
INTRODUCTION

Abstract. These are lecture notes of a three-course series on the mathematical
foundations of topological quantum computation.

Mathematics is the art of quantifying and shaping a man-made logic world1.
Since the physical world is also logical, we find many matches between mathe-
matical theories and physical models. The ultimate connection is exemplified by
Newton, who is arguably the best mathematician and physicist in history.

On a practical level, many pure mathematicians seek out interesting patterns,
then codify and classify them. One of the interesting patterns in quantum physics
and quantum computation is the pattern of long-range entanglement. To elucidate
the role of the long-range entanglement in quantum phases of matter and quantum
algorithms calls for new mathematical tools. The mathematical foundations of
long-range entanglement lie at the frontiers of current research in mathematics,
physics, and computer science. One terrain that is ideal for vanguards to explore is
topological quantum computation (TQC)—an interdisciplinary field at the triple
juncture of mathematics, physics, and computer science.

1. Topological Quantum Computation

The goal of TQC is the construction of a large scale quantum computer based
on braiding non-abelian anyons—the central part of a futuristic field anyonics
broadly defined as the science and technology that cover the development, behav-
ior, and application of anyonic devices. Two important mathematical structures
underpinning TQC are topological quantum field theory (TQFT) and modular
tensor category (MTC). TQFTs arise as low energy effective theories of topologi-
cal phases of matter, whose elementary excitations in two spatial dimensions are
anyons—quantum particles with statistics more general than bosons and fermions.

1On many occasions, I have been asked if pure mathematics is part of sciences. My answer
is simply no. Mathematics and physics, for instance, aim at different worlds: the mathematical
one consists of mind-created theories, while the physical one is all the stuff out there. There are
other differences between the two subjects. The ultimate judgement for a mathematical theory
is logical correctness-consistent, sound, and complete, while the acceptance of a physical model
is determined by the valid experimental results predicted by the model. A physical attribute is
defined by experiments whose results are given by a collection of numbers. Subsequently, physical
quantities should be algorithmically computable, while mathematics is full of algorithmically
uncomputable structures. Similar differences exist between mathematics and other sciences.
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The algebraic models of anyons are unitary MTCs, which are also the algebraic
data for unitary (2+1)-TQFTs.

Solid, liquid, and gas are all familiar states of matter (the words state and phase
are used interchangeably). But by a more refined classification, each state consists
of many different states of matter. For example, within the crystalline solid state,
there are many different crystals distinguished by their different lattice2 structures.
All those states are classical in the sense they depend crucially on the temperature.
More mysterious and challenging to understand are quantum states of matter:
states of matter at zero temperature (in reality very close to zero). The modeling
and classification of quantum states of matter is an exciting current research area
in condensed matter physics and topological quantum computation. In recent
years, much progress has been made in a particular subfield: topological phases of
matter (TPMs). Besides their intrinsic scientific merits, another motivation comes
from the potential realization of fault-tolerance quantum computation using non-
abelian topological phases of matter.

To carry out quantum computation, we need quantum memories, quantum cir-
cuits, and protocols to write and read information to and from the quantum sys-
tems. In the anyonic quantum computing model, we first fix a non-abelian anyon
type, say x. Then information is stored in the ground state manifold Vn,x of n
type x anyons (for simplicity, we ignore the boundary conditions.) As n goes to
infinity, the dimension of Vn,x goes asymptotically as dnx, where dx is the quan-
tum dimension of x. Since x is non-abelian, dx > 1. It follows that when n is
large enough, we can encode any number of qubits into some Vn,x. The ground
state manifold Vn,x is also a unitary representation of the n-strand braid group Bn;
hence, unitary representation matrices serve as quantum circuits. An initial state
of computation is given by creating anyons from the ground state and measure-
ment is done by fusing anyons together to observe the possible outcomes. There
are important subtleties regarding encoding qubits into Vn,x because their dimen-
sions are rarely powers of fixed integers. There is also the important question of
whether the braiding matrices alone will give rise to a universal gate set.

2. Quantization and Categorification

A famous quote about quantization attributed to E. Nelson is: “first quantiza-
tion is a mystery, but second quantization is a functor”. The first quantization in
general will undoubtedly continue to generate deep insights into the quantization
process, but the situation that we are interested in is very simple—the quantiza-
tion of a finite set S. First quantization is the process to go from a classical system
to a quantum system that modeled by a Hilbert space and a Hamiltonian operator.
In the case of a finite set S as the classical configuration space, the quantization

2We mean lattices as in physics in the sense they are regular graphs, which are not lattices in
the mathematical sense because they are not necessarily subgroups of Rn for some n.
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is simply the linearization of S—the Hilbert space is just C[S] spanned by the ele-
ments of S. Second quantization is the process to go from a single particle Hilbert
space to a multi-particle Hilbert space. For simplicity, if we consider a fermion
with a single particle Hilbert space V of dimension= n, then the multi-particle
Fock space is just the exterior algebra ∧∗V of dimension 2n. The process of de-
quantization is measurement: when we measure a physical observable O at state
|Ψ⟩, we arrive at a normalized eigenvector ei of O with probability pi = ⟨ei|O|Ψ⟩.

According to M.-M. Kapranov and V.-A. Voevodsky, the main principle in cat-
egory theory is: “in any category it is unnatural and undesirable to speak about
equality of two objects”. The general idea of categorification is to weaken an
equality to some version of isomorphism. Naively, we want to replace a natural
number n with a vector space of dimension n. Then the categorification of a finite
set S of n elements should be C[S] of dimension n. It follows that the equality of
two sets Si, i = 1, 2 should be relaxed to an isomorphism of the two vector spaces
C[Si], i = 1, 2. Isomorphisms between vector spaces can be functorial or not as
the isomorphisms between V and V ∗∗ or V ∗ demonstrated: while the first one is
functorial, the second one is not.

We are interested in finding procedures for quantization and categorification
that are as functorial as possible. Categorifications of monoids and rings lead to
monoidal categories and algebroids—an active research area in quantum algebra
and quantum topology.

3. Quantum Mathematics

Our long term goal is to study quantum mathematics and their application
to quantum physics and quantum computing. Quantum mathematics will be a
catch-all for mathematics needed to model quantum systems and mathematics
based on quantum logic. A large part of classical mathematics is based on set
theory and classical logic. Quantum logic is not mature enough that would enable
us to pursue a new layer of mathematics. As a relevant step, we propose that
higher algebroid theory as part of the quantum mathematics. We use algebroid
to mean C-linear category. We are interested in representations of categories with
additional structures such as the monoidal categories of n manifolds and tangles
in R3 into the algebroid of finite dimensional vector spaces.

Representation is a powerful method to study new structures through familiar
ones, e.g. we gain deep understanding of groups via their representations in linear
transformations. One of the most important concept in TQC is an anyon—a
quantum particle whose statistics can be more general than boson and fermion.
The mathematical model of an anyon is a simple object in a unitary MTC. To
understand an object x in a unitary MTC C, we consider the functor from C toHil:
x → Hom(x, y), where Hil is the category of finite-dimensional Hilbert spaces.
The Hilbert space Hom(x, y) models the processes between the two states x, y. In
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classical physics, the excited states of a particle at a point x ∈ M form its tangent
space TxM . Analogously, we may treat the MTC as the quantum tangent space of
an anyonic point. More speculatively, we could imagine the quantum phase space
as some lattice (or triangulation) limit of the tangent bundle by replacing a vertex
with an anyonic point and the fiber over the vertex with the MTC. Algebroids with
additional structures vs categories is the same as manifolds vs topological spaces.
Therefore, we are interested in algebroids with certain structures that could be
thought as quantum manifolds. In a sense, a MTC is just a quantum finite set.

It has been often complained that category theory is just a language for organiz-
ing things. But higher order language is important for the progress of mathematics,
and deep mathematical insights are just some kinds of powerful languages. For
the opposite direction, if we adopt the Bourbaki logical formalism, then we need
4, 523, 659, 424, 929 many symbols together with 1, 179, 618, 517, 981 links between
certain of those symbols in order to express the structuralist definition of the num-
ber 1. How big the number 1 would be in this language if each symbol and link
has a legible physical size?

4. Plan

As we continue to gain deeper understanding of (2 + 1)-dimension, we will also
expand into (3 + 1)-dimension, and symmetry-enriched TPMs. In the real world,
3D materials are more common and TPMs are always coupled to conventional
degrees of freedom, therefore conventional symmetry such as time-reversal can also
be present. It is important to understand how to combine conventional symmetry
with topological order—symmetry enriched topological order (SET). Time-reversal
symmetry combined with trivial topological order leads to the symmetry protected
topological order (SPT) exhibited in topological insulators.

We plan to start the course with the Heisenberg model of a beautiful real quan-
tum spin liquid—the mineral Herbertsmithite, and end the first quarter with the
theorem that every Turaev-Viro type (2 + 1)-TQFT has a Hamiltonian realiza-
tion via Kitaev or Levin-Wen models. Such Hamiltonian realizations of TQFTs
are topological qubit liquids which generalize gapped quantum spin liquids. The
second quarter will focus on Reshetikhin-Turaev type (or physically Witten-Chern-
Simons type) (2+1)-TQFTs and their applications to the fractional quantum Hall
effect and anyonic quantum computing. The last quarter will be on extensions of
2D theories to ones enriched with conventional group symmetries and in 3D.


