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Abstract. We prove a rank-finiteness conjecture for modular categories that there are only
finitely many modular categories of fixed rank r, up to equivalence. Our main technical advance
is a Cauchy theorem for modular categories: given a modular category C, the set of prime ideals
of the global quantum dimension D2 of C in the cyclotomic number field ON is identical to that
of the Frobenius-Schur exponent N = FSexp(C) of C. By combining the Galois symmetry of the
modular S, T matrices with the knowledge of the modular representation of SL(2,Z), we deter-
mine all possible fusion rules for all rank=5 modular categories and describe the corresponding
monoidal equivalence classes.

1 Introduction

Modular categories are intricate organizing algebraic structures appearing in a variety of math-
ematical subjects including topological quantum field theory [48], conformal field theory [39],
representation theory of quantum groups [6], von Neumann algebras [21], and vertex operator
algebras [31]. They are fusion categories with additional braiding and pivotal structures [22, 48,
6]. These extra structures endow them with some “abelian-ness” which makes the classification
of modular categories possible.

Besides the intrinsic mathematical aesthetics, another motivation for pursuing a classification
of modular categories comes from their application in condensed matter physics and quantum
computing [52, 53]. Unitary modular categories are algebraic models of anyons in two dimen-
sional topological phases of matter where simple objects model anyons. In topological quantum
computation, anyons give rise to quantum computational models. Modular categories have also
been used recently to construct physically realistic three dimensional topological insulators and
superconductors [57, 3]. Therefore, a classification of modular categories is literally a classifica-
tion of certain topological phases of matter.

A modular category C is a non-degenerate ribbon fusion category over C [48, 6]. A fusion
category C is an abelian C-linear semisimple rigid monoidal category with a simple unit object
1, finite-dimensional morphism spaces and finitely many isomorphism classes of simple objects.
Let ΠC be the set of isomorphism classes of simple objects of the fusion category C. The rank
of C is the finite number r = |ΠC |. Each modular category C leads to a (2 + 1)-dimensional
topological quantum field theory (VC , ZC), in particular colored framed link invariants [48]. The
invariant {da} for the unknot colored by the label a ∈ ΠC is called the quantum dimension of
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the label. The number D =
√∑

a∈ΠC
d2
a is an important invariant of C, called the quantum

order. The invariant of the Hopf link colored by a, b will be denoted as Sab. The link invariant
of the unknot with a right-handed kink colored by a is θa · da for some root of unity θa, which
is called the topological twist of the label a. The topological twists form a diagonal matrix
T = (δabθa), a, b ∈ ΠC . The S-matrix and T -matrix together lead to a projective representation
of the modular group SL(2,Z) by sending the generating matrices

s =

[
0 −1
1 0

]
, t =

[
1 1
0 1

]
to S, T , respectively [48, 6]. Amazingly, the kernel of this projective representation of C is always
a congruence subgroup of SL(2,Z) [43]. The S-matrix determines the fusion rules through the
Verlinde formula, and the T -matrix is of finite order ord(T ) by Vafa’s theorem [6]. Together, the
pair S, T are called the modular data of the category C.

The abelian-ness of modular categories first manifests itself in the braiding: the tensor product
is commutative up to functorial isomorphism. But a deeper sense of abelian-ness is revealed
in the Galois group of the number field KC obtained by adjoining all matrix entries of S to Q:
KC is an abelian extension of Q [5, 47]. Moreover, its Galois group is isomorphic to an abelian
subgroup of the symmetric group Sn, where n is the rank of C. This profound observation
permits the application of deep number theory to the classification of modular categories.

The first success of the classification program was the complete classification of unitary modular
categories up to rank=4 in [47]. In 2003, the fourth author conjectured that, up to equivalence,
there are only finitely many modular categories of a given rank, which we will call the rank-
finiteness conjecture [54, 47]. In this paper, we prove the rank-finiteness conjecture which implies
that, in principle, modular categories can be classified by rank. Furthermore, we develop tools
for a classification-by-rank program and as an application we complete a classification of all
modular categories of rank=5 (up to monoidal equivalence) in Section 5.

The rank-finiteness conjecture is motivated by the classification of topological phases of matter.
Topological phases of matter are states of matter which have an energy gap in the thermodynamic
limit and are stable under small yet arbitrary perturbations. Thus, they cannot be continuously
deformed non-trivially inside topological states of matter. Efforts to understand the rigidity first
led to the discovery of the Ocneanu rigidity1, which implies that for a fixed set of fusion rules,
there are only finitely many equivalence classes of modular categories [22]. Hence, the rank-
finiteness conjecture is reduced to showing that there are only finitely many possible fusion rules
for any given rank. Using the Verlinde formula, we can deduce the finiteness of fusion rules for
a given rank from a bound of the global quantum dimension D2, in particular, if there are only
finitely possible values of D2 then the conjecture would follow [47]. The key step for obtaining
the finiteness of possible values of D2 for a fixed rank is our generalization of the Cauchy theorem
in group theory to modular categories: the set of prime ideals in the decomposition of 〈D2〉 is
the same as the set of those in the prime decomposition of 〈ord(T )〉, in the Dedekind domain of
integers in Q(e2πi/ ord(T )). As a consequence, the quantum dimensions di and D2 have special
arithmetic properties: they are so-called S-units with respect to the common ideals in the prime
decomposition of D2 and ord(T ). Then regarding D2 =

∑
i d

2
i as an S-unit equation, we can

apply Evertse’s finiteness theorem for non-degenerate S-units solutions to this equation [25]. It

1Freedman asked Wenzl about rigidity of Jones-Wenzl projectors in Temperley-Lieb categories around 2000
[27].



ON MODULAR CATEGORIES 3

follows that there are only finitely many S-unit solutions to the dimension equation D2 =
∑
i

d2
i ,

in particular only finitely many possible values of D2 for any given rank. All steps can be made
effective, so we have explicit bounds for the number of solutions to the dimension equation.
The bound for the number of possible modular categories for a given rank that we obtained is
absurdly large. For example for rank=2, there are only 8 modular categories while our bound is
between 2714.447 and 28.15885×1041 for the S-unit equation D2 =

∑
i

d2
i . An immediate question is

to determine if there is a better bound for the number of modular categories of rank=n. Etingof
observes in Remark 3.25 that the number of modular categories of rank=r grows faster than
any polynomial in r.

The content of the paper is as follows. Section 2 is a collection of necessary results on fusion
and modular categories. We define admissible modular data as a pair of matrices S, T satisfying
algebraic constraints with an eye towards the characterization of realizable modular data. In
Section 3, we prove the rank-finiteness conjecture. The first main result of the paper is:

Theorem 3.1. There are only finitely many modular categories of fixed rank r, up to equivalence.

Our main technical result is a Cauchy theorem for spherical fusion categories.

Theorem 3.9. The set of prime ideals of D2 in ON is identical to that of N = FSexp(C).

In Section 4 we develop general arithmetic constraints on admissible modular data. One im-
provement to the approach in [47] is the combining of Galois symmetry of S, T matrices with
the knowledge of the representation theory of SL(2,Z). An important observation is:

Lemma 4.18. Let C be a modular category of rank k and ρ : SL(2,Z) → GL(k,C) a modular
representation of C, i.e. a lifting of projective representation of C. Then ρ cannot be isomorphic
to a direct sum of two representations with disjoint t-spectra.

Finally in Section 5, we combine the analysis of Galois action on the S-matrix and SL(2,Z)
representation to determine all possible fusion rules for all rank=5 modular categories and
describe their classification up to monoidal equivalence.

Our second main result of the paper is:

Theorem 5.1. Suppose C is a modular category of rank 5. Then C is Grothendieck equivalent
to one of the following:

(i) SU(2)4

(ii) SU(2)9/Z2

(iii) SU(5)1

(iv) SU(3)4/Z3

In this paper we only classify these modular categories up to monoidal equivalence, but a com-
plete list of all modular categories with the above fusion rules as done in [47] is possible. However,
the details are not straightforward, so we will leave it to a future publication.

Our reduction of the rank-finiteness conjecture to Evertse’s theorem is a black-box and it ob-
scures the nature of rigidity in modular categories. The key to Evertse’s finiteness of S-unit
solutions is the Schmidt subspace theorem, which implies finiteness theorems for some simulta-
neous approximations to algebraic numbers by elements of a number field. It would be more
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illuminating to have a more direct proof of the rank-finiteness conjecture. A better understand-
ing of rank-finiteness for modular categories might shed light on whether or not rank-finiteness
also holds for spherical fusion categories. One potential approach is taking the Drinfeld center
of spherical fusion categories and then deducing rank-finiteness for spherical fusion categories
from the modular case.

Topological phases of matter are phases of matter that lie beyond Landau’s symmetry breaking
and local order parameter paradigm for the classification of states of matter. Physicists propose
to use the S, T matrices as order parameters for the classification of topological phases of matter
[37]. Therefore, a natural question is if the S, T matrices determine the modular category. We
believe they do. The S, T matrices satisfy many constraints, and a pair of matrices S, T with
those constraints are called admissible modular data. It is interesting to characterize admissible
modular data that can be realized by modular categories.

For application to topological quantum computation, it is important to understand the images of
the representations of the mapping class groups from a modular category. In particular, when do
all representations have finite images? The property F conjecture says that the representations
of all mapping class groups from a modular category have finite images if and only if D2 ∈ Z
[40, 47].

Modular categories form part of the mathematical foundations of topological quantum com-
putation. The classification program of modular categories initiated in this paper will lead to
a deeper understanding of their structure and their enchanting relations to other fields, thus
pave the way for applications to a futuristic field anyonics broadly defined as the science and
technology that cover the development, behavior, and application of anyonic devices.

2 Modular Categories

In this section, we will collect some conventions and essential results on spherical fusion categories
and modular categories. Most of these results can be found in [48, 6, 22, 41, 42, 43] and the
references therein.

2.1 Basic Definitions

A modular category is a braided spherical fusion category in which the braiding is non-degenerate.
Modular categories were first axiomatized by Turaev [49], based on earlier notions in Rational
Conformal Field Theory by Moore and Seiberg [39] and related foundational work of Joyal and
Street [32]. Early interesting examples arose in the work of Reshetikhin with Turaev on quantum
groups and their application to low-dimensional topology. In this section we will give the precise
definition and describe some further properties and consequences of the definition.

2.1.1 Fusion Categories

Recall from [22], a fusion category C is an abelian C-linear semisimple rigid monoidal category
with a simple unit object 1, finite-dimensional morphism spaces and finitely many isomorphism
classes of simple objects. In a fusion category C with tensor product ⊗ and unit object 1, the
left dual of V ∈ C is a triple (V ∗,dbV , evV ) where dbV : 1 → V ⊗ V ∗ and evV : V ∗ ⊗ V → 1
are the associated coevaluation and evaluation morphisms. The left duality can be extended
to a monoidal functor (−)∗ : C → Cop, and so (−)∗∗ : C → C defines a monoidal equivalence.
Moreover we can choose 1∗ = 1. The (linear) space of morphisms between objects V and W
will be denoted HomC (V,W ). Right duals are similarly defined.



ON MODULAR CATEGORIES 5

Let ΠC be the set of isomorphism classes of simple objects of the fusion category C. The rank
of C is the finite number r = |ΠC |, and we denote the members of ΠC by {0, . . . , r − 1}. We
simply write Vi for an object in the isomorphism class i ∈ ΠC . By convention, the isomorphism
class of 1 corresponds to 0 ∈ ΠC . The rigidity of C defines an involutive permutation i 7→ i∗ on
ΠC which is given by Vi∗ ∼= V ∗i for all i ∈ ΠC .

2.1.2 Braidings

A braiding c of a fusion category C is a natural family of isomorphisms cV,W : V ⊗W →W ⊗V
in V and W of C which satisfy the hexagonal diagrams

U ⊗ (V ⊗W )
cU,V⊗W// (V ⊗W )⊗ U

α

��
(U ⊗ V )⊗W

c⊗id
��

α

OO

V ⊗ (W ⊗ U)

(V ⊗ U)⊗W α
// V ⊗ (U ⊗W ) ,

id⊗c

OO

(U ⊗ V )⊗W
cU⊗V,W// W ⊗ (U ⊗ V )

α−1

��
U ⊗ (V ⊗W )

id⊗c
��

α−1

OO

(W ⊗ U)⊗ V

U ⊗ (W ⊗ V )
α−1
// (U ⊗W )⊗ V ,

c⊗id

OO

for all U, V,W ∈ C where α is the associativity isomorphism of C (cf. [32]).

A braided fusion category is a pair (C, c) in which c is a braiding of the fusion category C.
We may simply call C a braided fusion category if the underlying braiding c is understood.

2.1.3 Spherical Fusion Categories

A pivotal structure of a fusion category C is an isomorphism j : IdC → (−)∗∗ of monoidal
functors. One can respectively define the left and the right pivotal traces of an endomorphism
f : V → V in C as

ptr`(f) =

(
1

dbV ∗−−−→ V ∗ ⊗ V ∗∗
id⊗j−1

V−−−−−→ V ∗ ⊗ V id⊗f−−−→ V ∗ ⊗ V evV−−→ 1

)
ptrr(f) =

(
1

dbV−−→ V ⊗ V ∗ f⊗id−−−→ V ⊗ V ∗ jV ⊗id−−−−→ V ∗∗ ⊗ V ∗ evV ∗−−−→ 1
)
.

Note that j∗V = j−1
V ∗ , and so we have ptr`(f) = ptrr(f∗). Since 1 is a simple object of C, both

pivotal traces ptr`(f) and ptrr(f) can be identified with some scalars in C. A pivotal structure
on C is called spherical if the two pivotal traces coincide for all endomorphisms f in C.

For the purpose of this paper, a pivotal (resp. spherical) category (C, j) is a fusion category
C equipped with a pivotal (resp. spherical) structure j. We will denote the pair (C, j) by C
when there is no ambiguity. The left and the right pivotal dimensions of V ∈ C are defined
as d`(V ) = ptr`(idV ) and dr(V ) = ptrr(idV ) respectively. In a spherical category, the pivotal
traces will be denoted by ptr(f).

2.1.4 Modular Categories

Following [33], a twist (or ribbon structure) of a braided fusion category (C, c) is an C-linear
automorphism, θ, of IdC which satisfies

θV⊗W = (θV ⊗ θW ) ◦ cW,V ◦ cV,W , θ∗V = θV ∗
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for V,W ∈ C. A braided fusion category equipped with a ribbon structure is called a ribbon
fusion or premodular category. A premodular category C is called a modular category if
the S-matrix of C, defined by

Sij = ptr(cVj ,Vi∗ ◦ cVi∗ ,Vj ) for i, j ∈ ΠC ,

is non-singular. Note that S is a symmetric matrix and that dr (Vi) = S0i = Si0 for all i.

2.2 Further Properties and Basic Invariants

2.2.1 Grothendieck Ring and Dimensions

The Grothendieck ring K0(C) of a fusion category C is the Z-ring generated by ΠC with
multiplication induced from ⊗. The structure coefficients of K0(C) are obtained from:

Vi ⊗ Vj ∼=
⊕
k∈ΠC

Nk
i,j Vk

where Nk
i,j = dim(HomC (Vk, Vi ⊗ Vj)). This family of non-negative integers {Nk

i,j}i,j,k∈ΠC is
called the fusion rules of C.

In a braided fusion category K0(C) is a commutative ring and the fusion rules satisfy the sym-
metries:

Nk
i,j = Nk

j,i = N j∗

i,k∗ = Nk∗
i∗,j∗ , N0

i,j = δi,j∗ (2.1)

The fusion matrix Ni of Vi, defined by (Ni)k,j = Nk
i,j , is an integral matrix with non-negative

entries. In the braided fusion setting these matrices are normal and mutually commuting. The
largest real eigenvalue of Ni is called the Frobenius-Perron dimension of Vi and is denoted
by FPdim(Vi). Moreover, FPdim can be extended to a Z-ring homomorphism from K0(C) to
R and is the unique such homomorphism that is positive (real-valued) on ΠC (see [22]). The
Frobenius-Perron dimension of C is defined as

FPdim(C) =
∑
i∈ΠC

FPdim(Vi)
2 .

We will say two fusion categories C and D are Grothendieck equivalent if there is a bijection
between ΠC and ΠD that induces a (unital) Z-ring isomorphism between K0(C) and K0(D).

Definition 2.1. A fusion category C is said to be

(i) weakly integral if FPdim (C) ∈ Z.

(ii) integral if FPdim (Vj) ∈ Z for all j ∈ ΠC .

(iii) pointed if FPdim (Vj) = 1 for all j ∈ ΠC .

Furthermore, if FPdim (V ) = 1, then V is invertible.

Remark 2.2. The terminology invertible arises from the fact that FPdim (V ) = 1 if and only
if V ⊗ V ∗ ∼= 1. The set of invertible simple objects generates a full subcategory Cpt called the
pointed subcategory which is closed under the tensor product.
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Let C be a pivotal category. It follows from [22, Prop. 2.9] that dr(V ∗) = dr(V ) is an algebraic
integer for any V ∈ C. The global dimension of C is defined by

D2 =
∑
i∈ΠC

|dr(Vi)|2.

Remark 2.3. It is worth noting that the global dimension D2 can be defined for any fusion
category (cf. [22]), and does not depend on the existence, or choice of, of a pivotal structure.

By [38, 22], a pivotal structure of a fusion category C is spherical if, and only if, dr(V ) is real
for all V ∈ C. In this case, dr (V ) = d` (V ) and we simply write d (V ) to refer to the dimension
of V , furthermore for i ∈ ΠC we adopt the shorthand di = d (Vi).

A fusion category C is called pseudo-unitary if D2 = FPdim(C). For a pseudo-unitary fusion
category C, it has been shown in [22] that there exists a unique spherical structure of C such
that d (V ) = FPdim(V ) for all objects V ∈ C.

2.2.2 Spherical and Ribbon Structures

Associated with a braiding c on a fusion category C is an isomorphism of C-linear functors
u : IdC → (−)∗∗, called the Drinfeld isomorphism. When C is a strict fusion category, uV is
the composition:

uV := (V
db⊗ id−−−−→ V ∗ ⊗ V ∗∗ ⊗ V id⊗c−1

−−−−−→ V ∗ ⊗ V ⊗ V ∗∗ ev⊗ id−−−−→ V ∗∗ = V ) .

If u is the Drinfeld isomorphism associated with c, and θ is a ribbon structure, then

j = uθ (2.2)

is a spherical structure of C. This equality defines a one-to-one correspondence between the
spherical structures and the ribbon structures on (C, c).

The set of isomorphism classes of invertible objects G(C) forms a group in K0(C) where i−1 = i∗

for i ∈ G(C). For modular categories C, the group G(C) parameterizes pivotal structures on the
underlying braided fusion category:2

Lemma 2.4. Let C be a modular category. There is a bijective correspondence between the pivotal
structures of the underlying braided fusion category C and the group of invertible objects G(C).
Under this correspondence, the inequivalent spherical structures of C map onto the maximal
elementary abelian 2-subgroup, Ω2G(C), of G(C).

Proof. Let j0 be the spherical pivotal structure of the modular category C. For any pivotal
structure j of C, we have j−1

0 j ∈ Aut⊗(IdC), the group of automorphisms of the monoidal
functor IdC . Moreover, j 7→ j−1

0 j defines a bijection between the set of pivotal structures of C
and Aut⊗(IdC). Note that j is spherical if, and only if, the associated dimension function is real
valued, and hence for any simple V , (j−1

0 j)V = λV idV for some real scalar λV . By [28, Thm.
6.2], Aut⊗(IdC) ∼= G(C) and hence the first statement follows. In particular, j−1

0 j has finite
order. Thus, j is a spherical structure of C if, and only if, (j−1

0 j)V = ± idV for any simple V , or
j−1
0 j ∈ Aut⊗(IdC) is of order ≤ 2. Therefore, the second statement follows from the isomorphism

Aut⊗(IdC) ∼= G(C). �

2This second part of this result was pointed out to us by Naidu.
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Remark 2.5. The isomorphism Aut⊗(IdC) ∼= G(C) is determined by the braiding c and the
spherical structure j0 of the modular category (C, c, j0). By [38, Cor. 7.11], (C, c, j) is a modular
category for all spherical structures j of C, so that there are exactly |G(C)| pivotal and |Ω2G(C)|
spherical structures on the fusion category C.

In any ribbon fusion category C the associated ribbon structure, θ, has finite order. This
celebrated fact is part of Vafa’s Theorem (see [51, 6]) in the case of modular categories. However,
any ribbon category embeds in a modular category (via Drinfeld centers, see [38]) so the result
hold generally. Observe that, θVi = θi idVi for some root of unity θi ∈ C. Since θ1 = id1, θ0 = 1.
The T -matrix of C is defined by Tij = δijθj for i, j ∈ ΠC . The balancing equation:

θiθjSij =
∑
k∈ΠC

Nk
i∗jdkθk (2.3)

is a useful algebraic consequence, holding in any pre-modular category. The pair (S, T ) of S and
T -matrices will be called the modular data of a given modular category C.

2.2.3 Modular Data and SL(2,Z) Representations

Definition 2.6. For a pair of matrices (S, T ) for which there exists a modular category with
modular data (S, T ) we will say (S, T ) is realizable modular data.

The fusion rules {Nk
i,j}i,j,k∈ΠC of C can be written in terms of the S-matrix, which is called the

Verlinde formula [6]:

Nk
i,j =

1

D2

∑
a∈ΠC

SiaSjaSk∗a
S0a

for all i, j, k ∈ ΠC . (2.4)

The modular data (S, T ) of a modular category C satisfy the conditions:

(ST )3 = p+S2, S2 = p+p−C, CT = TC, C2 = id, (2.5)

where p± =
∑

i∈ΠC
d2
i θ
±1
i are called the Gauss sums, and C = (δij∗)i,j∈ΠC

is called the charge
conjugation matrix of C. In terms of matrix units the first equation in (2.5) gives the twist
equation:

p+Sjk = θjθk
∑
i

θiSijSik . (2.6)

The quotient p+

p− , called the anomaly of C, is a root of unity, and

p+p− = D2. (2.7)

Moreover, S satisfies
Sij = Sji and Sij∗ = Si∗j (2.8)

for all i, j ∈ ΠC . These equations and the Verlinde formula imply that

Sij∗ = Sij and
1

D2

∑
j∈ΠC

SijSjk = δik. (2.9)

In particular S is projectively unitary.

A modular category C is called self-dual if i = i∗ for all i ∈ ΠC . In fact, C is self-dual if and
only if S is a real matrix.
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Let D be the positive square root of D2. The Verlinde formula can be rewritten as

SNiS
−1 = Di for i ∈ ΠC

where (Di)ab = δab
Sia
S0a

. In particular, the assignments φa : i 7→ Sia
S0a

for i ∈ ΠC determine
(complex) linear characters of K0(C). Since S is non-singular, {φa}a∈ΠC is the set of all the
linear characters of K0(C). Observe that FPdim is a character of K0(C), so that there is some
a ∈ ΠC such that FPdim = φa. By the unitarity of S we have that FPdim(C) = D2/(da)

2.

As an abstract group SL(2,Z) ∼= 〈s, t | s4 = 1, (st)3 = s2〉. The standard choice for generators
is:

s :=

[
0 −1
1 0

]
and t :=

[
1 1
0 1

]
.

Let η : GL(ΠC ,C)→ PGL(ΠC ,C) be the natural surjection. The relations (2.5) imply that

ρC : s 7→ η(S) and t 7→ η(T ) (2.10)

defines a projective representation of SL(2,Z). Since the modular data is an invariant of a
modular category, so is the associated projective representation type of SL(2,Z). The follow-
ing arithmetic properties of this projective representation will play an important role in our
discussion (cf. [43]).

Theorem 2.7. Let (S, T ) be the modular data of the modular category C with N = ord (T ).
Then the entries of S are algebraic integers of QN . Moreover, N is minimal such that the
projective representation ρC of SL(2,Z) associated with the modular data can be factored through
SL(2,ZN ). In other words, ker ρC is a congruence subgroup of level N .

Definition 2.8. A modular representation of C (cf. [43]) is a representation ρ of SL(2,Z)
which satisfies the commutative diagram:

SL(2,Z)
ρ //

ρC ''

GL(ΠC ,C)

η

��
PGL(ΠC ,C) .

Let ζ ∈ C be a fixed 6-th root of the anomaly
p+

p−
. For any 12-th root of unity x, it follows from

(2.5) that the assignments

ρζx : s 7→ ζ3

x3p+
S, t 7→ x

ζ
T (2.11)

define a modular representation of C. Moreover, {ρζx | x12 = 1} is the complete set of modular
representations of C (cf. [15, Sect. 1.3]). Note that ρζx(s) and ρζx(t) are matrices over a finite
abelian extension of Q. Therefore, modular representations of any modular category are defined
over the abelian closure Qab of Q in C (cf. [4]).

Let ρ be a modular representation of the modular category C, and set

s = ρ(s) and t = ρ(t) .

It is clear that the representation ρ is uniquely determined by the pair (s, t), which will be called
a normalized modular pair of C.
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2.2.4 Galois Symmetry

Observe that for any choice of a normalized modular pair (s, t) we have sia
s0a

= Sia
S0a

= φa. For

each σ ∈ Aut(Q), σ(φa) given by σ(φa)(i) = σ
(
sia
s0a

)
is again a linear character of K0(C) and

hence σ(φa) = φσ̂(a) for some unique σ̂ ∈ Sym(ΠC). That is,

σ

(
sia
s0a

)
=
siσ̂(a)

s0σ̂(a)
for all i, a ∈ ΠC . (2.12)

Moreover, there exists a function εσ : ΠC → {±1}, which depends on the choice of s, such that:

σ(sij) = εσ(i)sσ̂(i)j = εσ(j)siσ̂(j) for all i, j ∈ ΠC (2.13)

(cf. [4, App. B], [11] or [22, App.]). The group Sym(ΠC) will often be written as Sr when
r = |ΠC |.

Let Gσ ∈ GL(ΠC ,Z) be the signed permutation matrix defined by (Gσ)ij = εσ(i)δσ̂(i)j , or,
alternatively, by Gσ = σ(s)s−1.

The following is proved in [15, Thm. II]:

Theorem 2.9. Let C be a modular category with the set of isomorphism classes of simple objects
ΠC, and T -matrix of order N . Suppose ρ : SL(2,Z) → GL(ΠC ,C) is a modular representation
of C. Set s = ρ(s) and t = ρ(t). Then:

(i) ker ρ is a congruence subgroup of level n where n = ord (t). Moreover, N | n | 12N .

(ii) ρ is Qn-rational, i.e. im ρ ≤ GL(ΠC ,Qn).

(iii) For σ ∈ Gal(Qn/Q), Gσ = σ(s)s−1 is a signed permutation matrix, and

σ2(ρ(g)) = Gσρ(g)G−1
σ

for all g ∈ SL(2,Z).

(iv) Let a be an integer relatively prime to n with an inverse b modulo n. For the automor-

phism σa of Qn given by e
2πi
n 7→ e

2aπi
n ,

Gσa = tastbstas−1 .

The Galois symmetry of modular representations will play an important role for the proof the
Cauchy Theorem as well as the classification of modular categories of small ranks. This was also
established by Xu in the setting of conformal nets [58], and by Bantay in conformal field theory
under certain assumptions [2].

We employ Galois theory to derive some constraints on modular data.

In view of Theorem 2.9, we will simply define the level of the normalized modular pair (s, t) of
C as ord (t).

In the sequel, we will simply denote by FA the field extension over Q generated by the entries
of a complex matrix A. If FA/Q is Galois, then we simply write Gal(A) for the Galois group
Gal(FA/Q).

In this notation, if (S, T ) is the modular data of C, then FT = QN where N = ord (T ), and we
have FS ⊆ FT by Theorem 2.7. In particular, FS is an abelian Galois extension over Q.
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For any normalized modular pair (s, t) of C we have Ft = Qn, where n = ord (t). Moreover, by
Theorem 2.9, FS ⊆ Fs ⊆ Ft. In particular, the field extension Fs/Q is also Galois. The kernel
of the restriction map res : Gal(t)→ Gal(S) is isomorphic to Gal(Ft/FS). The following lemma,
proved in [15, Prop. 6.5], will be essential to the classification of modular categories of small
rank.

Lemma 2.10. Let C be a modular category with modular data (S, T ). For any normalized
modular pair (s, t) of C, Gal(Ft/FS) is an elementary 2-group.

2.2.5 Frobenius-Schur Indicators

A strict pivotal category is a pivotal category in which the associativity isomorphisms are
identities, the pivotal structure j : IdC → (−)∗∗ is the identity, and the associated natural
isomorphisms ξU,V : U∗ ⊗ V ∗ → (V ⊗ U)∗ are also identities. Moreover, we have the following
theorem (cf. [41]).

Theorem 2.11. Every pivotal category is pivotally equivalent to a strict pivotal category.

Frobenius-Schur indicators are indispensable invariants of spherical categories introduced in [41].
They are defined for each object in a pivotal category. Here, we only provide the definition of
these indicators in a strict spherical category. Let n be a positive integer and V an object of a
strict spherical category C. We denote by V ⊗n the n-fold tensor power of V . One can define a

C-linear operator E
(n)
V : HomC (1, V ⊗n)→ HomC (1, V ⊗n) given by

E
(n)
V (f) =

(
1

db−→ V ∗ ⊗ V idV ∗ ⊗f⊗idV−−−−−−−−→ V ∗ ⊗ V ⊗n+1 ev⊗ id⊗nV−−−−−−→ V ⊗n
)
.

The n-th Frobenius-Schur indicator of V is defined as

νn(V ) = Tr(E
(n)
V ) .

It follows directly from graphical calculus that
(
E

(n)
V

)n
= id, and so νn(V ) is an algebraic integer

in the n-th cyclotomic field Qn = Q(e
2πi
n ).

The first indicator ν1(Vi) is the Kronecker delta function δ0i on ΠC , i.e. ν1(V ) = 1 if V ∼= 1 and
0 otherwise. The second indicator is consistent with the classical Frobenius-Schur indicator of
an irreducible representation of a group, namely ν2(V ) = ±1 if V ∼= V ∗ and 0 otherwise for any
simple object V of C. The higher indicators are more obscure in nature but they are all additive
complex valued functions of the Grothendieck ring K0(C) of C.

The classical definition of exponent of a finite group can be generalized to a spherical category
via the following theorem [42].

Theorem 2.12. Let C be a spherical category. There exists a positive integer n such that
νn(V ) = d (V ) for all V ∈ C. If m is minimal among such n then d (V ) are algebraic integers
in Qm.

The minimal integer FSexp(C) := m above is called the Frobenius-Schur exponent. If C is the
category of complex representations of a finite group G, then FSexp(C) = exp(G). For modular
categories the Frobenius-Schur indicators νn(V ) are completely determined by the modular data
of C, explicitly given in [42] (generalizing the second indicator formula in [1]):
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Theorem 2.13. Let C be a modular category with the T -matrix given by [δijθi]i,j∈ΠC . Then
ord (T ) = FSexp(C), and

νn(Vk) =
1

D2

∑
i,j∈ΠC

Nk
i,j didj

(
θi
θj

)n
(2.14)

for all k ∈ ΠC and positive integers n.

Definition 2.14. Let S, T ∈ GL(Cr) and define constants dj := S0j , θj := Tjj , D
2 :=

∑
j d

2
j

and p± =
∑r−1

k=0(S0,k)
2θ±1
k . The pair (S, T ) is an admissible modular data of rank r if they

satisfy the following conditions:

(i) dj ∈ R and S = St with SS
t

= D2 Id. Ti,j = δi,jθi with N := ord(T ) <∞.

(ii) (ST )3 = p+S2, p+p− = D2 and p+
p−

is a root of unity.

(iii) Nk
i,j := 1

D2

∑r−1
a=0

SiaSjaSka
S0a

∈ N for all 0 ≤ i, j, k ≤ (r − 1).

(iv) θiθjSij =
∑r−1

k=0N
k
i∗jdkθk where i∗ is the unique label such that N0

i,i∗ = 1.

(v) Define νn(k) := 1
D2

∑r−1
i,j=0N

k
i,j didj

(
θi
θj

)n
. Then ν2(k) = 0 if k 6= k∗ and ν2(k) = ±1 if

k = k∗. Moreover, νn(k) ∈ OQN for all n, k.

(vi) FS ⊂ FT = QN , Gal(FS/Q) is isomorphic to an abelian subgroup of Sr and Gal(FT /FS) ∼=
(Z/2Z)k.

(vii) The prime divisors of D2 and N coincide in QN .3

Theorem 2.15. Let (S, T ) be a realizable modular data. Then

(a) (S, T ) is admissible and
(b) For all σ ∈ AutQ

(
Q
)
, (σ (S) , σ (T )) is realizable.

Proof. (a) follows from the definition of admissible modular data, while (b) follows from [22,
Section 2.7] (see also [14]). �

Remark 2.16. A converse of Theorem 2.15 should be true: that is, if (S, T ) is admissible then it
is realizable. Indeed, a satisfactory definition of admissible would be a minimal set of conditions
that guarantee realizability.

3 Rank-Finiteness and the Cauchy Theorem

The main goal of this section is to prove the following Rank-Finiteness theorem, conjectured by
the fourth author in 2003 (see [54]):

Theorem 3.1 (Rank-Finiteness Theorem). There are only finitely many modular categories of
fixed rank r, up to equivalence.

Prior to this work this conjecture had only been resolved in certain restricted cases, for instance
it was shown [22, Proposition 8.38] that there are finitely many weakly integral fusion categories
through a classical number theoretic argument due to Landau [36].

The proof of the Rank-Finiteness Theorem relies upon several well-known reductions, a new
result known as the Cauchy Theorem (for Spherical Fusion Categories 3.9) and some results in
analytic number theory due to Evertse [25].

3See Section 3.1.
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In Section 3.1, the Cauchy Theorem for Spherical Fusion Categories is proved, and in Section 3.2
we prove Theorem 3.1. We discuss efficiency and asymptotic related to Theorem 3.1 in Section
3.3.

3.1 The Cauchy Theorem

Let A be the ring of algebraic integers in C. For a, b, c ∈ A with a 6= 0, b ≡ c mod a means that
(b− c)/a ∈ A.

Suppose C is a modular category with N = FSexp(C) and q is prime with (q,N) = 1. We begin
with a simple lemma which is essentially proved in [55, Lem. 1.8] and [35, Section 3.4].

Lemma 3.2. Let W be a finite-dimensional C-linear space. If E is a C-linear operator on W
such that Eq = idW for some prime number q, then

Tr(E)q ≡ dimCW mod q .

In particular, if Tr(E) ∈ Z, then Tr(E) ≡ dimCW mod q.

Proof. Let ζq ∈ C denote a primitive q-th root of unity. Then Tr(E) =
∑q−1

i=0 miζ
i
q where mi is

the multiplicity of the eigenvalue ζiq. Thus,

Tr(E)q ≡
q−1∑
i=0

mq
i ≡

q−1∑
i=0

mi = dimCW mod q .

In particular, if Tr(E) ∈ Z, the second statement follows from Fermat’s little theorem. �

Recall that the n-th Frobenius-Schur indicator νn(V ) for V ∈ C is defined as the trace of a

C-linear operator E
(n)
V : HomC (1, V ⊗n)→ HomC (1, V ⊗n). This operator E

(n)
V satisfies(

E
(n)
V

)n
= id .

Moreover, νn(V ) is an algebraic integer in Qn∩QN . Since q and N are relatively prime, we have

νq(V ) ∈ QN ∩Qq = Q .

Thus νq(V ) ∈ Z. By the preceding lemma, we have proved

Lemma 3.3. For any V ∈ C, νq(V ) ∈ Z and we have

νq(V ) ≡ dimC HomC
(
1, V ⊗q

)
mod q .

Let ON be the ring of algebraic integers of QN . It is well known that ON = Z[ζN ] where ζN is a
primitive N -th root of unity in C. Set KN (C) = K0(C)⊗Z ON . Then KN (C) is an ON -algebra.
For any non-zero element a ∈ ON and α, β ∈ KN (C), we write α ≡ β mod a if α − β = aγ for
some γ ∈ KN (C).

By [42], νq : K0(C)→ Z is a group homomorphism; however, the assignment V 7→ dimC HomC (1, V ⊗q)
is not. We can extend the νq to an ON -linear map from KN (C) to ON , and we continue to denote
such an extension by νq. Similarly, we can extend the dimension function d : K0(C) → ON to
an ON -linear map from KN (C) to ON . However, it is important to note that this extension is
an ON -algebra homomorphism.
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Note that KN (C) is a free ON -module with ΠC as a basis. For α =
∑

i∈ΠC
αii ∈ KN (C), we

define δ(α) = α0. Obviously, δ : KN (C)→ ON is ON -linear. Even though δ(αq) is not ON -linear
in α, but it satisfies the following congruence.

Lemma 3.4. For α ∈ KN (C), then we have

δ(αq) ≡ σq(νq(α)) mod q

where σq ∈ Gal(QN/Q) defined by σq(ζN ) = ζqN .

Proof. Let α =
∑

i∈ΠC
αii. Then αq ≡

∑
i∈ΠC

αqi i
q mod q. Since δ is ON -linear, we have

δ(αq) ≡ δ(
∑
i∈ΠC

αqi i
q) =

∑
i∈ΠC

αqi δ(i
q) mod q .

Since δ(iq) = dimC HomC(1, V
⊗q
i ), it follows from Lemma 3.3 that

δ(iq) ≡ νq(V ) mod q .

Thus, we find
δ(αq) ≡

∑
i∈ΠC

αqi νq(Vi) mod q .

Note that for a ∈ ON , a =
∑

j ajζ
j
N where aj ∈ Z. Therefore,

aq ≡
∑
j

aqjζ
qj
N ≡

∑
j

ajσq(ζ
j
N ) = σq(a) mod q .

Hence, we have
δ(αq) ≡

∑
i∈ΠC

σq(αi)νq(Vi) = σq(νq(α)) mod q .

The last equality follows from the ON -linearity of νq, and νq(Vi) ∈ Z for all i ∈ ΠC . �

By [42], di ∈ ON for i ∈ ΠC . Therefore, R =
∑

i∈ΠC
dii is an element of KN (C).

Notice that R defines a rank 1 ideal of KN (C) as iR = diR for all i ∈ ΠC . Thus, for α ∈ KN (C),
αR = d(α)R where d : KN (C)→ ON is the ON -linear extension of the dimension function from
K0(C) to ON . In particular, d is a ON -algebra homomorphism. Therefore,

Rn = Rn−1R = d(Rn−1)R = D2(n−1)R .

Now, we can write our first proposition for the indicators of the pseudo object R.

Proposition 3.5. Let R =
∑

i∈ΠC
dii ∈ KN (C), and q a prime number not dividing N . Then

we have
σq (νq(R)) ≡ D2(q−1) mod q .

Proof. By the preceding discussion, we have Rq = D2(q−1)R. Since δ(R) = d0 = 1, we have
δ(Rq) = D2(q−1). By Lemma 3.4,

σq(νq(R)) ≡ D2(q−1) mod q . �

Proposition 3.6. For any σ ∈ Gal(QN/Q), dσ̂(0) is a unit of ON .
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Proof. Without loss of generality, we may assume σ̂(0) = 1. Then

σ(
1

D2
) = d2

1/D
2 or d2

1 = D2/σ(D2).

Obviously, the norm of D2/σ(D2) is 1, and so is d2
1. Therefore d1 is a unit in ON . �

Remark 3.7. The preceding is another proof of the fact proved in [44] that D2 is a d-number.

Proposition 3.8. νq(R) = d2
σ̂−1
q (0)

.

Proof. Note that

νq(R) =
∑
k

dkνq(Vk) =
1

D2

∑
i,j,k

dkN
k
ijdidj

θqi
θqj

=
1

D2

(∑
i

d2
i θ
q
i

)∑
j

d2
jθ
−q
j

 .

Reexpressing equation (2.7) in terms of s = S/D, we find that:

s2
00 =

(∑
i

s2
0iθi

)∑
j

s2
0jθ
−1
j

 .

Applying τ = σ−1
q to the equation, we find

s2
τ̂(0)0 =

(∑
i

s2
0τ̂(i)τ(θi)

)∑
j

s2
0τ̂(j)τ(θi)

−1

 .

By Galois symmetry, Theorem 2.9(iii), we have

d2
τ̂(0)s

2
00 =

(∑
i

s2
0τ̂(i)θ

q
τ̂(i)

)∑
j

s2
0τ̂(j)θ

−q
τ̂(j)

 .

Therefore,

d2
τ̂(0) =

1

D2

(∑
i

d2
i θ
q
i

)∑
j

d2
jθ
−q
j

 = νq(R) . �

We can now prove the following generalization of [43, Thm. 8.4] in which the result is proved for
integral fusion categories. Moreover, it provides an affirmative answer to Question 6.9 of [15].

Theorem 3.9 (Cauchy Theorem for Spherical Fusion Categories). Let C be a spherical fusion
category. Then set of prime ideals of D2 is identical to that of N = FSexp(C) in ON .

Proof. We first consider the case when C is a modular category. Since N | D6 [24], every prime
ideal factor of N in ON is a factor of D2. Suppose p is a prime ideal factor of D2. By Propositions
3.5 and 3.8, we find the congruence

σq(d
2
i ) ≡ D2(q−1) mod q

for any prime q - N where i = σ̂−1
q (0). By Proposition 3.6, di is a unit of ON . Therefore, we

have ON = (D2) + (q) of ideals. This implies that q 6∈ p. Therefore, p ∩ Z = (p) for some prime
p | N . Hence, p is a prime factor of N in ON .
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Now, we assume C is a general spherical fusion category. Then its Drinfeld center Z(C) is
modular and dimZ(C) = (dim C)2 by [38]. Since N = FSexp(C) = FSexp(Z(C)) by [43], the
theorem follows from the modular case i.e. N and (dim C)2 have the same set of prime ideal
factors in ON . �

Remark 3.10. If C is the category of representations of a finite group G, then FSexp(C) =
exp(G) and dim C = |G|. The preceding theorem implies that p is a prime factor of |G| if, and
only if, p | exp(G); this is simply an equivalent statement of the classical Cauchy Theorem for
finite groups.

3.2 Proof of Rank-Finiteness

To prove Theorem 3.1 we first reduce to proving that there are finitely many possible fusion rules
using (braided) Ocneanu Rigidity, due to Ocneanu, Blanchard and Wassermann (unpublished):

Theorem 3.11. [22] There are only finitely many (braided, modular) fusion categories which
have the same fusion rules up to (braided, modular) monoidal equivalence.

Remark 3.12. Ocneanu Rigidity for fusion categories was first proved by Blanchard and Wasser-
man, and the extension to the braided case can be found in [22, Remark 2.33]. For the finiteness
of spherical structures see Lemma 2.4.

Next we may reduce to bounding the FP-dimension using (see eg. [22, Proposition 8.38] and
[47, Proposition 6.2]):

Corollary 3.13. There are finitely many (braided, modular) fusion categories C satisfying
FPdim (C) ≤M for any fixed number M > 0, up to (braided, modular) monoidal equivalence.

For the reader’s convenience we provide an explicit bound on the Nk
ij in terms of FPdim(C) for

fusion categories.

Scholium 3.14. If C is a rank n fusion category, then for a ∈ ΠC, we have the inequality:

‖Na‖max ≤ FPdim (Va) ≤ n‖Na‖max
where ‖A‖max is the max-norm of the complex matrix A given by

‖A‖max = max
i,j
|Aij | .

Proof. Note that
R0 =

∑
a∈ΠC

FPdim(a)a

generates a 1-dimensional ideal of KC(C) = K0(C) ⊗Z C, and that aR0 = FPdim(Va)R0 for
all a ∈ ΠC . In particular, there is unit vector x with positive components such that Nax =
FPdim(Va)x for all a ∈ ΠC .

Let ρ (A) denote the spectral radius of an n × n complex matrix A. Recall that the 2-norm of
A is given by ‖A‖2 =

√
ρ (A∗A). Thus, for a ∈ ΠC , ‖Na‖2 ≥ FPdim(Va). On the other hand,

‖Na‖22 = ρ(N∗aNa) = ρ(Na∗Na) = ρ

∑
b∈ΠC

N b
a∗,aNb


≤
∑
b∈ΠC

N b
a∗,a FPdim(Vb) = FPdim(V ∗a ) FPdim(Va) = FPdim(Va)

2 .
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Therefore, ‖Na‖2 = FPdim(Va) for all a ∈ ΠC . The result then follows by the inequality

‖A‖max ≤ ‖A‖2 ≤ n‖A‖max
for any n× n complex matrix A. �

Next we give an explicit bound on ord (T ) in terms of the rank of C.

Proposition 3.15. If C is a modular category of rank r with modular data (S, T ), then ord (T ) ≤
22r/3+832r/3.

Proof. By [5], any abelian subgroupG of Sr satisfies |G| ≤ 3r/3. On the other hand, [Q (T ) : Q (S)] ≤
2m where m − 1 is the number of prime factors of ord (T ). The Fundamental Theorem of Ga-
lois Theory can be utilized to relate m and [Q (S) : Q]. To do this, we note that Gal (Q (S) /Q) ∼=
Gal (Q (T ) /Q) /Gal (Q (T ) /Q (S)). In particular, the structure of Gal (Q (T ) /Q) and Gal (Q (T ) /Q (S))
ensures that at least m−3 (non-trivial) cyclic factors survive in the quotient (the three possible
exceptions correspond to primes 2 and 3 in ord (T ).) In particular, the structure of the maximal
abelian subgroup of Sr ensures that m− 3 ≤ r/3 + 1. In particular:

[Q (T ) : Q] = [Q (T ) : Q (S)] [Q (S) : Q] ≤ 2m3r/3 ≤ 2r/3+43r/3

On the other hand, Q (T ) = Qord(T ) and so [Q (T ) : Q] = ϕ (ord (T )). In particular, if ord (T ) 6= 2

or 6, then [Q (T ) : Q] ≥
√

ord (T ). Thus ord (T ) ≤ 22r/3+832r/3 since 22/3+832/3 > 6. �

The last ingredient of the proof of Theorem 3.1 is a deep result from analytic number theory,
which necessitates some further notational background.

Definition 3.16. Let K be a number field and S be a finite set of prime ideals in OK. An
element α ∈ K× is a S-unit if the prime factors of the principal fractional ideal (α) are all in S.

Remark 3.17. The S-units form a finitely generated multiplicative abelian group which we will
denote by O×K,S [56].

Remark 3.18. It should be noted that S-units are often treated adelically in which case a more
delicate treatment involving places is required. While we will not need this level of detail here,
it should be mentioned that it is utilized in [25]. A detailed introduction to S-units and their
relationship to adeles can be found in most modern texts on advanced number theory e.g. [56].

The S-units arise in a wide range of subdisciplines in number theory and are typically found to
obey an S-unit equation:

x0 + · · ·+ xn = 0, such that xa ∈ O×K,S

Such an equation is said to be a proper S-unit equation if one requires that

xi0 + · · ·+ xir 6= 0

for each proper, non-empty subset {i0, i1, . . . , ir} of {0, 1, . . . , n}.

In 1984, Evertse took up a study of S-units and the S-unit equation through analyzing the pro-
jective height [25]. By bounding the projective height, he showed that S-units obey a remarkable
finiteness condition loc. cit.:
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Theorem 3.19. If K is a number field, S a finite set of primes of K, and n is a fixed positive
integer, then there are only finitely many projective points X = [x0 : · · · : xn] ∈ PnK satisfying
the proper S-unit equation:

x0 + · · ·+ xn = 0

With this last ingredient we can now proceed to the

Proof of the Rank-Finiteness Theorem. For fixed rank r, [2, Prop. 6] (or Proposition 3.15) en-
sures that ord (T ) is bounded strictly in terms of r. For such ord(T ), let S be the (finite) set
of primes in Qord(T ) dividing ord(T ). The Cauchy Theorem (Theorem 3.9) coupled with [17,
Lem. 1.2] then implies that D2 and da are S-units for all simple objects Va. Furthermore, the
definition of the global dimension of the category, 0 = D2−d2

0−· · ·−d2
r−1, and the condition that

d2
a and D2 are real positive algebraic integers for all a implies that

(
D2,−d2

0, . . . ,−d2
r−1

)
satis-

fies a proper S-unit equation. In particular, Theorem 3.19 shows that there are finitely many
projective solutions to this equation. Recalling that d2

0 = 1 allows us to fix the normalization
and conclude that there is a upper bound on D2 and a lower bound on da for all a.

On the other hand, FPdim (C) = D2/d2
a for some simple dimension da. Consequently, the lower

bound on da and an upper bound on D2 imply an upper bound on FPdim (C). The result then
follows from Corollary 3.13 and the observation that these bounds depend only on the rank.
�

Corollary 3.20. There are finitely many modularizable, pre-modular categories of rank r.

Proof. We follow the notation in [13]. Let D be a pre-modular category such that D′ ∼= Rep(G)
is Tannakian and DG = C its modularization. Note that the equivariantization CG ∼= D by [13].
First observe that under the (faithful) forgetful functor D → C the image of each simple object
in X ∈ D is a sum of at most |G| distinct simple objects in C (see [9, Prop. 2.1]). Since the rank
of Rep(G) is at most r, |G| is bounded as a function of r ([36]). Therefore, the rank of DG is
bounded in terms of r. By Theorem 3.1 there are only finitely many modularizations of rank
r pre-modular categories. On the other hand, each modular category C has only finitely many
equivariantizations, since the group of tensor autoequivalences Aut⊗(C) is finite. �

3.3 Asymptotics

The proof of Theorem 3.1 can be naively algorithmized to determine possible sets of fusion rules
for modular categories of a given rank r.

Recall that O×K,S is a finitely generated abelian group [56]. A set of generators for the free part

of O×K,S is known as a system of fundamental S-units and there are known algorithms for
computing such a system, e.g. [10]. We have:

Algorithm 3.21.

(0) Specify the rank, r.
(1) For each integer N with 1 ≤ N ≤ 22r/3+832r/3 perform steps 2-6.
(2) Form the set of primes S, consisting of the prime factors of N over Q (ζN ).
(3) Determine a fundamental system of S-units, ε1, . . . , εs−1.



ON MODULAR CATEGORIES 19

(4) Solve the exponential Diophantine system:

1 = ε
ar,1
1 · · · εar,s−1

s−1 −
r−1∑
j=1

ε
aj,1
1 · · · εaj,s−1

s−1 , aj,k ∈ Z . (3.1)

(5) Set D2 = ε
as,1
1 · · · εas,s−1

s−1 and d2
j = ε

aj,1
1 · · · εaj,s−1

s−1 .
(6) Determine the possible sets of fusion rules N c

a,b using Scholium 3.14 and the fact that

FPdim(Va) ≤ FPdim(C) ≤ max{D2/d2
j : 0 ≤ j ≤ r − 1}.

Remark 3.22. Given all possible sets of fusion rules in a given rank we can solve for all
admissible modular data. The balancing equation (2.3) determines the S-matrix given all di, θi
and Nk

ij , which Algorithm 3.21 provides.

We can also effectively decide whether a particular set of fusion rules corresponds to a modu-
lar category, using Tarski’s Theorem (see [14]). We cannot, however, effectively determine all
modular categories in a given rank, or even count them up to equivalence.

In any case, Algorithm 3.21 is very inefficient, and does not admit any obvious improvements
for several reasons.

Firstly, we cannot expect a bound on ord (T ) that is polynomial in the rank. For exam-
ple, ord (T ) for C = Rep (DSn) grows faster than any polynomial in the rank of C. Indeed,
ord(T ) = exp(Sn) = lcm(1, . . . , n) ≈ en, while the rank of Rep(DSn) is superpolynomial but
subexponential, with generating function: Π∞k=1(1− xk)−σ(k) where σ(k) =

∑
d|k d [8]. However,

for modular categories coming from quantum groups, ord(T ) is linearly bounded in r. Secondly,
the known algorithms for computing fundamental systems of S-units rely on computing a short-
est vector in a lattice, a problem which is known to be NP-hard. Thirdly, solving equation (3.1)
is very difficult–the best bound on the number of solutions is quadruplely exponential:

Proposition 3.23. For fixed rank r there are at most

22r/3+832r/3∑
m=1

(
235r2

)r3(ϕ(m)log2(m)+ϕ(m)/2+1)−r/2

possible solutions to the dimension equation:

D2 = 1 + d2
1 + · · ·+ d2

r−1 .

Proof. First note that by [26, Theorem 3], that there are at most
(
235r2

)r3(s+r1+r2)−r/2
solutions

to the proper S-unit equation:

x1 + x2 + · · ·+ xr = 1

subject to xj ≤ xj+1 over a field K, where s is the cardinality of S, r1 is the number of real
embeddings of K and r2 is the number of conjugate pair complex embeddings.

However, s depends on the prime factorization of ord (T ). In particular, if p is a rational
prime of ord (T ), and there are at worst ϕ (ord (T )) primes lying over p in Q

(
ζord(T )

)
. Thus

there are at most ord (T )ω(ord(T )) primes in S, where ω (m) is defined to be the number of
rational prime divisors of m. Elementary analysis reveals that ω (m) ≤ log2 (m) and so s ≤
ϕ (ord (T ))log2(ord(T ))+r1+r2 where r1 is the number of distinct real field embeddings of K into C,
and r2 is the number of conjugate pair complex field embeddings. However, it is well-known that
a non-trivial cyclotomic field has no real embeddings, in particular r2 = ϕ (ord (T )) /2 and s+r1+

r2 ≤ ϕ (ord (T ))log2 ord(T ) +ϕ (ord (T )) /2+1. Combining these two results reveals that an upper
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bound on the number of possible dimension tuples
(
D2, 1, d2

1, . . . , d
2
r−1

)
for a rank r modular

category with T -matrix of order ord (T ) is
(
235r2

)r3(ϕ(ord(T ))log2(ord(T ))+ϕ(ord(T ))/2+1)−r/2. The
result then follows by summing over all possible values of ord (T ) as determined by Proposition
3.15. �

It is interesting to ask whether or not this bound is asymptotically sharp. It is a widely held belief
that modular categories are “sparse”, a belief which is borne out in small rank, e.g., compare
the 2 actual solutions in rank 2 with the theoretical bound of ≈ 21078 . However, asymptotic
analysis is still lacking and so one might ask:

Question 3.24. Is there an asymptotic bound on the number of modular categories (up to
equivalence) in terms of the rank which is better than those implied by Proposition 3.23?

Remark 3.25. Etingof has pointed out ([16]) that the number of modular categories of rank
r is not polynomially bounded. His example is as follows: Consider V = (Z/p)m, a vector
space over Fp of dimension m, where p > 3 is a prime and m is large. It is well known that
H3(V,C∗) = S2V ∗ ⊕ ∧3V ∗, (see e.g. [18, Lem. 7.6(iii)]). Because of the summand ∧3V ∗, the
number of such cohomology classes for large m is at least pCm

3
, for some C > 0, even if we

mod out by automorphisms (which form a group of order at most pm
2
). Now take the category

Vec(V, ω) of V -graded vector spaces with associativity defined by the cohomology class ω, and
let Z(V, ω) be the Drinfeld center of such a category. It is known [23] that such categories
Z(V, ω) and Z(V, ω′) are braided equivalent if and only if Vec(V, ω) is Morita equivalent to
Vec(V, ω′) via an indecomposable module category. But the indecomposable module categories
over Vec(V, ω) are known to be parameterized [45] by subspaces W ⊂ V and 2-cochain ψ on
W such that dψ = ω|W , up to gauge transformation. There are at most pm

2
subspaces, and

freedom in choosing ψ is in ∧2W ∗, so again there are at most pm
2
. As m3 dominates m2, we still

have at least pCm
3

such categories, even up to Morita equivalence, and hence modular categories
up to equivalence. On the other hand, FPdim(Z(V, ω)) = p2m, so the rank is at most p2m. Thus
we get that the number of modular categories of rank≤ r is at least e(c log(r)3) = rc log(r)2 , for
some c > 0, which is faster than any polynomial in r.

Along similar lines, one might ask

Question 3.26. Is there an explicit upper bound on FPdim (C) solely in terms of the rank?

Remark 3.27. This question seems tractable as the analysis of Evertse shows that the projective
height of

[
−D2 : 1 : d2

1 : · · · : d2
r−1

]
can be bounded in terms of field data and hence in terms

of ord (T ). This suggests that the relationship between the FP-dimension and the categorical
dimension can be combined, as in the proof of Theorem 3.1, to study this question.

Etingof asked [16]:

Question 3.28. Can
∣∣D2 − 1

∣∣ be explicitly bounded in terms of the rank?

Remark 3.29. This question can be reduced to the problem of finding a shortest vector by
exploiting the lattice structure of O×K,S under an appropriate embedding into Euclidean space.

4 Arithmetic Properties of Modular Categories

4.1 Galois Action on Modular Data

In this subsection we derive some consequences of the results in Subsection 2.2.4.
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Let C be a modular category with admissible modular data (S, T ). The splitting field of K0(C)
is KC = Q

(
Sij
S0j
| i, j ∈ ΠC

)
= FS , and we define Gal(C) = Gal(KC/Q) = Gal(S). We denote by

Kj = Q
(
Sij
S0j
| i ∈ ΠC

)
for j ∈ ΠC . Obviously, KC is generated by the subfields Kj , j ∈ ΠC .

As in Subsection 2.2.4 there exists a unique σ̂ ∈ Sym(ΠC) such that

σ

(
Sij
S0j

)
=
Siσ̂(j)

S0σ̂(j)

for all i, j ∈ ΠC . In particular the map σ → σ̂ defines an isomorphism between Gal(C) and an
(abelian) subgroup of the symmetric group Sym(ΠC). We will often abuse notation and identify
Gal(C) with its image in Sym(ΠC), and the Gal(C)-orbit of j ∈ ΠC is simply denoted by 〈j〉.
Complex conjugation corresponds to the permutation i 7→ i∗ for i ∈ ΠC . In view of (2.9), j ∈ ΠC
is self-dual if, and only if, Kj is real subfield.

Remark 4.1. Since KC is Galois over Q, for any Galois extension A over KC in C, the restriction
res : Aut(A)→ Gal(C) defines a surjective group homomorphism. Therefore, the group Aut(A)
acts on ΠC via the restriction maps onto Gal(C), and so the Aut(A)-orbits are the same as the
Gal(C)-orbits. Again, we denote by σ̂ the associated permutation of σ ∈ Aut(A). Then we have
σ̂ = idΠC if, and only if, σ ∈ Gal(A/KC).

Lemma 4.2. For j ∈ ΠC and σ ∈ Aut(Q), Kσ̂(j) = Kj. Moreover, [Kj : Q] = |〈j〉| ≤ |ΠC |. If j
is self-dual, then every class in the orbit 〈j〉 is self-dual. In particular, every class in the orbit
〈0〉 is self-dual.

Proof. As we have seen, φj : K0(C) → KC , φj(i) =
Sij
S0j

, defines a linear character of K0(C).
Therefore,

Saj
S0j

Sbj
S0j

=
∑
c∈ΠC

N c
ab

Scj
S0j

.

Thus, the Q-linear span of {Sij/S0j | i ∈ ΠC} is field, and hence equals to Kj . Since Kj is a
subfield of KC , Kj/Q is a normal extension. Therefore,

Kj = σ(Kj) = Q
(
σ

(
Sij
S0j

) ∣∣∣∣ i ∈ ΠC

)
= Q

(
Siσ̂(j)

S0σ̂(j)

∣∣∣∣ i ∈ ΠC

)
= Kσ̂(j) .

Let A/Q be any finite Galois extension containing Kj , and H the kernel of the restriction map
res : Gal(A/Q)→ Gal(Kj/Q). Then σ ∈ H if, and only if,

Sij/S0j = σ(Sij/S0j) = Siσ̂(j)/S0σ̂(j)

for all i ∈ ΠC . Thus, H is equal to the stabilizer of j, and hence

[Kj : Q] = |Gal(Kj/Q)| = |Aut(A)/H| = |〈j〉|.
The last assertion follows immediately from the fact that j is self-dual if, and only if, Kj is a
real abelian extension over Q. �

Lemma 4.3. Let C be a modular category with modular data (S, T ).

(i) C is pseudo-unitary if and only if di = ±FPdim(Vi) for all i ∈ ΠC.

(ii) C is integral if, and only if, di ∈ Z for all i ∈ ΠC if, and only if, |〈0〉| = 1.

(iii) If |〈j〉| = 1 for all j 6∈ 〈0〉, then there exists an σ ∈ Aut
(
Q
)

such that (σ(S), σ(T )) is
realizable modular data for some pseudo-unitary modular category.
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Proof. The pseudo-unitarity condition is:
∑

j∈ΠC
d2
j =

∑
j∈ΠC

FPdim(Vj)
2, and |di| ≤ FPdim(Vi)

so pseudo-unitarity fails if and only if |di| < FPdim(Vi) for some i. This proves (i).

For (ii), first observe that |〈0〉| = 1 if and only if di ∈ Z for all i proving the second equivalence
in (b). By [22, Prop. 8.24] weakly integral fusion categories are pseudo-unitary. Applying (a) we
see that di ∈ Z if FPdim(Vi) ∈ Z. On the other hand, if di ∈ Z for all i we have D2 =

∑
i d

2
i ∈ Z

and FPdim(Vi) = Si,j/dj ∈ R for some j. Since
∑

i(Si,j)
2 = D2 ∈ Z, d2

j

∑
i(FPdim(Vi))

2 ∈ Z,
and in particular FPdim(C) ∈ Q. But FPdim(C) is an algebraic integer, so we see that in this
case C is weakly integral, and hence pseudo-unitary.

We have FPdim(Vi) = Si,j/dj = φj(i) for some j. If |〈j〉| = 1 then Si,j/dj ∈ Z for i ∈ ΠC , and
so C is pseudo-unitary. If |〈j〉| > 1, then j ∈ 〈0〉 by assumption. Let σ ∈ Aut

(
Q
)

such that
σ̂(0) = j (which exists by extension). We consider a Galois conjugate modular category C′ with
the (realizable) modular data (σ(S), σ(T )). It is immediate to see that C′ is pseudo-unitary since
σ(φj) is the first row/column of σ(S). This completes the proof of (iii). �

Note that, by Lemma 4.2, a modular category which satisfies the condition (c) of the preceding
lemma must be self-dual.

Now we consider a normalized modular pair (s, t) of C. Since
sij
s0j

=
Sij
S0j

we have

Kj = Q
(
sij
s0j
| i ∈ ΠC

)
and KC = Q

(
sij
s0j
| i, j ∈ ΠC

)
.

For any σ ∈ Aut(Q), (2.13) implies that

Sij = εσ(i)εσ−1(j)Sσ̂(i)σ̂−1(j) . (4.1)

for some sign function εσ : ΠC → {±1} depending on s.

Remark 4.4.

(i) Observe that while εσ(i) depends on the choice of the normalized pair (s, t), the quantity
εσ(i)εσ−1(j) does not.

(ii) Observe that G : Aut(Q)→ GL(ΠC ,Z), σ 7→ Gσ := σ(s)s−1, defines a group homomor-
phism. If Gσ is a diagonal matrix or, equivalently, σ̂ = idΠC , then σ(sij) = εσ(j)sij =
εσ(i)sij for all i, j ∈ ΠC . In particular, εσ(j)s0j = εσ(0)s0j . Since s0j 6= 0 for all j ∈ ΠC ,
εσ(j) = εσ(0) = ±1 for all j ∈ ΠC . Therefore, Gσ = ±I if σ̂ = idΠC (cf. [2, Lem. 5]).
Therefore, imG is either isomorphic to Gal(C) or an abelian extension of Gal(C) by Z2.

The following results will be useful in Section 5.

Lemma 4.5. If σ̂ is an order 2 permutation in σ ∈ Aut(Q), such that σ̂ has a fixed point (for
example if the rank of C is odd) then εσ(j) = εσ(σ̂(j)) and

Sij = εσ(i)εσ(j)Sσ̂(i)σ̂(j)

for all i, j ∈ ΠC. In particular,
Sii = Sσ̂(i)σ̂(i)

for all i ∈ ΠC.
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Proof. Let ` be a fixed point of σ̂. Thus σ2(s0`) = s0` and so εσ2(`) = 1. Since Gσ2 is diagonal
and the `-th diagonal entry is 1, Gσ2 = id by Remark 4.4. Thus,

s0j = σ2(s0j) = εσ(j)εσ(σ̂(j))s0j

for all j. Therefore, εσ(j) = εσ(σ̂(j)) for all j. On the other hand, we always have εσ(j)εσ−1(σ̂(j)) =
1, we find εσ = εσ−1 . Thus, by (4.1), we have

Sij = εσ(i)εσ−1(j)Sσ̂(i)σ̂−1(j) = εσ(i)εσ(j)Sσ̂(i)σ̂(j) . �

Lemma 4.6. If C is a rank r ≥ 5 modular category with modular data (S, T ) such that Gal (C) =
〈(0 1)〉 then:

(i) d1 > 0,

(ii) 1
d1

+ d1, D2/d1, and d2
i /d1 are rational integers for i ≥ 2.

(iii) Defining εj =
S1j

dj
for each j ≥ 2 we have

(a) εj ∈ {±1}.

(b) There exist i, j such that εi = −εj, and in this case Sij = 0.

Proof. By Lemma 4.5 we see that S11 = 1. Therefore, the trace of d1 is d1 + 1/d1 and the
norm of di for i ≥ 2 is d2

i /d1 so these must be integers. This implies that D2/d1 = d1 + 1/d1 +∑r−1
i=2 d

2
i /d1 ∈ Z.

If the Frobenius-Perron dimension were a multiple of column j for some j > 1 then FPdim(Vi) =
Sij/dj is an integer for all i as as |〈j〉| = 1. Then C would be integral, and so di ∈ Z by Lemma
4.3(ii) for all i. However, this contradicts the fact that |〈0〉| = 2. So the FP-dimension must be
a scalar multiple of one of the first two columns. In any of these two cases, we find d1 > 0.

By (4.1), we have S1j = ±S0j for j ≥ 2, so εj :=
S1j

dj
= ±1 proving (iii)(c). Now orthogonality of

the first two rows of S gives us: 2d1 +
∑

j≥2 εjd
2
j = 0 or 2 = −

∑
j≥2 εjd

2
j/d1, a sum of integers.

Since r ≥ 5 we see that it is impossible for all of the εj to have identical signs. On the other
hand we have εjdj = S1j = εσ(1)εσ(j)S0j for each j ≥ 2, so εj = εσ(1)εσ(j). If εi = −εj then
εσ(i) = −εσ(j) so that Sij = εσ(i)εσ(j)Sσ̂(i)σ̂(j) = −Sij by Lemma 4.5. Hence Sij = 0. �

Lemma 4.7. Suppose C is a modular category of odd rank r ≥ 5. Then (0 1)(2 · · · r − 1) 6∈
Gal(C).

Proof. Suppose σ̂ = (0 1)(2 · · · r − 1) for some σ ∈ Gal(C). Since Sij = ±Sσ̂(i)σ̂−1(j) and r odd,

S11 = ε and Sij = εijS02 = εijd2

for all 0 ≤ i ≤ 1, 2 ≤ j ≤ r − 1, where ε, εij are ±1. In particular, the first two rows of the

matrix S are real, σ(d2) = ε12d2/d1, and
S1j

S0j
=

ε1j
ε0j
∈ Z for j ≥ 2. Thus

ε1j
ε0j

=
S1j

S0j
= σ

(
S1j

S0j

)
=
S1σ̂(j)

S0σ̂(j)
for all j ≥ 2 ,

and hence
S1j

S0j
= ε12

ε02
= ε′ for j ≥ 2. By orthogonality of the first two rows of S, we find

0 = d1(1 + ε) +
∑
j≥2

S1jS0j = d1(1 + ε) + ε′
∑
j≥2

S2
0j = d1(1 + ε) + ε′(r − 2)d2

2 .
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Since r − 2 6= 0, ε = 1 and 2 = −ε′(r − 2)d2
2/d1 . Note that both d2/d1 and d2 are algebraic

integers.The equation implies d2
2/d1 ∈ Z and so (r − 2) | 2. This is absurd as r − 2 ≥ 3. �

Lemma 4.8. Suppose C is a modular category of odd rank r ≥ 5. If the isomorphism classes
r − 2, r − 1 are self-dual, then

(0 1 · · · r − 3)(r − 2 r − 1) 6∈ Gal(C).

Proof. Suppose σ̂ = (0 1 · · · r − 3)(r − 2 r − 1) ∈ Gal(C). Since Sij = ±Sσ̂(i)σ̂−1(j) and r odd,

Sr−1,r−1 = εSr−2,r−2 and Si,j = εijS0,r−2 = εijdr−2

for all 0 ≤ i ≤ r − 3, r − 2 ≤ j ≤ r − 1, where ε, εij are ±1. Therefore, for 0 ≤ i ≤ r − 3,
Si,r−1

dr−1
= σ

(
Si,r−2

dr−2

)
=

Si,r−2

dr−2
. Since the last two columns are real and orthogonal, we find

0 = Sr−1,r−2Sr−1,r−1(1 + ε) +

r−3∑
i=0

Si,r−2Si,r−1 = Sr−1,r−2Sr−1,r−1(1 + ε) + (r − 2)dr−1dr−2 .

Since (r − 2)dr−1dr−2 6= 0 we must have ε = 1, therefore 2
Sr−1,r−2

dr−2

Sr−1,r−1

dr−1
= r − 2 . Since

Sr−1,r−2

dr−2

Sr−1,r−1

dr−1
is an algebraic integer, the equation implies it is a rational integer and so r − 2

is even, a contradiction. �

For weakly integral modular categories, a positive dimension function is constant on the orbits
of the Galois action on ΠC (via σ → σ̂):

Lemma 4.9. Let C is a weakly integral modular in which da > 0 for all a ∈ ΠC. Then we have
dσ̂(a) = da for all σ ∈ Gal (C) and a ∈ ΠC.

Proof. Since C is weakly integral, d2
a/D

2 ∈ Q. Consider the Galois group action on the normal-
ized S-matrix s = 1

DS. We find d2
a/D

2 = σ(d2
a/D

2) = d2
σ̂(a)/D

2 for all σ ∈ Gal (C) and a ∈ ΠC ,
and so the result follows. �

4.2 Modularly Admissible Fields

The abelian number fields Ft,FT ,Fs and FS described in Section 2.2.4 (see also [15, 47]) have
the lattice relations

Ft

FT Fs

FS

. (4.2)

Moreover, by Lemma 2.10, the Galois group Gal(Ft/FS) is an elementary 2-group. This implies
all the subextensions among these fields will satisfy the same condition. We will call the extension
L/K modularly admissible if L is a cyclotomic field and Gal(L/K) is an elementary 2-group,
i.e. L is a multi-quadratic extension of K. In this section we will describe the order of a
cyclotomic field L when L/K is modularly admissible and [K : Q] is a prime power.
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Remark 4.10. If L/K is modularly admissible, then L′/K′ is also modularly admissible for any
subextensions K′ ⊂ L′ of K in L. In particular, Qf/K is modularly admissible where f := f (K)
is the conductor of K, i.e. the smallest integer n such that K embeds into Qn.

A restatement of [15, Prop. 6.5] in this terminology is:

Proposition 4.11. If Qn/K is modularly admissible and f is the conductor of K, then

(i) n
f | 24 and gcd(nf , f) | 2 and

(ii) Gal (Qn/Qf) is subgroup of (Z/2Z)3. �

Recall that Gal(Qn/Q) ∼= (Z/nZ)× and that for any subfield K of Qn, we have the exact sequence

1→ Gal(Qn/K)→ Gal(Qn/Q)
res−−→ Gal(K/Q)→ 1 . (4.3)

In addition, if Qn/K is modularly admissible, then Gal(Qn/K) is isomorphic to a subgroup of

the maximal elementary 2-subgroup, Ω2(Z/nZ)×, of (Z/nZ)×. In particular, (Z/nZ)×

Ω2(Z/nZ)× is a

homomorphic image of Gal(K/Q).

Lemma 4.12. If Qn/K is modularly admissible and [K : Q] is odd, then Gal(K/Q) ∼= (Z/nZ)×

Ω2(Z/nZ)×

and q ≡ 3 mod 4 for any odd prime q | n. If, in addition, [K : Q] is a power of an odd prime p,
then every prime factor q > 3 of n is a simple factor of the form q = 2pr + 1 for some integer
r ≥ 1. Moreover, if p > 3, then r must be odd and p ≡ 2 mod 3.

Proof. It follows from the exact sequence 4.3 that Gal(Qn/K) is a Sylow 2-subgroup of Gal(Qn/Q)
and hence Gal(Qn/K) = Ω2Gal(Qn/Q). Therefore, we obtain the isomorphism Gal(K/Q) ∼=

(Z/nZ)×

Ω2(Z/nZ)× . Suppose q > 3 is a prime factor of n and ` is the largest integer such that q` | n.

Then, by the Chinese Remainder Theorem (Z/q`Z)× is a direct summand of (Z/nZ)×, and

hence (Z/q`Z)×

Ω2(Z/q`Z)×
is isomorphic to a subgroup of Gal(K/Q). In particular, ϕ(q`)/2 = q`

(
q−1

2

)
is

odd, and this implies q ≡ 3 mod 4.

If, in addition, [K : Q] = ph for some h ≥ 0, then q`−1
(
q−1

2

)
| ph when q > 3. This forces ` = 1

and q = 2 · pr + 1 for some positive integer r ≤ h. Furthermore, if p > 3, then q = 2 · pr + 1 ≡ 0
mod 3 whenever r is even or p ≡ 1 mod 3. The last statement then follows. �

When the abelian number field K has a prime power degree over Q, more refined statements on
a modularly admissible extension Qn/K can now be stated as

Proposition 4.13. Let Qn/K be a modularly admissible extension and

Gal(K/Q) ∼= Z/pr1Z× · · · × Z/prmZ
for some prime p and 0 < r1 ≤ · · · ≤ rm, and set qj = 2 · prj + 1 for j = 1, . . . ,m. Then:

(i) If p > 3, then n admits the factorization n = f ·q1 · · · qm where f | 24 and q1, . . . , qm are
distinct primes. In particular, r1, . . . , rm are distinct odd integers and p ≡ 2 mod 3.

(ii) For p = 3, one of the following two statements holds.

(a) 9 - n and n = f · q1 · · · qm where f | 24 and q1, . . . , qm are distinct primes.

(b) 9 | n, and there exists i ∈ {1, . . . ,m} such that {qj | j 6= i} is a set of m−1 distinct
primes and n = f · 3ri+1 · q1 · · · qri−1 · qri+1 · · · qm where f | 8.
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(iii) For p = 2, n = 2a · p1 · · · pl where p1, . . . , pl are distinct Fermat primes and a is a
non-negative integer.

Proof. For p = 2, the exact sequence 4.3 implies that Gal(Qn/Q) is a 2-group and so ϕ(n) is a
power of 2. Hence, (iii) follows.

For any odd prime p, it follows from Lemma 4.12 that n = 2a3bq1 · · · ql for some integers a, b ≥ 0
and odd primes q1 < · · · < ql of the form qj = 2paj + 1 for some integer aj ≥ 1. Therefore,

Gal(K/Q) ∼=
(Z/nZ)×

Ω2(Z/nZ)×
∼=

(Z/2aZ)×

Ω2(Z/2aZ)×
× (Z/3bZ)×

Ω2(Z/3bZ)×
× Z/pa1Z× · · · × Z/palZ . (4.4)

For p > 3, (Z/2aZ)× × (Z/3bZ)× must be an elementary 2-group otherwise the p power∣∣∣ (Z/nZ)×

Ω2(Z/nZ)×

∣∣∣ has a factor of 2 or 3. Therefore, 0 ≤ a ≤ 3, 0 ≤ b ≤ 1 (or equivalently, f = 2a3b is

a divisor of 24), and
Gal(K/Q) ∼= Z/pa1Z× · · · × Z/palZ .

By the uniqueness of invariant factors, l = m and aj = rj for j = 1, . . . ,m. The last statement
of (i) follows directly from Lemma 4.12.

For p = 3 and 9 - n, the argument for the case p > 3 can be repeated here to arrive the same
conclusion (iii)(a). For p = 3 and 9 | n, b ≤ 2 and so

Gal(K/Q) ∼=
(Z/2aZ)×

Ω2(Z/2aZ)×
× Z/3b−1Z× Z/pa1Z× · · · × Z/palZ .

Therefore, (Z/2aZ)× is an elementary 2-group, or 0 ≤ a ≤ 3. By the uniqueness of invariant
factors l = m − 1, b − 1 = ri for some i and (a1, . . . , am−1) = (r1, . . . , r̂i, . . . rm). This proves
(iii)(b). �

Corollary 4.14. If Qn/K is modularly admissible and K/Q is a multi-quadratic extension, then
n | 240.

Proof. Since Gal(Qn/K) and Gal(K/Q) are elementary 2-groups, in view of (4.3), Gal(Qn/Q) is
an abelian 2-group whose exponent e | 4. By Proposition 4.13 (iii), n = 2ap1 · · · pl where a ≥ 0
and p1 < · · · < pl are Fermat primes. If pl > 5, then Gal(Qn/Q) has a cyclic subgroup of order
pl − 1 > 4; this contradicts e | 4. On the other hand, if a ≥ 5, Gal(Qn/Q) has a cyclic subgroup
of order 8 which is also absurd. Therefore, n must be a factor of 24 · 3 · 5 = 240. �

These techniques combined with the Cauchy Theorem 3.9 can be used to classify low rank
integral modular categories with a given Galois group. For example:

Lemma 4.15. There are no rank 7 integral modular categories satisfying Gal (C) ∼= Z/5Z.

Proof. We may assume da > 0 for all a ∈ ΠC , by Lemma 4.3. By applying Lemma 4.9 we see
that the dimensions are 1, d1 (with multiplicity 5) and d2 (with multiplicity 1). In this case
Proposition 4.13(i) and the Cauchy Theorem imply that the prime divisors of d1, d2 and D2

lie in {2, 3, 11}. Moreover, D ∈ Z since |Gal(C)| is odd. Examining the dimension equation
D2 = 1 + d2

1 + 5d2
2 modulo 5 we obtain D2 = 1 + d2

1. The non-zero squares modulo 5 are ±1, so
D2, d2

1 ∈ {±1} which give no solutions. �
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4.3 Representation Theory of SL(2,Z)

Definition 4.16. Let ρ : SL(2,Z)→ GL(r,C) be a representation of SL(2,Z).

(i) ρ is said to be non-degenerate if the r eigenvalues of ρ(t) are distinct.

(ii) ρ is said to be admissible if there exists modular category C over C of rank r such that
ρ is a modular representation of C relative to certain ordering of ΠC = {V0, V1, . . . , Vr−1}
with V0 the unit object of C. In this case, we say that ρ can be realized by the modular
category C.

(iii) Rep(SL(2,Z)) denotes the set of all complex admissible SL(2,Z)-representation.

By [15], an admissible representation ρ : SL(2,Z) → GL(r,C) must factor through SL(2,Zn)
where n = ord ρ(t), and ρ is Qn-rational. It follows from [19, Lem. 1] that each non-degenerate
admissible representation of SL(2,Z) is absolutely irreducible. Moreover, by [50] any irreducible
representation of SL(2,Z) of dimension at most 5 must be non-degenerate.

Lemma 4.17. Let ρ be a degree r non-degenerate admissible representation of SL(2,Z) with
t = ρ(t) and s = ρ(s). Suppose ρ′ ∈ Rep(SL(2,Z)) is equivalent to ρ with t′ = ρ′(t) and
s′ = ρ′(s). Then ρ′(g) = U−1ρ(g)U for a signed permutation matrix U ∈ GL(r,C) of the
permutation ς on {0, . . . , r − 1} defined by t′ς(i) = ti .

If, in addition, t0 = t′0, then ς defines an isomorphism of fusion rules associated to ρ and ρ′.

Proof. Since ρ and ρ′ are equivalent, t and t′ have the same eigenvalues. By the non-degeneracy
of ρ, there exists a unique permutation ς on {0, . . . , r−1} defined by t′ς(i) = ti. Let Dς = [δς(i)j ]i,j
be the permutation matrix of ς. Then ρ′′ = Dςρ

′D−1
ς is equivalent to ρ and ρ′′(t) = t. There

exists Q ∈ GL(r,C) such that Qρ′′ = ρQ. Since Qt = tQ and t has distinct eigenvalues, Q is a
diagonal matrix. Suppose Q = [δijQi]i,j∈ΠC . Then

s′ς(i)ς(j) =
Qj
Qi
sij .

Both s and s′ are symmetric, and so we have

Q0

Qj
s0j =

Qj
Q0

sj0 =
Qj
Q0

s0j .

Since s0j 6= 0,
Qj
Q0

= ±1. Let Q′ = 1
Q0
Q and U = Q′Dς . Then Q′2 = I, U is a signed

permutation matrix of ς, and s′ = U−1sU . Since there are finitely many signed permutation
matrices in GL(r,C), the equivalence class of admissible representations of ρ is finite.

If, in addition, t0 = t′0, then ς(0) = 0. Let (s′)−1 = [s′i′j′ ]i′,j′∈ΠC′
and s−1 = [sij ]i,,j∈ΠC . By the

Verlinde formula,

N
ς(k)
ς(i)ς(j) =

r−1∑
a=0

s′ς(i)ς(a)s
′
ς(j)ς(a)s

′
ς(k)ς(a)

s′0ς(a)

= Q′iQ
′
jQ
′
k

r−1∑
a=0

siasjaska
s0a

= Q′iQ
′
jQ
′
kN

k
ij .

Thus, Q′iQ
′
jQ
′
k = 1 whenever Nk

ij 6= 0. Moreover, ς defines an isomorphism between the fusion
rules of C and C′. �

Let ρ : SL(2,Z) → GL(n,C) a representation. The set of eigenvalues of ρ(t) is called the
t-spectrum of ρ.
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Lemma 4.18. Let C be a modular category of rank r, and ρ : SL(2,Z) → GL(r,C) a modular
representation of C. Then ρ cannot be isomorphic to a direct sum of two representations with
disjoint t-spectra. In particular, if ρ is non-degenerate, then it is absolutely irreducible.

Proof. Let s = ρ(s) and t = ρ(t). Then
s0j
s00

is the quantum dimension of the simple object j. In
particular, every entry of the first row of s is non-zero. Thus, for any permutation matrix Q,
there exists a row of Q−1sQ which has no zero entry.

Suppose ρ is isomorphic a direct sum of two matrix representations ρ1, ρ2 of SL(2,Z) with
disjoint t-spectra. Since ρ(t) has finite order, and so are ρi(t), i = 1, 2. Without loss of generality,
we can assume ρ1(t) and ρ2(t) are diagonal matrices. There exists a permutation matrix Q

such that Q−1tQ =

[
ρ1(t) 0

0 ρ2(t)

]
. Since the representation ρQ : SL(2,Z) → GL(k,C),

s 7→ Q−1sQ, t 7→ Q−1tQ is also equivalent to ρ1 ⊕ ρ2, there exists P ∈ GL(k,C) such that

P

[
ρ1(t) 0

0 ρ2(t)

]
=

[
ρ1(t) 0

0 ρ2(t)

]
P and Q−1sQ = P

[
ρ1(s) 0

0 ρ2(s)

]
P .

Since ρ1 and ρ2 have disjoint t-spectra, P must be of the block form

[
P1 0
0 P2

]
. This implies

every row of Q−1sQ has at least one zero entry, a contradiction. �

Corollary 4.19. Suppose C is a modular category of rank r > 2, and ρ is a modular represen-
tation of C. Then:

(i) ρ cannot be a direct sum of 1-dimensional representations of SL(2,Z).

(ii) If ρ1 is a subrepresentation of degree r − 2, then the t-spectrum of ρ1 must contain a
120-th root of unity.

Proof. The statement (i) was proved in [19] using a simpler version of Lemma 4.18.

Suppose ρ1 is a degree r − 2 subrepresentation of ρ such that ω120 6= 1 for all eigenvalues ω of
ρ1(t). Then there exists a 2-dimensional representation ρ2 of SL(2,Z) such that ρ ∼= ρ1 ⊕ ρ2.

If ρ2 is a sum of 1-dimensional subrepresentations, then ρ2(t)12 = id . If ρ2 is irreducible, then
ρ2
∼= ξ⊗φ for some linear character φ, and an irreducible representation ξ of prime power level.

It follows from Table A1 of Eholzer’s paper that ρ2(t)120 = id. Thus, for both cases, ρ1 and ρ2

have disjoint t-spectra. However, this contradicts Lemma 4.18. �

For any representation ρ of SL(2,Z), we say that ρ is even (resp. odd) if ρ(s)2 = id (resp.
ρ(s)2 = − id). We denote the set of primitive q-th roots of unity by µq, the set of all q-th roots
of unity by µq, and µq∗ =

⋃
n∈N

µqn.

Remark 4.20. If ρ is even, then the linear representation det ρ of SL(2,Z) is also even, and so
det ρ(t) ∈ µ6. In general, a representation of SL(2,Z) may neither even nor odd. However, if
C is a self-dual modular category, then C admits an even modular representation given by the
normalized modular pair ( 1

DS,
1
ζT ) for any 3-rd root ζ of D

p− . Let ρ be a modular representation

of C. Then for any linear character χ of SL(2,Z), there exists a modular representation ρ′ ∼= ρ⊗χ
as representations of SL(2,Z). In addition, if ρ and χ are even, then so is ρ′.
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Lemma 4.21. Suppose C is a self-dual modular category of rank r, and ρ is an even modular
representation of C. If ρ ∼= φ1 ⊕ (φ2 ⊗ ξ) for some degree 1 representations φ1, φ2 and a degree
r − 1 non-degenerate irreducible representation ξ of SL(2,Z) with odd level, then φ1, φ2 and ξ
are all even.

Proof. Let ω1 = φ1(t) and ω2 = φ2(t). Note that φi(s) = ω−3
i for all i = 1, 2, and ω12

i = 1.
Since ρ is even, φ1 and φ2 ⊗ ξ are even. In particular, ω6

1 = 1. Since ρ is reducible and ξ is
non-degenerate, by Lemma 4.18, ω1ω

−1
2 must be in the spectrum of ξ(t) . Therefore, ω1ω

−1
2 is

of odd order, and hence ω6
2 = 1. Therefore, φ2 is even. Since φ2 ⊗ ξ is even, ξ is also even. �

Remark 4.22. If ρ is a modular representation of a modular category C, then the order of its
T -matrix is equal to the projective order of ρ(t), i.e. the small positive integer N such that ρ(t)N

is a scalar multiple of the identity.

Lemma 4.23. Let C be a fusion category such that G(C) is trivial and K0(C)⊗ZZN is isomorphic
to K0(SU(N)k) for some integer k relatively prime to N . Then C is monoidally equivalent to a
Galois conjugate of SU(N)k/ZN .4

Proof. Let S be a rank N fusion category with fusion rules ZN (or Vec(ZN )). Now, we have

K0(C � S) ∼= K0(C)⊗K0(S) ∼= K0(SU(N)k)

as based rings. By the classification in [34], C � S is monoidally equivalent to D � Vec(ZN , ω)
for some 3-cocycle ω of ZN and Galois conjugate D of SU(N)k/ZN (i.e. a choice of a root of
unity). As these categories are ZN -graded and the adjoint subcategories (C and D respectively)
are the 0-graded components we have that C is monoidally equivalent to D. �

Theorem 4.24. Let C be a modular category such that |ΠC | = [K0 : Q] = p is a prime. Then :

(i) Every modular representation of C is non-degenerate and hence absolutely irreducible.

(ii) q = 2p+ 1 is a prime.

(iii) FSexp(C) = q.

(iv) The underlying fusion category of C is monoidally equivalent to a Galois conjugate of
SU(2)2p−1/Z2.

Proof. The cases p = 2, 3 follow from the classification in [47, pp. 375–377]. We may assume
p > 3.

Let ρ be a modular representation of C, and set s = ρ(s), t = ρ(t) and n = ord(t). By Lemma
4.2, |〈0〉| = [K0 : Q] = |ΠC |. Thus, KC = K0 and so |Gal(C)| = p. Thus, Gal(C) ∼= Zp. Let σ ∈
Gal(Qn/Q) such that σ|KC is a generator of Gal(C), and hence σ̂ = (0, σ̂(0), σ̂2(0), . . . , σ̂p−1(0)).
By Theorem 2.9, tσ̂i(0) = σ2i(t0). Thus, Qn = Q(t0). Suppose tσ̂i(0) = tσ̂j(0) for some non-
negative integers i < j ≤ p − 1. This is not possible for p = 2 for otherwise t = t0I and so
s = t−3

0 I; ρ is then a direct sum of two isomorphic representation of SL(2,Z) which contradicts
Lemma 4.18. We can assume p > 2. Then σ2(j−i)(t0) = t0 and so σ2(j−i) = id. This implies
σ̂2l = id for some positive integer l ≤ p − 1, and hence p | 2l, a contradiction. Therefore,
tσ̂i(0) 6= tσ̂j(0) for all non-negative integers i < j ≤ p − 1, and hence ρ is non-degenerate. By
Lemma 4.18, ρ is absolutely irreducible.

4See Section 5 for notation.
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Note that (FS ,Ft) is a modularly admissible, and FS = KC and Ft = Qn. Since [K0 : Q] =
|〈0〉| = |ΠC |, K0 = KC . By Proposition 4.13 (since p > 3) we have q = 2p + 1 is a prime and
q | n | 24q.

Since (q, 24) = 1, by the Chinese Remainder Theorem, ρ ∼= χ⊗R for some irreducible represen-
tations χ and R of levels n/q and q respectively. Since q | n and 12 - q, R is not linear. Thus, the
prime degree p of ρ implies that degR = p and degχ = 1. Since ρ(t)q = χ(t)q ⊗ id, FSexp(C) | q
by Remark 4.22, and hence FSexp(C) = q.

Since FSexp(C) = q is odd, there exists a modular representation ρ of C with level q by [15, Lem.
2.2]. There is a dual pair of such irreducible representations of SL(2,Zq). Realizations can be
obtained from the modular data for D = SU(2)2p−1/Z2 (see e.g. [6]):

Si,j =
sin
(

(2i+1)(2j+1)π
q

)
sin
(
π
q

) , θj = e
2πi(j2+j)

q (4.5)

where 0 ≤ j ≤ (p − 1) = q−3
2 . Since the θj are distinct and the T -matrix has order q, we can

normalize (SD, TD) to a pseudo-unitary modular pair (s̃, t̃) corresponding to a degree p and level
q irreducible representation of SL(2,Z). Complex conjugation gives the other inequivalent such
representation, and both have the first column a multiple of the Frobenius-Perron dimension.

By Lemma 4.3(iii) we may replace the modular data (SC , TC) by an admissible pseudo-unitary
modular data (S′, T ′). After normalizing and taking the complex conjugates (if necessary) we
can assume that the resulting pair (s′, t′) is conjugated to (s̃, t̃) by a signed permutation ς, by
Lemma 4.17. The first row/column of both s′ and s̃ are projectively positive. The first column of
s′ is mapped to the first column of s̃ under ς. In particular ς fixes the label 0 (as the Frobenius-
Perron dimension is the unique projectively positive column of any S-matrix) so the last part
of Lemma 4.17 implies that the fusion rules coincide. Now, statement (iv) follows from Lemma
4.23 as there are exactly N invertible objects in SU(N)k, labeled by weights at the corners of
the Weyl alcove. �

Lemma 4.25. Let p > 3 be a prime. Then the unique degree p irreducible representation ψ of
SL(2,Zp) is not admissible.

Proof. The result was established in [20] by using the integrality of fusion rules and Verlinde
formula. Here we provide another proof by using the rationality of modular representations of
any modular category. Suppose there exists a modular category C of rank p which admits a
modular representation ρ equivalent to ψ as representations of SL(2,Z). The representation ψ
is given by

ψ(t)jk = δjke
2πik
p

ψ(s)00 =
−1

p

ψ(s)0k = ψ(s)k0 =

√
p+ 1

p
for 0 < k < p,

ψ(s)jk =
1

p

p−1∑
a=1

e
2πi
p

(aj+a−1k)
for 0 < j, k < p .
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In particular, ρ is non-degenerate and ψ(s) 6∈ GL(p,Qp) since
√
p+ 1 6∈ Qp for p > 3. By Lemma

4.17, there exists a signed permutation matrix U such that Uρ(s)U−1 = ψ(s). By Theorem 2.9,
ρ(s) ∈ GL(p,Qp), and so is ψ(s), a contradiction. �

5 Applications to Classification

5.1 Rank 5 Modular Categories

In this section we will classify modular categories of rank 5 as fusion subcategories of twisted
versions of familiar categories associated to quantum groups of type A.

Fix two integers N ≥ 2 and ` > N . For any q such that q2 is a primitive `th root of unity
we obtain a modular category C(slN , q, `) as a subquotient of the category of representations of
UqslN . See [46] for a survey on the construction of such categories, which were first constructed as
braided fusion categories by Anderson and collaborators and as modular categories by Turaev
and Wenzl (see the references of [46]). The fusion rules of C(slN , q, `) do not depend on the
choice of q, i.e. for fixed N and ` the categories C(slN , q, `) are all Grothendieck equivalent.
We will denote by SU(N)k the modular category obtained from the choice q = eπi/(N+k), i.e.
SU(N)k = C(slN , eπi/(N+k), N + k) where k ≥ 1. When ` and N are relatively prime the
category C(slN , q, `) factors as a (Deligne) product of two modular categories, one of which is
(the maximal pointed modular subcategory) of rank N with fusion rules like the group ZN . For
SU(N)k we will denote the corresponding quotient (modular) category by SU(N)k/ZN .5

We will prove:

Theorem 5.1. Suppose C is a modular category of rank 5. Then C is Grothendieck equivalent
to one of the following:

(i) SU(2)4,

(ii) SU(2)9/Z2,

(iii) SU(5)1, or

(iv) SU(3)4/Z3.

Proof. This follows from Lemma 5.4 and Propositions 5.5, 5.7, 5.9, 5.10, 5.11, 5.12. �

Remark 5.2. Although this result only classifies rank 5 modular categories up to fusion rules,
a classification up to equivalence of monoidal categories can be obtained using [34]. Indeed, by
loc. cit. Theorem A` modular categories with fusion rules as in (i) resp. (iii) are monoidally
equivalent to a Galois conjugate of SU(2)4 followed by a twist of the associativities, resp. a Galois
conjugate of SU(5)1 (the non-trivial twists of SU(5)1 have no modular structure). Modular
categories Grothendieck equivalent to SU(2)9/Z2 (resp. SU(3)4/Z3) are monoidally equivalent
to a Galois conjugate of SU(2)9/Z2 (resp. SU(3)4/Z3) by Lemma 4.23.

By [34, Thm. A`] there are at most Nϕ(2(k+N)) (Euler-ϕ) inequivalent fusion categories that
are Grothendieck equivalent to SU(N)k and at most ϕ(2(k +N)) for SU(N)k/ZN . The factor
of N comes from twisting the associativities that is trivial on the quotient SU(N)k/ZN and the
ϕ(2(k +N)) factor corresponds to a choice of a primitive 2(k +N)th root of unity. We do not
know how many distinct modular categories with these underlying fusion categories there are.

5This notation is conventional in conformal field theory where the term orbifold is used.
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We first reduce to the case where C is non-integral and self-dual by the following:

Proposition 5.3. [30, Thms. 3.1 and 3.7] Suppose C is a rank 5 modular category. Then

(a) if C is integral then C is Grothendieck equivalent to SU(5)1;

(b) if C is non-integral and not self-dual then C is Grothendieck equivalent to SU(3)4/Z3.

We therefore assume C is a non-integral, self-dual modular category of rank 5 with Frobenius-
Schur exponent N , and ρ is an even modular representation of level n. In particular the S-
matrix has real entries and is projectively in SO(5). Next we enumerate the possible Galois
groups Gal(C) for rank 5 modular categories C.

Lemma 5.4. Suppose C is a self-dual non-integral modular category of rank 5. Then up to
reordering the isomorphism classes of simple objects we have Gal(C) is cyclic and generated by
one of the following: (0 1), (0 1 2), (0 1 2 3), (0 1 2 3 4 5), (0 1) (2 3); or it is a Klein 4 group
given by either 〈(0 1) , (2 3)〉, or 〈(0 1)(2 3), (0 2)(1 3)〉

Proof. Since we have assumed C is not integral, Lemma 4.3 implies 0 is not fixed by Gal(C).
Relabeling the simple objects if necessary we arrive at a list of possible groups. The groups
〈(0 1 2) (3 4)〉 and 〈(0 1) (2 3 4)〉 can be excluded by Lemmas 4.7 and 4.8. �

First observe that the case Gal (C) ∼= Z5
∼= 〈(0 1 2 3 4)〉 has been considered in Theorem 4.24.

Proposition 5.5. If C is a rank 5 modular category with (0 1 2 3 4) ∈ Gal(C) then C is equivalent
to SU(2)9/Z2 as fusion categories.

Next we will consider the case that Gal(C) = 〈(0 1)〉. The following lemma will be useful.

Lemma 5.6. Let a, b be non-zero rational integers. Suppose

0 = a+ bi+ cαα+ cββ (5.1)

for some non-zero rational integers cα, cβ and roots of unity α, β with ord(α) ≤ ord(β). Then
α = ±1, β = ±i and

a+ αcα = 0 , b− iβ2cβ = 0

Proof. If α, β ∈ Q(i), then α, β are fourth roots unity. The Q-linear independence of {1, i}
implies that α = ±1 and β = ±i. Thus, the remainder equalities follow immediately. Therefore,
it suffices to show that α, β ∈ Q(i).

Suppose that α or β is not in Q(i). Then (5.1) implies that [Q(i, α) : Q(i)] = [Q(i, β) : Q(i)].
Hence, both α, β are not in Q(i). Note that α, β are Q(i)-linearly independent otherwise α, β ∈
Q(i). By [12, Thm. 1], there exist x, y ∈ {α, β} such that x, y/i have squarefree orders, and

a+ cxx = 0, ib+ cyy = 0 .

These equations force α = x = ±1 and β = y = ±i, and hence α, β ∈ Q(i), a contradiction. �

We have:

Proposition 5.7. If Gal(C) = 〈(0 1)〉 then C is Grothendieck equivalent to SU(2)4.
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Proof. Suppose C is a rank 5 modular category with Gal(C) = 〈(0 1)〉. By (4.1) and Lemma 4.6,
the S-matrix is of the form

S =


1 d1 d2 d3 d4

d1 1 ε2d2 ε3d3 ε4d4

d2 ε2d2 S22 S23 S24

d3 ε3d3 S32 S33 S34

d4 ε4d4 S42 S43 S44


where εi = ±1 and (ε2, ε3, ε4) 6= (−1,−1,−1) or (1, 1, 1). After renumbering, we may therefore
assume that (ε2, ε3, ε4) ∈ {(1, 1,−1), (1,−1,−1)}.

Suppose that (ε2, ε3, ε4) = (1, 1,−1). We first use Lemma 4.6 to conclude that S24 = S34 = 0
and orthogonality of the first and last columns of S to obtain S44 = d1 − 1. Then we use the
twist equation (2.6) for (j, k) = (2, 4), (0, 4) and (4, 4) to obtain

0 = p+S24 = θ2θ4(d2d4 − θ1d2d4), (5.2)

p+d4 = θ4(d4 − θ1d1d4 + θ4d4(d1 − 1)), (5.3)

p+(d1 − 1) = θ2
4(d2

4 + θ1d
2
4 + θ4(d1 − 1)2) . (5.4)

It follows immediately from (5.2) that θ1 = 1 and hence, by (5.3),

p+ = (d1 − 1)θ4(θ4 − 1) .

Therefore,
D2 = 2(d1 − 1)2(1−Re(θ4)) and d1 6∈ Q .

Since Si4
d4

is an algebraic integer fixed by Gal(C), Si4
d4
∈ Z for all i. In particular,

n44 =
d1 − 1

d4
∈ Z.

and
D2 = (2 + n2

44)d2
4 .

It follows from (5.4) that

p+ = (d1 − 1)(
2

n2
44

θ2
4 + θ3

4)

and this implies 2
n2
44
θ2

4 + θ3
4 = θ4(θ4 − 1) or

θ2
4 + (

2

n2
44

− 1)θ4 + 1 = 0 .

Thus, [Q(θ4) : Q] ≤ 2 and so θ4 ∈ µ4 ∪ µ6. Note that 2
n2
44
− 1 6∈ {0,−1,±2}. Therefore,

θ4 6∈ µ4 ∪µ6. Thus, θ4 ∈ µ3 and n44 = ±1. Now, we find D =
√

3|d1− 1|, p+ = −2iIm(θ4)(d1−
1) = ±i

√
3(d1 − 1). By [47, Thm. 2.7(5)], D ∈ KC and so

√
3 ∈ KC . Since [KC : Q] = 2,

KC = Q(
√

3).

We now return to the equation

p+ = 1 + d2
1 + (d1 − 1)2θ4 + θ2d

2
2 + θ3d

2
3 (5.5)
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which can be rewritten as

0 = 2 + Tr(d1) + 2iIm(θ4)(d1 − 1/d1) + 2θ2N(d2) + 2θ3N(d3) . (5.6)

Note that 2+Tr(d1), N(d2) and N(d3) are non-zero integers. Since Z[
√

3] is the ring of algebraic
integers in Q(

√
3), 2Im(θ4)(d1 − 1/d1) is also a non-zero integer. We may simply assume

ord(θ2) ≤ ord(θ3). By Lemma 5.6, θ2 = ±1 and

2 + Tr(d1) + 2θ2N(d2) = 0 .

Since 2 + Tr(d1) and 2N(d2) are positive, θ2 = −1 and 2d2
2 = (d1 + 1)2. Thus,

√
2 = ±d1+1

d2
∈

Q(
√

3), a contradiction.

Therefore we must have (ε2, ε3, ε4) = (1,−1,−1) and, by Lemma 4.6,

S =


1 d1 d2 d3 d4

d1 1 d2 −d3 −d4

d2 d2 S22 0 0
d3 −d3 0 S33 S34

d4 −d4 0 S34 S44

 .
By the orthogonality of the columns of S, S22 = −(d1 + 1). Since S22

d2
is fixed by Gal(C),

n22 =
S22

d2
=
−(d1 + 1)

d2
∈ Z.

By Lemma 4.3 the vector of FP-dimensions is in one of the first two rows, so d1, d2 > 0 and
n22 < 0. We now apply the twist equation (2.6) for (j, k) = (2, 0), (2, 2) and (2, 3) to obtain

p+d2 = θ2(d2 + θ1d1d2 − θ2d2(d1 + 1)), (5.7)

−p+(d1 + 1) = θ2
2(d2

2 + θ1d
2
2 + θ2(d1 + 1)2), (5.8)

0 = p+S23 = θ2θ3(d2d3 − θ1d2d3) . (5.9)

The equation (5.9) implies θ1 = 1, and so equations (5.7), (5.8) become

p+

d1 + 1
= θ2(1− θ2), (5.10)

− p+

d1 + 1
= θ2

2(
2

n2
22

+ θ2). (5.11)

Thus, θ2 satisfies the quadratic equation

θ2
2 + (

2

n2
22

− 1)θ2 + 1 = 0 .

Since n22 is a negative integer, 2
n2
22
−1 6= 0,−1,±2. Therefore, θ2 ∈ µ3, n22 = −1 and d2 = d1+1.

Moreover,
p+ = 2iIm(θ2)(d1 + 1) = ±i

√
3(d1 + 1), and D2 = 3(d1 + 1)2.

In particular, D =
√

3(d1 + 1). By [47, Thm. 2.7(5)],
√

3 ∈ KC and hence KC = Q(
√

3).

We now return to the equation

p+ = 1 + d2
1 + (d1 + 1)2θ2 + θ3d

2
3 + θ4d

2
4 (5.12)
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which can be rewritten as

0 = −2 + Tr(d1) + 2iIm(θ2)(d1 − 1/d1) + 2θ3
d2

3

d1
+ 2θ4

d2
4

d1
. (5.13)

Without loss of generality, we may simply assume ord(θ3) ≤ ord(θ4). We first prove that d1 ∈ Q.

Suppose not. Since −2+Tr(d1), 2iIm(θ2)(d1−1/d1),
d23
d1

and
d24
d1

are non-zero integers, by Lemma
5.6, we find θ3 = ±1 and

−2 + Tr(d1) + 2θ3
d2

3

d1
= 0 .

Since −2 + Tr(d1),
d23
d1
> 0, θ3 = −1 and 2d2

3 = (d1 − 1)2. However, this implies
√

2 = ±d1−1
d3
∈

Q(
√

3), a contradiction. Therefore d1 ∈ Q.

Since 1/d1 is a Galois conjugate of d1, d1 = 1. Now, (5.13) becomes 0 = θ3
d23
d1

+ θ4
d24
d1

or

θ3/θ4 = −d
2
4/d1

d2
3/d1

∈ Q .

This forces θ3 = −θ4 and d2
4 = d2

3. Since

12 = D2 = 1 + 1 + 22 + 2d2
3,

we obtain d3 = ±
√

3.

Suppose d3 = ν1

√
3 and d4 = ν ′1

√
3 for some signs ν1, ν

′
1. The fusion rule N4

23 = ν1ν
′
1 implies

ν1 = ν ′1. It follows from the orthogonality of the S-matrix that

0 = S33 + S34 = S34 + S44 = 6 + (S33 + S44)S34, S2
33 + S2

34 = 6 = S2
34 + S2

44 .

Therefore,
S33 = S44 = −ν2

√
3, S34 = ν2

√
3

for any sign ν2. We find

S =


1 1 2 ν1

√
3 ν1

√
3

1 1 2 −ν1

√
3 −ν1

√
3

2 2 −2 0 0

ν1

√
3 −ν1

√
3 0 −ν2

√
3 ν2

√
3

ν1

√
3 −ν1

√
3 0 ν2

√
3 −ν2

√
3

 .
On can check directly the four possible S-matrices of C generate the same fusion rules using the
Verlinde formula. These fusion rules coincide with those of SU(2)4.

We return to the twist equation (2.6) with (j, k) = (0, 3) to obtain

θ2
3 = −ν22i Im(θ2)/

√
3 = −ν2ν3i

where ν3 = ±1 is determined by θ2 = eν32πi/3. One can check directly that for any θ2 ∈ µ3 and
θ3 ∈ µ8 satisfying the above equation, the twist equation will hold for T = diag(1, 1, θ2, θ3,−θ3).
Thus, there are 16 possible pairs of S and T -matrices for C. �

Remark 5.8. Each of the 16 possible pairs of S and T matrices are realized. By applying
a Galois automorphism we may assume ν1 = 1, that is, di = FPdim(Vi) for all i. Then the
corresponding 8 pairs (S, T ) appear in [29, Example 5D].



36 PAUL BRUILLARD, SIU-HUNG NG, ERIC C. ROWELL, AND ZHENGHAN WANG

Next we show

Proposition 5.9. If C is a self-dual modular category of rank 5, then Gal(C) 6∼= Z3.

Proof. Suppose that Gal(C) ∼= Z3 and ρ is an even level n modular representation of C (cf.
Remark 4.20). Since (KC ,Qn) is admissible, by Proposition 4.13 we have either 7 | n | 24 · 7 or
9 | n | 8 · 9. We will eliminate these two possibilities.

Suppose 7 | n | 24 ·7. Then ρ has an irreducible subrepresentation ρ1 of level 7f where (7, f) = 1
and 7f | n. Thus, ρ1

∼= ξ ⊗ φ for some irreducible representations ξ and φ of levels 7 and f
respectively. By [19, Table 1], deg ξ = 3, 4 and hence deg φ = 1.

If deg ξ = 3, then, by Table A.1, its t-spectrum is a subset of µ7. This is not possible by Corollary
4.19. If deg ξ = 4, then by Table A.1 ξ is odd; this contradicts Lemma 4.21.

Now suppose 9 | n | 8 · 9. Then ρ has an irreducible subrepresentation ρ1 of level 9f where
(3, f) = 1 and 9f | n. Thus, ρ1

∼= ξ ⊗ φ for some irreducible representations ξ and φ of levels 9
and f respectively. By [19, Table 2], deg ξ = 4 and hence deg φ = 1. Thus, ρ ∼= φ′ ⊕ (φ⊗ ξ) for
some degree 1 representation φ′.

By Lemma 4.21, ξ, φ′, φ are all even. Therefore, (φ′)∗⊗ ρ ∼= χ0⊕ ((φ′)∗⊗ φ⊗ ξ) where χ0 is the
trivial representation of SL(2,Z). Note that (φ′)∗ ⊗ ρ is isomorphic to another even modular
representation ρ′ of C.

Let ρ1 = ((φ′)∗ ⊗ φ ⊗ ξ). By Lemma 4.18, ρ1(t) has an eigenvalue 1 and so ((φ′)∗ ⊗ φ)3 =
χ0. Therefore, ρ1 is a level 9 irreducible representation of SL(2,Z). By [19, Table A3], ρ1 is
isomorphic to R or R∗ defined by

R(s) :=
2

3


s1 s5 s7 s6

s5 −s7 −s1 s6

s7 −s1 s5 −s6

s6 s6 −s6 0

 , R(t) := diag(ζ, ζ7, ζ4, 1)

with sj = sin(πj/18) and ζ = exp(2πi/9). Note that R(s) = R∗(s).

Since ρ′ ∼= ρ1 ⊕ χ0, ρ is of level 9 and ρ′(s) is a matrix over Q9. Let R′ = R ⊕ χ0. Then, there
exists a permutation matrix P and a unitary matrix U such that

Pρ′(t)P−1 = R′(t) = diag(ω1, ω2, ω3, 1, 1) = U−1R′(t)U,

where ω1, ω2, ω3 are distinct 9-th roots of unity. Moreover,

Pρ′(t)P−1 = U−1R′(t)U, Pρ′(s)P−1 = U−1R′(s)U.

This implies that U is of the form 
u1 0 0 0 0
0 u2 0 0 0
0 0 u3 0 0
0 0 0 a b

0 0 0 −b a


where |u1| = |u2| = |u3| = 1 and |a|2 + |b|2 = 1. We can further assume that u1 = 1. Since
Pρ′(s)P−1 is symmetric, u1, u2 are ±1 and a, b are real. Thus, the (1, 4) and (1, 5) entries of
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Pρ′(s)P−1 are a√
3

and b√
3
∈ Q9. This implies ab ∈ Q9 and 1

3 + 2ab√
3

= ( a√
3

+ b√
3
)2 ∈ Q9 . Hence,√

3 ∈ Q9 but this contradicts that the conductor of
√

3 is 12. �

Proposition 5.10. If C is a self-dual non-integral modular category of rank 5 then Gal(C) 6∼= Z4.

Proof. Assume to the contrary. Let ρ be a level n even modular representation of C (see Remark
4.20), and σ ∈ Gal(Qn/Q) be such that σ̂ = (0 1 2 3) ∈ S5 is a generator of the image of Gal(C)
in S5. It follows from Proposition 4.13 that the level n of ρ satisfies one of the following cases:

(i) 5 | n | 24 · 5,

(ii) 16 | n | 3 · 16,

(iii) 32 | n | 3 · 32.

By [19, Table 7], the smallest irreducible representation of level 32 is 6-dimensional. Therefore,
case (iii) is impossible.

In cases (i) and (ii) we find that Z∗n = Gal(Qn/Q) has exponent 4, so that σ4 = id. Applying
Theorem 2.9(iii) we find that ρ(t) = t = diag(z, σ2(z), z, σ2(z), w) where w ∈ µ24 and z is a
root of unity such that 5 | ord(z) | 24 · 5 or 16 | ord(z) | 3 · 16. By [50] ρ cannot have an
irreducible subrepresentation of dimension more than 3. Moreover, ρ cannot have 1-dimensional
subrepresentations: z cannot be the image of t in a 1-dimensional SL(2,Z)-representation as
z24 6= 1, and by Lemma 4.18 w cannot be the image of t in a 1-dimensional representation either,
since w is distinct from z and σ2(z).

We can therefore conclude that ρ is a direct sum of even irreducible representations ρ2 and
ρ3 of degrees 2 and 3 respectively. The corresponding partition of the t-spectrum of ρ is
{{z, σ2(z)}, {z, σ2(z), w}}. In particular, the levels of these representations are multiple of
ord(z). If 16 | n | 48, then 16 | ord(z) and there must be an irreducible representation of
level 16 and degree 2. By Table A.1, this is not possible and we conclude that 5 | n | 24 · 5.

The representation ρ3
∼= ψ ⊗ χ for some irreducible representations ψ of degree 3 and level 5,

and χ of degree 1. By Table A.1, ψ is even, and so must be χ. Thus, the spectrum of ρ3(t) is
{wζ,w/ζ, w} for some ζ ∈ µ5 and w ∈ µ6. This forces the t-spectrum of ρ2 to {wζ,w/ζ} and so
ρ2
∼= ψ′ ⊗ χ for some irreducible representations ψ′ of degree 2 and level 5. By Table A.1, ψ′ is

odd, and so must be ρ2. This contradicts that ρ is even. �

Proposition 5.11. If C is a self-dual non-integral modular category of rank 5 then Gal(C) 6∼=
〈(0 1), (2 3)〉

Proof. Suppose Gal(C) = 〈σ, τ〉 such that σ̂ = (0 1) and τ̂ = (2 3). For notational convenience
we set δi = ετ (i) and εi = εσ(i). Galois symmetry (with respect to σ) applied to Si,(i+1) gives
us the following condition for each i ≥ 2: either Si,(i+1) = 0 or εi = εi+1. Similarly, Galois
symmetry with respect to τ applied to S0i = di gives us: δ0 = δ1 = d4 and δ2 = δ3. With this
in mind we set e1 = ε0ε2, e2 = ε0ε3, e3 = ε0ε4 and a = δ0δ2. Applying σ and τ we obtain:

S =


1 d1 d2 ad2 d4

d1 1 e1d2 e2ad2 e3d4

d2 e1d2 S22 S23 S24

ad2 e2ad2 S23 S22 aS24

d4 e3d4 S24 aS24 S44

 .
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Since σ(d2) = e1d2/d1 = e2d2/d1 we immediately see that e2 = e1. Orthogonality then implies
that either S24 = 0 or e1 = e3, and

{d1 + 1/d1, d
2
2/d1, d

2
4/d1, (S22 + aS23)/d2, S22S23/d

2
2} ⊂ Z.

We claim that S24 = 0. If ei = 1 for all i then orthogonality of the first two rows gives:
2 = −2d2

2/d1 − d2
4/d1 with d1 negative. If ei = −1 for each i then orthogonality of the first two

rows gives us: 2 = 2d2
2/d1 + d2

4/d1. In either case, we have: 2 = 2x+ y for some x, y ≥ 1, which
is absurd.

So we may assume that S24 = 0 and −e3 = e1 = e2. In particular, the FP -dimension must be
one of the first two rows. Therefore, a = 1 and d1 > 0. Orthogonality now implies:

1 + e3 = 0, (5.14)

1 + e1d1 + S22 + S23 = 0, (5.15)

1 + e3d1 + S44 = 0 . (5.16)

Thus e2 = e1 = 1 = −e3, S44 = d1 − 1 and 1 + d1 + S22 + S23 = 0. Note that this implies
M = (1 + d1)/d2 ∈ Z.

Using the twist equation (2.6) we proceed as in the proof of Proposition 5.7 to obtain: d4 =
±(d1 − 1), p+ = ±i

√
3(d1 − 1) and p+/p− = −1 and θ4 ∈ µ3. Thus, we have

p+ + p− = 2(1 + d2
1) + 2d2

2Re(θ2 + θ3)− (d1 − 1)2 = 0

or 2Re(θ2 +θ3) = −M2. Setting N = d2
2/d1, we obtain the Diophantine equation (M2−2)N = 6

from orthogonality of the first two rows (i.e. d2
1 − 4d1 + 1 = 2d2

2). Since each of M and N are
positive integers we obtain (M,N) = (2, 3) as the only solution. Therefore, Re(θ2 + θ3) = −2.
Hence θ2 = θ3 = −1, and FT = Q3. However, we also find d1 = 5 + 2

√
6 6∈ Q3 which contradicts

Theorem 2.7. �

Two cases remain: either Gal(C) is generated by σ̂ = (0 1) (2 3), or contains σ̂ and is isomorphic
to Z2 × Z2 acting transitively on {0, 1, 2, 3} fixing the label 4. In either case, exp(Gal(C))) = 2
so KC is a multi-quadratic extension of Q.

Proposition 5.12. There is no self-dual non-integral modular category C of rank 5 such that
every non-trivial element of Gal(C) is a product of two disjoint transpositions.

Proof. In the following series of reductions, we will show that FSExp (C) can only be 2,3,4,6. In
particular, C is integral by [7, Thm. 3.1], a contradiction.

Let ρ be an even modular representation of C of level n. Without loss of generality we may
assume that σ̂ = (0 1)(2 3) ∈ Gal(C) for some σ ∈ Gal(Qn/Q). By Theorem 2.9 (Galois
symmetry),

ρ(t) = t = diag(t0, σ
2(t0), t2, σ

2(t2), t4) . (5.17)

Moreover, s = ρ(s) is a real symmetric matrix in GL(5,Qn) of order 2 . Since τ2(t4) = tτ̂(4) = t4
and τ(si4/s04) = siτ̂(4)/s0τ̂(4) = si4/s04 for all τ ∈ Aut(Qab), t4 ∈ µ24 and si4/s04 ∈ Z for all
i = 0, . . . , 4.

By Corollary 4.14, n | 240. We first show that n | 48, i.e. 5 - n.

Suppose 5 | n. Then ρ ∼= (ξ5 ⊗ χ)⊕ ρ1 where ρ1 is an even subrepresentation of ρ, ξ5 and χ are
irreducible representations of SL(2,Z5) and SL(2,Z48) respectively, and ξ5 is of level 5. Since
deg ξ5 ≥ 2, deg ξ ≤ 2. However, if degχ = 2, then deg ξ5 = 2 and deg ρ1 = 1. By Table A.1,
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the t-spectrum of ξ5 is {ζ, ζ} for some ζ5 ∈ µ5. Thus the orders of the eigenvalues of ξ5 ⊗ χ are
multiple of 5, and so the t-spectra of ξ5 ⊗ χ and ρ1 are disjoint; this contradicts Lemma 4.18.
Therefore, χ is linear.

Now, we set ρ′ be the modular representation of C equivalent to χ−1 ⊗ ρ and ρ′1 = χ−1 ⊗ ρ1.
Then ρ′ ∼= ξ5 ⊕ ρ′1.

If deg ξ5 = 5, then ξ5
∼= ρ′, but this contradicts Lemma 4.25. Therefore, deg ξ5 < 5.

If deg ξ5 = 4, then the t-spectrum of ξ5 is equal to µ5 but ρ′1 is linear. Thus, ξ5 and ρ′1 have
disjoint t-spectra. Therefore, deg ξ5 = 4 is not possible.

If deg ξ5 = 2, then ξ5 is odd and the t-spectrum of ξ5 is {ω, ω} for some ω ∈ µ5. Thus, χ is
odd and so are ρ′ and ρ′1. If ρ′1 is reducible, then ρ′1

∼= ρ′2 ⊕ ρ′3 for some representations ρ′2 and
ρ′3. We may assume deg ρ′3 = 1. By Lemma 4.18, the t-spectrum of ρ′2 must contain ω or ω.
Therefore, ρ′ is also irreducible and has the same t-spectrum ξ5. However, this means ρ′3 and
ξ5 ⊕ ρ′2 have disjoint t-spectra. Therefore, ρ1 must be irreducible and the t-spectra of ρ′1 and ξ5

are not disjoint. This implies ρ′1 is of level 5, and it must be even, a contradiction. Therefore,
deg ξ5 6= 2.

If deg ξ5 = 3, then ξ5 is even and so are χ and ρ′. We may assume ρ ∼= ξ5 ⊕ ρ1 by replacing ρ
with ρ′ if necessary. The t-spectrum of ξ5 is {ω, ω, 1} for some ω ∈ µ5.

If ρ1 is reducible, then ρ1 is a direct sum χ1 ⊕ χ2 of linear characters. In view of Lemma 4.18,
both of χ1 and χ2 are the trivial character and so ρ is of level 5. If ρ1 is irreducible, then
the t-spectrum of ρ1 cannot contain ω or ω for otherwise ρ1 is the level 5 degree 2 irreducible
representation which is odd. Thus, 1 is an eigenvalue of ρ1(t) and so ρ1 is the level 2 degree
2 irreducible representation with t-spectrum {1,−1}. In particular, ρ is of level 10. Hence, by
(5.17), we find

ρ(t) = t = diag(ω, ω, 1, 1,±1) or diag(1, 1, ω, ω,±1)

for both cases of ρ1. Moreover, Ft = Q5 and Fs is a real subfield of Ft. Therefore, Fs = Q(
√

5).
Since both generators of Gal(Q5/Q) have the same non-trivial restriction on Q(

√
5), we can

assume σ : ω 7→ ω2 and σ̂ = (0 1)(2 3). By the twist equation (2.6), we find

s44 = s2
04t0 + s2

14t1 + s2
24t2 + s2

34t3 + s2
44t4 . (5.18)

Note that s2
i4 is fixed by σ for all i, and s2

24 = s2
34, s2

04 = s2
14. By applying σ to (5.18),

σ(s44) = εσ(4)s4σ̂(4) = εσ(4)s44 = s2
40t

2
0 + s2

14t
2
1 + s2

24t
2
2 + s2

34t
2
3 + s2

44t4 . (5.19)

These equations imply

(1− εσ(4))s44 = s2
40((t0 + t1)− (t20 + t21)) + s2

24(t2 + t3 − (t22 + t23)) . (5.20)

If t = diag(ω, ω, 1, 1,±1), then (1− εσ(4))s44 = s2
40((ω + ω4)− (ω2 + ω3)). Since the right hand

side of this equation is non-zero, s44 6= 0 and εσ(4) = −1. Thus, we obtain

0 = s2
40(ω + ω4 + ω2 + ω3) + 4s2

24 + 2s2
44t4

= −s2
40 + 4s2

24 + 2s2
44t4

and hence

1 = 2

(
2
s2

24

s2
04

+
s2

44

s2
04

t4

)
.
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Since sj4/s04 ∈ Z for all i, we find 2 | 1, a contradiction. Therefore, t = diag(1, 1, ω, ω,±1) and
the equation (5.20) becomes

(1− εσ(4))s44 = s2
24((ω + ω4)− (ω2 + ω3)) .

If s24 6= 0, then s44 6= 0 and εσ(4) = −1. By the same argument(
s24

s04

)2

= 4 + 2

(
s44

s04

)2

t4 .

The integral equation forces t4 = 1 and so s2
24/2 = 2s2

04 + s2
44. By the unitarity of s, we also

have

1 = 2s2
24 + 2s2

04 + s2
44 =

5

2
s2

24.

This implies s24 = ±
√

2
5 ∈ Q(

√
5) and hence

√
2 ∈ Q(

√
5), a contradiction. Therefore, s24 = 0

and hence s34 = 0. Now, the equation (5.18) becomes s44 = 2s2
04 + s2

44t4. In particular, the
integer s44/s04 is a root of t4X

2−X+2 = 0. This forces t4 = −1 and s44/s04 = 1 or −2. By the
unitarity of s again, 1 = 3s2

04 or 1 = 6s2
04. Both equations imply

√
3 ∈ Q(

√
5), a contradiction.

Now, we can conclude that 5 - n, so that n | 48.

Next we show that n | 24, i.e. 16 - n.

Suppose to the contrary that 16 | n. Then ρ ∼= (ξ16⊗χ)⊕ρ1 for some subrepresentation ρ1 of ρ,
an irreducible representations ξ16 of level 16, and an irreducible representation χ of SL(2,Z3).
Then deg ξ16 = 3, and degχ = 1 and hence they are both even. By tensoring with χ−1, we may
assume ρ ∼= ξ16⊕ρ1 for some even subrepresentation ρ1 of ρ. The t-spectrum of ξ16 is {ω,−ω, γ}
for some ω ∈ µ16 and γ ∈ µ8. Since deg ρ1 = 2, the level of ρ1 cannot be 16 and so ±ω are not in
the t-spectrum of ρ1. Therefore, γ must be an eigenvalue of ρ1(t) and hence ρ1 is an irreducible
representation of level 8. Thus, the t-spectrum of ρ1 is {γ,−γ} (cf. Table A.1). In particular, ρ
is of level n = 16. In view of (5.17),

ρ(t) = t = diag(γ, γ, ω,−ω,−γ) or diag(ω,−ω, γ, γ,−γ).

By the (2.6), we find

s44 = γ2(s2
04t0 + s2

14t1 + s2
24t2 + s2

34t3 − s2
44γ)

= s2
04γ

2(t0 + t1) + s2
24γ

2(t2 + t3) + s2
44γ .

If t = diag(γ, γ, ω,−ω,−γ), then s44 = 2s2
04γ + s2

44γ. The imaginary parts of both sides of this
equation imply 2s2

04 = s2
44. Therefore, s44

s04
= ±
√

2 is not an integer, a contradiction.

If t = diag(ω,−ω, γ, γ, γ′), then s44 = 2s2
24γ + s2

44γ. If s24 6= 0, then by the same argument as
the preceding case we will arrive the conclusion that s44/s24 6∈ Q. However, this is absurd as
both s44

s04
and s24

s04
are integers. Therefore, s24 = 0 and hence s34 = 0 = s44. Orthogonality of s

and the action σ imply

s04 = ± 1√
2
, s14 = −εσ(0)s04, s1j = εσ(0)s0j

for j = 0, . . . , 3. In particular, s2
12 = s2

02. Consider the twist equation

s22 = γ2(s2
20ω − s2

21ω + (s2
22 + s2

23)γ) = (s2
22 + s2

23)γ3 .

This implies s22 = s23 = 0 and hence s33 = 0. Consequently, the third and the fourth rows of s
are multiples of (1, εσ(0), 0, 0, 0). This contradicts that s is invertible.
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Next we show that n | 12, i.e. 8 - n. In particular Gal(C) ∼= Z2.

Since n | 24, Gal(Qn/Q) has exponent 2. Galois symmetry and (5.17) imply

t = diag(t0, t0, t2, t2, t4). (5.21)

In particular, t has at most 3 distinct eigenvalues. By [50], every irreducible subrepresentation
of ρ has degree ≤ 3. Thus, if ξ ⊗ χ is isomorphic to an irreducible subrepresentation of ρ for
some representations ξ, χ of SL(2,Z), then ξ or χ must be linear.

Suppose that 8 | n. Then ρ ∼= (ξ8⊗χ)⊕ρ1 for some representations ξ8, χ and ρ1 of SL(2,Z) such
that ξ8 is irreducible of level 8, χ is irreducible of level 1 or 3, and ρ1 is even. Since deg ξ8 ≥ 2,
degχ = 1. Therefore, χ is even, and so is ξ8. By tensoring with χ−1, we may assume ρ ∼= ξ8⊕ρ1.

Suppose deg ξ8 = 3. Then the eigenvalues of ξ8(t) are {ω,−ω, γ} for some ω ∈ µ8 and γ ∈ µ4

(cf. Table A.1). In view of (5.21), the t spectrum of ρ1 is {ω,−ω}. In particular, det ρ1(t) = ±i
which contradicts that ρ1 is even (cf. Remark 4.20). Therefore, deg ξ8 = 2, and the t-spectrum
of ξ8 is {γ,−γ} for some γ ∈ µ8. Since ρ1(t) and ξ8 must have a common eigenvalue, the level of
ρ1 is also a multiple of 8. By the preceding argument, ρ1 = ξ′8⊕ ρ2 for some degree 2 irreducible
representation of level 8, ξ′8, and a degree 1 even representation ρ2. However, ρ2 and ξ8 ⊕ ξ′8
have disjoint t-spectra, a contradiction. Therefore, n | 12

Finally we will show that the Frobenius-Schur exponent N must be 2, 3, 4 or 6. Since N | n | 12,
it is enough to show 4 - n.

Suppose 4 | n. We claim that ρ admits a subrepresentation isomorphic to ξ4 ⊗ χ for some
irreducible representations ξ4 of level 4 and degree > 1 and χ ∈ Rep(SL(2,Z3)). Assume the
contrary. Since any linear subrepresentation of ρ can only have a level dividing 6, ρ admits an
irreducible subrepresentation ρ′ of degree > 1 and level a multiple of 4. Then ρ′ ∼= ξ4 ⊗ χ for
some level 4 degree 1 representation ξ4 and an irreducible representation χ ∈ Rep(SL(2,Z3)).
Then χ must be odd since ξ4 is odd. This forces χ to be of level 3 and degree 2. In particular,
ρ′ is of level 12 and the t-spectrum of ρ′ is a subset of µ4∗. Now, ρ ∼= ρ′ ⊕ ρ1 for some even
representation ρ1 of degree 3. By Lemma 4.18, the level of ρ1 is also a multiple of 4. Following
the same reason, ρ1 admits a degree 2 level 12 even irreducible subrepresentation ρ′′ with its
t- spectrum a subset of µ4∗. Now, ρ ∼= ρ′ ⊕ ρ′′ ⊕ ρ2 for some degree 1 even representation ρ2.
However, ρ2 and ρ′ ⊕ ρ′′ have disjoint t-spectra, a contradiction. This completes the proof. �
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A Irreducible Representations of Degree ≤ 4

The 12 degree one representations Cj of SL(2,Z), j = 0, 1, . . . , 11 are defined by Cj(t) = e2πji/12.
Thus, Cj is even if, and only if, j is even which is equivalent to the fact that ord(Cj) | 6. The t-
spectra of irreducible representations of degree ≤ 4 and of level pλ are illustrated in the following
table.

Table A.1. t-spectra of level pλ irreducible representations of degree ≤ 4

degree parity level t-spectra
2 even 2 {1,−1}

odd 3 {e2πri/3, e−2π(r+1)i/3}, r = 0, 1, 2
odd 4 {i,−i}
odd 5 {e2πi/5, e−2πi/5}, {e4πi/5, e−4πi/5}
even 8 {e5πi/4, e7πi/4}, {eπi/4, e3πi/4}
odd 8 {e3πi/4, e5πi/4}, {e7πi/4, eπi/4}

3 even 3 {e2π(r+1)i/3, e2π(r+2)i/3, e2πri/3}, r = 0, 1, 2
odd 4 {i,−1, 1}, {−i, 1,−1}
even 4 {−1,−i, i}, {1, i,−i}
even 5 {1, e2πri/5, e−2πri/5}, r = 1, 2

even 7 {e4πi/7, e2πi/7, e8πi/7},
{e−4πi/7, e−2πi/7, e−8πi/7}

odd 8 {−1,−eπi/4, eπi/4}, {1, eπi/4,−eπi/4}
{−1,−e3πi/4, e3πi/4}, {1, e3πi/4,−e3πi/4}

even 8 {−i,−eπ3i/4, eπ3i/4}, {i, eπ3i/4,−eπ3i/4}
{i,−eπi/4, eπi/4}, {−i, eπi/4,−eπi/4}

odd 16 {−eπi/4, eπi/8,−eπi/8}, {eπi/4,−eπi/8, eπi/8}
{eπi/4, e5πi/8,−e5πi/8}, {−eπi/4,−e5πi/8, e5πi/8}
{−eπ3i/4, e3πi/8,−e3πi/8}, {eπ3i/4,−e3πi/8, e3πi/8}
{e3πi/4,−e7πi/8, e7πi/8}, {−e3πi/4,−e7πi/8, e7πi/8}

even 16 {−e3πi/4, e5πi/8,−eπ5i/8}, {e3πi/4,−e5πi/8, eπ5i/8}
{e3πi/4,−eπi/8, eπi/8}, {−e3πi/4, eπi/8,−eπi/8}
{−eπi/4,−e7πi/8, e7πi/8}, {eπi/4, e7πi/8,−e7πi/8}
{−eπi/4, e3πi/8,−e3πi/8}, {eπi/4,−e3πi/8, e3πi/8}

4 odd 5 {e2πi/5, e4πi/5, e6πi/5, e8πi/5}
even 5 {e2πi/5, e4πi/5, e6πi/5, e8πi/5}
odd 7 {1, e2πi/7, e8πi/7, e4πi/7}
odd 7 {1, e12πi/7, e6πi/7, e10πi/7}
odd 8 {eπi/4, e3πi/4, e5πi/4, e7πi/4}
even 8 {eπi/4, e3πi/4, e5πi/4, e7πi/4}
odd 9 {e2πi( 1

9
+ r

3
), e2πi( 4

9
+ r

3
), e2πi( 7

9
+ r

3
), e2πi( 1

3
+ r

3
)}, r = 0, 1, 2

{e2πi( 8
9

+ r
3

), e2πi( 5
9

+ r
3

), e2πi( 2
9

+ r
3

), e2πi( 2
3

+ r
3

)}, r = 0, 1, 2

even 9 {e2πi( 1
9

+ r
3

), e2πi( 4
9

+ r
3

), e2πi( 7
9

+ r
3

), e2πi( 1
3

+ r
3

)}, r = 0, 1, 2

{e2πi( 8
9

+ r
3

), e2πi( 5
9

+ r
3

), e2πi( 2
9

+ r
3

), e2πi( 2
3

+ r
3

)}, r = 0, 1, 2
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