
ATIYAH-SEGAL TYPE FUNCTORIAL TQFTS

The subject of topological quantum field theories (TQFTs) is so diverse that
we do not have a standard definition of TQFT yet. It is much like the early
days of homology theory, and then category theory was invented to compare all
the different definitions of homology groups. The most convenient formulation
is to follow Atiyah who modeled the definition of TQFT on Segal’s definition
of conformal filed theory (CFT). In this formulation, a TQFT is a symmetric
monoidal functor from a monoidal category of manifolds with certain structures
to the category of finitely dimensional vector spaces. All kinds of variations and
extensions are possible, and we will consider several later. In this definition, the
detail is in the definition of the bordism category of manifolds1 and the definition
of a monoidal functor.

Mathematically, TQFTs are amenable to classification. Physically, we study
which TQFTs can be realized by real physical systems, which will serve as the
hardware for TQC. For computer science, we investigate how to compute using
TQFTs. Each perspective leads to its own set of questions, and a real TQFT
that is BQP complete will be a universal quantum computer—the ultimate goal
of TQC.

1. Bordism Categories

1.1. Manifold Topology Recalled. A topological space is a set X with a class
O = {Oα} of subsets of X that satisfy the following axioms:

(1) The empty set ∅ and X are in O

(2) The intersection of any two sets in O is in O

(3) The union of any collection of sets in O is in O.

In other words, a topology onX is collection of subsets ofX that always contains
the empty subset ∅ and X, and is closed under finite intersections and arbitrary
unions. Sets in O are called open sets of X, and their complements are called
closed sets. A topology defines a notion of closeness of points of X, which is a
far-reach generalization of the notion of closeness given by a metric. Not every

1Bordism here is often referred to as cobordism. Our choice of bordism is based on two
considerations: first historically co- in cobordism is to emphasize the symmetric roles of the two
boundary manifolds. In TQFT for manifolds with orientations and other structures, we actually
need to distinguish the in- and out- parts of the bordism. Secondly, bordism is historically used
for generalized homology theory based on manifolds, while cobordism for generalized cohomology
based on manifolds. TQFT is a functor, so bordism is more appropriate. It is also convenient
to have the term cobordism for a slightly different manifold category.
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topology of a space can be defined using a metric, but for manifolds that we are
interested in, their topologies always come from metrics, i.e., they are topological
spaces that are metrizable.

A topological n-manifold M for a fixed integer n ≥ 0 is a topological space
M with the extra property2 that every point x ∈ M has a neighborhood that is
homeomorphic to Rn or Rn

+ = {(x1, · · · , xn), xn ≥ 0}. Points with neighborhoods
that are homeomorphic to Rn

+ are called boundary points. The boundary points
of an n-manifold M form a subset of M , denoted as ∂M , which is an (n − 1)-
manifold sub-manifold of M . We assume that a manifold M is always Hausdorff
and can be covered by countably many coordinate charts. While a topological
manifold M being orientable is an extra property, an orientation M is an extra
structure. Similarly, a topological manifold M has a smooth structure or not is
an extra property, while a smooth manifold M is a topological manifold with an
extra structure.

1.2. Bord(n + 1). Our manifolds will be smooth, oriented, and compact unless
stated otherwise. In order to have a small category of manifolds, we will assume
that all our manifolds are subsets of some Euclidean space Rn. Though we will
not identify manifolds by arbitrary diffeomorphisms, we consider a manifold M
and all its translations as the same manifold. In particular, M × α is identified
with M when α is an index such as 0, 1, 2, · · · ... or a point. All vector spaces are
over the complex numbers C and finite dimensional unless stated otherwise.

Definition 1.1. (1) An (n + 1)-bordism X between two oriented smooth n-
manifolds ∂−X and ∂+X is an oriented (n+1)-manifold X whose boundary
is equal to −∂−X⊔∂+X, i.e., ∂X = −∂−X⊔∂+X, not just diffeomorphism,
where the − sign in front of ∂−X means ∂−X with the opposite orientation.

For the definition to make sense, we need to fix a convention for the
induced orientation. We will use the polite convention: out (outsider) first,
i.e., the outward normal vector of the boundary is the first vector for the
induced orientation. In this convention, the standard circle in the plane
has a counterclockwise induced orientation from the unit disk.

The separation of the boundary ∂X into two parts ∂−X and ∂+X is
part of the bordism. Strictly speaking, a bordism is a pair (X, p), where
p : ∂X → {−,+} is a continuous map such that ∂∓X = p−1(∓). Therefore,
X = Y × I is not a bordism unless we divide its boundary ∂X = Y ⊔ Y
(here ∂X divided as unoriented manifolds) into two parts. We decided to
divide ∂X using the induced orientation as follows: the ∂−X part is the
oriented manifold whose orientation is opposite to the induced orientation,

2It is important in mathematics to distinguish extra property and extra structure on a math-
ematical structure. An abelian group is a group with the extra property ab = ba, but a Lie
group is a group with an extra structure—a topology that is also compatible with the group
multiplication.
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while ∂+X is the part whose orientation agrees with the induced one. If Y
is oriented, there are many possible divisions such as ∂−X = Y, ∂+X = Y ,
or ∂−X = −Y, ∂+X = −Y , or ∂−X = Y ⊔ −Y, ∂+X = ∅, or ∂−X =
∅, ∂+X = Y ⊔ −Y , which lead to many inequivalent bordisms.

(2) Two (n+ 1)-bordisms X,X ′ between the same two n-manifolds Y− and Y+

are equivalent if there is an orientation preserving diffeomorphism f : X →
X ′ such that f is the identity on the boundary.

(3) Two important conventions: the empty set ∅ is a manifold of each di-
mension n ≥ 0, and any diffeomorphism f : Y → Y is regarded as a
bordism from Y to Y by forming the symmetric mapping cylinder Mf =
Y × [0, 1

2
] ∪f Y × [1

2
, 1]. Note that Mf and Mg are equivalent bordisms if f

and g are isotopic or pseudo-isotopy.

Remark 1.2. In section 1 of Milnor’s book “lectures on the h-cobordism theorem”.
Bordism here is called a smooth manifold triad. A cobordism from Y1 to Y2 there is
defined as a 5-tuple (X; ∂1X, ∂2X;h1, h2), where (X; ∂1X, ∂2X) is a smooth triad
and hi : ∂iX → Yi, i = 1, 2 are diffeomorphisms. This definition leads to a category
of manifolds, which are often called the cobordism category. While convenient for
studying cobordism theory, this formulation is inconvenient for the definition of a
TQFT because the gluing map for two smooth manifold triads often induces a non-
trivial linear isomorphism. The insertion of such non-trivial isomorphisms into the
definition of a TQFT makes the assignments cease to be a functor. Furthermore,
deep information of a TQFT is inside the representation of the mapping class
groups, which can be obscured by forgetting such inserted isomorphisms.

An alternative way to define a manifold category convenient for TQFTs is to
use cobordism with parameterized boundaries. Fix n and for each diffeomorphism
class of closed connected n-manifold, choose one that will be called the model
manifold, denoted as Σ. We will say that a manifold Y diffeomorphic to Σ is a
manifold of type Σ.

Definition 1.3. Given two closed n-manifolds ∂X1 and ∂X2, a cobordism from
∂X1 to ∂X2 is a 5-tuple (X; ∂1X, ∂2X; p1, p2), where (X; ∂1X, ∂2X) is a smooth
triad and pi : Σi → ∂iX, i = 1, 2 are parameterizations of the boundaries by model
manifolds Σi. Two cobordisms (X1; ∂1X, ∂2X; p1, p2) and (X2; ∂2X, ∂3X;h1, h2)
are glued only by the diffeomorphism g that commutes with the parameterizations p2
and h1, ie g = p2 ·h−1

1 . It can be derived later that such a tautology diffeomorphism
is the identity for gluing cobordisms.

2. (n+ 1)-TQFTs

We require a TQFT to be defined for all space and space-time manifolds, which
captures the idea of locality in the sense that a physical theory is defined completely
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by local interactions3. There are theories that are not defined for all manifolds such
as the first TQFT—Witten-Donaldson theory. Such partial TQFTs are defined
only for certain special space and space-time manifolds. We will also consider
space manifolds with boundary later—extended TQFTs. They are important as
they correspond to physical systems with excitations.

The most convenient way to organize the TQFT axioms is to first define a
bordism category Bord(n+ 1) of manifolds.

Definition 2.1. An object Y of the category Bord(n + 1) is a closed oriented
smooth n-manifold Y . The Hom-set Hom(Y1, Y2) of two smooth oriented closed
n-manifolds Y1, Y2 is the set of (n+ 1)-bordism classes X between Y1 and Y2.

4

Then an (n + 1)-TQFT is a symmetric monoidal functor from Bord(n + 1) to
the category of finitely dimensional vector spaces Vec. Since we have not defined
symmetric monoidal functors yet, we will just list all axioms of TQFTs explicitly
below.

Following the physical jargon, we will refer to the n-manifolds of the Bord(n+
1) category as space manifolds and the bordism (n + 1)-manifolds as space-time
manifolds.

2.1. Axioms.

Definition 2.2. An (n + 1)-TQFT is a pair F = (V, Z) of assignments such
that V assigns to each smooth oriented closed n-manifold Y a finite dimensional
vector space V (Y ) and Z assigns to each (n + 1)-bordism X between two smooth
oriented closed Y− and Y+ a linear map Z(X) : V (Y−) → V (Y+), which satisfy the
following axioms. Note that each diffeomorphism f : Y → Y is assigned a linear
map Z(f) = Z(Mf ) : V (Y ) → V (Y ), and the vertical isomorphisms in the left side
of the commutative diagrams below are induced by the obvious diffeomorphisms.

(i): Functoriality

(1) Z(X) = Z(X ′) : V (Y−) → V (Y+) if X and X ′ are equivalent, i.e., the map
Z depends only on the bordism class.

(2) Z(Y × I) = IdV (Y ) : V (Y ) → V (Y ).
(3) Z(X2 ∪X1)=Z(X2) · Z(X1) : V (Y1) → V (Y2) → V (Y3).

(ii): Monoidality

There are canonical isomorphisms

3For physical systems such as the herbertsmithite, the lattice for the quantum system is real
and they exist only on certain manifolds. Therefore, partial TQFTs are also important for the
understanding of the physical world. Similar to the restriction of topology by lattice, symmetry
can also put restriction on manifolds

4The definition justifies the notation of (2+1)- or (3+1)-TQFTs rather than 3- or 4- TQFTs
as the manifolds as objects are not diffeomorphism classes while the bordisms are.
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(1) V (∅) ∼= C
(2) V (Y1 ⊔ Y2) ∼= V (Y1)⊗ V (Y2)

such that

V ((Y1 ⊔ Y2) ⊔ Y3) ∼= (V (Y1)⊗ V (Y2))⊗ V (Y3)
↓ ↓

V (Y1 ⊔ (Y2 ⊔ Y3)) ∼= V (Y1)⊗ (V (Y2)⊗ V (Y3))

and

V (∅ ⊔ Y ) ∼= C⊗ V (Y )
↓ ↓

V (Y ) = V (Y )

(iii): Symmetry

There is a canonical isomorphism V (Y1 ⊔ Y2) ∼= V (Y2 ⊔ Y1) such that

V (Y1 ⊔ Y2) ∼= V (Y1)⊗ V (Y2)
↓ ↓

V (Y2 ⊔ Y1) ∼= V (Y2)⊗ V (Y1)

The map Z is called the (generalized) partition function. Inside Bord(n + 1),
there is a subcategory with the same objects, but only bordisms from diffeomor-
phisms. The map V restricted to this subcategory is called an n-dimensional
topological modular functor. The word canonical in the axioms is subtle as what
it really means is functorial.

2.1.1. Manifold Invariants and Representation of MCGs. One of the major goals
in topology is to find topological invariants of manifolds. Each TQFT provides
a topological invariant of manifolds. One of the widely open questions is how
those quantum invariants are related to classical topological invariants such as
homology and homotopy groups. The mapping class group representations also
lead to topological invariants of mapping tori. Another open question is how to
decide when a rep of the MCG is reducible and what are the closed images? This
is intimately related to the BQP completeness of anyonic quantum computers. In
general, it is also not known what is the computational complexity of computing
exactly or approximating the quantum invariants.

Theorem 2.3. Given an (n+ 1)-TQFT F = (V, Z), then

(1) Z(M) is a smooth topological invariant for closed (n+ 1)-manifolds M .
(2) V (Y ) is a representation of the mapping class group of Y .
(3) Direct sum and tensor product of two TQFTs is also a TQFT.

2.1.2. Some General Properties.

Proposition 2.4. (1) That V (Y ) is finite dimensional follows from the ax-
ioms.
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(2) The vector space V (−Y ) is canonically isomorphic to V (Y )∗.
(3) Let Tf be the mapping torus of an orientation preserving diffeomorphism f :

Y → Y , then Z(Tf ) = Tr(Z(f)). In particular, Z(Y × S1) = dim(V (Y ))
(4) If X is the union of two handlebodies, then Z(X) is the pairing of the two

vectors.

Proof. Let us consider the different bordisms from X = Y ×I. As in the definition
1.1, we have 2 different bordisms that lead to 2 maps as below.

Birth: As a bordism from ∅ to −Y ⊔Y , we have a map: b : C → V (Y )⊗V (−Y ).
Death: As a bordism from −Y ⊔Y to ∅, we have a map: d : V (−Y )⊗V (Y ) → C.
Let b(1) =

∑
ij cijei ⊗ ϵj which is a finite sum.

Consider the following two S-bordisms which are obvious diffeomorphic to the
identity bordisms. If we slice the bordism into the composition of three bordisms,
we see the identity map from V (±Y ) to V (±Y ) are also the compositions:

IdV (Y ) : V (Y ) → V (Y )⊗ C → V (Y )⊗ V (−Y )⊗ V (Y ) → C⊗ V (Y ) → V (Y ).

Similarly,

IdV (−Y ) : V (−Y ) → V (−Y )⊗C → V (−Y )⊗V (Y )⊗V (−Y ) → C⊗V (−Y ) → V (−Y ).

Written in indices, for vectors v ∈ V (Y ), w ∈ V (−Y ), then∑
ij

cijd(ϵ
j, v)ei = v.

∑
ij

cijd(w, ei)ϵ
j = w.

Therefore, V (±Y ) are generated by {ei} and {ϵj}, respectively, hence both are
finite dimensional.

Furthermore, if v or w in the kernel of the pairing, then v = 0 or w = 0 because
d(ϵj, v) and d(w, ei) will be 0 for all i, j. Therefore, the paring d is non-degenerate.

Now we assume that ei, ϵ
j are dual basis of V (Y ) and V (−Y ). Let v = vkek,

from the S-identity 2.1.2, we have∑
ijk ckjd(ϵ

j, ei)v
iek =

∑
k v

kek. It follows
∑

i ckiv
i = vk. Since this is true for

all v and the matrix (cij) is the idenity matrix. So b(1) =
∑

i ϵ
i ⊗ ei.

�

2.1.3. (0+1)-TQFTs. To see the general structure of TQFTs, we start with the
simplest theories—(0 + 1)-TQFTs.

The only connected 0-manifold is a point pt. We will follow the standard con-
vention that a pt is orientable with two orientations. Hence we can have a positive
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+pt or a negative −pt. One justification is that an orientation is choice of a com-
ponent of ∧nV for an n-dimensional real vector space V . Since ∧0V ∼= R, so we
have two components.

Given a (0 + 1)-TQFT F = (V, Z), then by the paring Prop. 2.4, V (−) is
the dual vector V (+)∗. A sequence of signed points will be assigned the tensor
product of V (+) and V (+)∗. The morphisms are tensor of the identity, b, d, and
dim(V ) · Id. The partition function of the closed circle is Z(S1) = dim(V ).

2.2. Some Picture TQFTs. We are not ready to construct general TQFTs yet
because we need more topological and algebraic preparation. But we are going to
study three important (2 + 1)-TQFTs for TQC: the toric code, the double Ising
theory, and the double Fibonacci theory. They represent three kinds of TQFTs5

and are closely related to real physical systems: herbertsmithite, fractional quan-
tum Hall liquids at ν = 5

2
, and engineered materials that generalzied Majorana

zero modes. They are all TQFTs that are independent of orientations, so really
are TQFTs for unoriented manifolds including non-orientable ones. We will leave
the proof of the invariance for the general partition functions to later sections.

2.2.1. Picture and Local Relations. All three TQFTs belong to the class of TQFTs
that will be called picture TQFTs. The vector space V (Y ) for a closed surface
Y consists of linear combination of pictures in Y modulo some local relations—
relations among pictures restricted to a disk. If a picture means an embeded unori-
ented 1-manifold, then in order to obtain a non-trivial TQFT, the local relations
are highly constrained, and essentially the famous Jones-Wenzl projectors from
subfactor theory, where quantum topology started. When pictures are generalized
to string-nets with orientations and colors, then all Turaev-Viro (2 + 1)-TQFTs
can be realized as picture TQFTs. Generalization is still actively pursued from
many directions.

Definition 2.5. (1) Let Y be a surface, a multi-curve S in Y is an unoriented
embeded 1-manifold. The empty set is always a multi-curve and S is not
necessarily connected.

(2) Let n be a positive integer n, and fix 2n points on the boundary of the
unit disk B2. A Temperley-Lieb (TL) diagram D is a disjoint union of
n arcs connecting the 2n points up to relative isotopy. There are exactly
Catalan number many diagrams for each n, denoted as Di, i = 1, ..., Cn and
Cn = 1

n+1

(
2n
n

)
. Then a local relation is a formal sum of TL diagrams

Cn∑
i=1

ciDi = 0

for some complex numbers ci.

5abelian, non-abelain but not braiding universal, and brading universal
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The second Jones-Wenzl projector p2 gives rise to the surgery local rela-
tion: Picture!!!

The third Jones-Wenzle for projector p3 gives rise to the 5-term local
relation: Picture !!!

Remark 2.6. In two dimensions, every multi-curve is tame in the sense it has
a neighborhood that is homeomorphic to an annulus. But the Alexander horned
sphere show that in three dimension and higher, we have to be careful. This is
one reason that we consider smooth manifolds. Another reason is that the yet
unrealized hope to study 4 manifolds using TQFTs is only interesting for the
smooth category because topological 4 manifolds are well understood for a large
class of fundamental groups, in particular simply connected ones.

2.2.2. Picture Vector Space. Given a local relation R, and a non-zero number d,
we can define a vector space for each surface Y , not necessarily orientable. Let
Ṽ (Y ) be the vector space spanned by finite linear combinations of multi-curves in
Y . This is a vector space of uncountable dimension. Now we form a quotient space
V (Y ) by modulo the following subspace generated by three type of relations:

(1) If S1 and S2 are isotopic, then S1 − S2 = 0.
(2) Two multi-curves S1 and S2 differ by m bounding simple closed curves

(bscs), then S1 = dmS2 if D2 has m many more bscs than S1. When m is
negative, it is understood S1 has −m more bscs than S2.

(3) If Cn multi-curves Si are the same outside a topological disk B2 in Y , and
Si restricted to B2 is topologically the same as the Di in the local relation
R, then

∑Cn

i=1 ciSi = 0.

Almost every local relation will lead to either 0 or infinite dimensional quotient
vector spaces V (Y ). The relations for multi-curves that can lead to finite dimen-
sional non-zero vector space V (Y ) for all surfaces are essentially the Jones-Wenzl
projectors pr for TL diagrams.

2.2.3. Toric Code and Double Ising (2 + 1)-TQFTs.

Theorem 2.7. (1) The second Jones-Wenzl projector gives rise to a TQFT,
which is called the toric code TQFT.

(2) The third Jones-Wenzl projector gives rise to a TQFT, which is called the
double Ising TQFT.

2.2.4. DFib (2 + 1)-TQFT. The local relation for double Fibonacci is from the
F -matrix of the Fibonacci TQFT.

A string-net S in a surface Y is an unoriented trivalent graph including multi-
curves as special string-nets. A tadpole is ...PICTURE!!!

We can repeat the same construction above by replacing a multi-curve with a
string-net. Now let Ṽ (Y ) be the vector space spanned by finite linear combinations
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of string-nets in Y . Then we form a quotient space V (Y ) by modulo the subspace
generated by the following four type of relations:

(1) If two string-nets S1 and S2 are isotopic, then S1 − S2 = 0.
(2) Two string-nets S1 and S2 differ by m bscs, then S1 = ϕmS2 if D2 has m

many more bscs than S1, where ϕ is the golden ratio.
(3) If a string-net has a tadpole, then S = 0.
(4) If three string-nets Si are the same outside a topological disk B2 in Y ,

and Si, i = 1, 2, 3, restricted to B2, are topologically the same as the three
string-nets, then

∑3
i=1 ciSi = 0.

Theorem 2.8. The vector spaces V (Y ) and the state-sum partition functions below
form a TQFT, which is called the double Fibonacci TQFT.

Proposition 2.9. Let Γ be a trivalent graph in Y whose complements are all
simply connected, then the admissible colorings of Γ form a basis of the DFib
vector space.

Push the string-net into the graph.
To complete the above construction into TQFTs, we need to construct the

generalized partition functions. The standard construction is by state-sum on a
triangulation of a bordism. It will be very interesting to give a direct picture
construction of the generalized partition functions. They should be vector spaces
in bordisms spanned by relative surfaces or simple polyhedra.

Exercise 2.10. (1) Find a basis for V (T 2) for the toric code and DFib. Both
are 4 dimensional. Color the embeded theta graph in T 2 to have 5 string-
nets: 4 multi-curves plus a theta. They have one linear relation, which is
given by the plaquette term of the Levin-Wen Hamiltonian. It is also a
version of the 4th Jones-Wenzl projector.

(2) Fnd the representation of the MCG of the torus for the toric code and
DFib, and show the image of DFib rep for the torus is A5 × A5. For the
torus code, it is probably S3.

2.3. Physical Interpretation of Pictures and Local Relations. One way to
understand the picture TQFTs is to regard them as continuous limits of lattice
TQFTs. Each picture TQFT above has a realization as rigorously solvable lattice
model with a LCP Hamiltonian that generalizes the toric code.

Given a surface Y , a mutli-curve can be thought as a quantum state in quantum
magnetism such as the domain walls between spin-ups and spin-downs. The total
Hilbert space is given by Ṽ (Y ), which will decompose into its energy eigenspaces
Ṽi(Y ). Then one meaning of the local relation for Ṽi(Y ) is that the local relation
specifies a local term of the Hamiltonian that will enforce this relation for the
ground states. The quotient V (Y ) is a version of the ground state manifold.
Here we should regard quotienting Ṽ (Y ) by the local relation as integrating out
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the higher energy states and the integration result in the low energy physics is
encoded by the local relations.

2.4. Mathematical Origin of the Local Relations. The local relations are
Jones-Wenzl projectors from subfactor theory. To understand them, we first define
the Temperlieb-Lieb algebras which appeared first in Onsager’s solution of the Ising
model implicitly.

Fix a non-zero complex number d and an integer n ≥ 1. Consider the square with
n points at the bottom and top edges, respectively. Then the linear combinations
of the TL diagrams form a vector space of dimension Cn. A multiplication of a
TL diagram D1 with D2 can be defined by stacking D2 on top of D1 and then
rescale the two squares back to one. When there is a loop, we delete the loop and
multiply the remaining diagram by d. Extending this multiplication bilinearly, we
obtain the Temperley-Lieb algebra TLn(d). It is not hard to see that TLn(d) is
generated by the following n− 1 diagrams Ui as an algebra:

PICTURES

Theorem 2.11. The TL ajgebra TLn(d) has the following presentation by the
generators Ui:

(1) U2
i = dUi.

(2) UiUi±1Ui = Ui±1UiUi±1.

By drawing TL diagrams, it is easy to check the above relations hold. To see
that any other relation follows, we show any isotopy can be realized by the two
types.

Theorem 2.12. There is unique no-zero element pn in TLn(d) such that

(1) p2n = pn
(2) For any x = a+B, where B is monomial in its generators Ui, pnx = xpn =

apn.

Proof. Let us pn = c+ U , where U is a monomial in Ui’s. Then p2n = pn(c+ U) =
cpn, so c = 1. Let p′n = 1 + U ′ be another such element, then

pnp
′
n = (1 + U)p′n = p′n = pn(1 + U ′) = pn.

To prove existence, we construct pn inductively.
�

There is the famous Markov trace on TLn(d) by connecting the corresponding
points of the top and bottom edges of the square with n outside disjoint arcs. Given
a TL diagram D, we dfine Tr(D) = dm if the closure of D has m loops. Denote
∆n = Tr(pn), then ∆0 = 1,∆1 = d and ∆n+1 = d∆n − ∆n−1—the Chebyshev
polynomials of second kind. If d is not a root of ∆n, then TLn is a semi-simple
algebra. If d is a root of ∆n, then the kernel of the inner product induced by
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Markov trace is generated by pn and the quotient of TL by the ideal generated by
pn is semi-simple.

Easy calculation shows ∆3 = d(d2−2) and ∆4 = (d2−d−1)(d2+d−1). Hence
the values of d for the toric code, double Ising, and DFib are just roots of ∆. We
will construct the TL category later and then pi’s will be simple objects of the
category and serve as models for anyons.

2.5. State Sum. To construct the partition functions of the picture TQFTs, we
need Pachner moves to relate different triangulations of the same manifold. We
will only give the state-sum definition of the partition functions and leave the proof
of the desired properties to later chapters.

The method of state sum is a mathematical version of state sums in statistical
mechanics. The most important quantity is the partition function Z. A good
example is the classical Ising model on a lattice G in a surface Y . Each vertex v
can have two possible states {−1, 1}, which is interpreted as spin-down and spin-
up respectively. Then there will be 2V (G) many possible sates s for the lattice (or
graph) G, where V (G) is the set of vertices of G. Each state s is an assignment of
s(v) = ±1 to each vertex. We will use v(e)± to denote the two vertices of an edge
e. We assign each state s an energy H(s) = −

∑
e s(v(e)+)s(v(e)−). The partition

function is then Z(G) =
∑

s e
−βH(s), where β is a positive number, physically

β = 1
kT
. To solve the model means to find an explicit analytic formula for Z. The

most famous solution is Onsager’s formula for the square lattice in the plane.
The partition function Z is the normalization factor to assign a probability to

each state s according to its energy: p(s) = e−βH(s)

Z
. It follows that the lower the

energy of a state is, the higher its probability. The importance of the partition
functions is that most thermodynamic quantities of the system can be derived
from the partition function. For example, the free energy F = − 1

β
∂βlnZ.

Mathematically for state sums, we first need to have a combinatorial presenta-
tion of each manifold, and a set of moves that will connect any two presentations
of the same manifold. Secondly, we define states on a combinatorial presentation
and form a state sum like the partition function. Finally, we prove topological
invariance of the state sum, ie the state sum is independent of all the choices, in
particular invariance under the moves that connect any two presentations. Ba-
sically the mathematical insight would be that the moves are related to some
algebraic structures and the state sum is designed based on properties of such
algebraic structures that will lead to topological invariance of state sums.

There are no standard procedures to write down all state sums. In general,
we give a manifold a triangulation and color vertices, edges, faces... or part of
them such as edges with basis of algebras. We call a coloring a state and assign
a “weight” to a state and form a sum over all admissible states. For topological
applications, the key to topological invariance is Pachner theorem which provides
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a finite set of moves that is sufficient to relate any two triangulations of the same
manifold. We are going to discuss this theorem later.

To define the state sum for the toric code and double Fibonacci TQFTs, we
need only two colors as in the Ising model above. We will call the two colors
{0, 1}. Let us first consider only closed manifolds. Let X be a closed 3-manifold
with a triangulation ∆. We will denote its vertices, edges, faces (or triangles), and
tetrahedra as V (∆), E(∆), F (∆) and T (∆), and V,E, F, T will be the cardinality
of each set. A state s of the triangulation ∆ is an assignment of 0 or 1 to each
edge. A state s is admissible for the toric code (or the double Fibonacci) if the
three edges of any face have either 0 or 2 edges colored by 1 (or 0 or 2 or 3 edges
colored by 1). To give a weight to a state, we will first define weights for a colored
vertex, edge, face, or tetrahedron. For the toric code, the weight of an admissible
state s is w(s) = 1, so the state sum for X is

Z(X,∆) =
1

2V

∑
s:admissible

1.

The state sum for the double Fibonacci is more complicated. We will denote
the states {0, 1} as {1, τ} to conform with the Fibonacci theory notation as τ is
the Fibonacci anyon. The weights of vertex, edge, face, and tetrahedron are as
follows for admissible states:

(1) The weight of a vertex is ϕ+ 2, where ϕ is the golden ratio.
(2) The weight of an edge colored by 1 is 1, and the weight of an edge colored

by τ is ϕ, where ϕ is the quantum dimension of the Fibonacci anyon.
(3) The weight of a face with all three edges colored by 1 is 1, the weight of a

face with two edges colored by τ is ϕ, and the weight of a face with three
edges colored by τ is ϕ

3
2 .

(4) The weight of a tetrahedron with all 6 edges colored by τ is −ϕ, 5 edges

colored by τ is ϕ
3
2 , and 4 edges colored by τ is ϕ.

Then we define the weight of an admissible state s as

w(s) =

∏
e∈E(∆)w(e)

∏
t∈T (∆)w(t)∏

v∈V (∆)w(v)
∏

f∈F (∆)w(f)
.

Finally, the state sum of X is Z(X,∆) =
∑

s:admissible w(s).
It is very mysterious at this stage why this is topological invariance and the right

thing to study. The local weights of vertices, edges, faces, and tetrahedron all come
from a spherical fusion category which is invented to guarantee the topological
invariance. For now, we just take it as a magic state sum that works. They also
have physical meanings in condensed matter physics and potentially 3D quantum
gravity.

Newt we will extend to bordisms with boundary. Given a bordsim X from Y1

to Y2, we fix a triangulation ∆i for Yi. Then find a relative triangulation ∆ of X
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that extends the two triangulations on its boundary. A state of Yi or X will be an
assignment of {0, 1} to each edge of the triangulation. Fix a state on each Yi, a
relative state for X is a state that is the two given states on the boundary. Now
we will assignment a weight to each relative state as follows:

This relative state sum defines a map from the vector space ...
It descends to a linear map on...
To see the equivalence of lattice model with the string-nets, we push the string-

nets into the 1 skeleton of a triangulation and use a triangulation to realize all
string-nets.

Exercise 2.13. (1) Show the invariant for the toric code is Z(X) = 2b1(X)−1

for a closed 3-manifold, where b1(X) is the first Z2-Betti number of X.
(2) Show that the invariant Z from DFib is a sum

Z(X) = (5 +
√
5)−χ(X)

∑
S⊂P

(−1)V (ϕ)−χ(S)−V ,

where P is any special spine of X and the sum is over all special sub-
polyhedra of P .

2.6. Where Do the State Sums Come From. It seems to be magic that such
a complicated sum turns out to be a 3-manifold invariant. An explanation can
be given using the “regular representation” of a ribbon fusion category. In each
ribbon fusion category with the set xi of isomorphism classes of simple objects,
we can form a formal sum Ω =

∑
i dixi, where di is the quantum dimension of xi.

Suppose an oriented 3-manifold is given as a handle-decomposition X = Hg∪f Hg,
where Hg is the standard genus=g handlebody in R3 and f : Hg → Hg is the
identification diffeomorphism, then Z(X) =< v,Z(f)v >, where v is the vector
in V (∂Hg) when Hg is regarded as a bordism from the empty set to ∂Hg. The
map f is determined by the images of the standard meridians of Σg, denoted as
αi, i = 1, 2, · · · , g and their images under f as γj, j = 1, 2, · · · , g. The curves γj
on the standard handlebody with αi form the Heegaard diagram of a 3-manifold.
From a Heegaard diagram, we get a link by pushing γj slightly into the handlebody
Hg. This is a link with 2g components. Now attaching an Ω to each component
and expand formally into a linear sum with coefficients and colored links. If we
know how to evaluate the colored link invariants, then we get a number which is the
state sum invariant. This is the so-called chain-mail formulation of Turaev-Viro
invariant.

Now suppose X is given a triangulation. Then there is a Heegaard splitting by
taking the dual of the triangulation. Applying the chain-mail construction to this
Heegaard splitting, we will get the state sum above. This also leads to a better
way to evaluate the 3-manifold invariant.
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3. (1+1)-TQFTs

The construction and classification of (1 + 1)-TQFTs is an excellent example
for the general theory of TQFTs. There are many ways to present a surface. We
choose to use pants decompositions. A pair of pants is a three punctures sphere.
One reason that the topology of surface is so simple is that except the sphere
and torus, every closed orientable surface has a decomposition into pairs of pants
and any two decompositions are related by simple moves that we will call them
F -move and S-move. Then to construct a (1 + 1)-TQFT, we can assign a vector
space to a surface with a pants decomposition and verify that the assignment is
independent of the chosen pants decomposition by checking invariance under the
moves. The moves between pants decompositions correspond well to the properties
of commutative Frobenius algebras. Therefore, the category of (1 + 1)-TQFTs is
equivalent to the category of commutative Frobenius algebras.

3.1. From TQFT to Frobenius Algebras. We will show that each (1 + 1)-
TQFT leads to commutative Frobenius algebra. There are many equivalent ways
to define a Frobenius algebra. We will use any of the following as a definition.

Proposition 3.1. Let A be a finite dimensional associative unital algebra. Then
the following are equivalent:

(1) There is an A-module isomorphism θ : A → A∗.
(2) There is a non-degenerate linear map τ : A → C in the sense that the

kernel has only 0 ideals.
(3) There is a non-degenerate pairing λ : A ⊗ A → C such that λ(a, bc) =

λ(ab, c).
(4) A is a bi-algebra such that the multiplication and co-multiplication satisfy

the following I=H relation.

Proof. From (1) to (2), set τ = θ(1). From (2) to (3), set λ(a, b) = τ(ab). From
(3) to (1), take the adjoint.

�

Example 3.2. (1) Every group algebra C[G] is a Frobenius algebra with θ :∑
g cgg → C by θ(x) = ce.

(2) For a closed simply connected 4-manifold M , H2(M : C) is a Frobenius
algebra with the pairing given by λ(ω1, ω2) =

∫
M
ω1 ∧ ω2.

(3) Every finite dimensional Hopf algebra is a Frobenius algebra.

Given a (1 + 1)-TQFT F = (V, Z) and let S1 be the standard circle in the
complex plane. Then A = V (S1) is a finite dimensional vector space. A can be
canonically identified with A∗ as follows. The vector space V (−S1) is canonically
dual to V (S1), so canonically isomorphic to A∗ as a vector space. We need a
lemma.
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Proposition 3.3. The mapping class group of the circle S1 is trivial, i.e., every
orientation preserving diffeomorphism of the circle S1 is isotopic to the identity.

Therefore, there is a unique way to identify −S1 with S1 up to isotopy. We can
just choose the complex conjugation r which is an orientation-reversing map of S1

or orientation preserving map from S1 to −S1. Hence Z(r) : V (S1) → V (−S1) is
a canonical isomorphism. Composing with the isomorphism from V (−S1) to A∗,
we have a map:

θ : A → A∗.

The vector space A has both a multiplication and a co-multiplication by the
following trees:

Theorem 3.4. The vector space V (S1) is a commutative Frobenius algebra.

To understand the partition functions, we use the classification theorem of ori-
entable surface to see that any bordism fromm circles to n circles are diffeomorphic
to the standard model bordism as follows: tree-handles–tree.

Therefore, the linear map Z(X) : A⊗m → A⊗n is

∆n−1 · · ·∆1 ·H⊗g · µ1 · · ·µm−1.

In particular, for a closed surface of genus=g, Z(Yg) = Tr(H⊗g).

3.2. From Frobenius Algerba to TQFT. Our combinatorial presentation for
a surface will be a pants decomposition. This is basically a Morse function on the
surface. To keep our presentation elementary, we will outline the idea from Morse
theory, but re-prove the necessary theorems using combinatorial method.

When a surface is given as a pants decomposition, we need to know the moves
that will connect any two pants decomposition. In terms of Morse functions, we
will consider a path of Morse functions that connects the two given Morse func-
tions. There will be finitely many isolated moments on the path that the function
is not Morse. There are two possibilities; either two critical points have the same
critical value or a birth-death event occurs. Birth-death events correspond to the
birth-death of handle pairs of adjacent indices. The same critical values are for two
critical points of index 1 so are supported inside a 4-punctured sphere. Then the
Morse modification is the two different ways to decompose a 4-puncture spheres
into two pairs of pants. Analyzing the theory completely, we obtain that each
surface can be decomposed into a composition of five building pieces and any two
such decompositions are related by 5 moves.

3.2.1. Pants Decompositions.

Theorem 3.5. (1) Each bordism can be decomposed into a composition of the
following 5 pieces:
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(2) Every two pants decompositions of the same surface Y are related by the
following 5 moves:

Given a commutative Frobenius algebra A, we will assign A to the standard
circle S1. For any bordism X as the standard model, we assign the linear map:

We need to show that for any other pants decomposition, we will have the same
map.

For any other circle Y , we will assign also A to Y , and choose a diffeomorphism
from S1 → Y , then a bordism from Y1 to Y2 will be turned into a bordism for the
standard circle. We will assign the map ...

3.3. Classification. The best way to state the equivalence of the classification of
(1+1)-TQFTs is to formulate the equivalence as an equivalence of two categories.

Theorem 3.6. The category of (1 + 1)-TQFTs is equivalent to the category of
commutative Frobenius algebras.

Exercise 3.7. Show that the eigenvalues of the handle operators for all Frobenius
algebras from H2(M ;C) of a 4-manifold is 0.

4. CAT

All categories together with functors between them and natural transformations
between functors form a bicategory that will be denoted as CAT. We will treat
general bicategories in detail later.

4.1. Category Recalled. A category can be large in the sense that its objects
form a class that is not a set. Categories whose objects do form sets are called
small categories. On the other hand, the morphisms between any two objects in
a category are required to form a set. Since we will often promote a category to
a higher category by assuming that we have a single new object for the higher
category and treat the objects of the original category to be morphisms of this
new object, we require all our categories to be small. This does lead to some
foundational questions when we form categories such as the category of all sets or
the category of all topological spaces6. A topological space is a set with a topology.
Any set can be regarded as a topological space endowed with the discrete topology,
which is actually a 0-dimensional manifold. In order to have a small category, we
assume that any set or topological space is cat-isomorphic7 to a subset of the

6Considering isomorphism classes of objects is not a good solution to this problem for TQFTs
and its applications because we often need to glue together manifolds, and consider physical
processes in the space manifolds.

7We will consider many different categories of manifolds with extra structures: orienta-
tion, spin structure, smooth structure, PL structure, framing,.. and homeomorphisms between
such manifolds that preserve the extra structures. We will call such homeomorphisms cat-
isomorphisms or sometimes just isomorphisms instead of homeomorphisms, orientation preserv-
ing diffeomorphisms, etc.
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Euclidean space Rn for some integer n ≥ 0. We consider Rn as the subset Rn × 0
of Rn+1. Then every set or topological space that we discuss is a subset of R∞.8

Definition 4.1. A small category C consists of a set of objects and an associated
set Hom(x, y) of morphisms to each ordered pair of objects x, y endowed with a dis-
tinguished element called the identity and a composition of composable morphisms

Hom(y, z)× Hom(x, y) → Hom(x, z)

satisfying the following axioms:

(1) (quadrilateral axiom)
(2) (eye-glass axiom)

There are two standard ways to compose the morphisms: composition of func-
tions or juxtaposition of arrows. We choose to use the composition of functions.
We will denote the set of objects of a category C by C0 and the morphism set of
two objects x, y ∈ C0 as Hom(x, y) or yC

1
x.

4.1.1. Examples of Categories.

(1) Set
(2) Vec
(3) Hil
(4) Group
(5) Algebra
(6) π≤1(X) of a space X

4.2. Functors.

4.2.1. Examples of Functors.

(1) Double dual
(2) Representation of groups
(3) First and Second quantization

4.3. Natural Transformations.

4.3.1. Example of Natural Transformations.

(1) Double dual

4.3.2. Yoneda Lemma.

4.3.3. Nat(Id,Id).

8The history of the notion of a manifold is an interesting lesson about how mathematics is
making progress in a strange way. Topologists spent decades to abstract the definition of a
manifold from subsets of the Euclidean spaces. Then Whitney proved his famous embedding
theorem that actually all the abstract manifolds can be embeded into Euclidean spaces. It seems
that all the efforts for the general definition are wasted. Yet the secret to manifold topology is
uncovered by the proof of Whitney’s embedding theorem—the Whitley trick.
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4.4. Functor Categories.

5. Monoidal Category

Monoidal categories serve two purposes: one for organizing the axioms of a
TQFT, and the other, when endowed with extra structures, for input data for
the construction of TQFTs. While TQFTs are inspired by quantization, monoidal
categories are inspired by categorification of monads. Endowed with extra struc-
tures such as fusion and modular, they are beautiful mathematical structures that
can be classified.

5.1. Pentagons and Triangle Axioms. A monad is a set with a binary oper-
ation that is associative with a unit. A monoidal category is a categorification
of a monad so it also has a binary operation called a tensor product. Since sets
are categorified to categories, so the binary operation for a monoidal category is a
bi-fucntor (a functor with two variables). The associativity will be categorified to
a coherent functorial isomorphism: a natural transformation which is an isomor-
phism between two functors. The coherence is encoded into the famous pentagon
and triangle axioms.

5.2. Monoidal Functors.

5.3. Braided Monoidal Categories.

5.4. Group Categories and Graded Vector Spaces.

5.5. Tangle and Tangle Diagram Categories. Their reps are generalizations
of the Jones polynomial.

6. BordCAT(n+ 1) and CAT-ASTF TQFTs

The same axioms of TQFTs can be used to define a variety of CAT-ASTF
TQFTs for manifolds with extra structures. These TQFTs will be referred to as
CAT-ASTF TQFTs. So the toric code and DFib are TOP-ASTF TQFTs, where
TOP means the nonoriented TOP category.

Definition 6.1. Let BordCAT(n+ 1) be the symmetric monoidal category of (n+
1)-CAT-manifold category. Then an (n + 1)-CAT-ASTF TQFT is a symmetric
monoidal functor from F = (V, Z) : BordCAT(n+ 1) to Vec.

Unfortunately, the famousWitten-Chern-Simons or mathematically Reshetikhin-
Turaev TQFTs do not fit into this definition. In order to cover those TQFTs, we
need an extended (3, 2, 1)-TQFt with anomaly. We will encode the anomaly by
a projective functor so WCS (or RT) TQFTs are projective 2-functors from the
manifold category of 1, 2, 3-manifolds to the 2-vector space of modular categories.
Turaev-viro TQFTs are anomaly-free, so they can be further extended to points.
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To formalize Witten-Donaldson TQFT, we need further relaxation which has not
been coded yet. Important ingredients will be grading and symmetry.

6.1. Structures on Manifolds.

6.1.1. Spin, Spinc, Pin(±) Structure. The spin structure on a manifold for the
Dirac equation can be considered as a minor anomaly. The electron is not com-
pletely local.

6.1.2. Combing, Framing, 2-framing and Lagrangians.

6.2. Category of (n+ 1)-TQFTs.

7. Dijkgraaf-Witten TQFTs

8. Manifold Pairings as Universal TQFTs

9. Open Questions and Exercises

9.1. Frobenius Algebas. Show V (T 2) from a (2+1)-TQFT is always a Frobenius
algebra. For a unitary theory, the “handle operator” is Hermitian, so it can be
diagonalized.

The eigenvectors of the handle operator form a basis and the unit can be ex-
pressed in this basis. Let ei be a basis of V (T 2) such that the handle operator
is diagonalized, and η(1) =

∑
i aiei. Then for any vector v = viei ∈ V (T 2), the

scalars vi/ai are well-defined. In particular for a knot in any 3-manifold, we have
a colored knot invariant.

9.2. Combinatorial Presentation of a Spin Structure. Find a combinato-
rial presentation of spin structures on a 3-manifold like the presentation of spin
structure on a surface using a dimer matching.

9.3. TQFTs with Same Z. Show the toric code and the double semion theory
have the same Z on all closed 3-manifolds.

Do the double Ising theory and the double SU(2)2 have the same Z?

9.4. Characterize Values of Z for DFib. With the right normalization, the
values of Z on closed 3 manifolds is in Z[ϕ] and is dense in the positive R. Is Z a
homotopy invariant?

9.5. Relation to Classical Invariants. Are 3-mfd invariants from DIsing and
DFib homotpy invariants?

Property F TQFTs and homotopy inv.
Abelian theories? Yes.
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9.6. Topological Lattice Model for (1+ 1)-TQFTs. There are lattice models
for (1 + 1)-TQFTs with associative algebras as input. The resulting theories are
only those (1 + 1)-TQFTs whose spectrum of the handle operators are discrete.
How did this quantization of spectrum occur?

As is well-known that there is not intrinsic topological phases of matter in 1D,
so all (1 + 1)-TQFTs do not describe stable intrinsic TPM. Either they are SPY
or they are unstable with respect to perturbations.

9.7. Loop Operators of Lattice Models. Half-braidings.

9.8. (2 + 1)-TQFTs with dimV (S2) > 1. Are they SPTs?


