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Introduction

In 1983 V. Jones discovered a new family of representationsρ of the braid groups. They
emerged from the study of operator algebras (type�1 factors) and unlike earlier braid
representations had no naive homological interpretation. Almost immediately he found
that the trace or “Markov” property ofρ allowed new link invariants to be defined and
this ushered in the era of quantum topology. There has been an explosion of link and 3-
manifold invariants with beautiful inter-relations, asymptotic formulae, and enchanting
connections to mathematical physics: Chern–Simons theory and 2-dimensional statis-
tical mechanics. While many sought to bend Jones’ theory toward classical topological
objectives, we have found that the relation between the Jones polynomial and physics
allows potentially realistic models of quantum computation to be created [FKW, FLW,
FKLW, F]. Unitarity, a hidden locality, and density of the Jones representation are central
to computational applications. With this application in mind, we have returned to some
of Jones’earliest questions about these representations and the distributions of his invari-
ants. A few concise answers are stated here in the introduction. Question 9 of Jones in
[J2] asked for the closed images of the irreducible components of his representation. We
answered Jones’ question, and also identified the closed images for the generalSU(N)

case completely.
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A salient feature of Jones representation is thetwo-eigenvalue property:the image
of each braid generator has only two distinct eigenvalues{−1, q}. This is obvious from
the quadratic Hecke relation(σi + 1)(σi − q) = 0. This two-eigenvalue property plays
a key role in the following theorem:

Theorem 0.1. Fix an integerr ≥ 5, r �= 6,10, n ≥ 3 or r = 10, n ≥ 5. Let

ρ(2,r)
n = ⊕

λ∈∧(2,r)
n

ρ
(2,r)
λ : Bn →

∏
λ∈∧(2,r)

n

U(λ)

be the unitary Jones representation of then-strand braid groupBn. Then the closed

imageρ(2,r)
n (Bn) contains

∏
λ∈∧(2,r)

n
SU(λ).

Our original motivation for studying Jones representation is for quantum computa-
tion. The special caser = 5 has already been used to show that the SU(2) Witten–
Chern–Simons modular functor at the fifth root of unity is universal for quantum com-
putation [FLW]. Combining that paper with the above result, we conclude that the SU(2)
Witten–Chern–Simons modular functor at anr th root of unity is universal for quantum
computation ifr �= 3,4,6.

Jones was also concerned with the range of values his invariants assumed and their
statistical properties. For this we must understand the topology and measure theory of
the image� of ρ, since the Jones polynomial is obtained by tracing them.

There are three levels of detail in the discussion of a finitely generated group (or semi-
group)� approximating a Lie groupG. First is density and the rate at which density is
achieved. From [Ki, So, NC], we extract:

Theorem 5.6. LetX be a set closed under inverse in a compact semisimple Lie group
G (with Killing metrics) such that the group closure〈X〉 is dense inG. LetXl be the
words of length≤ l in X, thenXl is anε-net inG for l = O(logk(1

ε
))k for somek ≥ 2,

i.e., for all g ∈ G, dist(g,Xl) < ε.

Conjecturally the theorem should still hold forl = O(log(1
ε
)) and there are some

number theoretically special generating sets of SU(2) [GJS] for which such an estimate
for l can in fact be obtained. Such results now translate into topological statements:

Corollary 5.7. Given a “conceivable” valuev for the evaluation of Jones polynomial of
b̂ at a root of unity, i.e., one that lies in the computed support of the limiting distribution
for b ∈ Bn, then-string braids, to approximatev by v′, ||v − v′|| < ε, it is sufficient
to consider braidsb′l ∈ Bn of lengthl = O(log2(1

ε
)) with Jones evaluationsb′l = v′,

||v − v′|| < ε.

The second level is uniformity in measure: if� =< γ1, · · · , γm >, i.e.,� is generated
as a semi-group byγ1, . . . , γm, let Wl be the set of unreduced words of length= l

andµl be the equally weighted atomic measure onWl (massm−l on each word inWl),
it is known that density implies uniformity in measure [Bh],µl → Haar(G) in the
weak-* topology (i.e., when integrated against continuous functions.) Third is the rate
of convergence of measures, which is also addressed in [Bh].

Returning to the Jones polynomial evaluations which are weighted traces of dense
representations, we can determine the statistics. Recalln is the number of strands, and
l is the length of a braid. One may consider the double limit whenl, and latern are
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taken to infinity. In this case, ifr is a fixed integerr ≥ 5, r �= 6, the distribution of

evaluations ate
±2πi

r of the Jones polynomial of a “random” link withn strands tends
to a fixed Gaussian. The variance of this Gaussian depends onr and grows liker3 as
r →∞.

Our density result follows from the solution of a general two-eigenvalue problem:
Let G be a compact Lie group, andV a faithful, irreducible, unitary representation of
G. The pair(G, V ) is said to have thek-eigenvalue propertyif there exists a conjugacy
class[g] of G such that

(1) the class[g] generatesG topologically;
(2) any elementg ∈ [g] acts onV with exactlyk different eigenvalues such that for

each 2≤ r ≤ k, no set ofr eigenvalues forms a coset of the multiplicative group
{1, ω, ω2, . . . , ωr−1}, whereω is a primitiver th root of unity.

Thek-eigenvalue problem is to classify all such pairs(G, V ). Note thatG is not assumed
to be connected. The problem naturally divides into two cases according to whetherG

is or is not finite modulo its center. The solution to the first case is essentially known to
the experts and we content ourselves with a statement at the end of Sect. 1. The solution
to the case thatG/Z(G) has positive dimension is:

Theorem 1.1. Suppose(G, V ) is a pair with the two-eigenvalue property. LetG1 be
the universal covering of the derived group[G0,G0] of the identity componentG0 of
G. If G is of positive dimension modulo its center, thenV is an irreducibleG1-module,
with highest weight& , and(G1,&) is one of the following:

(1) (SU(l + 1),&i) for somel ≥ 1, and1≤ i ≤ l.

(2) (Spin(2l + 1),&l) for somel ≥ 2.
(3) (Sp(2l),&1) for somel ≥ 3.
(4) (Spin(2l),&i) for somel ≥ 4 andi = 1, l − 1, l,

where&i denotes theith fundamental representation.

There is a fairly close analogy between this theorem and J. Serre’s classification
[Se] of inertial monodromy types for Hodge–Tate modules with only two different
weights. Not only are the problems formally similar, the solution is identical. However,
it does not seem that either result implies the other. In the Hodge–Tate case, one looks
for a cocharacter taking two distinct values on the set of weights of an irreducible
representation of a semisimple group; in our case, one looks for a rational cocharacter
taking two different values (modZ) which are not congruent (mod12Z). Our technique
here works for the 3-eigenvalue problem.

1. The Two-Eigenvalue Problem

LetG be a compact Lie group, andV a faithful, irreducible, unitary representation ofG.
The pair(G, V ) is said to have thetwo-eigenvalue propertyif there exists a conjugacy
class[g] of G such that

(1) the class[g] generatesG topologically;
(2) any elementg ∈ [g] acts onV with exactly two different eigenvalues whose ratio

is not±1.
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Note thatG is not assumed to be connected. The problem naturally divides into two
cases according to whetherG is or is not finite modulo its center. The solution to the
first case is essentially known to the experts and we content ourselves with a statement
at the end of this section. The rest of the section is devoted to the case thatG/Z(G) has
positive dimension.

Theorem 1.1. Suppose(G, V ) is a pair with the two-eigenvalue property. LetG1 be the
universal covering of the derived group[G0,G0] of the identity componentG0 of G. If
G is of positive dimension modulo its center, thenV is an irreducibleG1-module, with
highest weight& , and(G1,&) is one of the following:

(1) (SU(l + 1),&i) for somel ≥ 1, and1≤ i ≤ l.

(2) (Spin(2l + 1),&l) for somel ≥ 2.
(3) (Sp(2l),&1) for somel ≥ 3.
(4) (Spin(2l),&i) for somel ≥ 4 andi = 1, l − 1, l,

where&i denotes theith fundamental representation.

There is a fairly close analogy between this theorem and J. Serre’s classification
[Se] of inertial monodromy types for Hodge–Tate modules with only two different
weights. Not only are the problems formally similar, the solution is identical. However,
it does not seem that either result implies the other. In the Hodge–Tate case, one looks
for a cocharacter taking two distinct values on the set of weights of an irreducible
representation of a semisimple group; in our case, one looks for a rational cocharacter
taking two different values (modZ) which are not congruent (mod12Z).

We begin with a lemma from linear algebra.

Lemma 1.2. SupposeW is a vector space with a direct sum decompositionW =
⊕n

i=1Wi , andU is an operator onW such thatU : Wi → Wi+1 (1≤ i ≤ n) cyclically.
Then any eigenvalue ofU multiplied by anynth root of unity is again an eigenvalue ofU .

Proof. Choose a basis ofW consisting of bases ofWi, i = 1,2, · · · , n. If k is not a
multiple of n, then tr Uk = 0 because all diagonal entries ofUk are 0 with respect
to the above basis. Letλ1, . . . , λN denote the eigenvalues ofU with multiplicity. For
each integerm > 0, consider trUm = ∑

λi
m. Let ω be annth root of unity. Then∑

(ωλi)
m = ∑

ωmλi
m = ωm

∑
λi

m. We claim this sum is equal to trUm = ∑
λi

m.
Indeed, whenm is not a multiple ofn, they are both 0, whenm is a multiple ofn,ωm = 1.
Recall that the symmetric polynomials{∑ xm

i } uniquely determine all the symmetric
polynomials ofxi . It follows that

∏
i (λ− ωλi) =∏i (λ− λi). Therefore, the set of the

eigenvalues ofT is invariant under multiplication by anynth root of unity. ��
In the two-eigenvalue problem, the generating conjugacy class cannot lie in the iden-

tity componentG0 unlessG is connected. However, the following lemma allows us to
reduce to the connected case:

Lemma 1.3. Given a compact Lie groupG, and an irreducible representation ofG, if
an elementg has two eigenvalues underρ whose ratio is�= ±1, theng is a product of
an element inG0 with an element inZG(G0), the centralizer ofG0 in G.

Proof. The action of Adg defines an automorphism ofG0. By [St] Theorem 7.5, there
exists a maximal torusT of G0 such that Adg fixesT as a set. Recall any automorphism
of G0 fixing T pointwise is an inner automorphism by an element inT .
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To show that Adg fixesT pointwise, consider all the characters{χ} of ρ, and the
weight space decompositionV = ⊕χ∈χ∗(T )Vχ . As Adg fixesT as a set,ρ(g) permutes
the weight spacesVχ according to the permutation of characters by Adg. Suppose the
longest permutation cycle of weight spaces by Adg has length= l. If l ≥ 3, then by
Lemma 1.2,ρ(g) have at leastl distinct eigenvalues, contrary to hypothesis. Ifl = 2,
then by Lemma 1.2, the two possible eigenvalues ofρ(g) have ratio−1. Therefore,
l = 1, i.e.,ρ(g) fixes every weight spaceVχ . It follows that Adg fixes the maximal torus
T of G0 pointwise. The lemma follows.��
Theorem 1.4. Let (G, V ) be a pair with the two eigenvalue property. IfG is of positive
dimension modulo its center, then the derived group[G0,G0] of G0 is a simple Lie
group, andG = G0Z(G).

Proof. Let [g] satisfy the two-eigenvalue property.As the conjugates ofg (topologically)
generateG/G0, if the restriction ofV to G0 had more than one isotypic component,g

would permute these components nontrivially, contrary to Lemma 1.2. Thus, the restric-
tion of V to G0 is the tensor product of an irreducible representationV0 and a trivial
representationV 0. By Lemma 1.3,g = g0z, whereg0 ∈ G0 andz centralizesG0. By
Schur’s Lemma,ρ(z) = 1⊗ B, while ρ(g0) = A ⊗ 1. The two-eigenvalue property
implies that eitherA or B is scalar. Since[g] generates a dense subgroup ofG, the
same is true of[g0] andG0. As V is a faithful representation,A cannot be scalar, so
B must be. Thus,(G0, V0) satisfies the two-eigenvalue property with generating class
[g0]. Moreover,V 0 must be one-dimensional since otherwiseV would be a reducible
representation ofG.

Let G1 denote the universal cover of[G0,G0]. Let g1 ∈ G1 denote an element
whose image in[G0,G0] lies in the cosetg0Z(G0). The pull-backV1 of V0 to G1 is
again irreducible, and the image ofg1 has two eigenvalues with the same ratio as the
original image ofg0. Moreover,[g1] generates a dense subgroup ofG1 since no proper
closed subgroup ofG1 can generateG0 moduloZ(G0). It follows that(G1, V1) satisfies
the two-eigenvalue property.

If G1 were not simple, it would factor asG2×G3, andV1 would factor as an external
tensor product of representationsV2 andV3. Writing ρ(g1) = A ⊗ B, we see thatA
or B must be a scalar. Thus[g1] cannot generate a dense subgroup of the product. We
conclude thatG1, and therefore[G0,G0], must be simple. ��
Theorem 1.5. LetG be a connected, simply connected compact simple Lie group andV

an irreducible representation ofG satisfying the two-eigenvalue property. Let& denote
the highest weight ofV . Then(G,&) is one of the following:

(1) (SU(r + 1),&i) for somer ≥ 1 and1≤ i ≤ r.
(2) (Spin(2r + 1),&r) for somer ≥ 2.
(3) (Sp(2r),&1) for somer ≥ 3.
(4) (Spin(2r),&i) for somer ≥ 4 andi ∈ {1, r − 1, r}.

In other wordsG is classical andV is minuscule.

Proof. Fix a maximal torusT of G. As the conjugates ofT coverG, there existsg ∈ T

satisfying the two-eigenvalue property. There is a natural identification ofT with the
quotientW/X∗(T ), whereW = X∗(T )⊗ R is the universal covering space ofT , and
where we identifyR/Z with the set of complex numbers of norm 1. Letg̃ denote an
element ofW mapping tog. The two-eigenvalue condition means that the valuesχ(g̃),
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asχ ranges over the characters ofV , lie in exactly two cosets ofZ which do not differ
by a half-integer.

Let α denote the highest short root ofG and&,& − α, . . . ,& − kα a string of
weights ofV . If k ≥ 2, thenα(g̃) must be an integer. As the set of weights is invariant
under the Weyl group, all short roots ofG lie in the Weyl-orbit ofα, and as the short
roots span the root lattice, this would imply that allχ(g̃) lie in a single coset, contrary
to hypothesis. It follows thatk = 1, or equivalently,

r∑
i=1

aibi · α
2
i

α2 = 1,

where
& = a1&1+ · · · + ar&r, α = b1α1+ · · · + brαr .

Indeed, in the notation of [Hu],

1= 〈&,α〉 = 2
& · α
α2 = 2

∑
i,j

aibj
&i · αj

α2 =
∑
i,j

aibj 〈&i, αj 〉
α2
j

α2 =
∑
i

aibi
α2
i

α2 .

Note that
α2
i

α2 ∈ {1,2,3}. Since all the coefficientsbi in the representation of the longest
short root as a linear combination of simple roots are≥ 1, this implies that& is a
fundamental weight&i for somei such thatai = bi = 1, andαi is a short root. In
addition to the cases listed above, we have the cases(E6,&1), (E6,&6), and(E7,&7).
We claim that none of these exceptional cases correspond to actual solutions of the
two-eigenvalue problem.

ForE6, the two representations in question are dual to one another, so we consider
only the one corresponding to the highest weight&1. By [MP], the restriction of this
representation toH = SU(3)× SU(3)× SU(3) is

σ ⊗ σ ∗ ⊗ 1⊕ 1⊗ σ ⊗ σ ∗ ⊕ σ ∗ ⊗ 1⊗ σ,

whereσ denotes the standard representation ofSU(3). SinceH can be chosen to contain
T , we may writeg = (g1, g2, g3) ∈ H . The two-eigenvalue property guarantees that
one of theσ(gi) has two eigenvalues and the other two are scalars. Without loss of
generality, we assumeσ(g1) has eigenvaluesα (with multiplicity 2) andα−2, while the
scalars forg2 andg3 areβ andγ . The set of eigenvalues is

{αβ−1, α−2β−1, βγ−1, γ α−1, γ α2}.
Since two pairs of eigenvalues have ratioα3, eitherαβ−1 = γα2 or α3 = 1. In the first
case,αβγ = 1, and sinceβ3 = γ 3 = 1, this impliesα3 = 1. We conclude that the
eigenvalues areα/β, β/γ , andγ /α, all cube roots of unity. Since they multiply to 1, all
are the same or all are different, contrary to hypothesis.

ForE7, we restrict to SU(2)× SU(4)× SU(4) and obtain

1⊗ σ ⊗ σ ⊕ 1⊗ σ ∗ ⊗ σ ∗ ⊕ τ ⊗ 1⊗ S2σ ⊕ τ ⊗ S2σ ⊗ 1,

whereσ andτ are the standard representations of SU(4) and SU(2) respectively. Writing
g = (g1, g2, g3), we conclude thatσ(g2) andσ(g3) are scalarsβ andγ , while τ(g1)

has eigenvaluesα±1. Thus, the set of eigenvalues is

{βγ, β−1γ−1, αγ 2, α−1γ 2, αβ2, α−1β2}.
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Note thatγ 2 = β2 = ±1 sinceβ andγ determine unimodular scalar 4× 4 matrices. If
α2 = 1, then all the eigenvalues are the same up to sign, contrary to hypothesis. If not
the squares of eigenvalues are 1,α2, andα−2, soα2 = −1. But this implies that two
eigenvalues have ratio−1, contrary to hypothesis.��

Now we state the solution to the two-eigenvalue problem for finite groups. Our list is
based on [Za] and depends on the classification of finite simple groups. The casesm ≥ 5
are classical [Bl].

Theorem 1.6. Suppose(G, V, [g]) has the two-eigenvalue property, andG/Z(G) is
finite. Thengm ∈ Z(G) for somem ∈ {3,4,5}, andG = H · Z(G) for some group
H with an elementh ∈ H such thath−1g ∈ Z(G). Furthermore, one of the following
holds:

(a) m = 5, H ∼= SL(2,5) anddimV = 2;
(b) m = 4,Gcontains a normal subgroupE such thatE/Z(E) is of exponent 2 and of or-

der22k, dimV = 2k,V |E is irreducible andH/E ∈ {Sp(2k,2), U(k,2),O−(2k,2)
with k > 2, S2k+1, S2k+2};

(c) m = 3 and one of the following holds:
(1) H ∼= Sp(2n,3), n > 1 anddimV = (3n−(−1)n)

2 ;

(2) H ∼= PSp(2n,3), n > 1 anddimV = (3n+(−1)n)
2 ;

(3) H ∼= SU(n,2) and n is a multiple of3, or H ∼= U(n,2), V |H is a Weil
representation ofH anddimV = (2n+2(−1)n)

3 or (2n−(−1)n)
3 ;

(4) H ∼= Ãn, the two-fold central extension of the alternating groupAn, and

dimV = 2
n−3

2 for n odd, anddimV = 2
n−2

2 for n even;
(5) G contains a normal subgroupE such thatE/Z(E) is of exponent 2 and of

order 22k, dimV = 2k, V |E is irreducible andH/E ∈ {Sp(2k,2), U(k,2),
O+(2k,2),O−(2k,2) with k > 2, A2k+1, A2k+2};

(6) G contains a normal extraspecial subgroupE of order32k, dimV = 3k, and
V |E is irreducible, andH/E ∼= Sp(2k,3);

(7) H ∼= PSp(4,3), anddimV = 6;
(8) H/Z(H) ∼= PSU(4,3), |Z(G)| = 6, anddimV = 6;
(9) H/Z(H) ∼= J2, |Z(G)| = 2, anddimV = 6;
(10) H/Z(H) ∼= Sp(6,2), |Z(G)| = 2, anddimV = 8;
(11) H/Z(H) ∼= O+(8,2), |Z(G)| = 2, anddimV = 8;
(12) H/Z(H) ∼= G2(4), |Z(G)| = 2, anddimV = 12;
(13) H/Z(H) ∼= Suz, |Z(G)| = 6, anddimV = 12;
(14) H ∼= Co1, anddimV = 24.

2. Hecke Algebra Representations of Braid Groups

Then-strand braid groupBn has the well-known presentation:

Bn = {σ1, · · · , σn−1| σiσj = σjσi if |i − j | > 1
σiσjσi = σjσiσj if |i − j | = 1}.

Hecke algebra representations of the braid groups in the root of unity case are indexed
by two parameters: a compact Lie group and an integerl ≥ 1, called thelevel of the
theory. The cases of Jones and Wenzl representations correspond to the special unitary
groups SU(k), k ≥ 2. For each pair of integers(k, r) with r ≥ k + 1, there is a unitary
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representation of the braid groups with levell = r−k. Jones representations correspond
to SU(2), and the general SU(k) theory gives rise to the HOMFLY polynomial.

We describe the Jones–Wenzl representation explicitly, following [We]. Letq =
e± 2πi

r , and[m] be the quantum integerq
m
2 −q

−m
2

q
1
2−q

− 1
2

. The constant[2] = q
1
2+q− 1

2 = 2cos π
r

is ubiquitous in quantum topology. The Hecke algebraHn(q) of typeA is the (finite
dimensional) complex algebra generated bye1, . . . , en−1 such that

(1) e2
i = ei ,

(2) eiei+1ei − [2]−2ei = ei+1eiei+1− [2]−2ei+1,
(3) eiej = ej ei if |i − j | ≥ 2.

A representationπ of Hn(q) on a Hilbert space is called aC∗ representationif each
π(ei) is self-adjoint.

Lemma 2.1. EachC
∗ representation of the Hecke algebraHn(q) gives rise to a unitary

representation of the braid groupBn by the formula:

ρ(σi) = q − (1+ q)π(ei). (1)

Proof. The defining relations 1–3 ofHn(q) imply that the elementsρ(σi) satisfy the
braid relations. Writingei for π(ei), sinceρ∗(σi) = q̄ − (1+ q̄)e∗i ,

ρ(σi)ρ
∗(σi) = qq̄ + (1+ q)(1+ q̄)eie

∗
i − q̄(1+ q)ei − q(1+ q̄)e∗i = 1.

Cancellation of the last three terms follows from the factse∗i = ei ande2
i = ei . ��

Jones–WenzlC∗ representation ofHn(q) are reducible; their irreducible constituents,
referred to assectors, are indexed by Young diagrams. A Young diagram withn boxes
is the diagram of a partition of the integern:

λ = [λ1, . . . , λk], λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0,
k∑

i=1

λi = n.

Note thatλ is allowed to have empty rows. Given a Young diagramλ with n boxes, a
standard tableau of shapeλ is an assignment of integers{1,2, . . . , n} into the boxes so
that the entries of each row and column are increasing.

Definition 1. Supposet is a standard tableau withn boxes, andm1 andm2 are two
entries int . Supposemi appears in rowri and columnci of t .

(1) Setdt,m1,m2 = (c1− c2)− (r1− r2).

(2) Setαt,i = [dt,i,i+1+1]
[2][dt,i,i+1] if [dt,i,i+1] �= 0, andβt,i =

√
αt,i(1− αt,i).

(3) A Young diagramλ = [λ1, . . . , λk], λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 is (k, r)-admissible if
λ1− λk ≤ r − k.

(4) Supposet is a standard tableau of shapeλ with n boxes, lett (i)(1 ≤ i ≤ n) be the
standard tableaux obtained fromt by deleting boxes with entriesn, n− 1, . . . , n−
i + 1. A standard tableaut is (k, r)-admissible if the shape of each tableaut (i) is a
(k, r)-admissible Young diagram.
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The irreducible sectors of the Jones–Wenzl representations of the Hecke algebras
Hn(q) (and hence of the braid groupsBn) are indexed by the pair(k, r) and a(k, r)-
admissible Young diagramλ with n boxes. AC

∗ representationπ(k,r)
λ of the Hecke

algebraHn(q) can be constructed as follows: letV
(k,r)
λ be the complex vector space

with basis{vt }, wheret ranges over(k, r)-admissible standard tableaux of shapeλ. Let
si(t) be the tableau obtained fromt by interchanging the entriesi andi + 1. If si(t) is
also(k, r)-admissible, then we define

π
(k,r)
λ (ei)(vt ) = αt,ivt + βt,ivsi (t). (2)

If si(t) is not(k, r)-admissible, setβt,i = 0 in formula (2). In this case,αt,i is either 0
or 1. It follows thatπ(k,r)

λ (ei) (with respect to the basis{vt }) is a matrix consisting of
only 2× 2 blocks (

αt,i βt,i

βt,i 1− αt,i

)
(3)

and 1× 1 blocks 0 or 1. The identityαt,i = α2
t,i + β2

t,i implies that (3) is a projector. So

all eigenvalues ofei are either 0 or 1. We writeρ(k,r)
λ for the restriction ofπ(k,r)

λ to Bn.
Whenn andr are fixed, they may be suppressed.

Definition 2. Given a pair of integers(k, r) with r ≥ k + 1, let ?(k,r)
n be the set of all

(k, r)-admissible Young diagrams withn boxes. TheJones–Wenzl representation of
the braid groupBn is:

ρ(k,r)
n = ⊕

λ∈?(k,r)
n

ρ
(k,r)
λ : Bn →

∏
λ∈?(k,r)

n

U(λ).

Here we writeU(λ) for the unitary group of the Hilbert spaceV (k,r)
λ with the orthonormal

basis{vt }.
Definition 3. A (k, r)-admissible diagram is oftrivial type if λ is a row or column or
if k = r − 1. A (k, r)-admissible diagram is ahook if the second row has exactly one
box. A hook with exactly two rows is aBurau hook, and the corresponding sector is a
Burau representation .

We note thatρλ is one-dimensional if and only ifλ is of trivial type.

Theorem 2.2. Leth be a(k, r)-admissible hook with(b+1) rows and(a+1) columns.

(1) If a + b < r − 1, thenρ
(k,r)
h is equivalent up to tensoring by a character to the

bth exterior power of the Burau representation associated to the hook with(a + b)

columns.
(2) If a + b = r − 1, thenρ

(k,r)
h is equivalent up to tensoring by a character to the

(b − 1)th exterior power of the Burau representation associated to the hook with
(a + b − 1) columns.



186 M.H. Freedman, M.J. Larsen, Z. Wang

Proof. For the first part, we explicitly identify a basis ofVh with that of thebth exterior
power of the Burau representationρβ associated to the hookβ with (a + b) columns.
The basis ofVβ can be indexed conveniently by the entryi of the box in the second row.
The set

{vi2 ∧ vi3 ∧ · · · ∧ vib+1 | 2 ≤ i2 < · · · < ib+1 ≤ a + b + 1}
spans∧bVβ . We identify each element of this basis with the basis element ofVh given
by the standard tableau whose first column entries are 1, i2, . . . , ib+1, which we denote
v1,i2,... ,ib+1. Now we just compare the action of the braid generatorσk on corresponding
basis elements:v1,i2,... ,ib+1 andvi2 ∧ vi3 ∧ · · · ∧ vib+1. For the Burau representation,
we haveρβ(σk)(vi) = qvi if i �= k, k + 1 . We dropρ from the notation now. First we
compare two special cases:

σk(v1,i2,... ,ib+1) =
{
q if k andk + 1 do not appear ini2, . . . , ib+1

−1 if k andk + 1 both appear ini2, . . . , ib+1
,

σk(vi2 ∧ · · · ∧ vib+1) =
{
qb if k andk + 1 do not appear ini2, . . . , ib+1

−qb−1 if k andk + 1 both appear ini2, . . . , ib+1
.

There are two remaining cases:k appears in{i2, . . . , ib+1} but k + 1 not, ork + 1
appears in{i2, . . . , ib+1} but k not. Note for both cases, the hook distance betweenk

andk + 1 in the two hooksh andβ is the same∓k. Therefore, the action ofσk on the
respective 2-dimensional subspace is the same. Since there are(b − 1) basis elements
vi, i �= k in {i2, . . . , ib+1}, we have a factor ofqb−1 when comparing to the action of
σk onvi2 ∧ · · · ∧ vib+1.

The second part is proved similarly. The admissibility condition for standard Young
tableaux reduces the rank by 1.��

In general, Jones–Wenzl sectorsρ
(k,r)
λ have the following properties:

Theorem 2.3. Letλ be an admissible Young diagram which is not of trivial type.

(1) For eachi, the imageρ(k,r)
λ (σi) has exactly two distinct eigenvalues,−1 andq

(2) (Bratteli diagram) Given a(k, r)-admissible Young diagramλ with n boxes, then
the restriction ofρ(k,r)

λ fromBn toBn−1 is the direct sum of the irreducible represen-
tations associated to all(k, r)-admissible Young diagramsλ′ of sizen− 1 obtained
fromλ by removing a single corner box.

(3) If r ≥ 5andr /∈ {6,10}, n ≥ 3, or r = 10, n ≥ 5, then the image group ofρ(k,r)
λ (Bn)

is infinite modulo its center.

All three statements are in [J2]. The first is obvious from the construction given above.
One can easily deduce (3) from (1) and (2) given Theorem 1.6.

3. Duality of Jones–Wenzl Representations

The Hecke algebraHn(q) has an automorphism which intertwines the Jones–Wenzl
representations ofHn(q) associated to a pair of Young diagrams. This duality was first
discovered by F. Goodman and H. Wenzl [GW] and by A. Kuniba and T. Nakanishi
[KN]. It is called rank-levelduality in conformal field theory. This duality accounts for
the appearance of the symplectic and orthogonal groups as closed images of certain
Jones–Wenzl representations.

Let N denote the set of natural numbers (including 0).



Two-Eigenvalue Problem and Density of Jones Representation of Braid Groups 187

Definition 4. Fix an integerr > 0. An r-tile is a k × (r − k) matrix T = (tij )k×r−k

satisfying the following conditions:

(1) tij ∈ N,
(2) the entries in each row and column are non-increasing,
(3) the difference of any two entries in a single row or column is≤ 1.

The relation betweenr-tiles and(k, r)-admissible Young diagrams is given by the
following constructions.

Ther-tile Tλ of aYoung diagramλ: Supposeλ = [λ1, . . . , λk] is aYoung diagram with
k rows andr ≥ k + 1. Let l = r − k, and letTλ be thek × l matrix with

tij =
⌊
λi + l − j

l

⌋
.

The Young diagramλT of an r-tile T : The (k, r)-admissible Young diagramλT is a
Young diagram with at mostk rows whoseith row has

∑l
j=1 tij boxes.

Definition 5. (1) Given a (k, r)-admissible Young diagramλ, the r-conjugate of λ,
denotedλ∗r , is the Young diagram associated with the transpose tile ofTλ.

(2) A Young diagram isr-symmetric if Tλ is a symmetric matrix after discarding all
0-rows and0-columns.

(3) Given a Young tableaut of shapeλ, ther-conjugate t∗ is the tableau of shapeλ∗r
such that the shape oft (i) is r-conjugate to the shape oft∗(i) for all i.

We have the following duality:

Theorem 3.1. For any(k, r)-admissible Young diagramλ, ρλ∗r is equivalent toχ ⊗ ρ∗λ ,
whereρ∗λ is the contragredient representation ofρλ andχ : Bn → U(1) denotes the
character withχ(σi) = −q.

Proof. We describe this duality explicitly in terms of bases. From the definition of the
representationsρλ andρλ∗r , the basis elements of the representation spacesVλ andVλ∗r
are in 1-1 correspondence byr-conjugation of Young tableaux:t ↔ t∗. We define the
duality transformationJ as the linear mapJ : Vλ → Vλ∗r with J (vt ) = ±vt∗ , where
the sign± is determined as follows. Lett0 be the standard vertical tableau of shapeλ.
This is the tableau in which numbers 1 throughn are filled in one column at a time,
working left to right, and it is not necessarily admissible. Each standard tableaut of
shapeλ determines a permutation of{1,2, . . . , n} by comparison tot0. The sign± is
the sign of this permutation.

We show thatρλ∗r = χ ⊗ ρ∗λ for each braid generatorσi . Given a standard tableaut ,
there are two cases depending on whether or notsi(t) is standard. Ifsi(t) is not standard,
then the proof is straightforward. Ifsi(t) is standard, then

ρλ(σi) =
(
q − (1+ q)αt,i −βt,i

−βt,i q − (1+ q)(1− αt,i)

)
.

Note thatdt∗,i,i+1 = −dt,i,i+1, thereforeαt∗,i = 1− αt,i . Since det(ρλ(σi)) = −q, we
have

ρλ(σi) = (−q) · 1

det(ρλ(σi))
· ρλ(σi) = χ · ρ−1

λ (σi) = χ ⊗ ρ∗λ(σi). ��
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Corollary 3.2. (1) If λ is r-symmetric, thendimVλ is even.
(2) If λ isr-symmetric, thenρλ is self-dual up to the characterχ . More precisely, suppose

T = (tij ) is ther-tile of λ, then if
∑

i>j tij is odd,ρλ is symplectic up toχ , and if∑
i>j tij is even,ρλ is orthogonal up toχ .

Proof. Let us examine more carefully the matrixJ representing the above duality. First
note thatr-conjugation is an involution on the basis elements ofVλ without any fixed
points as long asλ has≥ 2 boxes. This implies (1). If the sign oft is the same as that of

t∗, thenJ is either

(
0 1
1 0

)
or

(
0 −1
−1 0

)
. Therefore,J defines an orthogonal pairing.

If the signs oft and t∗ are different, thenJ is

(
0 1
−1 0

)
or

(
0 −1
1 0

)
, soJ defines a

symplectic pairing. Asρλ ·J−1 = χ⊗ρ∗λ , up to the characterχ , ρ is either a symplectic
or an orthogonal matrix with respect to either the symplectic form or inner product given
by J−1. Checking signs gives (2).��

The converse of (2) is also true forr > 4. This is a slight refinement of a result of
[GW], and we follow the proof given there.

Theorem 3.3. Let r > 4 and1 < k1, k2 < r − 1.

(1) Letλ1 ∈ ?
(k1,r)
n andλ2 ∈ ?

(k2,r)
n . If λi are not of trivial type, thenρλ1 is equivalent

to the tensor product ofρλ2 with a character ofBn if and only ifλ1 = λ2.

(2) Letλ1 ∈ ?
(k1,r)
n andλ2 ∈ ?

(k2,r)
n . If λi are not of trivial type, thenρλ1 is equivalent

to the tensor product ofρ∗λ2
with a character ofBn if and only ifλ1 = (λ2)

∗
r .

Proof. For any pair of distinct diagramsλ1 andλ2, the sets of diagrams of the formλ(1)
1

andλ
(1)
2 cannot coincide. In other words, there exists an admissible subdiagramµ of

one of the two, obtained by removing a single box, which cannot be so obtained from
the other. Unless one or both is the Burau hook[n − 1,1] or its conjugate,µ is not of
trivial type. If ρλ1 andρλ2 are equivalent up to tensoring by a character, the same is true
of their restrictions toBn−1. We may therefore proceed by induction, the base case being
that in which eitherλ1 or λ2 is [n − 1,1] and the other is[2,1, . . . ,1]. These are not
equivalent forn ≥ 4 by Theorem 2.2.

Part (2) is an immediate consequence of (1) and Theorem 3.1.��

4. Closed Images of Jones–Wenzl Sectors

In this section, we compute the universal coverG1 of the identity componentG0 of the
closure ofρλ(Bn) for eachρλ with infinite image.We also give the ambient representation
V of G0 (specified as a representation ofG1.) Sinceρλ(Bn) is the product ofG0 and a
group of scalar matrices, this is enough information to determine the actual closure of
the image of the sector.

Theorem 4.1. Fix integersr, n such thatr ≥ 5, r �= 6, andn ≥ 3. Letk be an integer
less thanr−1and letλ ∈ ?

(k,r)
n .We assume thatλ is not of trivial type, and ifr = 10, we

assume thatλ is neither[2,1] nor [2,2]. LetG1 denote the universal cover of the identity
component of the closure ofρλ(Bn) andV , of dimensionN , denote the representation
space ofρλ regarded as aG1-module. Then
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(1) if λ is neitherr-symmetric nor a hook, then(G1, V ) is equivalent to(SU(N), V&1).
(2) if λ is a hook witha + 1 columns andb + 1 rows, then(G1, V ) is equivalent to

(SU(a + b), V&b
).

(3) if λ is not a hook but isr-symmetric,Tλ = (tij ) is ther-tile of λ, and@ =∑i>j tij ,
then
if @ is even, then(G1, V ) is equivalent to(Spin(N), V&1);
if @ is odd, then(G1, V ) is equivalent to(Sp(N), V&1).

The rest of the section is devoted to the proof of this theorem. We remark that the
excluded cases,r ∈ {3,4,6}, r = 10 andλ ∈ {[2,1], [2,2]}, or λ of trivial type, are
precisely the cases in which the image was already known to be finite [J2, BW, GJ].

We have already seen thatρλ(σi) has two distinct eigenvalues whose ratio−q is not
−1. Since the braid generators are all conjugate to one another, the conjugacy class of
ρλ(σi) topologically generates the closure ofρλ(Bn). Thus,G1 is simple,V is irreducible
with highest weight& , and(G1,&) appears on the list given in Theorem 1.1.

Definition 6. A pair (G1, V ) consisting of a simply connected simple Lie group and
an irreducible representation isstandard if G1 is isomorphic toSU(N), Sp(N), or
Spin(N), anddimV = N .

Our main goal is to show that the pairs(G1, V ) arising from diagrams which are
not hooks are standard. We rule out the other possibilities offered by Theorem 1.1 by
means of two pieces of information: dimV , and the closure ofBn−1 in G0, as computed
by means of the Bratteli diagram. In order to start the induction argument, we need to
compile results in a number of special cases. We begin with hooks.

Proposition 4.2. Theorem 4.1 holds for all hooksλ.

Proof. By Theorem 2.2, it suffices to consider the case of Burau hooksλ = [m,1].
We use induction onm. Form = 2 (resp.m = 3), we can appeal to Theorem 1.6 or
to classical results characterizing all finite subgroups of GL(2) (resp. GL(3)) [Ft] to
show thatG0 = G1 = SU(2) (resp. SU(3)) except whenm = 2 andr = 10. For
generalm < r, dimρ[m,1] = m, and by the induction hypothesis,G0 ⊃ SU(m− 1), so
G0 = G1 = SU(m). ��

We now consider diagramsλ with ≤ 7 boxes which are neither hooks nor of trivial
type. Forn = 4, λ = [2,2], and dimρλ = 2, soG1 = SU(2), except whenr = 10, in
which caseG1 is trivial. Forn = 5, there are two possible diagrams, and

dimρ[3,2] = dimρ[2,2,1] = 5,

and by Theorem 1.1,G1 = SU(5) in each case. This is enough information for the
induction argument whenr = 5, so we now restrict attention tor ≥ 7. Forn = 6, the
diagrams[4,2], [3,3], [3,2,1], [2,2,2], and[2,2,1,1] give sectors of dimensions 9, 5,
16, 5, and 9 respectively. Thus,(G1, V ) is obviously standard for each case except the
symmetric diagram[3,2,1], which contains the admissible subdiagram[2,2,1]. In this
case, therefore,G0 contains SU(5). It follows that here again, the pair is standard. For
n = 7, we have[5,2], [4,3], [4,2,1], and[3,2,2] together with their conjugates; the
dimensions are 14, 14, 35, and 21 respectively, so Theorem 1.1 implies all are standard.
For n ≥ 8, λ ∈ {[4,4], [2,2,2,2]} gives dimρλ = 14 and(G1, V ) standard, and
otherwise, dimρλ > 15.



190 M.H. Freedman, M.J. Larsen, Z. Wang

We can already prove the main theorem in the case thatr = 5. Indeed, everyλ with
three rows is 5-conjugate to one with two, so we consider only diagrams of the form
[l, m], 0≤ l −m ≤ 3. By a Bratteli diagram computation,

dimρ[l,m] =



F2m−1 if l = m,

F2m+1 if l = m+ 1,
F2m+2 if m+ 2 ≤ l ≤ m+ 3,

whereFk denotes thekth Fibonacci number. If dimV = Fk+1 andG0 ⊃ SU(Fk), then
G0 = G1 = SU(Fk+1), so the theorem follows by induction onk.

The general proof of the theorem follows this strategy but is technically more difficult.
We assume henceforth thatr ≥ 7.

Lemma 4.3. The pair(Spin(8),8) never appears among pairs(G1,dimV ). The pairs
(SU(5),10), and(SU(6),15) occur only whenλ is a hook.

Proof. We know already that asλ ranges over diagrams which are not hooks, dimρλ is
never 8, 10, or 15. Whenλ is a hook,G1 is always a special unitary group.��
Lemma 4.4. Let ? ⊂ ⋃

k ?
(k,r)
n denote a set of diagrams. Suppose that for eachλ ∈

?, the corresponding pair(G1, V ) is standard. Letρ? denote the direct sum of the
representationsρλ, λ ∈ ?. Then

rank(ρ?(Bn)
0
) ≥ dimρ?

3
. (4)

Proof. Let ?′ denote a maximal subset of? containing no twor-conjugate diagrams.
LetHλ denote the quotient ofρλ(Bn) by its center. This is always a simple group, either
PSU(N),PSO(N), orPSp(N). The closure of the direct sumρλ⊕ρµ maps toHλ×Hµ,
and its image maps onto each factor. By Goursat’s Lemma, either the image is the graph
of an isomorphism betweenHµ andHλ, or it is the whole product. Up to isomorphism,
PSU(N) has exactly two non-trivialN -dimensional projective representations, and they
are dual to one another. By Theorem 3.3, ifλ,µ ∈ ?′, there cannot be an isomorphism
Hλ → Hµ commuting with the maps fromBn, in thePSU(N) case. There is only one
isomorphism class of non-trivial projectiveN -dimensional representations ofPSp(N),
and the same is true forPSO(N) whenN ≥ 6 andN �= 8. Thus, again there cannot be
an isomorphismHλ → Hµ commuting with the maps fromBn. By Goursat’s lemma,
we conclude that the closure ofρ?′(Bn) maps onto

∏
λ∈?′ Hλ. The same is true a fortiori

of the closure ofρ?(Bn). If λ is notr-symmetric, thenHλ has rankN − 1≥ 2, and the
sum of the dimensions ofρλ andρλ∗r is 2N ≤ 3(N − 1). Otherwise the rank ofρλ is
N/2 and the contribution ofλ to dimρ? is N . Thus, dimρ? is at most 3 times the rank
of ρ?(Bn). ��

We note that among pairs(G, V ) satisfying Theorem 1.1, the only non-standard ones
satisfying

rankG ≤ dimV

3
are Spin(7) with its spin representation and SU(4) and SU(5) with their fundamental
representations of dimensions 6 and 10 respectively. By Lemma 4.3, these cases are
ruled out for pairs arising fromρλ(Bn). We cannot proceed immediately by induction,
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however, since the base cases, which are the hooks, do not in general satisfy Ineq. (4).
To remedy this, we need to analyze partitionsλ from which hooks can be obtained by
removing a single box. We therefore define

ha,b = [a + 1,1,1, . . . ,1︸ ︷︷ ︸
b

], λa,b = [a + 1,2,1, . . . ,1︸ ︷︷ ︸
b−1

].

Note that the admissibility ofλa,b implies the admissibility ofha,b except in the case
a = r − 2, b = 1.

Proposition 4.5. If a + b ≥ 5 andha,b is admissible, then

dimρλa,b ≥ (14/5)dimρha,b
.

Proof. Either a + b < r − 1 andha,b has two admissible subdiagrams witha + b

boxes,ha−1,b andha,b−1, or a + b = r − 1 and there is only one:ha−1,b. In the first
case and ifb > 1, λa,b has three admissible subdiagrams witha + b + 1 boxes,ha,b,
λa−1,b, andλa,b−1; in the second or ifb = 1, only the first two are admissible. We
proceed by induction, the proposition being true in the casea + b = 5 and sharp when
(a, b) = (4,1). Suppose thatn is given and the proposition is true whena+ b = n− 1.
Now takea + b = n. In the first case, ifb > 1,

dimρλa,b = dimρλa−1,b + dimρλa,b−1 + dimρha,b

≥ (14/5)(dimρha−1,b + dimρha,b−1)+ dimρha,b
= (19/5)dimρha,b

,

while if b = 1, thena ≥ 4, so

dimρλa,1 =
a2+ 3a

2
≥ 14(a + 1)

5
= 14

5
dimρha,1.

In the second case,

dimρλa,b = dimρλa−1,b + dimρha,b
≥ (14/5)dimρha−1,b + dimρha,b

= (19/5)dimρha,b
. ��

Proposition 4.6. For anya, b ≥ 1, λa,b satisfies Theorem 4.1.

Proof. By the case analysis following Proposition 4.2, we may takea+b = n ≥ 6, and
we may assume the proposition is true whena+ b < n. The induction hypothesis gives
rankG1 ≥ 13. Applying Lemma 4.4 toλa−1,b and (assumingb > 1 anda+ b < r − 1)
λa,b−1, the induction hypothesis together with Lemma 4 implies that the rank ofG1 is at
least 3/14 times the dimension of the representation. Among the possible pairs(G1, V )

in Theorem 1.1, only the standard ones satisfy both conditions. By Lemma 3.2,G1 is
unitary, spin, or orthogonal, depending on which of the conditions in Theorem 4.1λa,b

satisfies. The proposition follows by induction onn. ��
We can now prove Theorem 4.1.

Proof. We use induction onn. We may assume thatλ is not a hook and that for every
admissible tableau with shapeλ, neither isλ(1). Let ? denote the set of admissible
diagrams of the formλ(1) for some admissible tableau. By Ineq. (4),

rankρλ(Bn) ≥ rankρ?(Bn−1) ≥ dimρλ

3
.

By Lemma 4.3, this inequality together with the fact thatλ is not a hook implies that the
pair (G1, V ) arising fromρλ is standard. The theorem follows by induction.��
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For completeness, we point out the closed images of the remaining cases using
Theorem 1.6. They have all been identified earlier in [J2, BW, GJ]. As we mentioned
earlier, they are all finite groups. The images for SU(2), r = 4 are given by Theorem
1.6, (b) [J2]; SU(2), r = 6 by Theorem 1.6, (c) cases(1), (2), (6) [BW]; SU(2), r = 10
andn = 3,4 by Theorem 1.6, (a) [J2]; The images for SU(3), r = 6 are identified first
by D. Goldschmidt and V. Jones (see [GJ]), the images are given by Theorem 1.6, (c)
cases(3), (5). The images for SU(4), r = 6 are the same as those for SU(2), r = 6 by
rank-level duality.

5. Distribution of Evaluations of Jones Polynomials

In this section, we fix an integerr ≥ 3, r �= 3,4,6, andq = e± 2π
r . Given a braid

σ ∈ Bn, let σ̂ be the usual closure ofσ . Then the Jones polynomial of the linkσ̂ atq is:

J (σ̂ , q) = (−1)n−1+e(σ ) · q− 3e(σ )
2 ·

∑
λ=[λ1,λ2]∈?(2,r)

n

[λ1− λ2+ 1]
[2] · T r(ρ

(2,r)
λ (σ )),

wheree(σ ) is the sum of all exponents of standard braid generators appearing inσ . In
the following, we denote[λ1−λ2+1]

[2] by wλ.
The sum of exponentse(σ ) defines a homomorphism fromBn to Z. Let ρ denote

the direct sum of the representationsρλ asλ ranges over?(2,r)
n . LetG = ρ(Bn)× Z2r .

There is a natural mapρ′ : Bn → G defined byρ′(σ ) = (ρ(σ ), r(n − 1+ e(σ )) −
3e(σ ) (mod 2r)). Let

Tn :
( ∏
λ∈?(2,r)

n

U(λ)
)× Z2r → C

be defined by
Tn((uλ),m) = q

m
2

∑
λ∈?(2,r)

n

wλT r(uλ).

The definitions are designed so that

J (σ̂ , q) = Tn(ρ
′(σ )).

Let G′ ⊂ G denote the closure ofρ′(Bn).

Lemma 5.1. If n ≥ 5, then
(G′)0 =

∏
λ∈?(2,r)

n

SU(λ),

andG′ = (G′)0Z(G′).

Proof. As n > 4, a diagram with two rows cannot be symmetric, nor can two distinct
diagrams with two rows be conjugate to one another. The computation of(G′)0 now
follows immediately from the proof of Lemma 4.4. AsG′ is a subgroup of( ∏

λ∈?(2,r)
n

ρλ(Bn)

)
× Z2r
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and has the same identity component, it suffices to prove that the latter group is the
product of its identity component and its center. This is immediate from Theorem 1.4.
��
Lemma 5.2. Letµn,k denote the probability measure onC given by values ofJ (σ̂ , q),
if σ is chosen randomly and uniformly from (non-reduced) words of lengthk in the braid
generatorsσ±, . . . , σ±n−1 ∈ Bn. The weak-* limit ofµn,k ask →∞ is the push-forward
of Haar measure onG′, Tn∗dg′.

Proof. Let ν denote the probability measure onG′ given by the average ofδ-functions
centered atρ′(σ1)

±, . . . , ρ′(σn−1)
±. By [Bh], sinceρ′(Bn) is dense inG′, the weak-

* limit of the k-fold convolutionν∗k is Haar measuredg′. Thus the weak-* limit of
Tn∗(ν∗k) is Tn∗dg′. ��

The only significance of the choice of the set{σ±i } is that it generatesBn; any other
semigroup generators would do as well. Much more sophisticated results in ergodic
theory can be applied to prove convergence of the measure on more refined ensembles
of braids. For example, the Stein–Nevo theorem [SN] allows the study of reduced words
in the free group. Ifµr andµr+1 are measures uniformly supported on reduced words in
γ1, · · · γm and their inverses, then12(µr +µr+1) will also converge weakly to Haar(G′).
One may also ask about using the braid group – not the free group – to count braids and
whether a similar uniformity is obtained. We do not know at present.

Lemma 5.3. If n ≥ r − 2, then ∑
λ∈?(2,r)

n

w2
λ =

r

sin2 2π
r

.

Proof. There are four cases, depending on the parity ofn andr. If both are even, the
sum in question is

[2]−2
r/2−1∑
k=0

[2k + 1]2 = (q − q−1)−2
r/2−1∑
k=0

(
q2k+1+ q−1−2k − 2

) = r

sin2 2π
r

.

If r is even andn is odd, the sum is

[2]−2
r/2−2∑
k=0

[2k + 2]2 = (q − q−1)−2
r/2−2∑
k=0

(
q2k+2+ q−2−2k − 2

) = r

sin2 2π
r

.

If r is odd andn is even, the sum is

[2]−2
r/2−3/2∑

k=0

[2k + 2]2 = (q − q−1)−2
r/2−3/2∑

k=0

(
q2k+2+ q−2−2k − 2

) = r

sin2 2π
r

.

Finally, if both are odd,

[2]−2
r/2−3/2∑

k=0

[2k + 1]2 = (q − q−1)−2
r/2−3/2∑

k=0

(
q2k+1+ q−1−2k − 2

) = r

sin2 2π
r

.

��
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The fact that
∑

λ w
2
λ does not depend on the parity ofnhas the interesting consequence

that the distribution of values ofJ on braids ofn strands tends to a limit asn goes to∞:

Theorem 5.4. The weak-* limit of the sequence of measuresTn∗dg′ is the Gaussian

distribution 1
2πσr

e
− zz̄

σr dzdz̄, whereσr = r

sin2 2π/r
.

Proof. By Lemma 5.1, we can writeG′ = (H × A)/H ∩ A, whereH is a product
of special unitary groups andA is finite and abelian. Every representation ofG′ can be
regarded as a representation ofH ×A and every irreducible representation as an exterior
tensor product of an irreducible representation ofH and an irreducible character ofA.
In particular, the restriction ofTn toG′ can be regarded as a function onH ×A: namely
awλ-weighted sum of traces of representationsσλ � τλ, whereσλ is the composition of
the standard representation with the projection onto the factor SU(λ) of H .

Let N = inf
λ∈?(2,r)

n
dimρλ. If aλ, bλ are non-negative integers with∑

λ∈?(2,r)
n

(aλ + bλ) < N,

then ⊗
λ∈?(2,r)

n

(σλ � τλ)
⊗aλ ⊗ ((σλ � τλ)

∗⊗bλ

is isotypic onZ(H) and non-trivial unlessaλ = bλ for all λ. In this case, the represen-
tation is trivial onA, so the dimension of the space of invariants is

dim


 ⊗

λ∈?(2,r)
n

σ
⊗aλ
λ ⊗ σ ∗λ

⊗aλ




H

=
∏

λ∈?(2,r)
n

aλ!

by the invariant theory of SU(λ) [Wl].
Let {Xλ} denote a set of independent Gaussian random variables with distribution

1
2π e−zz̄dzdz̄ indexed byλ ∈ ?

(2,r)
n . The expectation is

E(Xa
λX̄

b
λ) =

{
a! if a = b

0 otherwise.

Since allXλ, λ ∈ ?
(2,r)
n , are independent, if

X =
∑

λ∈?(2,r)
n

wλXλ,

then

E(XaX̄b) =
∫
G′

Tn(g
′)aTn(g′)

b
dg′ =

∫
C

zaz̄bTn∗dg′

whenevera+b < N . AsN goes to∞with n, by [Fe], this implies that each moment of

Tn∗dg′ equals the corresponding moment of the measure1
2πσr

e
− zz̄

σr dzdz̄ of X whenn
is sufficiently large. This implies weak convergence by [Fe] VIII.6 and XV.5. (Actually,
the results in [Fe] are stated only for distributions onR, but the method works forRn.)
��
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We conclude that ifr is a fixed integerr ≥ 5, r �= 6, then in the limit asn→∞, the

distribution of values ate
±2πi

r of the Jones polynomial of a “random” link withn strands
tends to a fixed Gaussian. The variance of this Gaussian depends onr and grows liker3

asr →∞.

Theorem 5.5. For eachnandk, letµknot
n,k denote the distribution of values ofJ (σ̂ , e2πi/r ),

whereσ ranges over those non-reduced words of lengthk in Bn for which σ̂ is a knot.
If r = 5 or r ≥ 7, then in the weak-* topology,

lim
n→∞ lim

k→∞µknot
n,k =

1

2πσr

e
− zz̄

σr
dzdz̄

, σr = r

sin2 2π
r

.

Proof. A braidσ gives rise to a knot̂σ if and only if the image ofσ under the standard
quotient mapBn → Sn is ann-cycle. For eachn ≥ 5 we consider the homomorphism
φ : Bn → G′ × Sn obtained fromρ′ and the standard quotient mapBn → Sn. By
Goursat’s lemma, the closure of the image is either all ofG′×Sn or an index-2 subgroup.
Applying [Bh] to the topological generatorsφ(σ±1

i ) of this subgroup, we see that in the
largek limit, if we condition on a fixed element ofSn, the resulting distribution onG′
approaches one of three possible limits: Haar measuredg′ onG′, twice the restriction of
dg′ to an index-2 subgroupG′even⊂ G′, or twice the restriction ofdg′ to the non-trivial
cosetG′odd= G′ \G′even. (Note that the factor of 2 is needed in the last two cases to give
a probability measure.) The argument of Lemma 5.1 goes through unchanged whenG′
is replaced byG′even, so the integral ofzaz̄b with respect toTn∗dg′even coincides with
the integral with respect toTn∗dg′ whena + b < N . By additivity in measure, the
decomposition

dg′ = dg′|G′even
+ dg′|G′odd

= 1

2
dg′even+

1

2
dg′odd

gives ∫
zaz̄bTn∗dg′odd= 2

∫
zaz̄bTn∗dg′ −

∫
zaz̄bTn∗dg′even=

∫
zaz̄bTn∗dg′

for a + b < N . The theorem now follows from [Fe].��
Remark.In [DLL], the evaluations of Jones polynomials at several roots of unity are
plotted for prime knots, or prime alternating knots up to 13 crossings. While density still
holds for these cases, we do not know if there exist any limiting distributions for these
ensembles of knots (note that our filtration in Theorem 5.5 and their filtration for the
plotting are different.)

Another interesting direction is to study subgroups of the braid groups. By [Sta], a
braidb belonging toBk(n), thekth stage of the lower central series of the braid group
Bn, determines a braid closureb̂ whose finite type invariants vanish through typek+ 1.
Since the groups SU(m) are simple, ifρ : Bn → SU(m) is dense then the restriction
ρ : Bk(n)→ SU(m) is also dense. Thus link invariants with vanishing invariants of type
≤ k + 1 can approximate the non-perturbative Jones invariants of an arbitrary link. It
would be nice to follow this with a uniformity (in measure) statement, but this seems to
lie outside the scope of the ergodic theorem we know since in the free groupFn, which
we use to parameterize the braid group, thekth term of the lower central seriesFk(n) is
infinitely generated.
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Let us now come to the question of the rate of approximation. Here to have any
kind of general positive answer, one must restrict to semisimple Lie groups (which
fortunately is where the Jones representations we have studied take their values). To see
this, considerG = S1 and the Liouville numberγ = (

∑
n 10−n!)2π , whileγ generates

a dense subgroup and the atomic measure on its partial orbit converges to the rotationally
invariant measure, one must wait an exceptionally long time for the orbit to come near
certain points. In contrast semisimple groups have a distinctly limited supply of finite
subgroups and nothing similar can occur. A theorem to this effect can be found in [Ki,
So] and appears in its best form in [NC].

Theorem 5.6. LetX be a set closed under inverse in a compact semisimple Lie group
G (with Killing metrics) such that the group closure〈X〉 is dense inG. LetXl be the
words of length≤ l in X, thenXl is anε-net inG for l = O(logk(1

ε
))k for somek ≥ 2,

i.e., for all g ∈ G, dist(g,Xl) < ε.

Conjecturally the theorem should still hold forl = O(log(1
ε
)) and there are some

number theoretically special generating sets of SU(2) [GJS] for which such an estimate
for l can in fact be obtained. Such results now translate into topological statements:

Corollary 5.7. Given a “conceivable” valuev for the evaluation of Jones polynomial of
b̂ at a root of unity, i.e., one that lies in the computed support of the limiting distribution
for b ∈ Bn, then-string braids, to approximatev by v′, ||v − v′|| < ε, it is sufficient
to consider braidsb′l ∈ Bn of lengthl = O(log2(1

ε
)) with Jones evaluationsb′l = v′,

||v − v′|| < ε.

6. Fibonacci Representations

In this section, we apply the techniques of Sects. 2 and 4 to prove a density theorem for
a different class of representations. These arise from Chern–Simons theory forr = 5
andG = SO(3), what G. Kuperberg calls theFibonacci TQFT[KK].

We briefly recall the setup. The geometric objects we consider are compact oriented
surfaces with boundary, not necessarily connected, endowed with a parameterization of
each boundary component, i.e., a homeomorphism fromS1. Each boundary component
is labeled with an element of{0,2}. To each labeled surface@ there is an associated
finite-dimensional Hilbert spaceV@ such that

V@1
∐

@2 = V@1 ⊗ V@2.

If @ is a labeled surface andf : S1 → @ is a simple closed curve, we can cut@ along
f (S1). We call the resulting labeled surface@f,a if the two new boundary components
are labeleda, and

V@ = V@f,0 ⊕ V@f,2. (5)

If Aut (@) denotes the group of isotopy classes of orientation, label, and parameterization
preserving homeomorphisms@ → @, there is a natural projective unitary action onV@ ,
provided the Hilbert space in question is nonzero. The restriction of this action to the
subgroup stabilizing the points off (S1) decomposes according to Eq. (5). When@ has
genus 0, the projective representation lifts canonically to a linear representation.

If @ is a disk with labela, then dimV@ = δ0a . If @ is an annulus with labelsa and
b, then dimV@ = δab. Whena = b, it makes sense to ask for the scalar given by the
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Dehn twist. Ifa = 0, it is 1: if a = 2, it is ω = e
4πi
5 . If @ has genus 0 and 3 boundary

components with labelsa, b, c ∈ {0,2}, then

dimV@ =
{

0 if a + b + c = 2,
1 otherwise.

(6)

Lemma 6.1. If @g,m,n has genusg andm (resp.n) boundary components labelled 0
(resp. 2), then

dimV@g,m,n = 5
g−1

2



(

1+√5

2

)g+n−1

+ (−1)g−1

(
1−√5

2

)g+n−1

 .

Proof. Immediate by induction. ��
Note that the dimension does not depend onm: we can “cap off” a boundary compo-

nent with label 0 by gluing on a disk with label 0. To simplify bookkeeping, we regard
eachV@ as a projective representation space forPg,m+n, the pure mapping class group
for a surface of genusg with m + n boundary components. The representation factors
throughPg,n and is independent ofm. Without abuse of notation, we may therefore
denote itρg,n.

Theorem 6.2. Except wheng + n = 1, ρg,n(Pg,n) is dense inPU(dimV@g,n).

The exceptional pairs(1,0) and(0,1) arise in different ways. In the first case, there is
a two-dimensional projective representation whose image is known to be the icosahedral
group; in the second case, there is no representation sinceV@ is 0-dimensional. The rest
of this section is devoted to the proof of the theorem.

Lemma 6.3. Theorem 6.2 holds for(g, n) = (0,4).

Proof. We first compute explicitly the representation of this case using [KL]. The rep-
resentation of a braid generator (in an appropriate basis) is(

e
4πi
5 0

0 −e
2πi
5

)
.

The fusion matrix is 
 √

5−1
2 −

√√
5−1
2

−
√√

5−1
2 −

√
5−1
2


 .

It follows that any finite subgroup of PU(2) = SO(3) can be ruled out quickly except
the binary icosahedral group. For this, we compute the trace of the product of two
consecutive braid generators. This trace cannot arise as the trace of an element of the
binary icosahedral group in the 2-dimensional representation. Therefore, the image must
be dense in PU(2). ��
Proposition 6.4. If dimV@g,n > 0, thenρg,n is irreducible.
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Proof. First let g = 0. The proposition holds forn ≤ 4. For n = 5, we have a 3-
dimensional representation, so it is reducible only if it has an invariant line. Regarding
P0,5 as a quotient of the braid groupB5, we observe thatσ1, σ2, andσ4 must all fix the
line, and all three eigenvalues must be the same, either 1 orω. In the first case, the line
is precisely the subspace ofV@0,5 associated to a loop with label 0 enclosing the first
two boundary components of@0,5; it is also the subspace associated to a loop with label
0 enclosing the last two boundary components of@0,5. However, if we cut along both
loops, we are left with a pair of pants whose labels sum to 2. This is impossible by (6).
On the other hand, if the eigenvalue isω, the line in question lies in the 2-dimensional
space associated to a loop with label 2 enclosing the last two boundary components of
@0,5, and this line is fixed byσ1 andσ2, contrary to Lemma 6.3.

Now we use induction onn. The dimension ofV@0,n is Fn−1, whereF denotes the
Fibonacci sequence. We can divide@0,n by a loop enclosing the last two boundary com-
ponents or by a loop enclosing the last three. In the first case, we obtain a representation
of the loop stabilizer which, by the induction hypothesis, is a sum of irreducible pieces
of dimensionsFn−2 andFn−3. In the second case, we obtain a representation of the
(different) loop stabilizer which decomposes into irreducible pieces of dimensionFn−4
and 2Fn−3. As

Fn−4 < Fn−3 < Fn−2 < 2Fn−3,

the representation ofP0,n is irreducible.
For the higher genus case, we use a similar argument, but in this case, we choose a

non-separating loop and a loop which splits off a@1,1. In this way, we can write two
different restrictions ofρg,n as (projectivizations of) a direct sum of two irreducible
representations in two different ways. The inequality

dimV@g−1,n < inf
(

dimV@g−1,n+1, 2 dimV@g−1,n

)
gives the induction step whenever it holds, which means in every case except when
g+n ≤ 3. The case(1,0) is well-known. For(1,1) there is nothing to prove. For(2,0)
the decompositions 5= 1+ 4 = 2+ 3 are different. This leaves the cases(1,2) and
(3,0) which can be handled in the same way as(0,5) above . ��

We can now prove Theorem 6.2. We start withg = 0 and use induction. Forn = 5,
Theorem 1.1 implies the desired density. Forn ≥ 6, Fn−2 >

Fn−1
2 , so any closed

subgroup ofU(Fn−1) acting irreducibly and containing SU(Fn−2) contains SU(Fn−1).
Excluding the cases(1,0), (1,1), and(1,2), in each caseg > 0,

dimV@g−1,n+2 >
dimV@g,n

2
,

so the induction hypothesis together with irreducibility is enough to give density. For
(1,2), we use Theorem 1.1, and there is nothing to prove for(1,0) or (1,1).
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