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Quantum mechanical systems, whose degrees of freedom are so-called suð2Þk anyons, form a bridge

between ordinary SU(2) quantum magnets (of arbitrary spin-S) and systems of interacting non-Abelian

anyons. Anyonic spin-1=2 chains exhibit a topological protection mechanism that stabilizes their gapless

ground states and which vanishes only in the limit (k ! 1) of the ordinary spin-1=2 Heisenberg chain.

For anyonic spin-1 chains the phase diagram closely mirrors the one of the biquadratic SU(2) spin-1 chain.

Our results describe, at the same time, nucleation of different 2D topological quantum fluids within a

‘‘parent’’ non-Abelian quantum Hall state, arising from a macroscopic occupation with localized,

interacting anyons. The edge states between the ‘‘nucleated’’ and the parent liquids are neutral, and

correspond precisely to the gapless modes of the anyonic chains.
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SU(2) quantum spin degrees of freedom are ubiquitous
in condensed matter physics describing the elementary
quantum mechanical properties of many magnetic materi-
als. For ordinary SU(2) spins there is—mathematically
spoken—an infinite number of representations, or in other
words arbitrarily large spins. Here we consider a ‘‘quantum
deformation’’ [1] of SU(2), where we limit the number of
representations to kþ 1 ‘‘angular momenta’’ which take
values j ¼ 0; 12 ; 1; . . . ;

k
2 . The degrees of freedom of these

so-called suð2Þk theories are examples of non-Abelian
anyons with the Ising (k ¼ 2) and Fibonacci (k ¼ 3) an-
yons being studied in a variety of contexts such as un-
conventional px þ ipy superconductors [2], fractional

quantum Hall states [3], and proposals for topological
quantum computation [4]. We will therefore refer to these
generalized angular momenta also as anyon types. The
analog of combining two ordinary spins, and reducing
the tensor product, corresponds to the ‘‘fusion’’ of two
anyons which obey the ‘‘fusion rules’’ j1 � j2 ¼
jj1 � j2j þ ðjj1 � j2j þ 1Þ þ . . .þminðj1 þ j2; k� j1 �
j2Þ. For example, fusing two anyons with generalized
angular momenta j1;2 ¼ 1

2 , these rules imply 1
2 � 1

2 ¼ 0þ
1 for k � 2, which in the limit k ! 1 describes the cou-
pling of two ordinary spin-1=2’s into a singlet or triplet.

Here we consider the collective ground state formed by a
set of interacting anyons in the presence of an interaction
that energetically splits the possible fusion outcomes—
similar to the Heisenberg Hamiltonian for ordinary spins.
In particular, we address the formation of this collective
state in the context of the original topological liquid of
which the anyons are excitations, such as a non-Abelian
quantum Hall liquid. Summarizing our results we find that
the occupation of a ‘‘parent’’ topological liquid with a
finite density of interacting anyons leads to the nucleation
of a distinct, gapped topological liquid within the original

parent liquid. Specifically, we make an explicit connection
between the gapless collective states of chains of interact-
ing anyons and the edge state between these two liquids,
which in turn allows us to fully characterize the nucleated
liquid. This general correspondence also points to the
possible occurrence of various unconventional quantum
Hall states that arise from interactions between anyons
with generalized angular momentum j > 1=2.
A first step towards understanding the collective ground

states of interacting anyons has been taken by studying
chains of interacting Fibonacci anyons [5–7]: Uniform
chains with pairwise interactions that favor either the
‘‘singlet’’ or ‘‘triplet’’ channel are gapless and can be
mapped exactly onto the tricritical Ising and critical 3-state
Potts models, respectively [5]. In conventional systems
these gapless theories would be completely unstable to
the formation of a gap, but a more subtle mechanism is
at play in the Fibonacci chain where an additional topo-
logical symmetry stabilizes the gaplessness of the system
against local perturbations [5]. However, if we consider the
more general anyonic systems described by suð2Þk theories
and take the ‘‘undeformed’’ limit k ! 1, we recover a
system of ordinary SU(2) spins for which there is no such
notion of a topological symmetry. This observation natu-
rally raises the question of whether the observed topologi-
cal protection is unique to the Fibonacci theory suð2Þ3. In
this Letter, we show that the existence of a topological
symmetry is a common feature in all suð2Þk anyonic theo-
ries and that it protects the gaplessness of generalized
spin-1=2 chains in these theories for all finite levels k. In
fact, it is the ordinary SU(2) spin-1=2 chain that stands out
in this series as it looses this special symmetry and pro-
tection mechanism. We also discuss suð2Þk generalizations
of the spin-1 chain, a similar topological symmetry pro-
tection there, and close connections between the phase
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diagram of the anyonic spin-1 chains and the biquadratic
SU(2) spin-1 chain.

Anyonic spin-1=2 chains.—We first turn to suð2Þk quan-
tum deformations of ordinary quantum spin-1=2 chains
which have been introduced in Ref. [5]. These ‘‘golden
chains’’ consist of a linear arrangement of non-Abelian
anyons with ‘‘angular momentum’’ � ¼ 1=2 in the suð2Þk
theory. Pairwise interactions between adjacent anyons fa-
vor fusion into the singlet j ¼ 0 for ‘‘antiferromagnetic’’
(AFM) exchange and into the triplet j ¼ 1 for ‘‘ferromag-
netic’’ (FM) exchange. These suð2Þk spin-1=2 chains turn
out to be gapless for all levels k [5]. The critical theory is a
conformal field theory (CFT) closely related to the original
suð2Þk theory, namely, a particular coset theory [8]. We first
concentrate on AFM couplings for which this CFT descrip-
tion is given by the (k� 1)th unitary minimal model [9].
For k ¼ 2 this is the Ising model, for k ¼ 3 the tricritical
Ising model, and in the limit k ! 1 becomes the
c ¼ 1 theory describing the ordinary Heisenberg chain.

For all finite levels k, there exists an additional topologi-
cal symmetry that defines kþ 1 symmetry sectors. This
symmetry corresponds to the operation of commuting a
spin through all the spins in the chain. While this symmetry
operation also exists in the limit k ! 1 of the ordinary
Heisenberg chain, we find that it plays a fundamental role
only in the case of k being finite. To be explicit, we give the
matrix elements of the topological symmetry operator Y in
terms of the F matrices (which we define in the auxiliary
material [10]):

hx01; . . . ; x0LjYjx1; . . . ; xLi ¼
YL

i¼1

ðFx0
iþ1

�xi�Þx
0
i
xiþ1

: (1)

This topological symmetry becomes important for the an-
yonic spin chains as it protects their gapless states against
instabilities arising from local perturbations. Since the
operator Y commutes with the Hamiltonian, we can assign
each perturbation to one of its symmetry sectors. Small,
translationally invariant perturbations preserving this sym-
metry can only drive the critical system into a gapped
phase if they correspond to an operator, relevant in the
renormalization group sense, which is in the topologically
trivial sector. Relevant operators in other sectors break the
topological symmetry and are thus prohibited from open-
ing a gap. The number of translationally invariant relevant
operators grows as k� 1, while the number of topological
sectors grows as kþ 1. The question thus is whether these
two diametrical effects result in a cancellation, as it is the
case for k ¼ 3, and lead to a topological protection for all
suð2Þk chains with k > 3.

We explain that this topological protection indeed exists
for all finite levels k by observing a powerful connection
between the coset theories describing the gapless state and
the assignments of topological symmetry sectors to all
operators in these theories: The primary operators in these
coset theories carry (a pair of) suð2Þk labels like those of
the original anyonic degrees of freedom. This observation
allows us to obtain topological sectors for all operators in

the gapless theory and identify those operators which can
drive the system into a gapped phase. In the limit k ! 1
we recover the behavior of the ordinary spin-1=2 chain. We
have checked, for k ¼ 2, 3, 4, 5, that the so-obtained
topological assignments agree with results from exact
diagonalization of chains with up to L ¼ 24 anyons (for
k ¼ 5) using Eq. (1).
In describing the details of the above topological sym-

metry assignments we will concentrate for brevity on the
case that k is odd. In this case we can restrict ourselves to
the ‘‘integer spin’’ representations 0; 1; . . . ; ðk� 1Þ=2 of
suð2Þk. The generalized spin-1=2 chains are then based
on anyons carrying angular momentum j ¼ ðk� 1Þ=2
[11]. In the gapless theories of the AFM chains, the (pri-

mary) operators �j1
j2

carry two labels j1, j2. In the coset

construction for these theories, i.e., suð2Þk�1 �
suð2Þ1=suð2Þk, the label j1 corresponds to the representa-
tions of suð2Þk, the label j2 to those of suð2Þk�1, and the
label i2 to those of suð2Þ1, where i2 ¼ j1 � j2 mod 1. The
label j1 turns out to determine the topological sector of the
operators. In particular, the operators in the topologically
trivial sector turn out to be�0

j2
. We consider the ‘‘character

decomposition’’ �ð1Þ
i2
�ðk�1Þ
j2

¼ P
j1
Bj1
j2
�ðkÞ
j1
, where �ðkÞ

j de-

notes the (‘‘affine’’) character of suð2Þk, and the Bj1
j2
’s the

(Virasoro) characters [12] of a unitary minimal model [8].
The Z2 symmetry of these coset models also allows us to
identify the sublattice symmetry of the primary operators.
The states at K ¼ 0 correspond to operators with integer
j2, while the states at K ¼ � correspond to operators
with half-integer j2. The scaling dimensions which result
from this decomposition are those of the ‘‘Kac-table,’’
xðk; j1; j2Þ ¼ 2f1þ j2ðj2 þ 1Þ=ðkþ 1Þ � j1ðj1 þ 1Þ=ðkþ
2Þg. It follows that the ground state at K ¼ 0 is in the trivial
topological sector. The lowest lying operator at K ¼ 0 in
this sector is�0

1, with scaling dimension 2ðkþ 3Þ=ðkþ 1Þ.
Thus, for any finite k, there is no relevant operator (with
scaling dimension <2) which can drive the system into a
gapped phase. In the limit k ! 1 of the ordinary spin-1=2
chain, this operator becomes exactly marginal. At momen-
tum K ¼ �, the most relevant operator in the trivial sector
is�0

1=2, with scaling dimension 1
2 ðkþ 4Þ=ðkþ 1Þ, bounded

by one for k � 2: staggered perturbations can always drive
the system into a gapped ‘‘dimerized’’ phase. The results
above hold for k even as well.
The critical behavior for FM interactions is described by

the Zk-parafermion coset suð2Þk=uð1Þ, whose operators
also carry two labels, c j

m. Again j ¼ 0; 1; . . . ; ðk� 1Þ=2
(for k odd) originates from suð2Þk and determines the
topological sector as before, and m ¼ 0; 1; . . . ; k� 1 de-
termines the momentum, K ¼ 2�m=k. The operators in
the trivial sector are the Zk-parafermion operators, c 0

m, of
scaling dimensions 2mðk�mÞ=k. The only state whose
corresponding scaling dimension is less than two at mo-
mentum K ¼ 0 in the trivial sector is the ground state c 0

0,

implying that for all k this critical phase is stable against
small, translationally invariant perturbations.
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Anyonic spin-1 chains.—We now turn to chains formed
by a set of anyons with generalized angular momentum
� ¼ 1 in the suð2Þk theory for k � 4. There are three fusion
channels of two � ¼ 1 anyons, namely 1� 1 ¼ 0þ 1þ
2, so the most general Hamiltonian can be written in terms
of an angle � as H �¼1 ¼

P
i cos��

2
i � sin��1

i , where
the projectors �1

i and �2
i assign an energy þ1 for anyons

at sites i and iþ 1 fusing into 1 or 2, respectively (see also
[10]). We recover the ordinary biquadratic SU(2) spin-1
chain in the limit k ! 1 which has a rich phase diagram
[13–16] as shown in Fig. 1(a).

We have calculated the phase diagrams of anyonic spin-
1 chains for the suð2Þ5 and suð2Þ7 theories using exact
diagonalization, which allows us to generalize this phase
diagram to all levels k � 5. As illustrated in Fig. 1(b), there
are four phases that closely mirror their k ! 1 counter-
parts: The Haldane phase survives as a gapped phase and
includes a generalized AKLT point where the exact ground
states are known [17]. It is surrounded by two gapless
phases which have the same sublattice symmetries as their
SU(2) counterparts, e.g., a Z3 sublattice symmetry for the
phase in the upper wedge which becomes the nematic
phase, and a Z2 sublattice symmetry for the phase in the
lower wedge which turns into the dimerized phase. For
arbitrary k � 5 the gapless phase in the upper wedge is the
coset model suð2Þk�4 � suð2Þ4=suð2Þk verified numerically
by matching the low-energy spectra for k ¼ 5 and 7.
Similarly, our numerical results suggest that the gapless
phase in the lower wedge is for arbitrary k � 5 the kth
member of the family of the so-called off-diagonal modu-
lar invariants [18] of the unitary minimal modelsMk. The
critical end points of this phase with the Haldane phase can
be mapped to an integrable model [19] and correspond to
the N ¼ 1 supersymmetric minimal models with central
charge c ¼ 3=2� 12=½kðkþ 2Þ�. In the k ! 1 limit this
critical point turns into the suð2Þ2 Wess-Zumino-Witten
point of the ordinary biquadratic spin-1 chain. All critical
phases are protected by the topological symmetry (1).

Quantum Hall liquids.—Our program of exploring col-
lective states of anyonic spin chains is, at the same time, a

tool to systematically study topological phases which can
occur inside non-Abelian quantum Hall liquids (at the
same filling) due to population of such liquids by a macro-
scopic number of localized, interacting non-Abelian an-
yons. This also provides us with the properties of the (so far
unexplored) edge states appearing at the interfaces be-
tween these two liquids. Let us focus for brevity on bosonic
quantum Hall fluids [20]. Corresponding statements for
fermionic states with the same non-Abelian statistics [3]
involve only differences in (trivial) Abelian factors.
First reconsider the case of a linear arrangement of j ¼

1=2 anyons in a surrounding suð2Þk topological 2D fluid
with AFM interactions, described by the minimal model
Mk. We can think of this critical state as two noninteract-
ing counterpropagating (neutral) edge states of central
charge ck ¼ 1� 6=ðkþ 1Þðkþ 2Þ, which are basically lo-
cated ‘‘on top of each other,’’ residing in the surrounding
suð2Þk topological bulk fluid. Let us now imagine separat-
ing these two edge states slightly in space, so that a narrow
strip opens between them, see Fig. 2(b). We find that it is
possible to place another topological quantum Hall fluid X
into this narrow strip such that the above pair of counter-
propagating edges of central charge ck are precisely the
edge states between the surrounding topological suð2Þk
fluid and the new, intervening fluid X in the strip. The
intervening liquid X is a topological fluid characterized by
suð2Þk�1 � suð2Þ1. This can be seen [21] from the coset
representation [8] of the minimal modelMk ¼ suð2Þk�1 �
suð2Þ1=suð2Þk. Recall that the central charges of X ¼
suð2Þk�1 � suð2Þ1 and the surrounding fluid suð2Þk differ
by ck, thus resulting in an edge state between the two
liquids of central charge ck [22]. To summarize, the
(AFM) interactions between an array of j ¼ 1=2 anyons
in an suð2Þk liquid nucleate a new intervening liquid char-
acterized by the topological properties of suð2Þk�1 �
suð2Þ1 [23].
Even though our anyons were initially confined to one

dimension, these results will also apply to a macroscopic
number of interacting non-Abelian anyons occupying two-
dimensional (2D) regions of the surrounding liquid,
thereby nucleating larger, 2D regions of the intervening
liquid. The simplest example of this phenomenon was
observed [24] for the Moore-Read quantum Hall liquid,
which, when occupied with a macroscopic number of
interacting quasiholes (even at random positions), turns
into the Abelian ‘‘strong-pairing’’ state. In general, for
FM anyon interactions the liquid X is Abelian and the
neutral edge CFT is the Zk parafermion theory.

nematic

SU(3)

SU(3)

dimerized

Haldane

AKLT

SU(2)2

ferromagnet

c = 2

c = 3 2/

‘Haldane’
Zk-parafermions AKLT

su(2) k − 4 × su(2) 4

su(2) k

su(2) k − 1 × su(2) 1

su(2) k
super CFT
(N = 1)

su(2) k − 2 × su(2) 2

su(2) k

SU(3)

a) b)

FIG. 1 (color online). Phase diagrams of the ‘‘biquadratic’’
spin-1 chain for (a) SU(2) and (b) suð2Þk with k � 5.
Projections onto the triplet (j ¼ 1) and quintuplet (j ¼ 2) states
are parametrized by an angle � as J1 ¼ � sinð�Þ and J2 ¼
cosð�Þ. FIG. 2. Topological liquids and their edge states.
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Even more interesting examples arise when we express
our results for the anyonic spin-1 chains in terms of inter-
vening liquids. A family of novel liquids with topological
character [25] suð2Þk�4 � suð2Þ4 nucleated within a suð2Þk
surrounding liquid corresponds to the family of critical
phases in the upper wedge of Fig. 1(b) with corresponding
edge states described by the coset suð2Þk�4 � suð2Þ4=
suð2Þk. Interestingly, the critical phases in the lower wedge
of Fig. 1(b) describe the appearance of edge states between
the suð2Þk bulk fluid and a novel topological quantum
liquid of type suð2Þk�1 � suð2Þ1, characterized by the off-
diagonal modular invariant [18] of the minimal model
Mk. In all cases, the new resulting liquid has less anyon
types than its suð2Þk parent liquid, thus reducing the non-
Abelian statistics and the CFT of the edge state is given by
the coset construction [8]. Our results fully agree with the
case studied by a complementary approach in [26], and can
also be applied to the hierarchy states discussed in [27].

In the context of topological liquids the topological
symmetry (1) acquires a very physical meaning: local
perturbations of the chain Hamiltonians correspond to
tunneling events across the intervening liquid. It is pre-
cisely the perturbations in the trivial sector which corre-
spond to tunneling processes that are not accompanied by
simultaneous ejection into the surrounding liquid of anyon
particles with nontrivial topological quantum numbers
[such processes correspond to j1 ¼ 0 in Fig. 2(b)].
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Note added.—After the submission of this manuscript, a
closely related paper on edges between different non-
Abelian quantum Hall states appeared [29].
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