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1 Introduction

In a remarkable paper, Levin and Wen defined a family of
rigorously solvable lattice spin Hamiltonians for a large
class of 2D topological phases of matter based on string-
net, called the Levin–Wen model [1]. The Levin–Wen
model takes a unitary fusion category C as input, and
as output, realizes the topological phase effectively de-
scribed by the topological quantum field theory (TQFT)
based on the Drinfeld center Z(C) of C. In Section 5
of their paper, Levin–Wen model is generalized to 3D
(and � 4 dimensions) using unitary symmetric fusion
categories. The 3D Levin–Wen model realizes all discrete
gauge theories coupled with bosons and fermions. In this
paper, we show that a generalized string-net model ex-
ists for all unitary braided fusion categories, which in-
clude the unitary symmetric fusion categories and uni-
tary modular categories as two special cases. The case
for unitary modular categories is a generalization of the
(3 + 1)-BF theories with a non-zero “cosmological” con-
stant. A unitary braided fusion category, also called a
unitary premodular category, is some non-trivial prod-
uct of a discrete gauge theory with a unitary modular
category. Since unitary modular categories are algebraic
theories of anyons, our new models can be thought as
discrete gauge theories coupled with anyons.

As a generalization of the Levin–Wen model, our
Hamiltonians also consist of two kinds of commuting
projectors, and are stable under small, yet arbitrary per-

turbations. On the 3-sphere, the ground state manifold
is non-degenerate. In general the discrete gauge theory
part of a unitary premodular category corresponds to a
finite group G, and we expect the ground state man-
ifold of our Hamiltonian on a general 3-manifold X is
isomorphic to C[H1(X ;G)] if G is abelian. The ground
state manifold on any 3-manifold X are examples of 3D-
error correction codes. It will be interesting to know if
there are examples of self-correcting quantum memories
for some theories on certain 3-manifolds. Pointed excita-
tions in our models are still bosons and fermions. What is
interesting is the existence of extended excitations such
as loops and θ-graphs. The mutual statistics of pointed
excitations and the extended excitations are potentially
more general than bosonic and fermionic statistics.

When the time reversal symmetry of fractional topo-
logical insulators is broken, fractional topological insula-
tors can be connected to some topological phases includ-
ing the trivial one. Therefore, 3D fractional topological
insulators can be considered as topological phases with
symmetry [2]. We conjecture that our (3 + 1)-TQFTs
are the underlying topological orders for 3D topologi-
cal insulators and their generalizations. A classification
of the compatible symmetries in our models using the
projective symmetry group [3] should reveal a connec-
tion to topological orders with symmetry. A classifica-
tion of time-reversal symmetries within a given unitary
premodular category would lead to a classification of all
3D-topological insulators with the same underlying topo-
logical order.
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2 Topology in condensed matter physics

As a branch of pure mathematics, topology is the study
of spaces regardless of metric. Therefore, topology in
physics seems to be a strange occurrence because dis-
tance and time are of paramount importance in physical
measurements. However, the first application of topol-
ogy in physics predates topology and goes back at least
to 1833 when Gauss revealed his beautiful formula for
the linking number. It was argued that the formula orig-
inated first from Gauss’s study of the tracking of as-
teroids and comets, and later he applied his formula to
electromagnetism [4].

Suppose L1, L2 are two disjoint simple closed curves
in R

3. If there is an electric current of strength j1 in the
wire L1 = {x′(s)|s ∈ S1}, then it generates a magnetic
field

B(x) =
μ0j1
4π

∮
L1

(x′ − x) × dx′

|x′ − x|
by the Biot–Savant law for x ∈ R3\L1. By the Maxwell
equation

∮
L2
B(x)dx = μ0j for L2 = {x(t)|t ∈ S1}, it

follows that

μ0j2 =
μ0j1
4π

∮
L2

∮
L1

(x′ − x) · (dx′ × dx)
|x′ − x|

Therefore, an electromagnetic definition of the linking
number between L1 and L2 will be the ratio j2

j1
. Gauss’s

formula has a geometric explanation as follows. Tak-
ing two points x′, x on L1, L2 and normalizing the line
segment x′–x to x′−x

|x′−x| , we obtain a map from the ab-
stract torus S1×S1 of s, t parameters to the unit sphere
S2 ⊂ R3. Gauss’s formula is simply the degree of this
map. Though linking number is a very useful invariant
for linkage, Maxwell, who were very interested in knot
theory, seemed to be the first to find two un-separable
disjoint simple closed curves with linking number equal
to 0 [4].

An important topic in topology is the study of spe-
cial spaces called manifolds. An n-manifold M is a space
that is locally the Euclidean space R

n up to homeomor-
phism. Simple examples are n-spheres: 1-sphere is the
circle, and 2-sphere is our ordinary sphere. It is a chal-
lenge to visualize manifolds beyond dimension 2, and see
their relevance to condensed matter physics. After all, all
physical experiments are carried out in our 3-space R

3,
and most 3-manifolds cannot be embeded into R

3. But
complicated manifolds could arise in condensed matter
physics at least in two different situations: as subsets
of R

3 with complicated boundary conditions, or as con-
figuration spaces. Just as every orientable surface is a
polygon in the plane with glued sides, every orientable
3-manifold can be obtained by identifying pairs of faces of
a polyhedron (solid). A familiar example is the 3-torus as
a cube with periodic boundary identifications. Another

famous example is the Poincare homology 3-sphere ob-
tained by identifying faces of a dodecahedron. Topolo-
gists use topological invariants to distinguish manifolds.
Topological invariants in physics often arise classically
by integrating local geometric quantities such as curva-
ture, or quantum mechanically by path integrals of total
derivative terms, usually dropped, in the action func-
tional.

The discovery of the fractional quantum Hall (FQH)
liquids, and recently the topological insulators stirred
great interests in topology in condensed matter physics.
Witten–Chern–Simons theories as effective theories for
FQH liquids and Chern numbers used in the study of
topological insulators represent two kinds of topologi-
cal invariants: quantum and classical. While there is
no clear-cut separation, by quantum invariants we mean
invariants of spaces obtained as path integrals of some
TQFTs. Famous examples are the Jones polynomials at
roots of unity from Witten–Chern–Simons theories. Clas-
sical topological invariants include homotopy groups,
(generalized) (co)homology groups such asK-theory, and
characteristic classes such as Chern classes. Using this
rough division, the Jones polynomial at 4-th root of unity
appearing for the 5/2-fractional quantum Hall effect is a
quantum invariant, while the Chern number appearing
in topological insulators is a classical invariant. But some
invariants defined quantum mechanically turn out to be
classically determined.

One of the frontiers in topological phases of matter
is the understanding of interacting 3D-topological insu-
lators [5, 6]. Interactions can be thought as dynamical
entanglement. When entanglement becomes long-rang,
topological symmetry could emerge, and an effective de-
scription by a TQFT is possible. Therefore materialized
topological symmetry can be described by the tensor
category encoding the effective TQFT. Non-interacting
topological insulators are believed to be modeled by
(3 + 1)-BF TQFTs [7], whose path integrals are deter-
mined by classical topological invariants. We ask: how
many (3 + 1)-TQFTs do we know and which might be
related to interacting 3D-topological insulators?

3 (3+1)-TQFTs

Dimension 4 is different. The Euclidean space R4 is the
only Euclidean space that has more than one smooth
structure. Roughly, this means that there is more than
one way to do calculus on R

4. And not just one more—
there are infinitely many more different ways to do calcu-
lus on R

4 [8]. The classification of smooth 4-manifolds is
one of the most difficult problems in mathematics (there
is another flavor of 4D topology: the classification of
topological 4-manifolds. Due to M. Freedman’s work, the
landscape of topological 4-manifolds is more or less un-
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derstood [9].) Therefore, it is not surprising that there
are not many smooth topological invariants, classical or
quantum, in dimension 4 that detect smooth structures.
In particular, (3+1)-TQFTs are very difficult to find be-
cause they could generate smooth topological invariants
of 4-manifolds. The most powerful one for 4D topology
is the first TQFT invented by Witten in 1988: an N = 2
supersymmetric Yang–Mills theory which reproduces the
Donaldson invariant of 4-manifolds [10].

As a first approximation, TQFTs are quantum field
theories such that the path integrals Z(M) = Tr(eitH)
for a theory with Hamiltonian H on a space manifold
N is a topological invariant of M = N × S1, which is
the space-time with periodic time. In particular Z(M)
should be independent of the time t. (2 + 1)-Witten–
Chern–Simons type TQFTs are those with H ∼= 0, but
the (3 + 1)-Witten–Donaldson TQFT is more subtle.
The trace is interpreted as a super-trace Tr((−1)F eitH),
where (−1)F is the fermionic parity operator, so time
dependence could be canceled. Moreover, Donaldson in-
variant is defined only for space–time manifolds satisfy-
ing certain topological restrictions [11].

Two interesting families (3 + 1)-TQFTs are discrete
gauge theories, and BF theories [12, 13]. Both fami-
lies of TQFTs give rise to topological invariants that are
determined by classical homotopy invariants. The same
should be true for all the (3+1)-TQFTs based on unitary
braided fusion categories.

Witten–Donaldson theory is not determined by ho-
motopy invariants, and detects smooth structures of 4-
manifolds. The Witten–Donaldson TQFT is actually a
partial TQFT because it is defined only for 4-manifolds
with b+2 > 1. For example, it is not defined for the 4-
sphere S4. Very recently, Witten defined another (3+1)-
TQFT: an N = 4 supersymmetric Yang–Mills theory
[14]. It is not known if this TQFT can detect smooth
structures of 4-manifolds. There are some other proposed
(3+1)-TQFTs or partial TQFTs, but not much is known
about them for the detection of smooth structures.

Physicists describe fermions using Grassmann num-
bers, which are differential 1-forms, in the second quan-
tized framework. By De Rham theory, closed differen-
tial forms represent cohomology classes, thus fermions
are aware of the topology of the space that they
occupy. Therefore, topological quantum field theories
with fermions are potentially very different from purely
bosonic ones such as (2 + 1)-Witten–Chern–Simons
theories (Reshetikhin–Turaev TQFTs mathematically).
Witten–Chern–Simons theories are bosonic in the sense
that the path integrals contain no Grassmann numbers.

3.1 Discrete gauge theories

Discrete gauge theories based on finite groups G are the

best understood examples of higher dimensional TQFTs
[15]. For a (3 + 1)-TQFT based on G, the path integral
of a 4-manifold W counts the number of representations
from the fundamental group of W to G. The Hilbert
space associated to a 3-manifoldX is spanned by the con-
jugacy classes of homomorphisms from the fundamental
group of X to G.

3.2 BF theories

Given a Lie group G, and a principle G-bundle P over a
4-manifold W , the (3 + 1)-BF theory is a TQFT based
on the action

SBF =
∫
W

Tr(B ∧ F +
Λ
12
B ∧B)

where B is a adP -valued 2-form, F the curvature of a
connection A on P , and Λ is a coupling constant [13].
Recall that adP is the vector bundle P ×G g, where
G acts on its Lie algebra g through the adjoint action.
Hence adP -valued 2-forms are g-valued 2-forms on adP .
When G = GL(4,C), Λ plays the role of the cosmolog-
ical constant. The path integral for a 4-manifold W is
eiβσ(W ), where β is some constant independent of W ,
and σ(W ) is the signature of W . Recall that for an ori-
ented 4-manifold W , the intersection form on H2(W ; R)
is a symmetric bilinear form λ(W ). The signature σ(W )
is the difference of positive and negative eigenvalues of
λ(W ). For BF theories, the Hilbert space associated to
a 3-manifold X is always 1-dimensional.

3.3 Cohomological field theories

Witten–Donaldson type (n + 1)-TQFT are cohomologi-
cal in the sense that the vector space associated to an n-
manifold M is related to the cohomology of some moduli
space. For Donaldson theory, fix a compact Lie group G
and a principle G-bundle P over a 4-manifold W . Then
the moduli space is the space of anti-self dual instan-
tons, i.e., solution to the Yang–Mills equation F †

A = 0
for connections A on P . Donaldson invariant roughly
counts algebraically the number of solutions. An impor-
tant ingredient in the formulation of Donaldson theory
is supersymmetry (topological twist, which is also very
important, will not be discussed here.) Witten formu-
lated Donaldson invariant as correlation functions of an
N = 2 supersymmetric Yang–Mills theory [10]. A beau-
tiful illustration of the role of supersymmetry is the fol-
lowing formula∗ to count algebraically the number Δf

of solutions to f(x) = 0 of a generic smooth function
f : [0, 2] → [−1, 1] such that f(0) = −1, f(2) = 1:

Δf =
∫∫∫∫

eyf(x)+χf ′(x)ψdxdydχdψ

where χ and ψ are Grassmann variables.

∗The second author learned the formula from J. Maciejko who attributed it to E. Witten.
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An important event in 4D topology is the discovery
of Seiberg-Witten equation around 1994 [16]. Seiberg–
Witten invariant is conjectured to give the same topo-
logical information about 4-manifolds as Donaldson in-
variant, and is much easier to work with mathemat-
ically. Seiberg–Witten theory is the infra-red limit of
the N = 2 supersymmetric Yang–Mills theory. Given
a spinc-structure on the 4-manifold W , there associated
two spinor bundles Λ± and a line bundle L over W . The
Seiberg–Witten equation is for a pair (A,ψ), where A is
connection on L and ψ a positive spinor:

DAψ = 0, F †
A = −σ(ψ, ψ)

where DA is the Dirac operator, and σ is some paring for
positive spinors. The Seiberg–Witten invariant basically
counts the number of solutions.

4 Discrete gauge theory coupled with anyons

4.1 Rigorously solvable Hamiltoninans

The existence of rigorously solvable Hamiltonians follows
from a general mathematical theory of picture TQFTs
[17]. Such (3+1)-TQFTs based on unitary braided fusion
categories will be studied mathematically in Ref. [18]. In
this paper, we will write down explicit Hamiltonians for
those (3 + 1)-TQFTs and quote necessary results from
Refs. [17, 18].

For convenience, we will describe the model on the cu-
bic lattice in detail, and only sketch the model for general
3-manifolds.

4.1.1 Algebraic data

There are several equivalent definitions of a unitary
braided fusion category (UBFC). We refer the interested
readers to Ref. [19]. While every definition is compli-
cated, there is a graphical calculus and interpretation
for a UBFC as an algebraic theory of anyons which
make the axioms reasonable. The graphs involved can be
thought as anyon trajectories and interesting topological
changes corresponding to physical events such as cre-
ation/annihilation, fusion/spliting, braiding and twist-
ing. Given an anyoic system with particle types a, b, c, ...
which form a label set L. The number of particle types
is finite and called the rank of the UBFC. A particular
convenient way to present a UBFC is through three sets
of numbers: {ta = ±1}a∈L, {F abcd;nm}, a, b, c, d,m, n ∈ L,
and {Rabc }, a, b, c ∈ L. The numbers {ta = ±1}a∈L en-
code the creation/annihilation structures. The so-called
6j symbols {F abcd;nm}, a, b, c, d, ,m, n ∈ L are solutions to
the pentagon equations, while {Rabc }, a, b, c ∈ L encode
the braidings which satisfy the hexagon equations. The
three set of numbers are not independent as the cre-

ation/annihilation, fusion/spliting, and braiding have to
be compatible. (Strictly speaking the 6j-symbols are 10j
symbols and the braidingsRabc are unitary matrices when
some fusion multiplicity is > 1. For simplicity, we assume
all UBFCs are multiplicity-free.) As a consequence, any
planar trivalent graph with braidings can be evaluated
to a number, which is the topological amplitude of the
represented physical process.

The 6j-symbols {F abcd;nm} can be organized into matri-
ces, called F -matrices, by the following diagram:

Similarly, the braiding eigenvalues are defined by the
following diagram:

Besides multiplicity-free in the fusion rules, we will
also assume that all labels are self-dual, so edges in our
lattices are not oriented. Furthermore, we assume edges
around any vertex can be bent as long as we do not
introduce any crossings. Examples of such theories are
premodular categories from the Temperley–Lieb algebras
[19]. The Hamiltonian below can be generalized to the
general case with adequate notation.

4.1.2 Cubic lattice model

Given {F abcd;nm}, {Rabc } of a UBFC with label set L

(strictly speaking, we should choose a set of representa-
tive simple objects). Let C

L be the Hilbert space spanned
by all labels. Just as in the Levin–Wen model, it is con-
venient to work with trivalent graphs, therefore we first
resolve the cubic lattice C into a trivalent lattice. There
are many ways to do it, and the resulting theories are
all equivalent as each one is equivalent to the continuous
limit. At each 6-valent vertex, we resolve it as follows:

As a result, each 6-valent vertex of the cubic lattice C
is split into four trivalent ones with a Z3-symmetry. We
assume periodic boundary conditions, so our lattice is in
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the 3-torus.
The Hilbert space V of the model is spanned by all la-

belings of the edges in the resolved cubic lattice, denoted
by ΓC . Equivalently we assign a qudit CL to each edge of
ΓC including the new ones. There are two kinds of terms
in the Hamiltonian: the vertex type and the plaquette
type. In order to write down the Hamiltonian explicitly,
we need to project our lattice onto a plane. We look at
the lattice along the (1, 1, 1)-direction, and therefore the
resolved cubic lattice ΓC is projected to a plane perpen-
dicular to the (1, 1, 1)-direction. The microscopic Hilbert
space is V = ⊗e∈ΓC CL. The Hamiltonian H is of the
form

−J1

∑
v∈ΓC

Av − J2

∑
p∈Csq

Bp

where v ranges over all vertices of ΓC including the new
ones, p ranges over Csq — all plaquettes which corre-
spond to the original squares of the cubic lattice C, and
J1, J2 are coupling constants.

The microscopic Hilbert space V = ⊗e∈ΓCL has a nat-
ural basis: the 1-skeleton of ΓC with a label on each edge.
Then for a vertex v of ΓC , the term Av acts as a basis
|Ψ〉 as follows: Av|Ψ〉 = |Ψ〉 if the three labels around v
obey the fusion rules; otherwise Av|Ψ〉 = 0. A plaquette
term is much more complicated, we explain below how
it is derived and give its formula in terms of 6j-symbols
and braiding eigenvalues.

Our resolution of the cubic lattice to a trivalent one is
very symmetric. There are three kinds of plaquettes in
Csq: those corresponding to squares in the planes paral-
lel to x–y, y–z and x–z plane. Below are the pictures of
three representatives of such plaquettes:

Note that each plaquette p is a decagon (although we
will call such a plaquette a decagon, it is not always pla-
nar. It is a surface bounded by a polygonal path with 10
edges: 4 of them correspond to the 4 sides of the original
square of the cubic lattice and 6 new ones from the reso-
lution.) There are also 10 adjacent edges. The plaquette
term indexed by p is obtained by placing a simple loop
labeled by a projector ω0 onto the plaquette along the
edges as below.

Physically the projector ω0 enforces the total flux

through p to be a transparent label (see Section 4.5
below for the definition). Such a projector is formally
written as ω0 =

∑
s∈L

ds

D2 s, where ds is the quantum di-
mension of the label s and D2 =

∑
s∈L d

2
s. Adding such

a loop with the projector ω0 will not change the topo-
logical amplitude of a basis |Ψ〉. This can be seen by
expanding ω0 into

∑
s∈L

ds

D2 s and noticing that a con-
tractible loop labeled by s is evaluated to ds. A formula
for a plaquette term is then obtained by evaluating the
same projector in a different way using 6j symbols and
braiding eigenvalues. For analogous derivations of similar
terms in Levin–Wen model, see page 100 of Ref. [19].

Due to the regularity of the cubic lattice and the sym-
metry of our resolution, we need only to write down one
plaquette term. We choose to write the formula for the
plaquette in the x–y-plane, denoted as pxy. We could
equally work with the one in the x–z-plane pxz or the
one in the y–z-plane pyz.

To write down such a formula, we denote the basis ele-
ment that labels the 10 edges of pxy by abcdpqruvw and
their 10 adjacent edges by a′b′c′d′p′q′r′u′v′w′ as in the
following picture by |Ψp

xy
,abcdpqruvw〉. Labels of edges

that are not named remain the same in all computations.
Our convention is that the edge not on the decagon pxy,
but next to the edge of the decagon labeled by l, is la-
beled by l′.

The plaquette term Bpxy
will map the basis vector

|Ψp
xy
,abcdpqruvw〉 into a big linear combination of basis

elements, where the labels a, b, c, d, p, q, r, u, v, w are re-
placed by new labels a′′, b′′, c′′, d′′, p′′, q′′, r′′, u′′, v′′, w′′.
In the following,

a′′, b′′, c′′, d′′, p′′, q′′, r′′, u′′, v′′, w′′

will be abbreviated as a′′, ..., w′′. Therefore, all we need
are the coefficients Bspxy,a

′′,...,w′′ in

Bpxy
|Ψpxy,abcdpqruvw

〉

=
∑
s∈L

ds
D2

∑
a′′,...,w′′∈L

Bspxy,a
′′,...,w′′|Ψs

pxy,a
′′,...,w′′〉
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Recall that ω0 is the formal sum
∑

s∈L
ds

D2 s. The oper-
ator Bp

xy
=

∑
s∈L

ds

D2B
s
pxy

is a sum of operators Bspxy
,

where Bsp
xy

is the operator that corresponds to the sim-
ple loop labeled by s. Hence it suffices to know the coef-
ficients Bspxy,a

′′,...,w′′ in

Bspxy
|Ψp

xy
,abcdpqruvw〉

=
∑

a′′,...,w′′
Bspxy,a

′′,...,w′′|Ψs
pxy,a

′′,...,w′′〉

In terms of 6j symbols and braiding eigenvalues, we claim

Bsp
xy
,a′′,...,w′′ = Rq

′b
q Rc′rc Rq

′b′′
q′′ Rc

′r′′
c′′ F a

′′sp
a′;ap′′F

p′′sq
p′;pq′′F

q′′sb
q′;qb′′F

b′′sc
b′;bc′′F

c′′sr
c′;cr′′F

r′′su
r′;ru′′Fu

′′sd
u′;ud′′F

d′′sv
d′;dv′′F

v′′sw
v′;vw′′Fw

′′sa
w′;wa′′

To derive this formula, we first twist the labeled graph
representing the basis |Ψp

xy
,abcdxyzuvw〉 around the two

vertical edges as below:

This multiplies |Ψp,abcdxyzuvw〉 by Rq
′b
q Ru

′c
u . Then we

fuse the simple loop labeled by s with the edge labeled
by a as shown below:

Next a sequence of F -moves brings the s-labeled
strand counter-clock-wise along the boundary of the
decagon p through all the trivalent vertices one by one.
Each time when the s-labeled strand passes a trivalent
vertex on p, an F -move is used. Due to the two intro-
duced twists, we do not need to use braidings when we
perform all the F -moves.

Finally, the s-labeled strand returns to the edge la-
beled by a with a bubble.

Removing the bubble and twisting back the two verti-
cal edges, we arrive at the formula above.

4.1.3 Dual cellulations

The cubic lattice is so regular that a lot of technical dif-
ficulties disappeared. Since there is substantial topology
involved for the general case, we are content with a sketch
of the procedures. For the basic topology involved, see
the book [20].

Trivalent graphs are generic in surfaces under per-
turbations. Genetic 2D polyhedra are simple polyhe-
dra which are generalizations of trivalent graphs. For
a general 3-manifold X , our Hamiltonian is given on a
branched standard spine of X . An elementary way to
present a 3-manifold X is by a triangulation of X . A tri-
angulation Δ of a 3-manifold X is a collection of tetrahe-
dra {Δi} such that tetrahedra are glued together along
their faces. Our model is conveniently defined using the
dual cellulation ΓΔ of the triangulation Δ. In 2D, re-
call that in the dual cellulation of a triangulation of a
surface, each triangle becomes a vertex, an edge still an
edge, while a vertex becomes a cell (polygon). Notice
that the 1-skeleton of the dual cellulation of a surface is
always a trivalent graph. In 3D, a vertex of the dual cel-
lulation ΓΔ is the center of a tetrahedron. Two vertices
of ΓΔ are connected by an edge if their corresponding
tetrahedra share a face. A face of ΓΔ is dual to an edge
of Δ, and a 3-cell (solid) is dual to a vertex of Δ. The
dual cellutation of a 3-manifold is an example of a sim-
ple polyhedron. Our model can be easily generalized to
any branched standard spine of a 3-manifold X , which
is much more convenient to work with in practice.

In order to define our Hamiltonian, we need an extra
structure, called an oriented branching, on the triangu-
lation Δ, or equivalently on ΓΔ. We will define it for the
triangulation Δ, but the translation to ΓΔ is straightfor-
ward. An oriented branching on a triangulation Δ of X
is an assignment of an arrow to each edge of Δ so that
in the three edges of each triangle of Δ there are exactly
two consistent arrows, i.e., the three arrows of any tri-
angle never form a cycle. Every oriented 3-manifold X

has a triangulation with an oriented branching [20]. An
oriented branching uniquely determines an ordering of
the 4 vertices of each tetrahedron if the arrows go from
lower numbered vertices to higher numbered ones.
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Using an oriented branching, we can identify each
tetrahedron in a triangulation Δ of X with the standard
tetrahedron in R

3. The 1-skeleton of the dual cellulation
is a 4-valent graph. We can resolve this 4-valent graph
into a trivalent graph in a standard way. The Hilbert
space of our model is again the tensor product of all qu-
dits C

L over all edges of the resolved 1-skeleton of the
dual cellulation ΓΔ including the new ones. There are
again two kinds of terms: vertex and plaquette types.
The Hamiltonian is H = −∑

v∈Γ Av −
∑

p∈Γ Bp, where
v ranges over all vertices including the new ones, and p

ranges over all 2-cells of the dual cellulation (plaquettes).
The oriented branching allows us to have standard local
models of the standard spine in R

3, therefore we can use
a similar procedure as for the cubic lattice to write down
the plaquette terms.

4.2 Ground state manifold

Given an oriented 3-manifold X , consider the infinite
dimensional vector space Ã(X) generated by all colored
string-nets inX . Let A(X) be the quotient space of Ã(X)
by all local relations derived from the UBFC. (Strictly
speaking, the string-net strands are ribbons and the ver-
tices are rigid. We refer the interested readers to Ref. [18]
for a mathematical discussion.) Then A(X), called the
skein spaces, are isomorphic to the ground state man-
ifolds of the spin Hamiltonians, which are examples of
error-correction codes.

The transparent elements of a unitary premodular cat-
egory corresponds to a finite abelian group G (see Sec-
tion 4.5), and the ground state manifold of our Hamilto-
nian on a general 3-manifold X should be isomorphic to
C[H1(X ;G)].

4.3 Statistics of excitations

Elementary excitations in the spin models include
pointed particles, loop-defects, θ-defects, and more gen-
eral defects. Their types and statistics can be described
using representations of certain cylindrical categories re-
lated to boundary conditions for 3-manifolds.

We consider two kinds of boundary conditions for a 3-
manifold X with a boundary surface Y : crude and topo-
logical. A crude boundary condition c on Y is a finite col-
lection of points labeled by objects of C. Let Ã(X,Y ; c)
be the vector space generated by all colored string-nets
in X which terminate at c. Then the relative skein space
A(X,Y ; c) is the quotient of Ã(X,Y ; c) by local relations.
We define a category A(Y ) for each surface Y (includ-
ing the empty one) as follows. An object of A(Y ) is a
crude boundary condition c. The morphism space from
a boundary condition c1 to c2 is the relative skein space
A(Y × [0, 1]; c1, c2). Therefore, a morphism from an ob-
ject c1 to another object c2 is represented by a linear

combination of string-nets in Y × [0, 1] that terminate at
c1 and c2 in Y × 0 and Y × 1, respectively.

Just as algebras, the linear categories A(Y ) have rep-
resentations. Any representation of A(Y ) is called a
topological boundary condition. An irreducible represen-
tation corresponds to an elementary excitation whose
boundary is Y . The number of elementary excitation
types for Y is dim(V (Y × S1)). The statistics of ele-
mentary excitations can be computed by using the rel-
ative skein space with topological boundary conditions.
(2 + 1)-dimensional analogues are discussed in Ref. [21].

4.4 Modular category

The SU(2)–Witten–Chern–Simons theories can be pro-
moted to (3 + 1)-TQFTs, called Crane–Yetter TQFTs
[22]. The Crane–Yetter (3 + 1)-TQFTs and their gener-
alizations based on premodular categories induce repre-
sentations of the motion groups— generalizations of the
braid group to more general mapping class groups.

The generalization of the braid group to extended ob-
jects in 3D is conceptually straightforward. The gener-
alization to small loops is called the loop braid group
[23]. Consider finitely many small 3-balls {B3

i } inside
the standard 3-ball B3. Fix the equator Si of each small
3-ball B3

i . Then the mapping class group of B3\{Si}—
the self-diffeomorphisms of B3\{Si} fixing the outside
boundary of B3 modulo deformations, is the loop braid
group. Given a group, it is not always easy to find a pre-
sentation, i.e., an explicit complete set of generators and
relations. For the loop braid group, this is done in Ref.
[23].

Suppose (V, Z) is a (3 + 1)-TQFT based on a mod-
ular category C. For an oriented closed 4-manifold W ,
the topological invariant Z(W ) is ei π

4 cσ(W ), where c is
the topological central charge of C, and σ(W ) is the sig-
nature of W . The topological central charge is equal to
the chiral central charge of the corresponding conformal
field theory mod 8. For an oriented closed 3-manifold, the
vector space is always 1-dimensional. When an oriented
3-manifold X has a boundary Y , the topological bound-
ary condition for Y is always trivial. The vector space
associated to X with this trivial boundary condition on
Y is isomorphic to VRT(Y ) —the vector space associated
to Y in the Reshetikhin–Turaev (2 + 1)-TQFT based on
C.

Mathematically, the category A(Y ) is trivial up to
Morita equivalence [18]. Consequently for any oriented
closed surface Y , there are neither non-trivial particle ex-
citations nor non-trivial excitations of extended objects.
This is analogous to the situation of (2+1)-TQFTs based
on modular categories such as (E8)1. For modular cate-
gories from Chern–Simons theories, our models gap out
the F ∧ F -theories in the bulk, while the Chern–Simosn
theories on the boundary survive.
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4.5 Mathematical underpinning and continuous limit

The conceptual underpinning of the 2D Levin–Wen
model involves two mathematical theorems: The Drin-
feld center or quantum double Z(C) of a unitary fu-
sion category C is always modular, and the Turaev–
Viro TQFT based on C is equivalent to the Reshetikhin–
Turaev TQFT based on Z(C) [24–26]. Therefore, Levin–
Wen model is a Hamiltonian realization of both theo-
rems simultaneously. The mathematical theory behind
the new models should be a generalization of these the-
orems to (3 + 1)-dimension.

There is a structure theorem for premodular cate-
gories. An object x in a premodular category is transpar-
ent by definition if s̃xy = dxdy for any object y, where s̃xy
is the topological invariant of the Hopf link colored by x
and y. Transparent elements of a premodular category C
form a symmetric fusion category SC . By a theorem of
Deligne, every symmetric fusion category is equivalent
to the representation category of a pair (G,μ), where G
is a finite group and μ is a central element of G of or-
der � 2 (see Ref. [27]). When μ is the identity, there is
a quotient QC of C by SC , which is modular. When μ is
not the identity, a generalized quotient exists. Therefore,
essentially C is some kind of extension of the quotient QC
by SC .

The spin lattice models have continuous limits that are
TQFTs based on pictures. A framework for constructing
picture TQFTs is formulated in Ref. [17]. The ribbon
graphs based on a premodular category are examples of
a system of fields in the sense of Ref. [17] and hence lead
to a (3+1)-TQFT. In general, picture TQFTs have state-
sum formulation, which can be realized by spin models.

4.6 Holographic resolution of anomaly

(2 + 1)-Witten–Chern–Simons (WCS) theories have
anomaly in the sense that the path integral for closed 3-
manifolds are not well-defined unless the 3-manifolds are
endowed with some extra structures such as 2-framing
[28]. In dimension 2 the anomaly is manifested in the
chiral central charge of the boundary CFT. The (3 + 1)-
TQFT based on a modular category can be regarded
as a holographic resolution of the anomaly: the (2 + 1)-
WCS theories are really (3+1)-TQFTs. Our model leads
to a holographic (3 + 1)-tensor network representation
for Chern–Simons theories, which is probably not a RG-
fixed point. We believe that this phenomenon is related
to some generalization of the AdS/CFT correspondence.

Given a modular category C, the Reshetikhin–Turaev
(RT) TQFT leads to a topological invariant of a 3-
manifold X with some extra-structure. A convenient way
to encode this extra structure is by an integer n. There-
fore, by an extended 3-manifold, we mean a pair (X,n),
whereX is an oriented 3-manifold and n an integer. For a

surface Y , the extra structure can be given a Lagrangian
subspace L in H1(Y ; Q). RT (2+1)-TQFT will associate
a vector space to the pair (Y, L). From the (3 + 1)-point
of view, the extra structures n and L give instructions
to finding manifolds one-dimensional higher. Then the
associated path integral and vector space for these one-
dimension higher manifolds are exactly the path inte-
gral and vector space from RT (2 + 1)-TQFTs. Specif-
ically, given an extended 3-manifold (X,n), choose an
oriented 4-manifold W bounding X and σ(W ) = n,
then Z3+1(W ) = ZRT ((X,n)). For an extended sur-
face (Y, L), choose a 3-manifold X so that the kernel
of the inclusion of H1(Y ; Q) in H1(X ; Q) is L, then
Z3+1(X) = ZRT ((Y, L)).

5 Applications

5.1 3D topological insulators and BF theories

There are several proposals for the effective TQFTs that
model topological insulators [7, 29]. The modeling with
BF theories is of particular interests to us because (3+1)-
BF theories are related to (3 + 1)-TQFTs based on uni-
tary modular categories.

Consider the (3 + 1)-BF theory with G = SU(2). By
integrating out the B-field when Λ 	= 0, we have

Z(W ) =
∫ ∫

B,A

ei
R

W
Tr(B∧F+ Λ

12B∧B)DBDA

=
2π√
Λ

∫
A

e−
3i
Λ

R
W

Tr(F∧F )DA

Comparing it with the SU(2)–WCS theory, we see that
12π
Λ corresponds to the level k in SU(2)–WCS theories.

It is generally believed that the path integrals in the top
dimension of a TQFT determine the extended TQFTs
down to at least codimension= 2. If so, then (3 + 1)-
BF theories are the same as WCS theories promoted to
(3 + 1). When Λ → 0, which is the same as k → ∞, the
limit theory is semi-classical.

As is explained in earlier sections, it is possible to com-
pute statistics of the elementary extended excitations in
the (3 + 1)-TQFTs, though in practice it is not an easy
task. Physically, we can couple the rank= 2 tensor field
in Eq. (30) of Ref. [7] with extended objects such as a line
field for G = SU(2) (choose a Λ corresponding to some
level k, say k = 2, in SU(2)–WCS theory.) Conjecturally,
the resulting statistics will be the same as computed from
the mathematical theories. It will be interesting to check
some examples.

More interestingly, there are several proposals for po-
tential fractional topological insulators [5, 6]. Fractional
topological insulators are gapped phases of matter for
fermions whose deformations to discrete gauge theories
are not possible without the breaking of time-reversal
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symmetry or the closing of the gaps. As alluded in the
introduction, we believe that the underlying topological
orders in the fractional topological insulators when sym-
metry is broken will correspond to some (3 + 1)-TQFTs
based on UBFCs. It will be interesting to find out what
are the corresponding UBFCs for the proposed fractional
topological insulators.

5.2 Projective ribbon permutation statistics

In Ref. [30], the possibility of ribbon permutation statis-
tics is studied for a collection of confined pointed excita-
tions, called hedgehogs. If the hedgehogs become decon-
fined in some related theory, then an effective description
by a (3+1)-TQFT is a possibility. We conjecture that one
such possible deconfined phase could be a (3+1)-TQFT
based on the following unitary braided fusion category.

Fermionic quantum Hall liquids can be described us-
ing spin modular categories [31]. For 5

2 -FQH liquids, the
fermionic Moore–Read state with 6-fold degeneracy on
the torus is covered by a rank= 12 UBFC. This cate-
gory is the even sector of Ising×Z8: the direct product
of the Ising theory and a modular theory with fusion
rules Z8. The Ising theory has anyon types {1, σ, ψ} and
the anyon types of the modular Z8 theory are denoted
by {0, 1, ..., 7}. The anyon f = ψ ⊗ 4 is a fermion. The
even sector, the anyons which are local with respect to
the fermion f , consists of {1⊗ i, ψ ⊗ i} for i =even and
{σ⊗i} for i =odd. This even sector is a rank= 12 UBFC,
therefore it leads to a (3 + 1)-TQFT.

6 Further discussion

The most general TQFTs are given by universal manifold
pairing [32]. This is tautology: the invariant of a mani-
fold is itself considered as a vector in some vector space.
Dimension 4 is again different from lower dimensions be-
cause the pairing has null (or light-like) vectors, while
there are no such null vectors in dimensions 1, 2, 3. If we
restrict ourselves to unitary and anomaly-free TQFTs,
some smooth structures of some 4-manifolds cannot be
distinguished by the universal manifold pairing in dimen-
sion 4.

We expect a true 3D generalization of the Levin–Wen
model will be based on a generalization of unitary fusion
category to a unitary fusion 3-category and membranes.
Thus it might seem strange that interesting (3 + 1)-
TQFTs can be constructed based on string-nets. But the
string-net that we are using are membranes: the strings
are ribbons, so we are working with very simple mem-
branes. Still why the 6j symbols are useful algebraic in-
put because the algebraic input should be solutions to
a generalization of the pentagons to 3D? Braided tensor
categories are examples of 3-categories. A curious fact is

that the pentagons wear two hats: in 2D, it is the al-
gebraic equation for diagonal flip, while in 3D, it is the
Pachner 2–3 move. Presumably this is a manifestation of
the relation between 2D CFTs and 3D TQFTs.

If no fermions are involved, it is not clear if a high
category generalization of Levin–Wen model would pro-
duce (3 + 1)-TQFTs to distinguish smooth structures
of 4-manifolds. Based on universal manifold pairing
and Witten–Donadlson theory, we would speculate that
fermions are important for formulating (3 + 1)-TQFTs
capable of distinguishing smooth structures. In 2D, a
generalization of Levin–Wen model to include fermions
is proposed in Ref. [33], which shows that topological
orders in systems with fermions are strictly richer than
purely bosonic systems.

The N = 2 supersymmteric Yang-Mills theory for
Witten–Donaldson theory is gapless [34]. Moreover, both
the N = 2 and N = 4 supersymmteric (3 + 1)-TQFTs
are not unitary. It seems to be an open question whether
or not there are unitary and gapped 3 + 1-TQFTs that
can detect smooth structures of 4-manifolds.

In an exposition for mathematicians [35], Witten spec-
ulated about a possible connection between Seiberg–
Witten theory and superconductors. The challenge to
better understand (3 + 1)-TQFTs lies at the frontier in
both topology and the exploration of topological phases
of matter. A realization of Seiberg–Witten theory in con-
densed matter systems would be a landmark in the in-
teraction of topology and physics.
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