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ABSTRACT

We investigate a family of (reducible) representations of the braid groups Bn corre-
sponding to a specific solution to the Yang–Baxter equation. The images of Bn under
these representations are finite groups, and we identify them precisely as extensions of
extra-special 2-groups. The decompositions of the representations into their irreducible
constituents are determined, which allows us to relate them to the well-known Jones
representations of Bn factoring over Temperley–Lieb algebras and the corresponding
link invariants.
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1. Introduction

Representations of Artin’s braid groups Bn are of great importance to mathemati-
cians [1], and physicists recently [15]. Certain representations of the braid groups
have been proposed as the fractional statistics of anyons [15], and used in the topo-
logical models for quantum computing [4]. Therefore it is interesting to identify the
images of such braid group representations. In this paper we analyze a particular
representation of the braid groups afforded by a unitary solution of the braid rela-

tion, i.e. a flipped R-matrix R = 1√
2




1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1


 that satisfies the Yang–Baxter

equation

(R ⊗ I2)(I2 ⊗ R)(R ⊗ I2) = (I2 ⊗ R)(R ⊗ I2)(I2 ⊗ R), (YBE)

where I2 is the 2 × 2 identity matrix. All solutions to the YBE of the form
R : V ⊗ V → V ⊗ V with V 2-dimensional have been listed in [9]. Dye [2] found all
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unitary solutions of this form to the braid relations based on this list. The impor-
tance of this particular braid operator R was pointed out in the work of Kauffman
and Lomonaco [12], and the connection of R with quantum computing was explored
there which is another reason for our interest.

As is well-known, any (invertible) matrix satisfying the YBE gives rise to repre-
sentations of Bn for any n. The representation (πn, (C2)⊗n) corresponding to the
matrix R above is unitary and defined as follows:

πn(σi) = I⊗i−1
2 ⊗ R ⊗ I⊗n−i−1

2 ,

where σi is the ith braid generator. We shall see that the images of the braid groups
Bn under this representation are finite groups, and the image matrix of each braid
generator σi has only two distinct eigenvalues. The image group of an irreducible
constituent of πn is generated by the conjugacy class of a braid generator with
two distinct eigenvalues whose ratio is not −1, i.e. has the so-called 2-eigenvalue
property defined in [3]. Such representations are completely classified [3], so in
principle the image groups of the irreducible constituents of πn can be identified by
using the complete list in [3, Theorem 1.6]. But we will see that πn is reducible, hence
first we would need to find the irreducible constituents of πn; then distinguish a few
different cases in the complete list for the images of the irreducible constituents.
Instead we choose to solve the problem in an elementary and self-contained way. We
decompose these representations πn (for all n) into their irreducible constituents
and describe the images of Bn under πn as abstract groups. We find that the
images of the pure braid groups are (nearly) extra-special 2-groups E−1

n−1. The
images of the full braid groups Bn are extensions of the (nearly) extra-special 2-
groups E−1

n−1 by the symmetric groups Sn, and the restrictions of the representations
πn to the subgroup of pure braids are isotypic copies of the odd representations
of E−1

n−1.
As already discussed in [12] we can define link invariants using the representa-

tions πn. By observing that πn is related to the Jones representation of the braid
groups at a 4th root of unity, we improve slightly some earlier results of Jones about
the images of the Jones representation of the braid groups at the 4th root of unity
[10]. As a consequence we point out that the resulting link invariants are essentially
the Jones polynomial at a 4th root of unity, hence really the Arf invariant of a link
(see references in [11]). The slight improvement of Jones’s result comes from two
subtle points about the Jones representations. Firstly, in the Jones representation
of the braid group, there is some freedom in choosing phases so it is convenient to
state the results projectively, i.e. modulo scalars, while not losing any significance
mathematically. We choose to work out the images in full generality (as opposed
to projectively) as this is desirable in physics for the applications to the fractional
statistics of quantum Hall fluid [13]. This changes the images of the pure braid
groups from the elementary abelian groups Z

n−1
2 to the (nearly) extra-special 2-

groups E1
n−1. Secondly, when the number of strands of the braid groups is even,

there are two irreducible sectors of the Jones representation [10]. Jones found the

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

6.
15

:4
13

-4
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n 
12

/1
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 19, 2006 11:50 WSPC/134-JKTR 00458

Extraspecial 2-Groups and Images of Braid Group Representations 415

projective images for each sector, but we determine the images of the two sectors
together. This brings up a subtlety about the centers of the (nearly) extraspecial 2-
groups in those cases, which disappears when the two irreducible sectors are treated
separately, and projectively.

These results lead to several questions for future research currently being worked
out by the authors. What are the closed images of the braid groups under the
representations afforded by the other R-matrices listed in [2] and what are the
associated link invariants? What are the other extraspecial p-groups that appear
as homomorphic images of the pure braid groups? Results in this direction have
been obtained in [7, 6] where Heisenberg groups are used in place of extraspecial
p-groups.

2. Preliminaries

2.1. Definitions and computations

Definition 2.1. Artin’s braid group Bn on n strands has presentation in genera-
tors σ1, . . . , σn−1 satisfying relations:

(B1) σiσj = σjσi if |i − j| ≥ 2.
(B2) σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2.

For tensor products of matrices we use the convention “left into right”, that is,
if X =

„
w x

y z

«
and A =

„
a b

c d

«
then X ⊗ A =

„
aX bX

cX dX

«
. Various matrices and

quantities will be needed throughout, so we define them here:

(1) Im is the m × m identity matrix.

(2) R = 1√
2


 1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1


.

(3) s =
„

0 1

−1 0

«
.

(4) σx =
„

0 1

1 0

«
.

(5) Ps =
„

1
√−1√−1 1

«
.

(6) Pσx =
„

1 −1

1 1

«
.

(7) Pn = (Ps ⊗ Pσx)⊗�n/2� ⊗ I
⊗(n−2�n/2�)
2 , where �a� is the integer part of a.

(8) σz =
„

1 0

0 −1

«
.

(9) gi = πn((σi)2) = I
⊗(i−1)
2 ⊗R2 ⊗ I

⊗(n−i−1)
2 (observe we ignore the dependence

of gi on n; the value of n will always be clear from the context).
(10) ζ = 1√

2
(1 +

√−1).

(11) d =
„

ζ 0

0 ζ

«
.
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(12) D =




ζ 0 0 0

0 ζ 0 0

0 0 ζ 0

0 0 ζ


.

(13) M = 1√
2

„
1 1

−1 1

«
.

We will also need a few simple computations involving these matrices so we record
them in the following:

Lemma 2.2. The matrices defined above satisfy:

(a) R2 = s ⊗ σx.
(b) R = 1√

2
(R2 + I4), R−1 = 1√

2
(R−2 + I4).

(c) (R2 ⊗ I2)(I2 ⊗ R2) = −(I2 ⊗ R2)(R2 ⊗ I2).
(d) gigi+1 = −gi+1gi.
(e) (R−1 ⊗ I2)(I2 ⊗ R2)(R ⊗ I2) = (I2 ⊗ R2)(R2 ⊗ I2).
(f) πn(σ−1

i )gi±1πn(σi) = gi±1gi.
(g) gigj = gjgi and πn(σi)gj = gjπn(σi) if |i − j| ≥ 2.
(h) R4 = −I4, (gi)2 = −I2n .
(i) (Ps)−1sPs =

√−1σz, and (Ps)−1σxPs = σx.
(j) (Pσx )−1σxPσx = σz , (Pσx )−1sPσx = s.
(k) (Pn)−1g2i+1Pn =

√−1(I⊗2i
2 ⊗ σ⊗2

z ⊗ I⊗n−2i−2
2 ), and (Pn)−1g2iPn = g2i.

Proof. The first assertions (a) and (b) are straightforward computations. Having
checked that s and σx anti-commute (c) follows, and (d) is immediate from (c).
Using (b) and the observation R−2 = −R2, we express the left-hand side of the
equality in (e) in terms of R2 and then use (c) to derive the right-hand side. Asser-
tion (f) is immediate from (e). Assertion (g) is a consequence of the “far commu-
tation” relations satisfied by the braid group, and (h) follows from (b) and the
definition of gi. The matrix Ps (respectively, Pσx) is a change of bases matrix that
diagonalizes s (respectively, σx) and commutes with σx (respectively, s). This is the
statement (j), and (k) follows directly from this fact and the definition of Pn.

2.2. Restriction to Pn

The homomorphism from Bn to the symmetric group on n letters Sn given by
σi → (i, i + 1) has kernel Pn the so-called pure braid group. Pn is generated by all
conjugates of the squares of the generators of Bn: (σi)2. Actually a more economical
presentation of Pn can be found (see e.g. [1]), but we shall not need it here. To
exploit this relationship between Bn and Pn we shall restrict πn to the subgroup
Pn. For convenience of notation we introduce the following notation.

Definition 2.3. Hn := πn(Pn) and Gn := πn(Bn)

We can describe Hn very succinctly:

Lemma 2.4. Hn is generated by g1, . . . , gn−1.
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Proof. Observe that Hn is generated by all conjugates of gi, so that Hn is
the smallest normal subgroup of Gn containing the subgroup 〈g1, . . . , gn−1〉 gen-
erated by the gi. But by Lemma 2.2(f),(g) 〈g1, . . . , gn−1〉 is normal in Gn so
〈g1, . . . , gn−1〉 = Hn.

Remark 2.5. Combining this with Lemma 2.2(a), we have a very powerful tool
for studying the representation πn of Bn. After decomposing the representation πn

restricted to Pn into its irreducible components and computing the corresponding
images of the (σi)2, we can immediately determine the decomposition of the images
of the σi under πn as πn(σi) = 1√

2
(gi + I2n).

Once we understand Hn as an abstract group and decompose its defining rep-
resentation (as it is presented to us as a matrix group), we will need to consider
the group Gn/Hn. We can immediately see that Gn/Hn is a homomorphic image
of Sn as πn induces a surjective homomorphism πn : Bn/Pn → Gn/Hn and
Bn/Pn

∼= Sn. We would like to know if πn is an isomorphism, so we must determine
if Ker(πn) is trivial. Observing that the kernel of πn is (isomorphic to) a normal
subgroup of Sn we need only check that the kernel is not Sn, An or the normal
subgroup of S4 isomorphic to Z2×Z2. For n ≥ 4 it is sufficient to check that the ele-
ment (12)(34) is not in the kernel, while for n = 3 we should check that (123) is not
in the kernel. Since Hn is a normal subgroup of Gn, we also have a homomorphism
ϑ : Gn → Aut(Hn) where Aut(Hn) is the automorphism group of Hn and ϑ(s) is
conjugation by s ∈ Gn. Restricting to Hn we see that ϑ(Hn) = Inn(Hn) ⊂ Aut(Hn)
the normal subgroup of inner automorphisms of Hn and so we have the induced
homomorphism ϑ : Gn/Hn → Aut(Hn)/Inn(Hn). Since Ker(πn) ⊂ Ker(ϑ ◦ πn), if
we can show the composition has trivial kernel then πn must be an isomorphism.
By Lemma 2.2(d), the generators gi of Hn commute or anti-commute, so the ele-
ments of Inn(Hn) act by sign changes. So if we can show that the automorphisms
corresponding to (12)(34) (for n ≥ 4) and (123) are not simply sign changes, we
will have shown that πn is an isomorphism. The corresponding elements of Bn

are (σ1σ3) and (σ2σ1) and we use Lemma 2.2(f) to compute that under ϑπn the
element (σ1σ3) maps g2 to g2g1g3, and (σ2σ1) maps g2 to g2g1g2 = g1. We check
directly that g1g3 �= ±1 using Lemma 2.2(a), (i) and (j), so πn is an isomorphism
for n ≥ 3. In the case n = 2 we see that G2 is the group generated by the matrix
R which is isomorphic to Z8, so combining, we have:

Theorem 2.6. We have an exact sequence:

1 → Hn
⊂→ Gn

ϑ→ Sn → 1

for all n ≥ 2. In other words, Gn is an extension of Hn by Sn.
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3. Extraspecial 2-Groups and Related Groups

Definition 3.1. The group Eν
m is the abstract group generated by

x1, . . . , xm

with relations:

x2
i = ν, 1 ≤ i ≤ m, (1)

xixj = xjxi, |i − j| ≥ 2, (2)

xi+1xi = −xixi+1, 1 ≤ i ≤ m, (3)

where −1 is an order two central element, and ν = ±1.

These groups appear classically and have important connections with Clifford
algebras. The case ν = −1 appears in Exercise 3.9 in the text by Fulton and
Harris [5], and other cases appeared in [8]. The necessary facts about these groups
are found in various places, but are elementary so we reprove them here for the
reader’s convenience.

3.1. Properties of Eν
m

Any element in Eν
m can be expressed in the normal form: ±xα1

1 · · ·xαm
m where

αi ∈ Z2. The following lemma will show that it is unique.

Lemma 3.2. Denote by Z(Eν
m) the center of Eν

m. We have:

(a) Z(Eν
m) =

({±1}, m even,

{±1, ±x1x3 · · · xm}, m odd.

(b) Eν
m/{±1} ∼= (Z2)m.

(c) Any x ∈ Eν
m\Z(Eν

m) is conjugate to −x.
(d) Any nontrivial normal subgroup of Eν

m intersects Z(Eν
m) nontrivially.

(e) For m = 2k − 1 odd, Z(Eν
2k−1) ∼=

(
Z2 × Z2, if ν = 1 or k even,

Z4 if ν = −1 and k odd.

(f) The normal form ±xα1
1 · · ·xαm

m is unique.

Proof. Using the above-mentioned normal form, we may assume, without loss
of generality, that z = xα1

1 · · ·xαm

2k ∈ Z(Eν
m) since if z is central, so is

−z. By the commutation/anti-commutation relations in Eν
m, we have xiz =

(−1)αi−1+αi+1zxi = zxi for all i where we take α0 = αm+1 = 0. Thus we get
the system of equations over Z2:

α2 = 0,

αm−1 = 0,

αi + αi+2 = 0 (mod 2), 1 ≤ i ≤ m − 2.

If m is even then the system has only the trivial solution α = 0, but if m is odd
there are two solutions 0 and (1, 0, 1, . . . , 0, 1), that is, all the α2i = 0 and α2i+1 = 1.
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Thus we have (a). It is clear from the relations in Eν
m that Eν

m/{±1} is presented by
m commuting generators of order 2, i.e. (Z2)m. To prove (c) observe that any non-
central element x ∈ Eν

m must anti-commute with some xi. So (d) follows from (c)
as any nontrivial normal subgroup N must either be central or contain {x,−x} for
some non-central element x so that −1 ∈ N as well. For (e) we compute the order
of the central element x1x3 · · ·x2k−1 and find that it is 2 or 4, which gives us the
two cases. Assertion (f) follows from a simple counting argument as |Eν

m| = 2m+1

by (b).

Definition 3.3. A group G of order 2m+1 is an extraspecial 2-group if (see [8]):

(1) The center Z(G) and the commutator subgroup G′ coincide and are isomorphic
to Z2.

(2) G/Z(G) ∼= (Z2)m.

It is immediate from the anti-commutation relations that the commutator sub-
group of Eν

m is {±1}, and for m = 2k the other conditions were verified in
Lemma 3.2, so we have:

Proposition 3.4. Eν
2k is an extraspecial 2-group.

Remark 3.5. Since the group Eν
2k+1 contains Eν

2k, we call the groups Eν
m nearly

extraspecial 2-groups for any m (so they include extraspecial 2-groups). This should
not be confused with almost extraspecial 2-groups found in the literature which are
central products of extraspecial 2-groups with Z4. The cases where the center of
Eν

m is isomorphic to Z4 are almost extraspecial, but when the center is Z2 × Z2

they are not (see [8]).

3.2. Representations of Eν
m

We wish to construct the irreducible representations of Eν
m. There are 4 cases

corresponding to the parity of m and the choice of ν. For the reader’s convenience
we recall the following standard facts from the character theory of finite groups (see
any standard text, e.g. [5]):

Proposition 3.6. Let G be a finite group, and Irr(G) = {χi}i∈I the set of irre-
ducible characters of G, corresponding to irreducible representations Vi.

(a) |Irr(G)| is equal to the number of conjugacy classes of elements of G.
(b) |G| =

∑
I(dim Vi)2.

(c) For χi, χj ∈ Irr(G)
∑

g∈G χi(g)χj(g) =
(

0, if Vi �∼= Vj ,

|G|, if Vi
∼= Vj .

(d) If g and h are not conjugate then
∑

I χi(h)χi(g) = 0.
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3.2.1. E−1
2k

To determine the number of irreducible representations we count conjugacy classes.
The center {±1} gives us two singleton classes, and Lemma 3.2(c) shows that the
non-singleton conjugacy classes are given by

[ ± xα1
1 · · ·xα2k

2k

]
for any α ∈ (Z2)2k \

{0}. So we have 2+(22k−1) = 22k +1 inequivalent irreducible representations. Let
Irr(E−1

2k ) = {V1, . . . , V22k+1} denote a set of inequivalent irreducible representations
of E−1

2k . By Lemma 3.2 we can induce 1-dimensional representations of E−1
2k from

any representation of (Z2)2k by letting the center act trivially. Thus we have 22k

1-dimensional representations (say, V2, . . . , V22k+1) leaving only one representation,
V1 to determine. Using the class equation

22k+1 = |E−1
2k | = (dim V1)2 +

22k+1∑
2

(dim Vi)2 = (dimV1)2 + 22k,

we find that dimV1 = 2k. The 1-dimensional representations are equal to their
characters so for 2 ≤ i ≤ 22k + 1 we have χi(1) = χi(−1) = 1, and χi([±xj ]) = ±1
for all possible choices of sign. From Proposition 3.6(c),(d), we find that χ1(1) =
−χ1(−1) = 2k, and χ1

([ ± xα1
1 · · ·xα2k

2k

])
= 0. We can construct the represen-

tation (ρ1, V1) as follows (recall the definition of the matrices s and σz from
Sec. 2.1):

ρ1(x1) =
√−1

(
σz ⊗ I⊗k−1

2

)
,

ρ1(x2) = s ⊗ I⊗k−1
2 ,

...

ρ1(x2i) = I⊗i−1
2 ⊗ s ⊗ I⊗k−i

2 ,

ρ1(x2i+1) =
√−1

(
I⊗i−1
2 ⊗ σz ⊗ σz ⊗ I⊗k−i−1

2

)
,

...

ρ1(x2k) = I⊗k−1
2 ⊗ s.

As (σz)2 = I2, s2 = −I2 and σzsσz = −s we see that this is indeed
a representation of E−1

2k , and since tr(s) = tr(σz) = 0 it follows from the
orthogonality of characters that this is the irreducible 2k-dimensional represen-
tation of E−1

2k .

3.2.2. E−1
2k−1

We now construct the irreducible representations of E−1
2k−1. Denote by z the cen-

tral element x1x3 · · ·x2k−1 for convenience. Using Lemma 3.2 we find that there are
22k−1+2 distinct conjugacy classes in E−1

2k−1 and therefore we may label the inequiv-
alent classes of irreducible representations by Irr(E−1

2k−1) = {W1, . . . , W(22k−1+2)}.
We get 22k−1 distinct 1-dimensional representations from (Z2)2k−1 by composing

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

6.
15

:4
13

-4
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n 
12

/1
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 19, 2006 11:50 WSPC/134-JKTR 00458

Extraspecial 2-Groups and Images of Braid Group Representations 421

with the projection onto E2k/{±1}; denote them by W3, . . . , W(22k−1+2). We
compute their characters ψi for 3 ≤ i ≤ 22k−1 + 2 as in the E−1

2k case ψi(1) =
ψi(−1) = 1 and ψi(±xj) = ±1 which determines their values on all classes (observe
that ψi(z) = ψi(−z) for nontrivial central elements ±z for these 1-dimensional
representations). From Proposition 3.6(b), we get dimW1 + dimW2 = 2k for the
remaining two irreducible representations. Since dimWi|22k we see that in fact,
dimW1 = dimW2 = 2k−1. Using Proposition 3.6(c), we find that the charac-
ters ψ1 and ψ2 vanish on all equivalence classes except for the central classes: [1],
[−1], [z] and [−z]. Observing that the restrictions of W1 and W2 to the subgroup
E−1

2k−2 ⊂ E−1
2k−1 must both be the unique non-trivial irreducible 2k−1-dimensional

representation we find that ψ1(−1) = ψ2(−1) = −2k−1. Proposition 3.6(c),(d) then
implies first that ψ1(z) = ψ2(−z) = −ψ1(−z) = −ψ2(z), and then using this and
the orthogonality of ψ1 and ψ2 to see that ‖ψ1(z)‖ = 2k−1. Restricting to Z

(
E−1

2k−1

)
and recalling that Z2 ×Z2 has only real characters while the non-trivial characters
of Z4 have pure complex values on its generators we determine the value of ψ1(z)
up to a choice of sign coming from switching W1 and W2. For the purpose of sim-
plifying notation later we include a sign depending on the value of k (mod 4) and
define:

ψ1(x) =




±2k−1, for x = ±1,
±(−1)(k/2)(2k−1), for x = ±z,

0, otherwise,
(4)

and

ψ2(x) =




±2k−1, for x = ±1,
∓(−1)(k/2)(2k−1), for x = ±z,

0, otherwise.
(5)

Next we give explicit matrix realizations of W1 and W2. Since Z
(
E−1

2k−1

)
must

act non-trivially (although not necessarily faithfully) on W1 and W2 we use the
inclusion E−1

2k−1 ⊂ E−1
2k to observe:

IndE−1
2k

E−1
2k−1

(W1) = IndE−1
2k

E−1
2k−1

(W2) = V1,

where V1 is the 2k-dimensional irreducible representation of E−1
2k given in Sec. 3.2.

Thus by Frobenius reciprocity (and a dimension count) we have that

ResE
−1
2k

E−1
2k−1

(V1) = W1 ⊕ W2. (6)

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

6.
15

:4
13

-4
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n 
12

/1
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 19, 2006 11:50 WSPC/134-JKTR 00458

422 J. M. Franko, E. C. Rowell & Z. Wang

From this we get explicit realizations (λ1, W1) and (λ2, W2). (N.b. the only
difference of λ1 and λ2 on the generators is that the image of x2k−1 differs in
sign.)

λ1(x1) = λ2(x1) =
√−1σz ⊗ I⊗k−2

2 ,

λ1(x2) = λ2(x2) = s ⊗ I⊗k−2
2 ,

...

λ1(x2i) = λ2(x2i) = I⊗i−1
2 ⊗ s ⊗ I⊗k−i−1

2 ,

λ1(x2i+1) = λ2(x2i+1) =
√−1I⊗i−1

2 ⊗ σz ⊗ σz ⊗ I⊗k−i−2
2 ,

...

λ1(x2k−2) = λ2(x2k−2) = I⊗k−2
2 ⊗ s,

λ1(x2k−1) = −λ2(x2k−1) =
√−1I⊗k−2

2 ⊗ σz .

One easily checks that these indeed define irreducible representations of E−1
2k−1

just as in the m = 2k case. It is perhaps worth computing the traces of the
images of the central element z under λ1 and λ2. We have: λ1(z) = −λ2(z) =
(
√−1)k((σz)2 ⊗ · · · ⊗ (σz)2) = (

√−1)kI2k−1 so that:

tr(λ1(z)) = −tr(λ2(z)) =




2k−1, if k ≡ 0 (mod 4),
−2k−1, if k ≡ 2 (mod 4),√−1(2k−1), if k ≡ 1 (mod 4),
−√−1(2k−1), if k ≡ 3 (mod 4).

The traces of the images of ±1 are also easily computed, and comparing these val-
ues with the above formulas (4) and (5), we check that the characters of λ1 and λ2

are ψ1 and ψ2 respectively.

3.2.3. E1
m

Suppose that (ρ, V ) is any representation of E−1
m defined on generators ρ(xi) = Ai

for some set of matrices {Ai}1≤i≤m. Denote by x′
1, . . . , x

′
m the generators of E1

m

and define ρ′(x′
i) =

√−1Ai. Then since (Ai)2 = −IdV we have (ρ′(x′
i))

2 = IdV

and (ρ′, V ) defines a representation of E1
m (observe that the commutation/anti-

commutation relations are homogeneous and hence also satisfied). Obviously this
process is reversible, so that all representations of E1

m are obtained in this way.
If we define representations λ′

1 and λ′
2 of E1

2k−1 corresponding to the two 2k−1-
dimensional representations of E−1

2k−1 then we find that the characters ψ′
1 and ψ′

2

always have real values on the central elements ±z′ = ±x′
1x

′
3 · · ·x′

2k−1 as they
should — since according to Lemma 3.2 the center of E1

2k−1 is always isomorphic
to Z2 × Z2.
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4. Applications

In this section we describe the abstract structure of the groups Gn and Hn and
decompose the representation πn : Bn → (C2)⊗n into its irreducible constituents.
We then extend these ideas to the re-normalized representation of Bn that factors
over the Temperley–Lieb algebra.

4.1. Hn and Gn as abstract groups

Theorem 4.1. Hn
∼= E−1

n−1.

Proof. To verify that the map φ : E−1
n−1 → Hn defined by xi → gi extends to a

(surjective) group homomorphism one just checks that the gi satisfy the defining
relations of E−1

n−1. Since Ker(φ) is normal it must be trivial or intersect Z(E−1
m ) by

Lemma 3.2(d). We check that φ(−1) = φ(x2
1) = g2

1 = −I2n so −1 �∈ Ker(φ) and
we have proved the theorem for n − 1 even. If n − 1 = 2k − 1 is odd, we must
also check that ±z �∈ Ker(φ) where z is the nontrivial central element defined in
Lemma 3.2. For this we must use Lemma 2.2(k) which shows that there is a change
of basis which diagonalizes the odd-indexed g2i+1 while fixing the even indexed g2i.
We compute the image of z in this basis:

(Pn)−1φ(±z)Pn = (Pn)−1(±g1g3 · · · g2k−1)Pn = ±(
√−1)k(σ⊗2k

z ),

which is a diagonal matrix of trace 0, so not the identity.

Combining with Theorem 2.6, we have:

Theorem 4.2. The image of Bn under the representation πn is an extension of
E−1

n−1 by Sn.

4.2. Decomposition of πn

By Theorem 4.1, we have E−1
n−1

∼= Hn as an abstract group so the (defining) repre-
sentation (πn, (C2)⊗n) of Hn induces a representation φn := πn ◦ φ of E−1

n−1.

4.2.1. n odd

Assume that n = 2k + 1 is odd. Then we may decompose (C2)⊗2k+1 ∼= ⊕
i miVi as

representations of E−1
2k for some multiplicities mi. Let χ be the character of φ2k+1.

Since
φ2k+1(−1) = (I2 ⊗ · · · ⊗ g2

i · · · ⊗ I2) = −I2n ,

we see that χ(−1) = −22k+1 and χ(1) = 22k+1. By Proposition 3.6 we can compute
the multiplicities mi of the irreducible components Vi:

mi =
1

22k+1

∑
x∈E−1

2k

χi(x)χ(x).
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The character χ1 of the 2k-dimensional representation V1 vanishes on the non-
central elements of E−1

2k so we compute the multiplicity

m1 =
2k · 22k+1 + 2k · 22k+1

22k+1
= 2k+1,

so V1 appears 2k+1 times. But dimV1 = 2k so dim(2k+1V1) = 22k+1 =
dim(C2)⊗2k+1, so in fact π2k+1 decomposes diagonally as 2k+1 copies of the unique
2k-dimensional representation (ρ1, V1) of E−1

2k .

4.2.2. n even

Suppose n = 2k is even. We have already established (see (6) in Sec. 3.2) that
the restriction of the irreducible 2k-dimensional representation V1 of E−1

2k to E−1
2k−1

decomposes as the direct sum W1 ⊕ W2 of the two inequivalent irreducible 2k−1

dimensional representations W1 and W1. So the 22k-dimensional representation
φ2k decomposes diagonally as the direct sum of 2k copies of each of (λ1, W1) and
(λ2, W2). One could also use the characters ψi to determine these multiplicities.

Remark 4.3. As πn(Pn) = φn(E−1
n−1), all of the arguments above hold mutatis

mutandis for decomposing πn restricted to Pn.

4.2.3. Extension to Bn

With the explicit formulas for the representations ρ1, λ1 and λ2 in hand, we easily
compute the extensions ρ̂1, λ̂1 and λ̂2 to Bn using Lemma 2.2(a). Using the matrices
d, M and D from Sec. 2.1, we give the explicit matrices for the 2k-dimensional
irreducible representation ρ̂1 with n = 2k + 1 noting that the λ̂1 ⊕ λ̂2 is just the
restriction of ρ̂1.

ρ̂1(σ1) = d ⊗ I⊗k−1
2 ,

...

ρ̂1(σ2i) = I⊗i−1
2 ⊗ M ⊗ I⊗k−i

2 ,

ρ̂1(σ2i+1) = I⊗i−1
2 ⊗ D ⊗ I⊗k−i−1

2 ,

...

ρ̂1(σ2k) = I⊗k−1
2 ⊗ M.

The decomposition of πn remains the same, so summarizing we have:

Theorem 4.4. The representation πn of Bn decomposes as

(C2)⊗n ∼=
{

(C2)⊗(n+1)/2 ⊗ V1, n odd,

(C2)⊗n/2 ⊗ (W1 ⊕ W2), n even.
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5. Jones Representation and Jones Polynomial

The Jones representation of the braid groups Bn are defined using the
Temperley–Lieb algebras TLn(q). Jones representation ρr in the following means
the unitary representation of the braid groups at q = e2πi/r factoring through the
semisimple Temperley–Lieb algebras, which are quotients of the Hecke algebras in
[10]. The specific formulas that we use are the ones in [3].

Definition 5.1. Let q =
√−1. The Temperley–Lieb algebra TLn(q) is defined as

the (semisimple) quotient of the braid group algebra C[Bn] by (the ideal generated
by) the relations:

TL1: (σi + 1)(σi − q) = 0.
TL2: σiσi+1σi + σiσi+1 + σi+1σi + σi + σi+1 + 1 = 0.
TL3: (σi − σi+1)2 =

√−1 (i.e. Jones–Wenzl projector p3 = 0).

Observing that the Yang–Baxter operator R satisfies (R− ζI4)(R− ζI4) = 0 we
can define a new matrix R′ = −ζR that satisfies (R′ −√−1I4)(R′ + I4) = 0. Since
the equation (YBE) is homogeneous, (YBE) is satisfied by R′ also. It is a (mildly
tedious) computation to verify that the matrices A1 = (R′⊗ I2) and A2 = (I2⊗R′)
satisfy A1A2A1 + A1A2 + A2A1 + A1 + A2 + I4 = 0, and (A1 − A2)2 =

√−1I4.
Thus the representation π′

n of Bn afforded us by R′ (or CBn if we prefer) factors
over the Temperley–Lieb algebra TLn(

√−1). We can easily extend what we have
learned about the representation πn of Bn to this slight variation by observing the
effect of renormalizing R. We record the result in the following (compare to [10]):

Corollary 5.2. Denote by H ′
n = π′

n(Pn) and G′
n = π′

n(Bn). Then we have H ′
n
∼=

E1
n−1, and G′

n/H ′
n
∼= Sn.

Proof. This follows easily from the observation that renormalizing R by −ζ has
the effect of multiplying the generators gi of Hn by −√−1. Doing the same to the
generators of the group E−1

n−1 just gives us a presentation of the group E1
n−1, and

the same arguments as in the original representation πn go through verbatim.

To relate π′
n to the Jones representation ρ4 of Bn, we recall some facts about

the Jones representation. The Temperley–Lieb algebras at a 4th root of unity are
complex Clifford algebras and are isomorphic to the matrix algebra of 2n−1 × 2n−1

matrices if n is odd, and the direct sum of two matrix algebras of 2
n
2 −1 × 2

n
2 −1

matrices if n is even [11]. (Note here n is the number of strands in the geometric
realization of Bn, and differs by 1 from Jones’ notation in [10].) So the Jones
representation ρ4 consists of a single irreducible sector if n is odd, and the direct sum
of two irreducible sectors if n is even. Comparing with the comments in Sec. 3.2.3
we can also determine the decomposition of the representation π′

n as before. It
follows that the restriction of the Jones representation ρ4 to Pn for n even is the
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odd representation V1 of the extra-special 2-group E1
n−1, and for n odd, W1 ⊕ W2

as in Theorem 4.4. The images ρ4(Bn) fit into the following exact sequence:

1 → E1
n−1 → ρ4(Bn) → Sn → 1.

Projectively, we have

1 → Z
n−1
2 → ρ4(Bn) → Sn → 1.

The symmetric group Sn acts on the coordinates of Zn
2 , hence Z

n−1
2 when n is even.

This action splits the exact sequence. But when n is odd, this sequence does not
split as is shown in [10].

The Jones polynomial of a link at
√−1 is given by the following formula [3]:

J4(σ̂) = (−1)n−1+ e(σ)
4 · (

√
2)−

1+(−1)n

2 · Trace(ρ4(σ)),

where e(σ) is the sum of all exponents of the standard braid generators appearing in
σ, and σ̂ is the closure of σ. We can also define link invariants using the flipped R-
matrix R. The conditions for enhancement (µi, α, β) is given in [14, Theorem 2.3.1.].
Working through the conditions, we found two link invariants: TR(σ̂, α) = αn−e(σ) ·
(
√

2)−n · Trace(πn(σ)), where α = ±1. Comparing with the Jones polynomial we
get the relation:

TR(σ̂, α) = (−1)n−1+e(σ) · αn−e(σ) ·
√

2 · J4(σ̂).

As we know that Jones polynomial J4(σ̂) is (
√

2)c(σ̂)−1 · (−1)Arf(σ̂) if Arf(σ̂) is
defined and 0 otherwise, where c(σ̂) is the number of components of the link σ̂ [11].
It follows that TR(σ̂, α) computes essentially the Arf invariant of a link.
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