a zero eigenvector
at some point. Then the strong maximum principle of Hamilton [H2] implies that
(M∞, g∞) splits locally as an isometric product of a 2-dimensional Ricci flow and the
1-dimensional Ricci flow. Passing to a double cover if needed, we can assume that
this splitting is global. Then the 2-dimensional factor is a κ-solution. By Theorem
4.1 it must be the round sphere. It follows that g∞ has bounded curvature.

Finally, we present Perelman’s theorem on bounded curvature at bounded dis-
tance.

Theorem 6.10 (bounded curvature at bounded distance, cf. [Theorem 10.2, MT])
Fix 0 < ε ≤ ε0, C1 > 0 and C2 > 0. For each number ρ > 0 there are numbers
K > 0 and κ > 0 with the following property. Let g = g(t) be a smooth solution
of the Ricci flow on M × (a, b) for a 3-dimensional manifold M and 0 ≤ a < b,
which satisfies the Hamilton-Ivey pinching or the Hamilton pinching condition. Let
p0 ∈ M and t0 ∈ (a, b) such that R(p0, t0) ≥ κ. Assume that every point (p, t) with
R(p, t) ≥ 4R(p0, t0) and t ≤ t0 has an (ε, C1, C2, 2η)-canonical neighborhood. Then
we have R(p, t0) ≤ KR(p0, t0) for all p ∈ B(p0, ρR(p0, t0)−1/2, t0).

For its proof we refer to [MT]. This result enables one to find suitable parameters
T̄k, pk and λk for obtaining blow-up limits in Theorem 2.3, as formulated in the
following theorem.

Theorem 6.11 (achieving bounded curvature for rescaled flows) Let g = g(t) be a
smooth solution of the Ricci flow on M × [0, T ) for a closed manifold M of dimension
3 and some finite T > 0. Let p0 ∈M .
Part A lim sup

t→T
|Rm|(p0, t) =∞ if and only if lim

t→T
R(p, t) =∞.
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Part B Assume lim sup
t→T

|Rm|(p0, t) = ∞. Then we can choose Tk → T , and set

λk = |Rm|(p0, Tk) (or λk = R(p0, Tk)) and pk = p0 for each k. Then the scaling
factors λk, scaling time centers Tk and reference points pk have the properties assumed
in Theorem 2.3. Consequently, the rescaled flows (gλk,Tk ,M × (−λkTk, 0], p0) point
converge smoothly to a κ-solution.
Part C Set Ω = {p ∈M : sup

0≤t<T
|Rm|(p, t) <∞}. Then Ω is an open subset of M .

Proof. Part A We only need to handle the direction from |Rm| to R, because
the other direction is obvious. Assume lim sup

t→T
|Rm|(p, t) = ∞. Then we have

|Rm|(p, tk)→∞ for a sequence tk → T . This is equivalent to the statement

|λ|+ |µ|+ |ν| → ∞ (6.6)

along (p, tk), where λ ≥ µ ≥ ν are the eigenvalues of the curvature operator. If
ν ≥ −C for a finite number C along (p, tk), then we have

R = 2(λ+ µ+ ν) = 2(|λ+ C|+ |µ+ C|+ |ν + C| − 3C) ≥ 2(|λ|+ |µ|+ |ν| − 6C)

and hence goes to ∞. If ν → −∞ along (p, tk), then we have (6.4) and hence R also
goes to∞. We can apply this argument to subsequences of (p, tk), and conclude that
R→∞ along (p, tk).

By Theorem 2.2, Theorem 6.8 and Theorem 6.9, g has the canonical neighborhood
property. It follows that there is a positive number r0 such that each (p, t) has a
canonical neighborhood and hence satisfies

|Rt|(p, t) < 2ηR(p, t)2, i.e. | d
dt
R−1|(p, t) < 2η (6.7)

and

|∇R|(p, t) < 2ηR(p, t)
3
2 , i.e. |∇R−

1
2 | < η, (6.8)

whenever

R(p, t) ≥ (max{t, 1})−1r−2
0 . (6.9)

Integrating (6.7) leads to

R(p, τ2) >
R(p, τ1)

1 + 2η|τ2 − τ1|R(p, τ1)
(6.10)

whenever (6.9) holds true on the interval [τ1, τ2] or [τ2, τ1]. We apply (6.10) to p = p0

and τ1 = tk. Since T − tk → 0, we can use a continuity argument to infer that
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lim
t→T

R(p0, t) =∞.

Part B By Theorem 6.8, Theorem 6.9 and Theorem 6.10, the following curvature
bound holds true for g: For each number L > 0 there are numbers KL > 0 and
κL > 0 such that R(p, t0) ≤ KLR(p0, t0) for all p ∈ B(p0, LR(p0, t0)−1/2, t0) whenever
R(p0, t0) ≥ κL.

Now assume lim sup
t→T

|Rm|(p0, t) =∞. Then we can choose Tk → T such that

|Rm|(p0, Tk) = sup
0≤t≤Tk

|Rm|(p0, t). (6.11)

For each L > 0, let KL and κL be given by the above curvature bound statement. By
Part A we have lim

t→T
R(p, t) =∞. Hence there is a time T (L) such that R(p0, t) ≥ K

for all T (L) ≤ t < T . Applying the above curvature bound for each T (L) ≤ t0 < Tk
(with Tk ≥ T (L)) and (6.11) we then deduce for gλk,Tk(t) = λkg(Tk + λ−1

k t) (with
λk = |Rm|(p0, Tk))

R(p, t) ≤ KL (6.12)

for all −λk(Tk−T (L)) ≤ t ≤ 0 and p ∈ B(p0, L, t). By the Hamilton-Ivey pinching or
the Hamilton pinching property (cf. the above arguments utilizing these properties)
we then deduce for gλk,Tk

|Rm|(p, t) ≤ CKL (6.13)

for all −λk(Tk − T (L)) ≤ t ≤ 0 and p ∈ B(p0, L, t), where C > 0 is universal. This is
exactly the property needed in Theorem 2.3.

Part C Let p0 be the limit of a sequence of points pk ∈ M − Ω. We claim that
p0 ∈ M − Ω. Let A > 8ηr−2

0 be given. Since R(pk, t) → ∞ as t → T , We can find
times 0 < tk < T such that R(pk, tk) ≥ A(2η)−1 > 2r−1

0 and tk → T , where r0 > 0
is given in Part A of the proof. For convenience, we can assume T > 1 by using a
rescaling if necessary. Then we can assume tk > 1 for all k. Now we apply (6.10) to
infer

R(pk, τ) >
R(pk, tk)

1 + 2η|τ − tk|R(pk, tk)
(6.14)

whenever

R(pk, t) ≥ r−2
0 (6.15)

for t ∈ [τ, tk]. By a continuity argument we then deduce for τk = tk − A−1, since
2ηA−1R(pk, tk) ≥ 1,

R(pk, τk) >
R(pk, tk)

1 + 2ηA−1R(pk, tk)
≥ R(pk, tk)

4ηA−1R(pk, tk)
=

A

4η
, (6.16)
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which is greater than 2r−2
0 . (Indeed, we obtain R(pk, t) ≥ A(4η)−1 for all t ∈ [τk, tk].

) Now we note that τk ∈ [0, T − A−1], on which g is smooth. Next let γk be a unit
speed shortest geodesic of g(τk) from pk to p0. We integrate (6.8) to deduce

√
R(γk(s), τk) >

√
R(pk, τk)

1 + ηd(γk(s), pk, τk)
√
R(pk, τk)

≥
A
4η

1 + ηd(p0, pk, τk)
A
4η

=
1

4η
A

+ ηd(p0, pk, τk)
(6.17)

for 0 < s ≤ d(p0, pk, τk), as along as R(γk(s
′), τk) ≥ r−1

0 for s′ ∈ [0, s]. By the
smoothness of g on [0, T − A−1] we have d(p0, pk, τk)→ 0 as k →∞. So (6.17) leads
to √

R(γk(s), τk) >
A

6η
(6.18)

for large k. By a continuity argument we then arrive at

√
R(p0, τk) >

A

6η
(6.19)

for large k. Obviously, this implies that lim sup
t→T

R(p0, t) = ∞. Consequently, p0 ∈
M − Ω. It follows that Ω is open.

We would like to remark that in Perelman’s surgery procedure, one does not
employ blow-up limits directly as given by Theorem 2.3 and Theorem 6.11. Indeed,
one performs surgery on (Ω, gT ), where gT denotes the smooth limit of g(t) on Ω as
t → T . Besides the basic information about (Ω, gT ) contained in Theorem 6.11, the
fine structure of (Ω, gT ) needed for performing surgery is provided by the canonical
neighborhood theorem. (In [P2], Perelman also uses an additional result on improved
ε-necks deep down ε-horns.) On the other hand, blow-up limits such as provided by
Theorem 2.3 and Theorem 6.11 (and more general versions of them) are used in many
places in Perelman’s papers [P1] and [P2] (including the proof of Theorem 6.4, which
is a basis of the canonical neighborhood theorem), and play a key role there. For
presentations and improvements of the surgery results of Perelman we refer to [P2],
[MT], [KL], [Y6] and [Y7].
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