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Topology-driven quantum phase transitions in
time-reversal-invariant anyonic quantum liquids
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and ZhenghanWang2

Indistinguishable particles in two dimensions can be characterized by anyonic quantum statistics, which is more general
than that of bosons or fermions. Anyons emerge as quasiparticles in fractional quantum Hall states and in certain frustrated
quantum magnets. Quantum liquids of anyons show degenerate ground states, where the degeneracy depends on the topology
of the underlying surface. Here, we present a new type of continuous quantum phase transition in such anyonic quantum liquids,
which is driven by quantum fluctuations of the topology. The critical state connecting two anyonic liquids on surfaces with
different topologies is reminiscent of the notion of a ‘quantum foam’ with fluctuations on all length scales. This exotic quantum
phase transition arises in a microscopic model of interacting anyons for which we present an exact solution in a linear geometry.
We introduce an intuitive physical picture of this model that unifies string nets and loop gases, and provide a simple description
of topological quantum phases and their phase transitions.

Phases of matter can show a vast variety of ordered states
that typically arise from spontaneous symmetry breaking
and can be described by a local order parameter. A more

elusive form of order known as ‘topological order’1 reveals itself
through the appearance of robust ground-state degeneracies, but
cannot be described in terms of a local order parameter. Examples
of such topological quantum liquids are the fractional quantum
Hall states2 where the ground-state degeneracy depends on the
number of ‘antidots’, which can be viewed as punctures (holes)
in the two-dimensional surface populated by the quantum Hall
liquid3. It has long been proposed that topological quantum liquids
also occur in certain frustrated quantum magnets4–9, but it has
only been in recent years that strong candidate materials have
emerged10,11. Whereas quantum Hall liquids break time-reversal
symmetry, the exotic ground states of frustrated quantum magnets
are expected to preserve time-reversal symmetry. As a consequence
of this symmetry, many unexplored phenomena may appear,
including the intriguing possibility of topology-driven quantum
phase transitions, which is the central aspect of this article.

In this article, we develop an intuitive physical picture for the
emerging low-energy physics of topological quantum liquids and
their phase transitions in terms of surfaces and their topology. We
thereby provide a visualization of the underlying quantum physics,
which is in one-to-one correspondence with a detailed analytical
framework. Here, we consider systems that preserve time-reversal
symmetry, which in this picture will be described by quantum
liquids on closed surfaces or by two sheets of quantum liquids with
opposing chirality—so-called quantum doubles. Such liquids show
ground-state degeneracies that depend (exponentially) on the genus
of the surface. A section of an extended high-genus surface formed
by a triangular arrangement of ‘holes’ is shown in Fig. 1. Through
every such hole there can be a flux of the liquid populating the
surface. An exponential degeneracy then arises from the possible
flux assignments through the holes. Whereas in the presence of a
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flux a hole cannot be contracted, we can eliminate the hole in the
absence of flux without changing the state of the topological liquid.
If there is no flux through any of the holes, they can all be removed,
and the state of the quantum liquid is identical to that on two
separated sheets, as shown on the left-hand side of Fig. 1. It is this
state that shows topological order. On the other hand, if there is no
flux through the tubes in the interior of the surface (centred around
the black lines in Fig. 2), we can pinch them off. The resulting state
of the quantum liquid is then identical to that of disconnected
spheres, as shown on the right-hand side of Fig. 1. This state has
neither ground-state degeneracy nor topological order.

Quantumdoubles, string nets and competing topologies
Here we will introduce a microscopic model that energetically
favours the absence of flux through the holes or tubes, thus
dynamically implementing the two topology-changing processes
mentioned above. The competition of the two processes drives a
quantum phase transition between the two extreme states. Our
model is defined on the ‘skeleton’ that surrounds the holes in
the interior of the surface, as illustrated in Fig. 2a, where the
skeleton forms a honeycomb lattice. The fluxes in the tubes
are associated with discrete degrees of freedom on the edges of
the skeleton lattice, corresponding to anyonic particles12 of the
quantum liquid. The set of degenerate ground states of the liquid
is now in one-to-one correspondence with all labellings of the
edges consistent with a given set of constraints, characteristic of the
underlying quantum liquid.

As a simple example, we consider a quantum liquid of so-
called Fibonacci anyons13–15. Here there are only two possible
labellings, namely the trivial particle 1 and the Fibonacci anyon τ .
At any trivalent vertex of the skeleton lattice, there is a constraint
forbidding the appearance of only a single τ -anyon on the three
edges connected to the vertex, allowing the following possibilities
shown in Fig. 3.
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Figure 1 | Phase transition in two dimensions. Two-dimensional surfaces with different topologies that are populated by anyonic quantum liquids. A
quantum phase transition driven by fluctuations of the surface topology connects the anyonic liquid with topological order on two separated sheets (on the
left) and the anyonic liquid without topological order on decoupled spheres (on the right).
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Figure 2 | Microscopic model. Our microscopic model energetically
favours the flux-free states for the holes and tubes (shaded) of the
illustrated two-dimensional surfaces. a, For the surface with a triangular
arrangement of holes, the anyonic degrees of freedom in our model are
associated with the edges of the honeycomb skeleton lattice that surrounds
the holes in the interior of the surface. b, For the linear geometry of holes,
the skeleton lattice forms a ladder geometry.
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Figure 3 | The Fibonacci theory. The allowed labellings at a trivalent vertex
in the Fibonacci theory.

Owing to this constraint, the edges occupied by a τ -anyon
form a closed, trivalent net known as a ‘string net’7. One might
as well identify the two degrees of freedom (1,τ ) with the two
states of a pseduo-spin (↑,↓) and thus the same states can be
viewed as representing the ground states of a Hamiltonian with
three-spin interactions enforcing the vertex constraint above (no
single ↓-spin around a vertex)16.

Returning to our model, we can now specify its micro-
scopic terms

H =−Je
∑
edges e

δ`(e),1− Jp
∑

plaquettes p

δφ(p),1 (1)

The first term favours a trivial label `(e) = 1 on the edge e
corresponding to the no-flux state. The second term favours the
no-flux state φ(p)= 1 for the plaquette p. When expressed in terms
of the labels `(e), the plaquette flux φ(p) is a complicated, but
local expression involving the 12 edges connected to the vertices
surrounding a plaquette, see Fig. 2, and is explicitly given in the
Supplementary Information. In the absence of the first term (Je=0),
the plaquette term with Jp > 0 will effectively close all holes, and
the ground state of the above Hamiltonian describes that of the
quantum liquid on two parallel sheets, as illustrated in Fig. 1. This
second case is precisely the string-net model first introduced by
Levin and Wen7, which is also closely related to another model
of string nets discussed recently by Fendley17. Similarly, in the

absence of the plaquette term, Jp = 0, the edge term with coupling
constant Je > 0 will close off all of the ‘tubes’, thus leading to
the ground state of the quantum liquid on multiple disconnected
spheres, as illustrated in Fig. 1. This edge term acts as a string
tension in the string-net model, or as a magnetic field in its
pseudo-spin representation.

In the presence of both terms in the Hamiltonian, quantum
fluctuations are introduced that correspond to fluctuations of the
surface. These fluctuations are virtual processes where plaquettes or
tubes close off and open depending on the flux through them. We
can visualize these fluctuations as local changes to the genus of the
surface. If the two terms in the Hamiltonian become comparable in
strength, the competition between the two drives a quantum phase
transition between the two extremal topologies (see Fig. 1). At this
quantum phase transition, the fluctuations of the surface become
critical and the topology of the surface fluctuates on all length scales.
We can visualize the (imaginary) time evolution of this quantum
critical state as a ‘foam’ in spacetime, which is reminiscent of the
notion of a quantum foam introduced by Wheeler for fluctuations
of 3+1 dimensionalMinkowski space at the Planck scale18,19.

Phase transitions and exact solution in linear geometry
To understand the nature of this transition, we first focus on
the linear geometry shown in Fig. 2b. In this geometry, the
Hamiltonian becomes

H =−Jr
∑
rungs r

δ`(r),1− Jp
∑

plaquettes p

δφ(p),1 (2)

where the first term now acts only on the rungs between the
holes (that is, on those edges of the skeleton that separate two
neighbouring plaquettes), in analogy to the original model. This
model shows a continuous quantum phase transition between
the two extreme topologies shown in Fig. 4. This continuous
transition is driven by fluctuations of topology. It turns out
that the gapless theory describing this transition can be solved
exactly, as discussed in more detail below and explicitly in the
Supplementary Information.

The two extreme topologies connected by this transition in the
linear geometry are as follows. In the limit of a vanishing rung term,
Jr = 0, the ground state is that of an anyonic quantum liquid on a
single cylinder where all of the plaquettes are closed, as shown on
the left in Fig. 4. For Fibonacci anyons, this ground state is two-fold
degenerate, with either a τ -flux or no flux through the cylinder. In
the opposite limit of vanishing plaquette term, Jp= 0, we can close
off all of the rungs and the ladder splits into two separate cylinders
with a four-fold ground-state degeneracy (either a τ -flux or no flux
in either of the cylinders), as shown on the right in Fig. 4.

In both limits, excitations above these ground states are gapped
quasiparticles with a gap of Jp or Jr, respectively. The first excited
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Figure 4 | Phase transition in one dimension. Illustration of the quantum phase transition driven by fluctuations of the surface topology in a linear
geometry that connects the extreme limits of a single cylinder (on the left) and two cylinders (on the right).
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Figure 5 | Excitations of the ladder model. a,b, Plaquette (a) and rung (b)
excitations above the two extreme ground states illustrated in Fig. 4.

state above the ‘single cylinder’ ground state is a τ -flux threading a
single plaquette, which prevents it from being closed, as illustrated
in Fig. 5a. In the opposite limit of the ‘two cylinder’ ground
state, the first excited state is a τ -flux through one of the rungs,
leaving this rung connecting the two cylinders as shown in Fig. 5b.
Turning on a small coupling Jr 6= 0, or Jp 6= 0 respectively, these
excitations delocalize, but remain gapped and form bands in the
energy spectrum, as explicitly shown in Fig. 6a. For large couplings,
some of these excitations proliferate and their gap vanishes at the
quantum phase transitionmentioned above.

The full phase diagram is shown in Fig. 6b, where we
parameterize the two couplings on a circle as Jp=cosθ and Jr= sinθ .
Positive (negative) coupling constants indicate that the no-flux
(τ -flux) states are energetically favoured and the two extreme limits
discussed above then correspond to the points θ = 0 and θ = π/2
on the circle. The continuous phase transition between these two
distinct topologies occurs for equal positive coupling strengths
Jr= Jp, which corresponds to the point θ=π/4 on the circle.

We can visualize this critical point as a quasi-one-dimensional
quantum foam, with topology fluctuations of the surface on all
length scales. As a first step, we have carried out a detailed numerical
analysis of this critical point using exact diagonalization of systems
with up to 36 anyons. The continuous nature of the phase transition
reveals itself in a linear energy–momentum dispersion relationship,
which is indicative of conformal invariance. A detailed analysis
of the energy spectrum further allows us to uniquely identify the
corresponding conformal field theory (CFT), which in this case
turns out to be the seventhmember of the famous series of so-called
unitary minimal CFTs (ref. 20) with central charge c = 14/15
(more specifically, the ‘non-diagonal modular invariant’21). This
particular identification of a CFT is part of a broader scheme that
connects the gapless theory of the topology-driven phase transition
with the nature of the underlying anyonic liquid. In the present case
of a quantum liquid of Fibonacci anyons, we can make an explicit
connection between the (total) quantum dimension of the anyonic
liquid and the central charge of the conformal field theory.

In fact, the Hamiltonian at this point is even exactly solvable.
The key insight leading to this exact, analytical solution is the
observation that the Hamiltonian of our topological model can
be mapped precisely onto a particular version of the restricted-
solid-on-solid (RSOS) model22, which is exactly integrable and
directly leads to the above-mentioned CFT. This mapping explicitly
connects the Hamiltonian at this critical point with an integrable

Hamiltonian defined by the Dynkin diagram D6 shown in Fig. 7.
Here, the particular labelling of the Dynkin diagram arises from
the underlying topological structure of our model. Specifically, the
labels describe the topological fluxes in the two extreme limits of
the model, as illustrated in Fig. 4, with the limit of a single cylinder
in the picture on the left corresponding to the blue circles in the
Dynkin diagram and the limit of the two cylinders pictured on the
right corresponding to the green circles. This underlying structure
also gives rise23 to a representation of the Temperley–Lieb algebra24,
which is characterized by the total quantum dimensionD=

√
2+φ

of the anyonic liquid, where φ = (1+
√
5)/2 is the golden ratio.

A more detailed discussion of the exact solution is given in the
Methods section and the Supplementary Information.

Varying the couplings in our Hamiltonian, there is another way
of connecting the two phases shown in Fig. 4, which is to change
the sign of both couplings in the Hamiltonian. For opposite sign,
the two terms now favour τ -fluxes through rungs and plaquettes,
respectively, which again leads to a competition. Interestingly, we
find that this competition results in an extended, critical phase sep-
arating the two topologically distinct phases, as shown in the phase
diagram of Fig. 6b. For the full extent of this critical phase we again
have topology fluctuations on all length scales. However, the gapless
theory describing this phase turns out to be in a different universal-
ity class as compared with the critical point discussed above. These
results can again be obtained through a combination of numerical
and exact analytical arguments, which are detailed in the Sup-
plementary Information. In particular, there is another integrable
point in this extended critical phase for equal coupling strengths
Jr = Jp, which corresponds to the angle θ = 5π/4 in the phase
diagram of Fig. 6b, and is thus located exactly opposite to the one
discussed above. Following a similar route, one canmap the Hamil-
tonian at this second integrable point to another variant of the RSOS
model associatedwith theDynkin diagramD6. The gapless theory at
this point then turns out to be exactly the Z8 parafermion CFT with
central charge c=7/5. The stability of this gapless theory away from
the integrable point is due to an extra symmetry of our model25,26.
Numerically, we find that it extends throughout the whole region
where both couplings favour the τ -flux states all the way to the
points θ=π and θ=3π/2, where there is no longer a competition of
the two terms of the Hamiltonian and the ground states have fluxes
either through all plaquettes or rungs, respectively.

Semions and loop gases in two dimensions
Returning to our original discussion of the two-dimensional
model (1) on the surface in Fig. 1, the question arises whether we
can understand the nature of the quantum phase transition here
as well. We can explicitly address this question in the context of
another kind of anyons, the so-called semions27. Again, there are
two possible labellings, the trivial particle 1 and the semion s. The
constraint now only allows zero or two semion particles s at any
trivalent vertex. The set of edges carrying a semion s form loops
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Figure 6 | Energy spectra and phase diagram. a, Energy spectra of our microscopic model near the decoupling point (θ =π/2). The rung excitations
shown in Fig. 5 form a gapped quasiparticle band well below a continuum of states (shaded). Open symbols show results from exact diagonalization of
systems with 24 to 36 anyons. These bands are well described by second-order perturbation theory around the decoupling point shown as solid lines.
b, The phase diagram of our microscopic model (2) where the couplings are parametrized as Jp= cosθ and Jr= sinθ . The gapped topological phases are
indicated by the shaded regions. The topology-driven quantum phase transition occurs at the exactly solvable critical point θ =π/4. An extended critical
phase is found in the region θ ∈ (π,3π/2) around the second solvable (critical) point θ = 5π/4. Both critical states correspond to the quantum foam picture
discussed in the text.

(1, 1) ( , )1 τ

τ

τ

τ τ

(  , 1)

 (1, )

Figure 7 | The D6 Dynkin diagram. The integrable Hamiltonian at the
solvable points in the phase diagram can be mapped onto this diagram.

instead of nets and give rise to what is known as a loop gas8,28. In
a pseudo-spin representation (where ↑,↓ now stand for 1 and s),
this model is known as the honeycomb version of the toric code8,
where the string tension Je corresponds to a magnetic field. This
model shows a continuous quantum phase transition in the three-
dimensional Ising universality class29,30 with topology fluctuations
on all length scales. Mapping the 2+1 dimensional semion system
to its three-dimensional classical counterpart, the quantum foam
then corresponds to the critical fluctuations of domain walls in a
three-dimensional Ising model at its critical point. For other kinds
of anyonic liquids, the nature of the topology-changing transition is
in general unknown and remains an intriguing open problem with
the possibility of new universality classes. For a liquid of Fibonacci
anyons, there has been a recent discussion of quantum critical
behaviour from the perspective of ground-state wavefunctions and
their respective correlators in terms of conformal field theory17,31.

Chimneys, holes and chirality
Finally, to explore the broader context of our models, we complete
our analysis by considering the complete set of possible excitations
present in these models. An excitation different from the ones
already discussed arises when relaxing the constraint that for every
trivalent vertex of the skeleton lattice forbids the occurrence of a
single τ -flux. If we allow for this possibility, we are left with a τ -flux
entering the vertex through one tube, but not leaving it through
another tube in the skeleton plane, as illustrated in Fig. 2. Instead,
we can think of the remaining τ -flux at such a vertex as leaving

Figure 8 | Excitations of the anyonic liquid. Vortex excitations of the liquid
indicated by the ‘chimneys’ possess a chiral edge mode.

through one of the liquid sheets surrounding the skeleton lattice.
This piercing of the liquid by a τ -flux corresponds to a vortex
excitation of the liquid and is illustrated as a ‘chimney’ in Fig. 8.
These vortex excitations break time-reversal symmetry and turn
out to all possess the same chirality (indicated by the red arrow
in Fig. 8). This is possible only if the anyonic liquid on a given
sheet itself possesses a given chirality. As the entire system shows
time-reversal symmetry, this means that the two anyonic liquids on
the two sheetsmust have opposite chirality. Vortices associatedwith
chimneys on opposite sheets thus also have opposite chirality, as
illustrated in Fig. 8. (In fact, a vortex in one sheet can be related
to a vortex in the opposite sheet by dragging a vortex through a
‘hole’ connecting the two sheets. Moreover, we can create a ‘hole’
connecting the sheets by gluing together two vortex excitations on
opposite sheets.) This conceptual perspective of two anyonic liquids
with opposite chirality giving rise to a time-reversal-invariantmodel
connects with and allows for a visualization of a more abstract
mathematical description of these models, namely doubled non-
Abelian Chern–Simons theories32 and their lattice regularization
in terms of string nets.
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A unifying framework
Our construction of time-reversal-invariant quantum double
models provides a unifying framework for a large class of anyon
theories, going beyond that of semions and Fibonacci anyons. This
framework extends to topological phases and phase transitions for
anyon theories with an arbitrary number of anyons subject to a
set of fusion rules/constraints that correspond to more complex
string nets, as outlined in the Supplementary Information. We
expect this framework to be a natural description of topological
spin-liquid states and their phase transitions in frustrated quantum
magnets and other time-reversal-invariant strongly correlated
systems. Quantum phase transitions between topological phases
have so far been largely unexplored territory, especially from the
perspective of conventional Landau–Ginzburg–Wilson theory, and
it remains an intriguing question to formulate our topology-driven
phase transitions within such a field theoretical perspective. Even
when the topology-driven quantum phase transition in two spatial
dimensions is first order, we note that disorder will round off the
transition such that it becomes continuous as rigorously established
in a recent theorem by Greenblatt and collaborators33. Thus, these
two-dimensional quantum phase transitions will generically show
topology fluctuations on all length scales in the presence of disorder.

Methods
Identification of CFTs. To characterize the CFT of the critical points in the linear
(ladder) geometry, we rescale and match the finite-size energy spectra obtained
numerically by exact diagonalization for systems with up to L= 36 anyons to the
form of the spectrum of a CFT,

E = E1L+
2πv
L

(
−

c
12
+h+ h̄

)
(3)

where the velocity v is an overall scale factor and c is the central charge of the CFT.
The scaling dimensions h+ h̄ take the form h= h0+n, h̄= h̄0+ n̄, where n and n̄
are non-negative integers and h0 and h̄0 are the holomorphic and antiholomorphic
conformal weights of primary fields in a given CFT with central charge c . The
momenta (in units 2π/L) are such that kx = h− h̄ or kx = h− h̄+L/2. Using
this procedure, we find that for the critical point at θ = π/4, the rescaled energy
spectrum matches the assignments (3) of the non-diagonal modular invariant21
of the seventh member of the famous series of unitary minimal CFTs20 with
central charge c = 14/15. Similarly, at the point θ = 5π/4, we find the rescaled
energy spectrum to match that of the Z8 parafermion CFT with central charge
c = 7/5. For the calculated energy spectra and the details of these assignments, see
Supplementary Information.

Exact analytical solution. The Hamiltonian in equation (2) can be solved exactly
for interaction strengths corresponding to angles θ =π/4 and θ =5π/4 in the phase
diagram of Fig. 6b. This exact, analytical solution of the gapless theories at these
points unambiguously demonstrates the continuous nature of the related quantum
phase transitions and points to generalizations of these gapless theories for other
kinds of anyonic liquids. The key observation underlying this exact solution is the
emergence of the D6 Dynkin diagram from the topology of the surface associated
with the ladder model as shown in Fig. 2b. Each labelling of the edges of the
‘skeleton’ graph that corresponds to that surface denotes one of the states spanning
the Hilbert space of the system. A crucial step is to consider a different ‘pants
decomposition’34 of this surface and to carry out a basis change to a new basis
that corresponds to the labelling of the skeleton lattice of this alternative pants
decomposition. Explicitly, this basis transformation can be written as

Here, (F a
bcd )

b′
a′ denotes the so-called F-matrix, which is a generalization of the

familiar 6j symbols of angular momentum coupling in conventional quantum
mechanics and is known for any anyonic liquid35. Note that associated with the
even-numbered indices of these labels, which correspond to the original rung labels
ci on the right, there is the flux through the cross-section of the surface on the left,
denoted by a label di = 1 or di = τ . Similarly, associated with the odd-numbered
indices, which correspond to the original plaquettes, there is a pair of fluxes through
the two cross-sections of the surface at the position of the plaquette on the left,
denoted by a pair of labels, (ai,bi). This pair of labels can assume four values, that is,
(ai,bi)={(1,1);(τ ,1);(1,τ );(τ ,τ )}. The (fusion) constraints at the vertices where
the labels (ai,bi) and di±1 meet then turn out to be precisely the condition that they
be adjacent nodes on the D6 Dynkin diagram shown in Fig. 7. For example, only a
local label (ai,bi)= (τ ,τ ) at an odd-numbered index i allows for either of the two
labels di−1 = 1 or di−1 = τ to appear at the neighbouring even-numbered index.
This is reflected in the Dynkin diagram by the appearance of a line that connects
the label (τ ,τ ) to both labels 1 and τ . The importance of the just-described basis
change consists of the fact that in the new basis the rung and plaquette terms, H r

i
andH p

i , respectively, of our ladder Hamiltonian

H =−Jr
∑
i even

H r
i − Jp

∑
i odd

H p
i

turn out to have precisely the form of a known representation23 of the
Temperley–Lieb algebra24 associated with theD6 Dynkin diagram,

e2i =D ei, eiei±1ei= ei, [ei,ej ] = 0 for |i− j| ≥ 2

where

ei=
{D H r

i for i even

D H p
i for i odd

The characteristic ‘D-isotopy’ parameter of this Temperley–Lieb algebra,
D=
√
1+ϕ2 = 2cos(π/10), is precisely the total quantum dimension of the

underlying Fibonacci anyon liquid. We have thereby established a remarkable,
explicit connection of the one parameter of this emerging algebraic structure,
the ‘D-isotopy’ parameter of this Temperley–Lieb algebra, and the single most
characteristic parameter of the underlying anyonic liquid, namely its total quantum
dimension. This observation points to a generalization of such a connection for
other quantum liquids. Written in this form, the resulting Hamiltonian for the
Fibonacci anyon liquid turns out to be precisely that of the (integrable) RSOS
statistical mechanics lattice model based on the D6 Dynkin diagram23, as obtained
in the standard fashion from the transfer matrix of the RSOS lattice model. For
further details, see Supplementary Information.
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