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I. FIBONACCI ANYONS

The degrees of freedom in our microscopic models are so-called Fibonacci anyons, one of the simplest types of non-abelian
anyons [1, 2]. The Fibonacci theory has two distinct particles, the trivial state 1 and the Fibonacci anyon τ , which can be thought
of as a generalization (or more precisely a ‘truncated version’) of an ‘angular momentum’ when viewing the Fibonacci theory
as a certain deformation [3] of SU(2). We will now make this notion more precise and illustrate it in detail. In analogy to the
ordinary angular momentum coupling rules, we can write down a set of ‘fusion rules’ for the anyonic degrees of freedom which
are analogs of the Clebsch-Gordon rules for coupling of ordinary angular momenta,

1 × 1 = 1 1 × τ = τ = τ × 1 τ × τ = 1 + τ , (1)

where the last fusion rule reveals what is known as the non-abelian character of the Fibonacci anyon: Two Fibonacci anyons τ
can fuse to either the trivial particle or to another Fibonacci anyon. In more mathematical terms, these fusion rules can also be
expressed by means of so-called fusion matrices Nj whose entries (Nj)

j1
j2
equal to one if and only if the fusion of anyons of

types j1 and j2 into j is possible. The fusion rules are related to the so-called ‘quantum dimensions’ dj of the anyonic particles
by

Nj |dj� = dj |dj� , (2)

where |dj� is the (‘Perron Frobenius’) eigenvector corresponding to the largest positive eigenvalue of the 2× 2-matrix Nj . [The
sense in which these numbers are ‘dimensions’ will become apparent in section II A 1 below.] For the particles in the Fibonacci
theory the quantum dimensions are d1 = 1 and dτ = ϕ ≡ (1 +

√
5)/2 and the total quantum dimension of the theory is then

given by D = (
�

j d
2
j )1/2 =

�
1 + ϕ2.

To define our Hamiltonian, some additional indegredients of the theory of anyons are required. In analogy to the 6j-symbols
for ordinary SU(2) spins, there exists a basis transformation F that relates the two differents ways three anyons can fuse to a
fourth anyon, depicted as

a b c

d

e =
�
f

(F d
abc)

f
e

d

ba c

f . (3)

The left hand side (l.h.s.) represents the quantum state that arises when anyon a first fuses with anyon b into an anyon of type
e, which, subsequently, fuses with anyon c into an anyon of type d. Similarly, the right hand side (r.h.s.) denotes the quantum
states that arises when anyon b first fuses with anyon c into anyon type f which, in turn, fuses with anyon a into anyon type d.
Whilst keeping all external labels, the types of the three anyons (a, b, c) as well as the resulting anyon type d fixed, the states on
the l.h.s and r.h.s. are fully specified by the labels e and f , respectively. Eq. (3) says the so-specified states are linearly related
to each other by the so-called F -matrix [4] with matrix elements (F d

abc)
f
e .

In general, the F -matrix is uniquely defined (up to ‘gauge transformations’) by the fusion rules through a consistency relation
called the pentagon equation [6]. Similarly, the braiding properties of anyons are given by the so-calledR-matrix (which however
is not needed here) that is uniquely determined by the hexagon equation [6].
For the Fibonacci theory, it is straightforward to verify that in most cases there is only one term on the right-hand-side in

Eq. (3), e.g. by choosing two or three out of the four anyons a, b, c, d to be τ -anyons. For these cases the consistency with the
pentagon and hexagon relations then yields that the corresponding F -matrix elements equal to 1. There is only one configuration
that gives rise to F -matrix elements that are non-trivial: If all anyons are τ -anyons, e.g. a = b = c = d = τ , both the 1- and the
τ -fusion channels appear, and the F -matrix takes the explicit form

F τ
τττ =

�
(F τ

τττ )11 (F τ
τττ )1τ

(F τ
τττ )τ1 (F τ

τττ )ττ

�
=

�
ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

�
. (4)

As a final ingredient to explicitly derive our Hamiltonian, we have to introduce the so-called modular S-matrix that relates the
anyon “flux” of species b through an anyon loop of species a to the case without anyon loop by

a

b

=
Sb
a

Sb
1

b

. (5)
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For the case of Fibonacci anyons, the S-matrix takes the explicit form

S =
�

S1
1 S1

τ

Sτ
1 Sτ

τ

�
=

1
D

�
1 ϕ
ϕ −1

�
. (6)

There is an important relationship between the modular S-matrix and the matrix encoding the fusion rules, introduced in the
paragraph above Eq. (2): the modular S-matrix diagonalizes the fusion rules, the ‘Verlinde Formula’,

Sb
b� (Na)b

�
c� S

†c�
c = δbc

Sa
b

S1
b

, (7)

(repeated indices are summed) where S† denotes the adjoint of the unitary matrix S. The eigenvalues of the matrix (Na) are
thus Sa

b

S1
b
, and the largest (positive) eigenvalue, the quantum dimension da, can be seen to be

da =
Sa

1

S1
1

. (8)

Due to the unitarity of the modular S-matrix one immediately checks that the total quantum dimension equals

D =
1
S1

1

. (9)

II. THE LADDER MODEL

In this section we will discuss details of the “ladder model” in a one-dimensional geometry, whose Hamiltonian is given by
Eq. (2) in the main part of the paper. We start by defining the Hamiltonian in detail, and then discuss the gapped topological
phases, critical phases, and the exact solutions.

A. The Hamiltonian

1. Explicit expression

To establish a notation for the basis states we consider the skeleton lattice inside the high-genus ladder geometry as shown in
Fig. 1. The basis states are given by all admissible labeling of the edges of the skeleton with 1 or τ particles, subject to the vertex
constraints given by the fusion rules. The number of basis states, BL, of the ladder with L plaquettes and periodic boundary
conditions is given by

BL =
�

{ai,bi,ci}
(Nc1)a2

a1
(Nc2)a3

a2
. . . (NcL

)a1
aL

(Nc1)b2b1(Nc2)b3b2 . . . (NcL
)b1bL

=
�

{i1,...iL}
[Tr(Ni1Ni2 . . . NiL)]2 , (10)

whereNi are the fusion matrices of Fibonacci theory as introduced above. The largest eigenvalue of the matrixNi is the quantum
dimension di. Thus, the leading behavior of the traces for large L is,

BL ∼
�

{i1...iL}
(di1di2 . . . diL)2 =

L�
k=0

(d2
1)L−k(d2

τ )k = (1 + ϕ2)L = D2L. (11)

The Hilbert space thus grows asymptotically, for large L, as a power of the square of the total quantum dimension D2.
The Hamiltonian (as given in Eq. (2) of the main part of the paper)

H = −Jr
�

rungs r

δ�(r),1 − Jp
�

plaq p

δφ(p),1 (12)

consists of two non-commuting terms, the rung term which is diagonal in the chosen basis, and the plaquette term which depends
on the four edges of the plaquette p, and the four adjoining edges. By inserting an additional anyon loop of type s into the center
of the plaquette, we can project onto the flux through this additional loop (and hence the flux through the plaquette) by the
following procedure (for a derivation see the following subsection)
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FIG. 1: The high-genus surface in a ladder geometry and the ‘skeleton’ of the fusion graph that defines the Hilbert space. The trivial particle
1 or the Fibonacci anyon τ can occupy the links of the ladder skeleton, subject to the vertex constraints given by the fusion rules of Fibonacci
anyons.

δφ(p),1

�������
δ

a b
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The additional s-loop is inserted by performing a sequence of F -transformations:
�������
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Using the identity

δmδ� (F s
δδs)

δ�
1

δ�
sδ

m

= δ� , (15)

we obtain the final expression

δφ(p),1

�������
δ

a b

β

α

d cγ

�
=

�
s=1,τ

ds
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γ (Fα
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β (F δ
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α
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a b
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α�

δ�
cγ�

�
. (16)

The ladder geometry has a local duality between the inside and outside: the inside of the rungs is dual to the plaquettes. The
only difference is that the rungs connect two different cylinders, while the plaquettes connect the same space (the “outside”).
The duality can be made exact by using “twisted” boundary conditions where the ends of the ladder are connected according to
a1 = bL+1 and b1 = aL+1 (so that the ladder looks like a Moebius strip). Indeed, our exact diagonalization results confirm that
the excitation spectra are identical under exchange of the couplings Jr and Jp for twisted boundary conditions. However, in the
case of periodic boundary conditions (a1 = aL+1, b1 = bL+1), which we shall focus on in the following, this duality is only up
to degeneracies.
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2. Bigger (mathematical) picture

So far our discussion in this ‘Supplementary Material’ has been largely focused on detailed algebraic manipulations. In this
subsection we wish to give a brief idea of the general bigger picture of topological field theories which underlies these detailed
manipulations. At the same time we will provide a deeper understanding of the so-called ‘Levin-Wen model’ within this context.
In the main text we have given a physically motivated description of the Levin-Wen model in Figs. 1 and 2, leading to the

Hamiltonian in Eq. (1) of the main text. Let us now give a more abstract description of it. The most general Levin-Wen
Hamiltonian has two kinds of terms: the vertex type (not discussed so-far as a term of the Hamiltonian) and plaquette type. Let
us consider a surface Σ, and a trivalent graph Γ (which we called ‘skeleton’in the main text) embedded in that surface. (The
sole role of the surface Σ, which in the leftmost picture of Fig. 1 of the main text is just a parallel plane sitting in between the
two depicted sheets, is to give a well defined meaning to the notion of a ‘plaquette’; namely, all complimentary regions of Σ\Γ,
i.e. the complimentary regions of the graph Γ within the surface Σ, are plaquettes.) We always enforce strictly the condition
that three labels meeting at a vertex must satisfy the fusion rule. (This is another way of saying that we have set the coupling
constant of the ‘vertex term’ in the most general Levin-Wen Hamiltonian to infinity.) As a result, we obtain a Hilbert space
called L(Γ,Σ) consisting of the Hilbert space spanned by all admissible labelings of the trivalent graph Γ: a labeling of Γ is an
assignment of a label in a label set IC to each edge of the graph, [IC = {1, τ} in the previous subsection I], and the labeling is
admissible if the three labels around each vertex satisfy the fusion rules.
Now, there exists another vector space, which brings about the connection with the actual surfaces that were drawn in Figs. 1

and 2 of the main text. In particular, when C denotes a so-called modular category (for a precise definition, which we do not
need at the moment, see e.g. Ref. 7) which basically denotes a theory of ‘anyons’ and their corresponding ‘fusion rules’ such
as the one described in the previous subsection I, then the vector space L(Γ,Σ) is the same as a Hilbert space VC(SΓ) (for a
definition see e.g. Ref. 7) of an associated Topological Quantum Field Theory (TQFT) corresponding to the ‘modular category’
C: specifically letNΓ be the thickening of the graph Γ to a handle-body (drawing a cylinder around each edge of the graph), and
SΓ be the boundary surface of NΓ, then L(Γ,Σ) ∼= VC(SΓ). In the language of TQFT, any ‘pants-decomposition’ of the surface
SΓ is known to lead to a basis of VC(SΓ), which corresponds to the vector space spanned all possible fusions of the labelings on
Γ.
This interpretation of the Hilbert space L(Γ,Σ) gives rise to a transparent derivation of the plaquette term, Eq. (16), in the

Levin-Wen model. To derive this expression, we use the identification of L(Γ,Σ) with VC(SΓ). The cth row of the modular
S-matrix of the modular category C can be used to construct a projector ωc that projects out the particle with a label c through
a plaquette. In other words total flux c through a plaquette p can be enforced by inserting ωc into a plaquette p. The projector
turns out to be of the form

ωc =
1
D

�
a

Sa
c [a] , (17)

where [a] denotes a loop labeled by a as the one drawn in Eq. (5). In order to see that this performs the task let us insert a flux
with label b thought the loop [a], resulting in the figure drawn on the l.h.s. of Eq. (5), which we denote in symbols by [a](b).
When we now perform the sum in Eq. (17) we obtain, upon making use of Eq. (5),

ωc(b) := 1
D

�
a Sa

c [a](b) =
1
D

�
a

Sa
c

Sb
a

Sb
1

[b] = δbc
1

D Sc
1

[c] = δbc
1
dc

[c] (18)

ωc

�
b
�

:= 1
D

�
a Sa

c a

b

= δbc
1
dc

c

(19)

where we have used the unitarity (plus reality and symmetry) of the modular S-matrix, as well as Eq.s (8,9).
Therefore, the plaquette term δφ(p),1 is implemented by inserting the projector ω1 =

�
a

da

D2 · [a] into the plaquette p. Now the
detailed steps leading to Eq. (16) are easy to understand: The insertion of ω1 into the plaquette is written explicitly in Eq. (13).
In the subsequent equation, first an F -move is applied to the two lines connected by the dotted line, and subsequently four more
F moves counterclockwise around p are implemented as drawn; finally removing the resulting bubble, we obtain the explicit
form of the plaquette term written in Eq. (16).
The mathematical context for the Levin-Wen model is the Drinfeld centerZ(C) or quantum double of a unitary fusion category

C. The label set IC for the Levin-Wen Hamiltonian is the isomorphism classes of simple objects of C. It is known that a unitary
fusion category is always spherical. By a theorem of M. Müger [8], the Drinfeld center of any spherical category is always
modular. It follows that the Drinfeld center of any unitary fusion category is always modular. Moreover, if the spherical category
C itself is modular, then Z(C) is isomorphic to the direct product of the conjugate C∗ and C, where C∗ is obtained from C by
complex conjugating all data. Our main example is one of those special cases, where C is the Fibonacci theory.
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FIG. 2: Possible basis configurations in the presence of one plaquette excitation. The two ground states (without a flux through the plaquette)
and three excited states (with a τ -flux through the plaquette) are linear combinations of these basis states. Solid lines denote τ -anyons while
dashed lines symbolize the trivial particle 1.

The decomposition of Z(C) hints directly at the appearance of Dynkin diagram D6 at the critical point in one-dimensional
geometry: indeed, the two phases connected by the critical point are the Fibonacci theory and the doubled Fibonacci theory with
label sets {1, τ}, and {(1, 1), (1, τ), (τ, 1), (τ, τ)}, respectively. Based on this, it is natural to expect that the two sets of fusion
rules will fit together in a compatible way at the critical point, which is nicely illustrated by the structure of the D6 Dynkin
diagram in Fig. 11 which underlies the exact solution of this critical point (Section II D below).

B. Topological phases

We start the detailed discussion of the phase diagram with the two distinct gapped non-abelian topological phases: the ‘single
torus’ phase where all plaquettes are closed at θ = 0 and the ‘two tori’ phase with closed off rungs at θ = π/2. A finite-size
scaling analysis of the splitting of the ground state degeneracies and the energy gap shows that the phases extend over a wide
range of parameter space as illustrated in the phase diagram (Fig. 6a of the main part of the paper). In this section we discuss
the low-lying excited states in these phases, give their explicit wave functions at the exactly solvable points, and a perturbative
expansion for their dispersion away from these points.

1. The ‘single torus’ phase at −π/2 < θ < π/4

To describe the lowest excited states we consider the trivially solvable point θ = 0 where Jr = 0. In the ground state there is
no flux through any of the plaquettes, and they all can be closed, thus reducing the high-genus ladder to a single torus (see Fig.
5a) in the main part of the paper). There are two degenerate ground-states configurations with either no flux or a τ -flux through
this torus.
Similarly, we can deduce the degree of degeneracy for the lowest excited state by considering the topology of this state. In

the lowest excited state, one plaquette flux is present which yields the reduced topology (as compared to the high-genus ladder)
and the associated skeleton shown in Fig. 5a) of the main part of the paper. Closing all but one plaquette this skeleton allows for
5 different 1, τ coverings, illustrated schematically in Fig. 2. In order to obtain the anyon-fluxes through the excited plaquette,
a basis transformation (consisting of a F - and a S-transformation) of the reduced basis is performed which yields that there are
three τ -fluxes through each plaquette. Thus, the lowest excited state at θ = 0 is 3L-fold degenerate. Tuning away from θ = 0
these 3L excitations delocalize and form a three-fold degenerate band.

2. The ‘two tori’ phase at π/4 < θ < π

At the point θ = π/2 (trivially solvable) the ground state has no τ -anyons on the rungs of the ladder. The rungs can hence be
cut which yields an effective topology of two separate tori. Of the four degenerate ground states three are symmetric and one is
antisymmetric under y-reflection. The lowest excited state is a τ -anyon flux through a single rung. The fusion rules then require
a flux through both of the two tori, and this state is hence only L-fold degenerate. Tuning away from θ = π/2, these states
delocalize into a non-degenerate band.

3. Perturbation expansion for the quasiparticle bands

Over a broad range of parameters the quasi-particle excitations are well described (see Fig. 6a of the main part of the paper)
by a second order perturbative expansion around θ = π/2, with a dispersion given by

ΔE(Jp, Jr, kx) = Jr − 2Jp
D2

cos(kx) − J2
pϕ

D4Jr
[1 + 2 cos(kx)] − J2

p

2D4Jr
2 cos(2kx). (20)

Due to duality, this result equally applies for coupling parameters θ close to θ = 0, with Jr and Jp interchanged.
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C. Gapless theories

In this section, we discuss the critical points (θ = π/4, 5π/4) and the extended critical phase in the ladder model. We first
discuss the gapless theories in terms of numerical results and then present analytical arguments leading to an exact solution for
the two critical points (θ = π/4, 5π/4).

1. Critical point at θ = π/4
(numerical findings from exact diagonalization)

At equal positive values of the two coupling constants (Jp = Jr,θ = π/4), the system has a linear energy-momentum
disperson relation with the finite-size spacing between energy levels vanishing linearly in 1/L. This indicates that the two
adjacent, gapped topological phases are separated by a continuous quantum phase transition and a critical point that is described
by a 2D conformal field theory (CFT). To characterize this CFT, we rescale and match the finite-size energy spectra obtained
numerically by exact diagonalization for systems with up to L = 36 anyons to the form of the spectrum of a CFT,

E = E1L +
2πv
L

�
− c

12
+ h + h̄

�
, (21)

where the velocity v is an overall scale factor, and c is the central charge of the CFT. The scaling dimensions h+ h̄ take the form
h = h0 +n, h̄ = h̄0 + n̄, with n and n̄ non-negative integers, and h0 and h̄0 are the holomorphic and antiholomorphic conformal
weights of primary fields in a given CFT with central charge c. The momenta (in units 2π/L) are such that kx = h − h̄ or
kx = h− h̄+L/2. Using this procedure, we find that for the critical point at θ = π/4 the rescaled energy spectrum matches the
assignments (21) of part of the Kac-Table of them = 9 unitary Virasoro minimal CFT of central charge c = 14/15, as shown in
Fig. 3. In Fig. 4 we list all relevant primary fields of this CFT which appear and their corresponding scaling dimensions. It turns
out that only the Kac-Table primary fields φr,s with s = odd appear, and those with s = 5 have multiplicity two (the associated
states on the ladder being in the bonding/antibonding sectors of ‘transverse momenta’ ky = 0, π), all others having multiplicity
one. These are precisely those Kac-table primary fields which occur in the so-called (D,A)-modular invariant [9] of them = 9th
Virasoro minimal CFT of central charge c = 14/15.
To illustrate how the ground-state degeneracy changes at this critical point from a two-fold degeneracy for the ‘single cylinder’

limit (Jr = 0) to a four-fold degeneracy for the ‘two cylinders’-limit (Jp = 0), we can follow the evolution of eigenenergies in
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FIG. 3: Exact diagonalization: Energy spectrum at the critical point (θ =
π/4) for a ladder with L = 12 holes and 36 anyons. The energies have been
rescaled so that the two lowest eigenvalues match the CFT scaling dimensions.
The open boxes indicate the primary fields of the 7th minimal model with
central charge c = 14/15. The topological symmetry sectors are indicated
with symbols 1 ≡ y1,1, τ ≡ yτ,τ and τ + 1 ≡ y1,τ .
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FIG. 4: CFT fields: Scaling dimensions h(r,s) + h̄(r,s) of
the primary fields in the (D, A) modular invariant of the
7th minimal model with central charge c = 14/15. On
the right, we give momentum and topological symmetry
assignments of these primary fields for our microscopic
model.
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FIG. 5: The energies of the lowest lying energy states around the critical point (θ = π/4) as a function of the ‘dimerization’ θ. Results are
shown for system size L = 10.

the vicinity of this critical point as shown in Fig. 5. Moving away from the critical point (θ = π/4) corresponds to a dimerization
of the model: in an alternative basis choice, discussed in detail in section II D, it becomes apparent that the rung and plaquette
terms alternatingly act on even and odd ‘sites’. For θ � π/4, the four-fold ground-state degeneracy is lifted with one of the four
ground states approaching the field with rescaled energy 2/45 (ky = 0), and two degenerate ground states moving to a rescaled
energy 2/15 (ky = 0 and ky = π). The single first excited state in this gapped phase softens towards the rescaled energy 4/15 at
the critical point. As we move into the adjacent gapped phase for θ < π/4 only the field with rescaled eigenenergy 2/45 moves
back towards the ground-state, while the two other fields move upwards in energy and form a three-fold degenerate excited state.

2. Extended critical phase for θ ∈ (π, 3π, 2)
(numerical findings from exact diagonalization)

For negative coupling parameters Jp, Jr < 0, we find an extended critical phase around the point of equal coupling strength
which in our circle phase diagram is opposite to the critical point discussed above. For the whole extent of this critical phase
we can match the finite-size energy spectra to the Z8 parafermion CFT with central charge c = 7/5. This theory is part of
the sequence of Zk-parafermion CFTs with conformal weights Δj

m = j(j+1)
k+2 − m2

k , where j = 0, 1
2 , 1, ..., k/2, |m| ≤ j (and

j −m = integer), in the notation of [10]. The details of the assignments for k = 8 can be found in Fig. 6 and Table II.
In order to verify that the critical phase around the exactly soluble point θ = 5π/4 extends to the vicinity of the decoupling

points θ = π and θ = 3π/2, we consider an effective model where we fix all rung occupations to τ -anyons. This assumption is
exactly true at the decoupling point θ = 3π/2. Implementing this constraint significantly reduces the size of the Hilbert space
and allows us to numerically study this effective model for larger system sizes with up to 48 anyons.
The effective Hamiltonian in the reduced Hilbert space is given by

Heff = −LJr − Jp
�

plaq p

δφ(p),1 . (22)

The first term is a constant, and can thus be omitted which then turns the actual value of Jp irrelevant. A positive Jp corresponds
to the limit θ � 3π/2, while a negative Jp allows to study the limit θ � 3π/2.
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FIG. 6: Exact diagonalization: Energy spectrum at the critical point (θ =
5π/4) for a ladder with L = 8 holes and 24 anyons. The energies have been
rescaled so that the two lowest eigenvalues match the CFT scaling dimensions.
The open boxes indicate the primary fields of the Z8-parafermion model with
central charge c = 7/5. The topological symmetry sectors are indicated with
symbols 1 ≡ y1,1, τ ≡ yτ,τ and τ + 1 ≡ y1,τ .
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FIG. 7: CFT fields: Scaling dimensions h(j,m) + h̄(j,m)

of the primary fields in the Z8-parafermion CFT with
central charge c = 7/5. On the right, we give momentum
and topological symmetry assignments of these primary
fields for our microscopic model.

For positive Jp, we find that the splitting of the ground state degeneracies goes to zero for 1/L → 0, and the energy gap
approaches a finite value as shown in Fig. 8. This further supports the stability of the gapped topological phases up to, but
excluding, the points θ = π and θ = 3π/2 in our phase diagram.
For negative Jp, the rescaled energy spectrum of this effective model is critical and again matches (with much higher accuracy

than at θ = π) the Z8 parafermion conformal field theory with central charge c = 7/5 as shown in Fig. 6. We can hence conclude
that the whole quadrant θ ∈ (π, 3π/2) is occupied by an extended critical phase described by the same conformal field theory
as the exactly solvable point θ = 5π/4.
Approaching the endpoints of this extended critical phase at θ = π and θ = 3π/2, the low-energy spectrum collapses into a flat

band resulting in an extensive ground state degeneracy below an energy gap of size 1 at the points θ = π and θ = 3π/2. Moving
beyond these ‘decoupling points’ where one of the terms in the Hamiltonian vanishes, this extensive ground-state degeneracy
is split again and a gap opens for θ < π and θ > 3π/2, respectively, as the system enters the two gapped, topological phases
discussed above.
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FIG. 8: Energy gap ΔE(1/L)/Jp between the first excited state and the ground state, as well as the splitting of the ground state degeneracy,
δE(1/L)/Jp, for the effective model Eq. 22. The two ground states become precisely degenerate only in the thermodynamic limit. The results
indicate that the energy gap extrapolates to a finite value. Since the effective model is valid in the limit θ → 3π/2+, the gapped topological
phase extends all the way up to this point.
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3. Topological stability of the critical phases

Both critical theories have a large number of rescaled energies (21) that are smaller than two. These eigenenergies are
associated with operators whose correlation functions decay with scaling exponent h+ h̄ < 2. Such operators are relevant in the
renormalization group sense. This means that any operators O with scaling dimensions (=rescaled energies) h + h̄ < 2 which
is invariant under all symmetries of the Hamiltonian may appear as an additional term in the latter and can thus drive the system
out of the critical phase into a gapped phase or a different critical phase. For a critical phase to be stable there must hence exist
a symmetry in the model such that the identity field (associated with the ground state) belongs to a different symmetry sector
than all other fields φ with h + h̄ < 2 and kx = 0 (fields at kx �= 0 do not obey the translational symmetry of the Hamiltonian).
Indeed, our model has an additional topological symmetry [11] that can stabilize the critical phases: There can be either no flux
(denoted as 1-flux) or a τ -flux entering the periodic ladder from one side, and a 1- or a τ -flux leaving the ladder as illustrated in
Fig. 10. There are hence three possibilities for possible flux assignments: (i) no flux is entering from above, and no flux is leaving
[Fig. 10a], (ii) a τ -flux is entering and leaving [Fig. 10b], or, (iii) a τ -flux is entering from one side, and leaves through one or
several plaquettes as shown in Fig. 10c). For each operator, one of the three scenarios applies and we can explicitly determine
the topological sectors by considering the following hermitian symmetry operator (which commutes with the Hamiltonian)

Y |a, b, c� =
�
a�,b�

L�
i=1

(F
a�

i+1
ciaiτ )ai+1

a�
i

(F
b�i+1
cibiτ

)bi+1

b�i
|a�, b�, c� , (23)

where |a, b, c� = |a1, b1, c1, a2, b2, c2, ...., aL, bL, cL� are labels according to Fig. 1. This operator inserts additional τ -loops
parallel to the two ‘spines’ of the ladder. As in the case of the plaquette term Eq. (16), this is done by connecting them to the
ladder with 1-particles. The flux through each of these two additional τ -loops can be either 1 or τ , where a 1-flux yields a factor
of Sτ

1 /S
1
1 = ϕ, and a τ -flux gives Sτ

τ /S
1
τ = −ϕ−1 (note that a S-transformation has to be performed in order to obtain the flux

through the additional τ -loops). Hence there are three possible eigenvalues of Y : y1,1 = ϕ2 (scenario i), yτ,τ = ϕ−2 (scenario
ii) or y1,τ = −ϕ−1ϕ = −1 (scenario iii).
We numerically evaluate the topological symmetry sectors in the two critical phases (see Tables I and II, and Figs. 3, 6 and

9). At the critical point separating the topological phases (θ = π/4), we find that the relevant operators can be classified
according to s = 1 ↔ y1,1, s = 3, 7 ↔ yτ,τ , s = 5 ↔ y1,τ . In particular, only one operator, φ(2,1), is in the same
topological symmetry sector as the ground state, i.e. the identity field φ(1,1). It is this field that drives the system out of the
critical phase when varying the coupling constant θ. With the scaling dimension of this operator being x = 2/3 the gap opens
as ΔE(θ) ∝ |θ − π/4|ν on either side of the critical point, where ν = 1/(2 − 2/3) = 3/4. In the second critical phase,
θ ∈ (π, 3π/2), the topological symmetry assignments of the relevant operators are given by r = 0 ↔ y1,1, r = 2, 6 ↔ yτ,τ ,
r = 4 ↔ y1,τ . In particular, there is no relevant field in the same topological symmetry sector as the ground state, which implies
that there is no symmetry-allowed relevant operator in this gapless theory and the critical point must be part of an extended
gapless phase. This observation demonstrates that our observation (from exact diagonalization studies) that the extended critical
phase in the quadrant θ ∈ (π, 3π/2) is described by the same Z8 parafermion CFT with central charge c = 7/5 is correct.

τ

ττ

τ

a) no flux (1-flux) b) τ-flux c) (τ + 1)-flux

FIG. 10: Topological symmetry sectors: a) No τ -flux enters or leaves the ladder. b) A τ -flux enters from one side and leaves at the other side.
c) A τ -flux enters from one side and leaves through a plaquette.
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D. Analytical solution

Our ladder model defined by the Hamiltonian in Eq. (2) in the main part of the paper can be solved exactly at the two critical
points θ = π/4 and θ = 5π/4 (see the phase diagram in Fig. 5 of the main text). The key observation leading to this exact
solution is that the topological structure of our model implies that its Hilbert space is in fact built on the so-called D6-Dynkin
diagram, which is drawn below in Fig. 11.

(1, 1)

(1, τ)

(τ, 1)
(τ, τ)1 τ

FIG. 11: Dynkin diagramD6.

The Dynkin diagram indeed appears very naturally: let us make a change of basis for our Hamiltonian as illustrated in Fig. 12.
This new choice of basis (drawn on the left), which arises from a different decomposition of the high-genus surface, is related
to the original one (drawn on the right) by a simple F -transformation. In particular, consider the new basis in the left part of
Fig. 12: with the even-numbered ‘sites’ (which correspond to the original rungs) we associate a label di = 1 or di = τ (the
flux through that cross-section of the surface). With the odd-numbered ‘sites’ (which correspond to the original plaquettes) we
associate a variable consisting of a pair of labels, (ai, bi) which can assume four values, i.e., (ai, bi) = (1, 1), (ai, bi) = (τ, 1),
(ai, bi) = (1, τ) and (ai, bi) = (τ, τ), and denotes the pair of fluxes through the two cross-sections of the surface at the position
of the plaquette. The allowed fusion channels at the vertices where variables (ai, bi) and di±1 meet then correspond precisely
to the condition that they be adjacent nodes on the Dynkin diagram of the D6 Lie algebra, as illustrated in Fig. 11 above. For
example, a local label (ai, bi) = (τ, τ) at an odd-numbered ‘site‘ i allows for labels di−1 = 1 and di−1 = τ at the neighboring
even-numbered sites, which is reflected in the fact that label (τ, τ) is connected by a line to both labels 1 and τ in the Dynkin
diagram.

(Fb3

b1a1a3
)c2

d2

b5

a5a3

b3

(Fb5

b3a3a5
)c4

d4

b1

a1
a3

d4

a5

b3 b5

d2
=

�
c2,c4

c2

b1

a1

c4

FIG. 12: Two possible basis choices corresponding to different decompositions of the high-genus surface. The basis drawn on the left is used
in formulating the exact solution: the rung and the plaquette terms alternatingly act on even or odd ‘sites‘ i.

In summary, the elements of this new basis of the Hilbert space on which the Hamiltonian acts are of the form

|�α� := |. . . , αi−1, αi, αi+1, . . .� , (24)

where αj [= dj if j is even, and = (aj , bj) if j is odd] denotes a point on the D6-Dynkin diagram representing the flux through
the high-genus surface at the ‘site’ j of the chain. The sequence of αj must satisfy the condition that αj+1 is a nearest neighbor
site of αj on the D6-Dynkin diagram.
In this new basis, the rung and plaquette terms HR

i and HP
i of our ladder Hamiltonian

H = −Jp
�
i odd

HP
i − Jr

�
i even

HR
i , (25)

take on the following form [12]

HP
i |ai, bi� =

�
s=1,τ

ds
D2

�
a�

i,b
�
i

(F a�
i

di+1bis
)b

�
i
ai(F

b�i
di−1ais

)a
�
i

bi
|a�i, b�i� ,

HR
i |di� =

�
d�

i

(F bi+1
bi−1ai−1ai+1

)1di
(F bi+1

bi−1ai−1ai+1
)1d�

i
|d�i� . (26)
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In fact, these terms can be seen to form a representation of the Temperley-Lieb algebra [13] which arises from the D6-Dynkin
diagram, and has “d-isotopy” parameter D =

�
1 + ϕ2 = 2 cos(π/10), the total quantum dimension of our Fibonacci theory.

Specifically, consider the operators ei constructed from the components vα = sin(απ/10) (α = 1, ..., 6, v1 = v(1,1), v2 = v(1),
v3 = v(τ,τ), v4 = v(τ), v5 = v6 = v(1,τ) = v(τ,1)) of the (‘Perron Frobenius’) eigenvector corresponding to D, the largest
positive eigenvalue of the adjacency matrix of the D6-Dynkin diagram [14],

ei |. . . , αi−1, αi, αi+1, . . .� :=
�
α�

i

((ei)αi+1
αi−1

)α
�
i

αi
|. . . , αi−1, α

�
i, αi+1, . . .� ,

where ((ei)αi+1
αi−1

)α
�
i

αi
= δαi−1,αi+1

�
vαivα�

i

vαi−1vαi+1

. (27)

These operators form a known representation [15] of the Temperley-Lieb algebra with “d-isotopy”- parameter D, i.e.

e2
i = D ei , eiei±1ei = ei , [ei, ej ] = 0 for |i− j| ≥ 2 . (28)

Now one can check that the rung and plaquette terms, Eq. (26), of the Hamiltonian in the new basis, Eq. (25), are proportional
to these operators, i.e.

HP
i =

1
D

ei for i odd, HR
i =

1
D

ei for i even. (29)

The Hamiltonian Eq. (26) is in fact that corresponding to the (integrable) restricted-solid-on-solid (RSOS) statistical mechan-
ics lattice model based on the D6-Dynkin diagram [15]. Specifically, the two-row transfer matrix T := T2T1 of this lattice
model

α2n

α2n−1 α2n+1

α�
2n+1α�

2n−1

α�
2n

W[2n]

W[2n + 1]

is written in terms of Boltzmann weightsW[i] assigned to a plaquette i of the square lattice

T1 :=
�
n

W[2n] , and T2 :=
�
n

W[2n + 1] (30)

with

W[i] �α
�

�α =
�

sin[ π10 − u]
sin π

10

1 �α�
�α +

sinu

sin[ π10 ]
e[i] �α

�
�α

�
. (31)

The parameter u > 0 is a measure of the lattice anisotropy, 1 is the identity operator, and

e[i] �α
�

�α :=

⎡
⎣�
m�=i

δα�
m,αm

⎤
⎦ �

(ei)
αi+1
αi−1

�α�
i

αi

. (32)

The Hamiltonian of the so-defined lattice model is obtained from its transfer matrix by taking, as usual [16], the extremely
anisotropic limit, 0 < u � 1,

T = exp{−a(H + c1) + O(a2)}, a =
u

D sin[π/10]
� 1 ,

yielding

H = −
�
i

1
D

ei . (33)
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Since, due to Eq. (29), the operators ‘ 1
D ei’ are nothing but the rung and plaquette operators, we have thus demonstrated that

the Hamiltonian of the RSOS statistical mechanics model based on the Dynkin diagram D6 coincides with the Hamiltonian,
Eq. (25), of our ladder model.
The RSOS model based onD6 is known [17, 18] to provide an (integrable) lattice realization of the (D,A) modular invariant

[9] of the 7th unitary minimal CFT of central charge c = 14/15. In particular, the Hamiltonian of Eq. (2) of the main text at
angle θ = π/4 will yield the spectrum of that CFT. This exact analytical result is borne out precisely by our numerical (exact
diagonalization) studies reported in subsection (II C 1). This CFT with central charge c = 14/15 describes the quantum critical
point of a 1 + 1 D quantum system, our ladder model. While we cannot make an exact statement for the related 2 + 1 D quantum
model, we note that Fendley has recently discussed this 2 + 1 D quantum critical point from a 2 + 0 D perspective [19] by
considering a one-parameter family of wavefunctions connecting the ground-state wavefunctions of the two extreme limits of
the 2 + 1 D model in Eq. (1) of the main manuscript. For a certain value of the parameter he finds a conformal quantum critical
point whose ground-state correlators are written in terms of this same c = 14/15 CFT.
Another version of this lattice model yielding in the anisotropic limit the negative, −H , of the Hamiltonian in Eq. (33) is

also integrable and provides [20] a lattice realization of the Z8 parafermionic CFT of central charge c = 7/5. In particular, the
Hamiltonian of Eq. (2) of the main text at angle θ = 5π/4 will yield the spectrum of that CFT. Again, this exact analytical result
is borne out precisely by our numerical (exact diagonalization) studies reported in subsection (II C 2).

III. THE HONEYCOMB LATTICE MODEL

In this section, we discuss details of the “honeycomb lattice model” whose Hamiltonian is given by Eq. (1) in the paper. We
first define the plaquette term of the model and then discuss two limiting phases of the model.

A. The Hamiltonian

In analogy to the plaquette term in the ladder model, Eq. (16), the plaquette term of the honeycomb lattice model (Eq. (1) in
the main text) is defined by

δφ(p),1

���������
f

β

γ

d

c

δ

ζ

�

α

e

ba �
=

�
s=1,τ

ds
D2

�
α�,β�,γ�
δ�,��,ζ�

(F ζ
aα�s)

ζ�
α (F �

fζ�s)
��
ζ (F δ

e��s)
δ�
� (F γ

dδ�s)
γ�
δ (F β

cγ�s)
β�
γ (Fα

bβ�s)
α�
β

��������� ��

d

c

e

ba

f

α�
ζ �

δ�

β�

γ�

�
(34)

where the additional two edges of a plaquette are reflected in two additional F -transformations. Again, we can parametrize the
coupling constants on a circle as Jp = cos(θ) and Je = sin(θ).

B. Excitations

We briefly mention the elementary excitations of this model. In the ‘two-sheets’ phase, which corresponds to couplings θ = 0
(Jp = 1, Je = 0), the elementary excitation is a single plaquette with a τ -flux giving rise to a single ‘hole’ as illustrated on
the left in Fig. 13. These excitations are gapped with a gap size of Jp and will delocalize for small couplings Je �= 0 forming
quasiparticle bands. Similar to the ladder model the dispersion of this quasiparticle band can be calculated perturbatively around
the ‘two-sheets’ limit.
In the opposite limit of ‘decoupled spheres’, which corresponds to couplings θ = π/2 (Je = 1, Jp = 0), the elementary

excitation is a ‘plaquette ring’ where all edges around a given plaquette have τ -fluxes, as illustrated on the right in Fig. 13.
Again, a perturbative analysis allows to qualitatively describe the quasiparticle band.
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[8] Müger, M. From subfactors to categories and topology II: The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra

180, 159-219 (2003).
[9] Cappelli, A., Itzykson, C., Zuber, J.-B. Modular invariant partition-functions in 2 dimensions. Nucl. Phys. B 280, 445-465 (1987).
[10] Zamolodchikov, A. B., Fateev, V. A. Operator algebra and correlation-functions in the two-dimensional SU(2) × SU(2) chiral Wess-

Zumino Model. Sov. J. Nucl. Phys. 43, 657-664 (1986).
[11] Feiguin, A. et al. Interacting Anyons in Topological Quantum Liquids: The Golden Chain. Phys. Rev. Lett. 98, 160409 (2007).
[12] The plaquette term is formulated in the same manner as the one in Eq. 16. The rung term is a projector of the fusion product of anyons

ai−1, bi−1, as well as of anyons ai+1 and bi+1 onto the trivial particle.
[13] Temperley, N., Lieb, E. Relations between percolation and colouring problem and other graph-theoretical problems associated with

regular planar lattices - some exact results for percolation problem Proc. Roy. Soc. Lond. A 322, 251 (1971).
[14] This is the matrix whose only non-vanishing matrix elements areAα,α� = 1 when α and α� are nearest neighbors on the Dynkin diagram.
[15] Pasquier, V. Two-dimensional critical systems labelled by Dynkin diagrams. Nucl. Phys. B 285, 162 (1987).
[16] Baxter, R. J. Exactly solved models in statistical mechanics. (Academic Press, London, 1982).
[17] Pasquier, V.Dn models - local densities. J. Phys. A 20, L221-L226 (1987).
[18] Pasquier, V. Lattice derivation of modular invariant partition functions on the torus. J. Phys. A 20, L1229 (1987).
[19] Fendley, P. Topological order from quantum loops and nets, Annals of Physics 323, 3113 (2008).
[20] Kuniba, A., Yajima, T. Local state probabilities for solvable restricted solid-on-solid models - An,Dn,Dn(1), and An(1). J. Stat. Phys.

52, 829-883 (1987).
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