Midterm Exam
Math 117
Winter 2013
Prof. R. Ye

Your Name:
Your Signature:
Your Perm Number:

Scores:
1.
2.
3.
4.
Total: (out of 100)

Please present detailed steps of your solutions.
1. (25 points) For each \(n \in \mathbb{N} \), let \(P(n) \) be a statement concerning \(n \) which is either true or false. Assume the following two conditions:

1) \(P(1) \) and \(P(2) \) are true.

2) For each \(n \in \mathbb{N} \), if \(P(n) \) is true, then \(P(n + 2) \) is also true.

Prove that \(P(n) \) is true for all \(n \in \mathbb{N} \). Hint: You can use the well-ordering axiom, the principle of mathematical induction, or Peano axioms.

Proof 1 Define \(S = \{ n \in \mathbb{N} : P(n) \text{ is false} \} \). We claim that \(S = \emptyset \). Assume that \(S \) is nonempty. By the well-ordering axiom of natural numbers, there is a smallest number \(n_0 \in S \). Since \(P(1) \) and \(P(2) \) are true, there holds \(n_0 \geq 3 \). Then \(n_0 - 2 \in \mathbb{N} \). Since \(n_0 - 2 < n_0 \), there holds \(n_0 - 2 \notin S \), otherwise \(n_0 \) would not be the smallest number in \(S \). Hence \(P(n_0 - 2) \) is true. By the assumption 2) we infer that \(P(n_0) \) is true, contradicting the fact that \(n_0 \in S \). We conclude that \(S \) is empty, and hence \(P(n) \) is true for all \(n \in \mathbb{N} \).

Proof 2 Set \(Q(n) = P(2n) \) for \(n \in \mathbb{N} \). Then \(Q(1) = P(2) \) is true. If \(Q(n) = P(2n) \) is true, then \(Q(n + 1) = P(2n + 2) \) is also true by the assumption 2). By the principle of mathematical induction, \(Q(n) = P(2n) \) is true for all \(n \in \mathbb{N} \), i.e., \(P(n) \) is true for all even natural numbers \(n \).

Next set \(H(n) = P(2n - 1) \). Then \(H(1) = P(1) \) is true. If \(H(n) = P(2n - 1) \) is true, then \(H(n + 1) = P((2n - 1) + 2) \) is true by the assumption 2). By the principle of mathematical induction we infer that \(H(n) = P(2n - 1) \) is true for all \(n \in \mathbb{N} \). This means that \(P(n) \) is true for all odd natural numbers \(n \).

Combining the above two conclusions we infer that \(P(n) \) is true for all \(n \in \mathbb{N} \). ■
2. 25 points) 1) Assume \(0 < x < y\). Show \(0 < 1/y < 1/x\).
2) Assume \(x^2 = y^2\). Determine the relation between \(x\) and \(y\). (A detailed proof is required.)

Proof.

1) First we show that \(1/x > 0\). Assume \(1/x \neq 0\). Since \(x\) is positive, we can multiply this inequality by \(x\) to deduce
\[0 \cdot x > 1/x \cdot x.\]
Hence \(0 > 1\). This contradicts the fact that \(1 > 0\), which has been established in the lectures. It follows that \(1/x > 0\), Similarly, we have \(1/y > 0\).

(The proof for \(1 > 0\) is as follows. Assume \(1 > 0\). Adding \(-1\) to both sides of this inequality we deduce
\[−1 > 0.\] Multiplying with \(-1\) we infer \((-1)^2 > 0:\)
Hence \(1 > 0\), contradicting the assumption \(0 > 1\).

Now we multiply the inequality \(x < y\) by \(1/x\) to deduce \(1 < y/x\). Then we multiply by \(1/y\) to arrive at \(1/y < 1/x\).)

2) Assume \(x^2 = y^2\). Then \(x^2 - y^2 = 0\), and hence \((x + y)(x - y) = 0\). It follows that
\(x + y = 0\) or \(x - y = 0\). Conversely, if \(x + y = 0\) or \(x - y = 0\), then \((x + y)(x - y) = 0\), and hence \(x^2 - y^2 = 0\), i.e. \(x^2 = y^2\). We conclude that the relation between \(x\) and \(y\) is
\(x = y\) or \(x = -y\). In other words, the relation is \(|x| = |y|\).

An Alternative Argument:

Assume \(x \neq 0\). Then \(y \neq 0\). (Otherwise \(x^2 = 0^2 = 0\), and hence \(x = 0\).) We first claim \(|x| \leq |y|\). Assume \(|x| > |y|\). Multiplying this inequality with \(|x|\) we infer
\[|x|^2 > |x||y|.\] Multiplying the same inequality with \(|y|\) we deduce \(|x||y| > |y|^2\). It follows that \(|x|^2 > |y|^2\), which means \(x^2 > y^2\), contradicting the assumption \(x^2 = y^2\).
Hence we conclude that \(|x| \leq |y|\). In a similar way we can prove the claim \(|x| \geq |y|\).
Hence we infer that \(|x| = |y|\).

If \(x = 0\), then \(y^2 = x^2 = 0\) and hence \(y = 0\). Hence we also have \(|x| = |y|\).
Conversely, if \(|x| = |y|\), then we infer \(|x|^2 = |y|^2\), which means \(x^2 = y^2\).

In conclusion, the equality \(x^2 = y^2\) is equivalent to the equation \(|x| = |y|\), which is equivalent to the following relation: \(x = y\) or \(x = -y\).
3. (25 points) Let \(x \in \mathbb{R} \). Prove that \(x = \sup \{ q \in \mathbb{Q} : q < x \} \).

Proof 1) Define \(S = \{ q \in \mathbb{Q} : q < x \} \). It is bounded above because \(x \) is an upper bound for it. By the Archimedean property, we can find a natural number \(n > -x \). Then \(-n < x \), and hence \(-n \in S \). Thus \(S \) is nonempty. By the completeness axiom, \(y = \sup S \) exist.

2) Since \(x \) is an upper bound for \(S \) and \(y \) is the least upper bound for \(S \), there holds \(y \leq x \).

3) We claim that \(y = x \). Assume \(y \neq x \). By 2) we then have \(y < x \). By the density of \(\mathbb{Q} \), there exists a number \(r \in \mathbb{Q} \) such that \(y < r < x \). Then \(r \in S \), and hence \(r \leq y \), contradicting the fact that \(y < r \). \(\blacksquare \)
4. (25 points) Let \(S = \{ \frac{1}{n} + \frac{1}{m} - \frac{1}{k} \text{ for all } n, m, k \in \mathbb{N} \} \).

1) Find \(\text{sup } S \) and \(\text{inf } S \).

2) Does \(\text{max } S \) exist? Why?

3) Does \(\text{min } S \) exist? Why?

Proof

1) For a fixed \(k \), the maximum of \(\frac{1}{n} + \frac{1}{m} - \frac{1}{k} \) is \(1 + 1 - \frac{1}{k} = 2 - \frac{1}{k} \). Letting \(k \) become bigger and bigger we see that \(\text{sup } S = 1+1-0 = 2 \). To get the infimum, we take \(k = 1 \) and let \(n \) and \(m \) become bigger and bigger. It follows that \(\text{inf } S = 0 + 0 - 1 = -1 \).

2) \(\text{max } S \) does not exist. Assume that it exists. Then \(\text{max } S = \text{sup } S = 2 \). But \(\text{max } S = \frac{1}{n} + \frac{1}{m} - \frac{1}{k} \) for some \(n, m \) and \(k \). It follows that \(2 = \text{max } S \leq 1 + 1 - \frac{1}{k} < 2 \). This is a contradiction.

3) \(\text{min } S \) does not exist. Assume that it exists. Then \(\text{min } S = \text{inf } S = -1 \). But \(\text{min } S = \frac{1}{n} + \frac{1}{m} - \frac{1}{k} \) for some \(n, m \) and \(k \). Hence \(\text{min } S \geq \frac{1}{n} + \frac{1}{m} - 1 > -1 \). This is a contradiction. \(\blacksquare \)