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We study the single particle dynamics of a mobile non-Abelian anyon hopping around many pinned

anyons on a surface, by modeling it with a discrete time quantum walk. During the evolution, the spatial

degree of freedom of the mobile anyon becomes entangled with the fusion degrees of freedom of the

collective system. Each quantum trajectory makes a closed braid on the world lines of the particles

establishing a direct connection between statistical dynamics and quantum link invariants. We find that

asymptotically a mobile Ising model anyon becomes so entangled with its environment that its statistical

dynamics reduces to a classical random walk with linear dispersion in contrast to particles with Abelian

statistics which have quadratic dispersion.
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Anyons are pointlike particles with more general statis-
tics than bosons or fermions. They were shown to exist in
systems where the physics is constrained to two dimen-
sions [1]. Beyond mere possible existence, they were found
to be a good description for low-lying quasiparticle exci-
tations of fractional quantum Hall systems [2,3], and they
exactly describe excitations in various strongly correlated
two-dimensional spin lattice models [4,5]. Recently, there
has been tremendous experimental progress in the prepa-
ration and control of systems capable of exhibiting topo-
logical order [6–8] with the goal to observe anyonic
statistics. This is further motivated by the discovery that
braiding some types of non-Abelian anyons can be used
for naturally fault-tolerant quantum computing [9]. The
quantum physics of anyonic systems is very rich but is only
beginning to be explored in its own right. For example,
there have been investigations of the equilibrium properties
of dynamically interacting non-Abelian anyons in chains
[10] and two-dimensional lattices [11,12]. These studies
are restricted to static anyons. The behavior of dynamically
propagating anyons influenced by their nontrivial statistics
remains in general an open problem.

Here we describe a discrete time quantum walk, which
captures some of the nonequilibrium physics of moving
non-Abelian anyons interacting purely due to particle sta-
tistics. This coarse graining in time and space retains the
main properties of anyons since there are no dynamic or
geometric phases involved. Quantum walks are inspired by
the Feynman path integral approach to coherently explore
all possible paths in a quantum mechanical evolution when
computing observables. In Ref. [13], the authors intro-
duced the general formalism for quantum walks with any-
ons, and it was shown that, while for Abelian anyons the
dispersion is quadratic as in the usual quantum walk, the
non-Abelian walk appears to have richer behavior induced
by decoherence. Quantum walks differ from classical

walks because in the latter the value of a random variable
determines the direction of motion of the walk, while in
the former the evolution is fully coherent with a spin-1=2
degree of freedom (DOF), dubbed a coin, providing a
controlled hoping of the walker either left or right allowing
coherences to build up between spatial amplitudes.
Generically, a transition from coherent quantum to classi-
cal random behavior with linear dispersion occurs when a
quantum walk strongly decoheres due to interaction with
an environment [14,15]. We show that, even without dy-
namical interactions, statistical entanglements between
non-Abelian anyons are sufficient to induce such a tran-
sition. Specifically, we solve for the asymptotic distribu-
tion of the Ising model non-Abelian anyons. The latter
appear as quasiparticle excitations in the Pfaffian wave
function description of the � ¼ 5=2 filled fractional quan-
tum Hall state which is believed to be the most likely
physical system to first observe non-Abelian statistics
[3,16]. It is the purpose of this work to determine the
behavior of such a system by analytical methods, thus
opening the way for modeling complex systems that are
of interest to statistical physics [17].
The setup [see Fig. 1(a)] is a chain of n Ising model

anyons canonically ordered on the surface with n� 1
pinned anyons and one mobile walker anyon. The walker
is a spinor particle, and it hops between neighboring sites
with spatial index s ¼ 1; . . . n� 1: the components with
j0i or j1i coin state crossing over or under the pinned anyon
in between. The distance between sites is set to unity,
though for purely topologically interactions the distance
scale is irrelevant. The total Hilbert space decomposes as
H ¼ H space � H coin � H fusion ’ Cn�1 � C2 � CD,

which becomes infinite dimensional in the asymptotic
limit. Fusion DOFs denumerate the number of distinct
measurement outcomes of topological charge when pairs
of anyons are fused together [9]. Its size grows like
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D� dn, where d is the quantum dimension of the anyons.
For n Ising anyons with total trivial charge, we have

d ¼ ffiffiffi
2

p
and D ¼ 2dn=2e�1.

The dynamics is modeled by a composition of two
discrete unitary steps W ¼ TU, where U acts on the coin
and T is a conditional braiding operator. It moves the
walker to the right or left depending on the coin state:

T ¼ Xn�2

s¼1

js� 1ispacehsj � j0icoinh0j � bs�1 þ jsþ 1ispace

�hsj � j1icoinh1j � bs;

where fbsgn�1
s¼1 is a set of unitary generators of the Ising

braid group. Notice that the chirality of the mobile anyonic
charge current is fixed counterclockwise by this walk.
To make T unitary, we assume periodic boundary condi-
tions (j0ispace � jn� 1ispace) but will be concerned with

walks satisfying jn=2j< t so that winding around the
surface is not an issue. We note that in fact the physics
studied here could be realized in a continuous time evolu-
tion by using the setup shown in Fig. 1(b) depicting a
chained version of the double point contact interfero-
meter circuit proposed in Ref. [18], and recently tested
experimentally [7], for measuring anyonic statistics in

� ¼ 5=2 fractional quantum Hall samples. In such a real-
ization, the pinned anyons would be quasiholes confined at
antidots arranged on a chain in the sample, and chiral edge
currents run above and below the chain. The walker anyon
(analogous to the probe quasihole of the interferometer)
would have its coin DOF carried by its propagation mode:
the top (bottom) edge current designating mode j0i (j1i).
At the regions where the edge currents pinch together,

there is a tunneling described by the matrix U ¼ ð u�
�v�

v
uÞ.

This realizes the coin step where u and v are the tunable
reflection and transmission tunneling matrix elements (jvj
should be small enough to ensure that tunneling is due
to quasiholes only and not composite particles) [18]. The
system could be initialized by dragging a probe anyon from
the bulk to the j0i edge of the initial site and applying a bias
voltage along the edges to generate the continuous time
evolution.
The system’s initial state is j�ð0Þi ¼ js0 ¼

dn2eispacej0icoinj�ifusion, where j�i is the vacuum configura-

tion of the n pairs of anyons with half the members braided
to the right. After t iterations, the state is j�ðtÞi ¼
Wtj�ð0Þi, and the reduced state of the spatial DOF of the
walker is

�spaceðtÞ¼ trcointrfusionj�ðtÞih�ðtÞj
¼X

~a; ~a0
trUt

~a ~a0 trY
t
~a ~a0 j2j ~aj�tþs0ih2j ~a0j�tþs0j; (1)

where Ut
~a ~a0 ¼ ðQt

r¼1 ParUÞj0icoinh0jðQt
r¼1 Pa0rU

yÞ and

Yt
~a ~a0 ¼ Bt

~aj�ih�jBt
~a0
y. Here j�i corresponds to the

Markov trace state [see Fig. 1(c)]. The coin histories are
given by the vectors ~a; ~a0 2 f0; 1g�t, and the projectors for
each outcome are Paj ¼ jajicoinhajj. The braid word for a

given coin history is

Bt
~a ¼

Yt�1

r¼0

bs0þat�rþ2ðPt�r�1
j¼1

ajÞ�ðt�rÞ: (2)

The spatial distribution of the walker anyon depends on the
trace over the coin and fusion DOFs. To evaluate the
former, for simplicity we chose the Hadamard coin flip

operation U ¼ 1ffiffi
2

p ð11 1
�1Þ so that trUt

~a ~a0 ¼ 1
2t ð�1Þzð ~a; ~a0Þ and

zð ~a; ~a0Þ¼P
t�1
j¼1a

0
ja

0
jþ1þajajþ1 is the sum of pairs of con-

secutive right moves (or 1 outcomes of the coin). Note that
our results are essentially the same for any nondiagonal
choice of unitary U. The trace over the fusion DOF can be
related to the Kauffman bracket of a link L, denoted hLi
and defined below. The link is the Markov trace over the
braid words for the forward and backward time evolution
histories as dictated by Eq. (1):

L ¼ ðBt
~a0
yBt

~aÞMarkov: (3)

Moreover, trYt
~a ~a0 ¼ hðBt

~a0
yBt

~aÞMarkovi=dn�1, where d is the

quantum dimension of the anyons [13].
Henceforth, we focus on diagonal elements of the spatial

probability distribution pðs; tÞ � h2s� tþ s0j�spaceðtÞj2s�
tþ s0i, where s ¼ 1; . . . ; t is used to denote spatial loca-
tion, the signed distance from the origin being 2s� t.

FIG. 1 (color online). Anyonic quantum walk. (a) Setup sche-
matic: n vacuum pairs of anyons (gray dots) are prepared in state
j�i. Half of each pair is aligned on a chain, and one walker anyon
with a spin is free to braid around the others fixed in place.
(b) Potential physical realization using a chained version of the
two point contact interferometer in fractional quantum Hall sys-
tems [18]. The tunneling matrix U and dynamical and Aharanov-
Bohm phases can be tuned by adjusting the gate voltages indicated
by the thin andwide rectangles. (c) Link representation of theworld
lines for a Markov closed quantum trajectory [ ~a ¼ ð1; 0; 0; 1; 1ÞT ,
~a0 ¼ ð0; 1; 1; 0; 1ÞT] that contributes to the spatial distribution
pð3; 5Þ. The link shown is proper and has one Borromean ring;
i.e., if any of three linked components were cut, the others would
become disentangled. Here arfðLÞ ¼ 1.
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We have the constraint that j ~aj ¼ j ~a0j (i.e., the final posi-
tion of the walker for the braids B~a, B~a0 is the same), and
the trace over the coin DOF is nonzero only if at ¼ a0t
(i.e., the final step is in the same direction for both paths).
The result is

pðs; tÞ ¼ 1

dðn�1Þ2t
X

f ~a; ~a0;j ~aj¼j ~a0j¼s;at¼a0tg
ð�1Þzð ~a; ~a0ÞhLi; (4)

which for d ¼ 1 and hLi ¼ 1 reduces to the usual quantum
walk distribution. The probably distribution is a sum over
all Feynman paths from the origin to a final spatial point
where the first factor in the sum carries the dynamical
phase information and the second factor the topological
information.

The problem of computing the distribution thus reduces
to computing statistics of a quantum link invariant. The
Kauffman bracket of a link hLiðAÞ is a Laurent polynomial
in the argument A that is an invariant for framed, unor-
iented links and is framing dependent. It can be related to
the Jones polynomial VL, which is an invariant for framed,
oriented links but which is framing independent:

hLiðAÞjA!q�1=4 ¼ ð�q3=4ÞwðLÞVLðqÞ;
where wðLÞ is the writhe of L, which is zero for links
considered here [19]. The Jones polynomial of a link L

with variable q ¼ ei2�=ðkþ2Þ was shown by Witten [20] to
be equal to the expectation value of the product of the path-
ordered Wilson loops along the components of the links of
L in the SUð2Þk Chern-Simons theory calculated by using
the Chern-Simons partition function. In our model the links
are the closed world lines traced by anyons, and when the
anyons correspond to spin-1=2 irreps of the quantum group
SUð2Þk, then pðs; tÞ is a sum over weighted Jones poly-
nomials. At the special value q ¼ i, i.e., k ¼ 2 where the
spin-1=2 irrep anyons are described by the Ising model, the
Jones polynomial of a link can be related to a simpler knot
invariant known as the arf invariant [21]. Specifically,

VLðiÞ ¼
� ffiffiffi

2
p ½#ðLÞ�1�ð�1ÞarfðLÞ if L proper;
0 if L not proper;

where the number of components #ðLÞ ¼ n here. An
oriented link is proper if each component Lk evenly links
the union of other components, i.e.,

P
j�klkðLj; LkÞ ¼

0mod 2 8 j [lkðLj; LkÞ is the linking number [19], which

can be computed in polynomial time]. The advantage of
this expression is that arfðLÞ 2 f0; 1g of a link can be
computed in polynomial time in the crossing number of a
braid presentation. Hence, unlike the generic case, the
Jones polynomials at value q ¼ i can be evaluated in
polynomial time [22]. However, the number of links con-
tributing to the weight pðs; tÞ is ðt�1

s Þ2 þ ðt�1
s�1Þ2, which is

exponential in t so an efficient computation is not a priori
available.

There is structure to the links in the anyonic qua-
ntum walk trajectories that simplifies the computation

significantly. The only term that contributes to the arf is
the triple component invariant c3, which counts the number
of Borromean links [19]. This allows us to express the
probability distribution in terms of simple properties of the
anyonic walk:

pðs;tÞ¼ X
f ~a; ~a02f0;1g�t ;

j ~aj¼j ~a0 j¼s;at¼a0
t
g

� ð�1Þzð ~a; ~a0 Þþ�ð ~a; ~a0 Þ
2t L proper;

0 L not proper;
(5)

where the link L is defined in Eq. (3) and �ð ~a; ~a0Þ is a sum
over link invariants [19]. When all links are proper and
�ð ~a; ~a0Þ is even, then pðs; tÞ becomes equal to pQWðs; tÞ, the
quantum walk distribution. When all nonmirror paths
(i.e., ~a � ~a0) are nonproper, then pðs; tÞ becomes equal to
pRWðs; tÞ, the classical random walk distribution.
To probe the behavior of pðs; tÞ, we initially perform

exact numerical simulations. Details of this calculation are
given in Ref. [19]. We have calculated the distribution for
walks up to t ¼ 25. The variance �2ðtÞ ¼ hs2i � hsi2,
where the expectation value is hOðsÞi � P

sOðsÞpðs; tÞ, is
plotted in Fig. 2, and it quickly approaches the linear
random walk variance. Using the total variation distance
between two distributions pðs; tÞ and fðs; tÞ defined as
�ðp; fÞ � 1

2

P
sjpðs; tÞ � fðs; tÞj, at t ¼ 25 we find

�ðp; pQWÞ ¼ 0:34 while �ðp; pRWÞ ¼ 0:04.
We now demonstrate explicitly that asymptotically the

Ising anyonic walk behaves classically. The essential rea-
son is the rapidly decreasing density of proper links in the
regime where the quantum walk distribution has dominant
support. In order to upper bound the variance, we can
assume that �ð ~a; ~a0Þ of all the proper links are even and
that there is no correlation between being proper and
zð ~a; ~a0Þ for nonmirror paths. Calling the resulting distribu-
tion ~pðs; tÞ, we have

~pðs;tÞ¼pðs;tÞRWþppropðs;tÞ½pðs;tÞQW�pðs;tÞRW�; (6)

where ppropðs; tÞ is the density of proper links for nonmirror

paths ( ~a � ~a0). Since the walker’s speed is constant, the
maximum possible variance is quadratic, achieved up to a
constant less than 1 by the quantum walk [23]. So this
choice of distribution can only make the estimate of the
variance of the anyonic walker larger, i.e., ~�2ðtÞ � �2ðtÞ.

FIG. 2. Numerical results for the variance of the spatial distri-
bution pðs; tÞ [Eq. (5)] for the Ising anyonic walk and the
corresponding classical and quantum walk evolutions with the
same initial state.
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In Ref. [23] it was shown that the distribution of
the quantum walk with the same Hadamard coin flip
and initial state as occurs here can be very well approxi-
mated asymptotically by the function p0

QWð�; tÞd� ¼
ð1� �Þd�=�ð1� �2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p
, where � ¼ ðs0 � sÞ=t

is restricted to the interval ½� 1ffiffi
2

p ; 1ffiffi
2

p �. Outside this interval
the distribution falls off exponentially with t as does
pQWðs; tÞ. By restricting to this interval and using the fact

that a proper link must have all linking numbers even, it
can be shown [19] that the density of nonmirror proper
links is ppropðs; tÞ<C=t2 for some constant C independent

of s and t. The position moments with respect to ~pðs; tÞ are

hðs� s0Þi 	
Z �1=

ffiffi
2

p

1=
ffiffi
2

p ppropðs; tÞt�p0
QWð�; tÞd�

< Cð1� 1=
ffiffiffi
2

p Þ=t;
hðs� s0Þ2i 	 tð1� C=t2Þ

þ
Z �1=

ffiffi
2

p

1=
ffiffi
2

p ppropðs; tÞt2�2p0
QWð�; tÞd�

< tð1� C=t2Þ þ ð1� 1=
ffiffiffi
2

p ÞC:
Thus ~�2ðtÞ< tþOð1Þ.

Similarly, to obtain a lower bound for the dispersion,
assume a distribution of the form of Eq. (6) but choose a
probability distribution fðs; tÞ with minimum variance to
replace pQWðs; tÞ to account for destructive interference

from correlations between zð ~a; ~a0Þ and hLi. Picking
fðs; tÞ ¼ �s;s0 (zero variance) and calling the resulting

distribution ~~pðs; tÞ, then ~~�ðtÞ2 > tð1� C=t2Þ. By the
inequalities, ~~�2ðtÞ 
 �2ðtÞ 
 ~�2ðtÞ, limt!1�2ðtÞ=t ¼ 1.
Hence, asymptotically the Ising anyonic walk has linear
dispersion with coefficient 1 like the classical random
walk.

In conclusion, we have studied the dynamical behavior
of a mobile non-Abelian anyon which becomes entangled
with its environment purely by statistical interactions. We
find that for the case of Ising anyons the decoherence in the
spatial DOF is strong enough to completely wash out the
quantum mechanical interferences and reduce the dynam-
ics to a classical stochastic process. This is in sharp con-
trast to coherent quantum walk dynamics with Abelian
anyons, since there the fusion DOF is one-dimensional.
It would be of interest to extend this analysis to other
non-Abelian anyons such as spin-1=2 irreps for other
SUð2Þk models. It is known that for k > 2 and k � 4, the
braiding evolutions densely span the fusion space, while
for k ¼ 2 (Ising anyons) and k ¼ 4 they do not [24]. It
has been shown that for a t step quantum walk subject to
decoherence in its position at a rate pmeas >C0=t for some
constant C0, the evolution approaches classical behavior
[25]. We conjecture that since the braiding generators that
entangle new fusion degrees of freedom mimic measure-
ment with probability pmeas � 1=k2 (for k � 1), then
for t > k2 the walk would behave classically. In the limit

k ! 1 the particles are fermions, and we recover coherent
quantum walk behavior.
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