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Introduction

In 1983 V. Jones discovered a new family of representatioofthe braid groups. They
emerged from the study of operator algebras (thfaefactors) and unlike earlier braid
representations had no naive homological interpretation. Almost immediately he found
that the trace or “Markov” property of allowed new link invariants to be defined and

this ushered in the era of quantum topology. There has been an explosion of link and 3-
manifold invariants with beautiful inter-relations, asymptotic formulae, and enchanting
connections to mathematical physics: Chern—Simons theory and 2-dimensional statis-
tical mechanics. While many sought to bend Jones’ theory toward classical topological
objectives, we have found that the relation between the Jones polynomial and physics
allows potentially realistic models of quantum computation to be created [FKW, FLW,
FKLW, F]. Unitarity, a hidden locality, and density of the Jones representation are central
to computational applications. With this application in mind, we have returned to some
of Jones’ earliest questions about these representations and the distributions of his invari-
ants. A few concise answers are stated here in the introduction. Question 9 of Jones in
[J2] asked for the closed images of the irreducible components of his representation. We
answered Jones’ question, and also identified the closed images for the g&ne¥al

case completely.
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A salient feature of Jones representation istthe-eigenvalue propertythe image
of each braid generator has only two distinct eigenvajuels ¢}. This is obvious from
the quadratic Hecke relatiq@; 4+ 1)(o; — ¢) = 0. This two-eigenvalue property plays
a key role in the following theorem:

Theorem 0.1. Fix anintegerr > 5,r #6,10,n > 3orr = 10,n > 5. Let

2,
pl(lz,r) =& (21),0)(L g i B, — l_[ Ul

AEA,
reni@”

be the unitary Jones representation of thatrand braid groupB,. Then the closed
imagep,(lz”)(B,,) contains]'[xeA(z,r) SUR).

Our original motivation for studying Jones representation is for quantum computa-
tion. The special case = 5 has already been used to show that th&ZWitten—
Chern—-Simons modular functor at the fifth root of unity is universal for quantum com-
putation [FLW]. Combining that paper with the above result, we conclude that tt® SU
Witten—Chern—Simons modular functor at:dhroot of unity is universal for quantum
computation ifr # 3,4, 6.

Jones was also concerned with the range of values his invariants assumed and their
statistical properties. For this we must understand the topology and measure theory of
the imagel” of p, since the Jones polynomial is obtained by tracing them.

There are three levels of detail in the discussion of a finitely generated group (or semi-
group)I” approximating a Lie grouy. First is density and the rate at which density is
achieved. From [Ki, So, NC], we extract:

Theorem 5.6. Let X be a set closed under inverse in a compact semisimple Lie group
G (with Killing metrics) such that the group closut&) is dense inG. Let X; be the
words of length< [ in X, thenX; is ane-netinG forl = (’)(Iog"(%))k for somek > 2,

i.e., forallg € G, dist(g, X;) < €.

Conjecturally the theorem should still hold fbe= (’)(Iog(%)) and there are some
number theoretically special generating sets ot BJGJS] for which such an estimate
for [ can in fact be obtained. Such results now translate into topological statements:

Coroallary 5.7. Given a“conceivable” value for the evaluation of Jones polynomial of

b at a root of unity, i.e., one that lies in the computed support of the limiting distribution
for b € B,, then-string braids, to approximate by v/, ||v — V'|| < e, it is sufficient

to consider braids; € B, of lengthl = O(Iogz(%)) with Jones evaluations, = v’,
[lv—="|| < e.

The second level is uniformity in measureli=< y4, - - -, y >,i.€.,I" isgenerated
as a semi-group bys, ..., ym, let W; be the set of unreduced words of length/
andy; be the equally weighted atomic measureVgn(massn—' on each word ifW;),
it is known that density implies uniformity in measure [Bi; — HaarG) in the
weak-* topology (i.e., when integrated against continuous functions.) Third is the rate
of convergence of measures, which is also addressed in [Bh].

Returning to the Jones polynomial evaluations which are weighted traces of dense
representations, we can determine the statistics. Redalhe number of strands, and
[ is the length of a braid. One may consider the double limit wheand latern are
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taken to infinity. In this case, if is a fixed integer > 5, r # 6, the distribution of
evaluations a& ™~ of the Jones polynomial of a “random” link with strands tends

to a fixed Gaussian. The variance of this Gaussian dependsind grows liker2 as
r — OQ.

Our density result follows from the solution of a general two-eigenvalue problem:
Let G be a compact Lie group, arid a faithful, irreducible, unitary representation of
G. The pair(G, V) is said to have thg-eigenvalue propertif there exists a conjugacy
class[g] of G such that

(1) the clasgg] generate&; topologically;

(2) any elemeng € [g] acts onV with exactlyk different eigenvalues such that for
each 2< r < k, no set ofr eigenvalues forms a coset of the multiplicative group
(L w,o?, ..., o1}, wherew is a primitiver™ root of unity.

Thek-eigenvalue problemis to classify all such pdis V). Note thatG is not assumed

to be connected. The problem naturally divides into two cases according to witether

is or is not finite modulo its center. The solution to the first case is essentially known to
the experts and we content ourselves with a statement at the end of Sect. 1. The solution
to the case that’/ Z(G) has positive dimension is:

Theorem 1.1. Suppos€G, V) is a pair with the two-eigenvalue property. L6t be
the universal covering of the derived grol@g, Go] of the identity componertkg of
G. If G is of positive dimension modulo its center, tHéis an irreducibleG1-module,
with highest weightr, and(G1, @) is one of the following:

(1) (SU(l + 1), w;) forsome > 1,andl <i <.
(2) (Spin(2l + 1), w;) for somel > 2.

(3) (Sp(2l), 1) for some > 3.

(4) (Spin(2l), w;) forsome > 4andi =1,/ —1,1,

wherew; denotes the" fundamental representation.

There is a fairly close analogy between this theorem and J. Serre’s classification
[Se] of inertial monodromy types for Hodge—Tate modules with only two different
weights. Not only are the problems formally similar, the solution is identical. However,
it does not seem that either result implies the other. In the Hodge—Tate case, one looks
for a cocharacter taking two distinct values on the set of weights of an irreducible
representation of a semisimple group; in our case, one looks for a rational cocharacter
taking two different values (mo@d) which are not congruent (mc%iZ). Our technique
here works for the 3-eigenvalue problem.

1. The Two-Eigenvalue Problem

Let G be a compact Lie group, anda faithful, irreducible, unitary representation@f
The pair(G, V) is said to have thewvo-eigenvalue propertyf there exists a conjugacy
class[g] of G such that

(1) the clasgg] generates; topologically;
(2) any elemeng € [g] acts onV with exactly two different eigenvalues whose ratio
is not+1.
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Note thatG is not assumed to be connected. The problem naturally divides into two
cases according to whethéris or is not finite modulo its center. The solution to the
first case is essentially known to the experts and we content ourselves with a statement
at the end of this section. The rest of the section is devoted to the cage/théd) has
positive dimension.

Theorem 1.1. Suppos€G, V) is a pair with the two-eigenvalue property. L@} be the
universal covering of the derived gro{igo, Go] of the identity componertig of G. If

G is of positive dimension modulo its center, tHéils an irreducibleG1-module, with
highest weighto, and(G1, @) is one of the following:

(1) (SU(I + 1), ;) forsome > 1, andl <i <.
(2) (Spin(2l + 1), wy) for some > 2.

(3) (Sp(21), w1) for some > 3.

(4) (Spin(2l), w;) forsome > 4andi = 1,1 — 1,1,

wherew; denotes thet" fundamental representation.

There is a fairly close analogy between this theorem and J. Serre’s classification
[Se] of inertial monodromy types for Hodge—Tate modules with only two different
weights. Not only are the problems formally similar, the solution is identical. However,
it does not seem that either result implies the other. In the Hodge—Tate case, one looks
for a cocharacter taking two distinct values on the set of weights of an irreducible
representation of a semisimple group; in our case, one looks for a rational cocharacter
taking two different values (mo@d) which are not congruent (ma%iZ).

We begin with a lemma from linear algebra.

Lemma 1.2. SupposeW is a vector space with a direct sum decompositi&n =
®!_,W;, andU is an operator orW such thaty : W; — W;;1 (1 <i < n) cyclically.
Then any eigenvalue 6f multiplied by any:™ root of unity is again an eigenvalue bf.

Proof. Choose a basis dV consisting of bases d¥;,i = 1,2,--- ,n. If kisnot a
multiple of n, then tr U* = 0 because all diagonal entries Bf are 0 with respect
to the above basis. Let, ... , Ay denote the eigenvalues 6f with multiplicity. For

each integem > 0, consider trtU™ = Y A;". Letw be ann'™ root of unity. Then
D (wA)" =Y ™A™ = o™ ) 2™, We claim this sum is equal to ™ = > ;™.
Indeed, whem is not a multiple ofz, they are both 0, when is a multiple ofn, ™ = 1.
Recall that the symmetric polynomial3_ x/"} uniquely determine all the symmetric
polynomials ofy;. It follows that[ [, (A — wk;) = [; (A — A;). Therefore, the set of the
eigenvalues of is invariant under multiplication by am/" root of unity. o

In the two-eigenvalue problem, the generating conjugacy class cannot lie in the iden-
tity componentGg unlessG is connected. However, the following lemma allows us to
reduce to the connected case:

Lemma 1.3. Given a compact Lie groug, and an irreducible representation 6f, if
an elemeng has two eigenvalues undgrwhose ratio is# +1, theng is a product of
an element inGg with an element ir¥ ; (Go), the centralizer of5g in G.

Proof. The action of Ad defines an automorphism 6fo. By [St] Theorem 7.5, there
exists a maximal torug of Gg such that Ag fixesT as a set. Recall any automorphism
of Go fixing T pointwise is an inner automorphism by an elemerifin
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To show that Ag fixes T pointwise, consider all the charactdpg} of p, and the
weight space decompositidn = @, c,+(1) V. As Ad, fixesT as a setp(g) permutes
the weight space¥, according to the permutation of characters by, AHuppose the
longest permutation cycle of weight spaces by, Ads length= /. If [ > 3, then by
Lemma 1.2,0(g) have at least distinct eigenvalues, contrary to hypothesid. # 2,
then by Lemma 1.2, the two possible eigenvaluep @f) have ratio—1. Therefore,
I =1,i.e.,p(g) fixes every weight spack, . It follows that Ad, fixes the maximal torus
T of Gg pointwise. The lemma follows. O

Theorem 1.4. Let (G, V) be a pair with the two eigenvalue propertydfis of positive
dimension modulo its center, then the derived groGp, Go] of Go is a simple Lie
group, andG = GoZ(G).

Proof. Let[g] satisfy the two-eigenvalue property. As the conjugateqtdpologically)
generatas /Gy, if the restriction ofV to Go had more than one isotypic component,
would permute these components nontrivially, contrary to Lemma 1.2. Thus, the restric-
tion of V to Gg is the tensor product of an irreducible representatigrand a trivial
representatio®. By Lemma 1.3¢g = goz, wherego € Go andz centralizesGo. By
Schur's Lemmap(z) = 1 ® B, while p(go) = A ® 1. The two-eigenvalue property
implies that eitherA or B is scalar. Sincdg] generates a dense subgroupGfthe
same is true ofgg] andGo. As V is a faithful representatiomd cannot be scalar, so

B must be. Thus(Go, Vo) satisfies the two-eigenvalue property with generating class
[go0]. Moreover,V® must be one-dimensional since otherwisevould be a reducible
representation of;.

Let G1 denote the universal cover oo, Go]. Let g1 € G1 denote an element
whose image inGo, Go] lies in the cosegoZ(Go). The pull-backV; of Vy to G1 is
again irreducible, and the image @f has two eigenvalues with the same ratio as the
original image ofgp. Moreover,[g1] generates a dense subgrougzafsince no proper
closed subgroup af; can generat&o moduloZ(Gyo). It follows that(G1, V1) satisfies
the two-eigenvalue property.

If G1 were not simple, it would factor &, x G3, andV; would factor as an external
tensor product of representatiokis and V3. Writing p(g1) = A ® B, we see thad
or B must be a scalar. Thig;] cannot generate a dense subgroup of the product. We
conclude thatG1, and therefor¢Go, Go], must be simple. O

Theorem 1.5. LetG be a connected, simply connected compact simple Lie grouf'and
an irreducible representation @ satisfying the two-eigenvalue property. kztdenote
the highest weight df . Then(G, @) is one of the following:

(1) (SU(r +1), w;) forsomer > landl <i <r.

(2) (Spin(2r + 1), w,) for somer > 2.

(3) (Sp(2r), @) for somer > 3.

(4) (Spin(2r), w;) forsomer > 4andi € {1,r — 1,7}.

In other wordsG is classical and/ is minuscule.

Proof. Fix a maximal torug” of G. As the conjugates df coverG, there existg € T
satisfying the two-eigenvalue property. There is a natural identificatidh wfth the
quotientW /X, (T), whereW = X,(T) ® R is the universal covering space Bf and
where we identifyR /Z with the set of complex numbers of norm 1. Letlenote an
element of mapping tog. The two-eigenvalue condition means that the vajues,



182 M.H. Freedman, M.J. Larsen, Z. Wang

asy ranges over the charactersf lie in exactly two cosets of which do not differ
by a half-integer.

Let o denote the highest short root 6fandw, w — «, ..., w — ka a string of
weights of V. If k > 2, thena(g) must be an integer. As the set of weights is invariant
under the Weyl group, all short roots 6f lie in the Weyl-orbit ofe, and as the short
roots span the root lattice, this would imply that allg) lie in a single coset, contrary
to hypothesis. It follows that = 1, or equivalently,

r aiz
Zaibi . Ol_2 = 1,
i=1

where
o =amw1+ - +ao, ¢« =bra1+ -+ bra,.

Indeed, in the notation of [Hu],

= ZZa,

l=(w,a)=

NG 2

J ¢,

E aibj(wj, o —2=§ aibia_z
i

Note that—2 € {1, 2, 3}. Since all the coefficients; in the representation of the longest
short root as a linear combination of simple roots arel, this |mpI|es thatw is a
fundamental weighto; for somei such thate; = b; = 1, andy; is a short root. In
addition to the cases listed above, we have the q@geso1), (Es, ws), and(E7, w7).
We claim that none of these exceptional cases correspond to actual solutions of the
two-eigenvalue problem.

For Eg, the two representations in question are dual to one another, so we consider
only the one corresponding to the highest weight By [MP], the restriction of this
representation té/ = SU(3) x SU(3) x SU(I) is

0R*R1IPIRIRTFPr*R1Q o,

whereo denotes the standard representatiofiléf3). SinceH can be chosen to contain

T, we may writeg = (g1, g2, g3) € H. The two-eigenvalue property guarantees that
one of theo (g;) has two eigenvalues and the other two are scalars. Without loss of
generality, we assume(g1) has eigenvalues (with multiplicity 2) ande—2, while the
scalars forg, andgs are andy. The set of eigenvalues is

™t a7t Byt ya L, ya?).

Since two pairs of eigenvalues have raif) eitherep~1 = ya? ora® = 1. In the first
caseafy = 1, and sincg8® = y2 = 1, this impliesa® = 1. We conclude that the
eigenvalues are/8, B/y, andy /«a, all cube roots of unity. Since they multiply to 1, all
are the same or all are different, contrary to hypothesis.

For E7, we restrict to SIJ2) x SU(4) x SU(4) and obtain

10 R0BLlRFR0" BTRLRS20 DT RS0 1,

whereo andr are the standard representations of ®ldnd SU2) respectively. Writing
g = (g1, g2, g3), we conclude that (g2) ando (g3) are scalarg andy, while t(g1)
has eigenvalues™®. Thus, the set of eigenvalues is

By, By L ay? a7 ty? ap? a1
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Note thaty?2 = 2 = +1 sinceg andy determine unimodular scalard4 matrices. If

«? = 1, then all the eigenvalues are the same up to sign, contrary to hypothesis. If not
the squares of eigenvalues arex?, anda—2, soa® = —1. But this implies that two
eigenvalues have ratie1, contrary to hypothesis.o

Now we state the solution to the two-eigenvalue problem for finite groups. Our listis
based on [Za] and depends on the classification of finite simple groups. Thecasés
are classical [BI].

Theorem 1.6. Suppos€G, V, [g]) has the two-eigenvalue property, aty Z(G) is
finite. Theng™ € Z(G) for somem € {3,4,5}, andG = H - Z(G) for some group
H with an element € H such thath~1g € Z(G). Furthermore, one of the following
holds:

(@m =5 H = SL(2,5) anddimV = 2;
(b) m = 4, G contains anormal subgroup such thatt / Z (E) is of exponent 2 and of or-
der2%, dimV = 2%, V|gisirreducible andd /E € {Sp(2k, 2), U (k, 2), O~ (2k, 2)

withk > 2, Sor11, Sors2);
(c) m = 3 and one of the following holds:
(1) H=Sp2n,3),n>landdimv = E=D0.
(2) H = PSp2n,3),n > landdimv = 0.
(8) H = SUn,2) andn is a multiple of3, or H = U, 2), V|g is a Well
representation off anddimV = el +23( LY or & _(3 Y.

~

(4) H = A, the two-fold central extension of the alternating grodp, and

dimVv = 2"7" forn odd, anddim vV = 2°2° ? forn even;

(5) G contains a normal subgroup such thatE/Z(E) is of exponent 2 and of
order 2%, dimV = 2%, V| is irreducible andH/E € {Sp(2k, 2), U (k, 2),
0% (2k,2), 0~ (2k,2) withk > 2, Apx11, Agky2);

(6) G contains a normal extraspecial subgroépof order3%, dimV = 3¢, and
V| isirreducible, andH /E = Sp(2k, 3);

(7) H = PSp4, 3), anddimV = 6;

(8) H/Z(H)= PSU(4,3),|Z(G)| = 6, anddimV = 6;

(9) H/Z(H) = Jo,|Z(G)| = 2, anddimV = 6;

(10)H/Z(H) = Sp(6,2), |Z(G)| = 2,anddimV = §;

(11)H/Z(H) = 07(8,2),|Z(G)| = 2, anddimV = §&;

(12) H/Z(H) = G2(4), |Z(G)| = 2, anddim V = 12;

(13)H/Z(H) = Suz, |Z(G)| = 6, anddimV = 12,

(14) H = Co1, anddimV = 24

2. Hecke Algebra Representations of Braid Groups
Then-strand braid groug,, has the well-known presentation:
B, ={o1, -+ ,0p-1] 0i0; =0j0; if |i—j[>1
0i0jO; = 0;0;0j if |l —]| = 1}

Hecke algebra representations of the braid groups in the root of unity case are indexed
by two parameters: a compact Lie group and an intégerl, called theevel of the

theory. The cases of Jones and Wenzl| representations correspond to the special unitary
groups SUk), k > 2. For each pair of integek&, r) with » > k + 1, there is a unitary
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representation of the braid groups with levet r — k. Jones representations correspond
to SU(2), and the general SW) theory gives rise to the HOMFLY polynomial.
We describe the Jones—Wenz| representation explicitly, following [We].gLet

m

EE , and[m] be the quantum mtegéﬁll— The constani2] = q2 +q~ 3= = 2cos*

is ubiquitous in quantum topology. The Hecke algebidq) of type A is the (finite
dimensional) complex algebra generatec:hy. . . , ¢,—1 such that

8} el.z =¢;,

(2) eieitrei — [217%e; = eitreieir1 — (21 %eitn,
(3) eiej =eje;if |i — j| = 2.

A representatiorr of H,(g) on a Hilbert space is called@" representatiorif each
7 (e;) is self-adjoint.

Lemma 2.1. EachC* representation of the Hecke algeh# (¢) gives rise to a unitary
representation of the braid group,, by the formula:

p(o)) =q — (L+q)m(e). 1)

Proof. The defining relations 1-3 dff, (¢) imply that the elementp (o;) satisfy the
braid relations. Writing; for (e;), sincep*(0;) = g — (1 + q)e],

p(0i)p*(0i) = qq + L+ )1+ gleie; —q(L+q)ei —q(L+q)ef = 1.
Cancellation of the last three terms follows from the fagts= ¢; andei2 =e¢;. O

Jones—WenZ#T* representation off,, (¢) are reducible; their irreducible constituents,
referred to asectors are indexed by Young diagrams. A Young diagram withoxes
is the diagram of a partition of the integer

=0, M A=A == =0, Y A =n.
i=1

Note that is allowed to have empty rows. Given a Young diagramvith n boxes, a
standard tableau of shapés an assignment of integefs, 2, ... , n} into the boxes so
that the entries of each row and column are increasing.

Definition 1. Suppose is a standard tableau with boxes, andn; and m, are two
entries inz. Supposen; appears in row; and columr; of .

(1) Setd; ,mi,mp — =(c1—c2) — (r1—r2).
(2) Seter s = [t if [dy si1a] # 0, andpy i = o i (T— ey ).

i+1l]
(3) AYoung diagram. = [A1, ..., A ], A1 > A2 > --- > A > 0is (k, r)-admissible if
M —A A <r—k.
(4) Suppose is a standard tableau of shapewith n boxes, let')(1 < i < n) be the
standard tableaux obtained fromby deleting boxes with entriesn — 1, ... ,n —
i + 1. A standard tableauis (k, r)-admissible if the shape of each tabledd is a

(k, r)-admissible Young diagram.
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The irreducible sectors of the Jones—Wenzl representations of the Hecke algebras
H,(¢) (and hence of the braid groug,) are indexed by the paik, r) and a(k, r)-

admissible Young diagrarh with n boxes. AC* representationrk(k”) of the Hecke

algebraH, (¢) can be constructed as follows: I&ff”) be the complex vector space
with basis{v,}, wherer ranges ovetk, r)-admissible standard tableaux of shapéet

s; (t) be the tableau obtained fromby interchanging the entriesandi + 1. If s;(¢) is
also(k, r)-admissible, then we define

k,
7T)E 'r)(ei)(vt) =iV + BriVs; 1) @)

If s;(¢) is not(k, r)-admissible, seB, ; = 0 in formula (2). In this casey, ; is either 0
or 1. It follows thatn)fk’r) (e;) (with respect to the basi,}) is a matrix consisting of

only 2 x 2 blocks
Oy ﬂt,i
<:3t,i 1- Oy ) (3)

and 1x 1 blocks 0 or 1. The identity, ; = o?; + 87, implies that (3) is a projector. So

all eigenvalues oé; are either 0 or 1. We writeik") for the restriction ofzr{k”) to B,,.
Whenn andr are fixed, they may be suppressed.

Definition 2. Given a pair of integersk, r) withr > k + 1, let A,(f") be the set of all
(k, r)-admissible Young diagrams withboxes. Thelones-Wenz| representation of
the braid groupB,, is:

k,
P =@, unp B [T UG
reAd"”

Here we write/ (1) for the unitary group of the Hilbertspadg(k”)

basis{v,}.

with the orthonormal

Definition 3. A (k, r)-admissible diagram is dfivial typeif A is a row or column or

if k =r — 1. A (k, r)-admissible diagram is &ook if the second row has exactly one
box. A hook with exactly two rows isBurau hook, and the corresponding sector is a
Burau representation.

We note thap; is one-dimensional if and only i is of trivial type.

Theorem 2.2. Leth be a(k, r)-admissible hook witlp + 1) rows and(a + 1) columns.

QDfa+b <r—1, thenp,(lk”) is equivalent up to tensoring by a character to the

bt exterior power of the Burau representation associated to the hook(withb)
columns.

@fa+b=r-1, thenp,(f”) is equivalent up to tensoring by a character to the
(b — 1) exterior power of the Burau representation associated to the hook with
(a + b — 1) columns.
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Proof. For the first part, we explicitly identify a basis &f with that of theb™ exterior
power of the Burau representatipp associated to the hogk with (a 4 b) columns.
The basis oV can be indexed conveniently by the entgf the box in the second row.
The set

{vig Avig Ao A | 2<ip <+  <ippr1<a+b+1}

spansi? V. We identify each element of this basis with the basis elemeR, gfiven
by the standard tableau whose first column entries atg 1 . , i1, which we denote
V1ip,... ips1- NOW We just compare the action of the braid generatarn corresponding
basis elementsyy ;,, .. i, , andv;, A vig A -+ A vy, For the Burau representation,
we havepg (o) (vi) = qu; if i # k, k+ 1. We dropp from the notation now. First we
compare two special cases:

if k andk + 1 do not appear itp, ... ,ip+1

N L)
Ok (VLiz...ipsa) {—1 if k andk + 1 both appear i, . .. , ip+1

q° if k andk + 1 do not appear irp, ... ,ipi1

TkQig A=+ A Vipyy) = {—qb_l if k andk + 1 both appear ifp, ... ,ips1

There are two remaining casdésappears iHio, ... , ip+1} butk + 1 not, ork + 1
appears ifiz, ... , ip11} butk not. Note for both cases, the hook distance between
andk + 1 in the two hooks: andg is the samerk. Therefore, the action af; on the
respective 2-dimensional subspace is the same. Since thefie-arg) basis elements
vi, I # kin{io,...,ipt1}, we have a factor afb—l when comparing to the action of
Ok ONVjp A vv - A Vi g

The second part is proved similarly. The admissibility condition for standard Young
tableaux reduces the rank by 1o

In general, Jones—Wenz| sect@rﬁé") have the following properties:

Theorem 2.3. Let A be an admissible Young diagram which is not of trivial type.

(1) For eachi, the imageoik”)(ai) has exactly two distinct eigenvalues] andg

(2) (Bratteli diagram) Given ak, r)-admissible Young diagrath with n boxes, then
the restriction otoik”) from B, to B,_1 is the direct sum of the irreducible represen-
tations associated to alk, r)-admissible Young diagrams of sizen — 1 obtained
from A by removing a single corner box.

(3) Ifr > 5andr ¢ {6,10},n > 3, orr = 10, n > 5, then the image group (plik”)(Bn)
is infinite modulo its center.

Allthree statements are in [J2]. The firstis obvious from the construction given above.
One can easily deduce (3) from (1) and (2) given Theorem 1.6.

3. Duality of Jones-Wenzl Representations

The Hecke algebrd,(¢) has an automorphism which intertwines the Jones—WenzI
representations aff, (¢) associated to a pair of Young diagrams. This duality was first
discovered by F. Goodman and H. Wenzl [GW] and by A. Kuniba and T. Nakanishi
[KN]. Itis called rank-levelduality in conformal field theory. This duality accounts for
the appearance of the symplectic and orthogonal groups as closed images of certain
Jones—WenzI representations.

Let N denote the set of natural numbers (including 0).
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Definition 4. Fix an integerr > 0. Anr-tileis ak x (r — k) matrix T = (t;))kxr—k
satisfying the following conditions:

(1) tij € N,
(2) the entries in each row and column are non-increasing,
(3) the difference of any two entries in a single row or columg is.

The relation between-tiles and(k, r)-admissible Young diagrams is given by the
following constructions.
Ther-tile T, of aYoung diagram: Supposeé. = [A1, ..., A¢] iS aYoung diagram with
krows andr > k + 1. Letl = r — k, and letT;, be thek x [ matrix with

V»i-i-l—jJ
tij = f .

The Young diagramy of anr-tile T: The (k, r)-admissible Young diagramy is a
Young diagram with at most rows whose ™ row halej:l t;j boxes.

Definition 5. (1) Given a (k, r)-admissible Young diagram, the r-conjugate of A,
denoted\’, is the Young diagram associated with the transpose tilg of

(2) A Young diagram ig-symmetric if 7 is a symmetric matrix after discarding all
0-rows andO-columns.

(3) Given a Young tableauof shapek, ther-conjugate ¢* is the tableau of shape!

such that the shape of’ is r-conjugate to the shape of® for all ;.

We have the following duality:

Theorem 3.1. For any (k, r)-admissible Young diagram p; is equivalent toy ® py,
wherep; is the contragredient representation pf and x : B, — U(1) denotes the
character withy (o;) = —q.

Proof. We describe this duality explicitly in terms of bases. From the definition of the
representationg; andp, -, the basis elements of the representation spécesdV;:
are in 1-1 correspondence byconjugation of Young tableaux: < ¢*. We define the
duality transformation/ as the linear mag : Vy — Vyx with J(v,) = £v,+, where
the sign+ is determined as follows. Leg be the standard vertical tableau of shape
This is the tableau in which numbers 1 througlare filled in one column at a time,
working left to right, and it is not necessarily admissible. Each standard tablefiu
shaper determines a permutation ¢f, 2, ... , n} by comparison tag. The signt is
the sign of this permutation.

We show thap;: = x ® p; for each braid generatot. Given a standard tableay
there are two cases depending on whether os;fiotis standard. I§; (¢) is not standard,
then the proof is straightforward. #f(¢) is standard, then

N (a—A+ oy ; —PBr.i
ploi) = ( —Br.i q—(l-i-q)(l—olt,i))'

Note thatds« ; jy1 = —d; i i+1, thereforew,s ; = 1 — o4 ;. Since defpoy (o)) = —¢q, we
have

o (07) = (—q) <paloi) = x - p;l(ai) =X ® p; (o). o

1
det(p;.(0;))
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Coroallary 3.2. (1) If A is r-symmetric, thenim V; is even.

(2) If »isr-symmetric, thep, is self-dual up to the character. More precisely, suppose
T = (;) is ther-tile of &, then ifZi>/ t;j is odd, py, is symplectic up tg, and if
Zi>j 1;; is eveny, is orthogonal up toy.

Proof. Let us examine more carefully the matrixepresenting the above duality. First
note thatr-conjugation is an involution on the basis elementd/pfvithout any fixed
points as long as has> 2 boxes. This implies (1). If the sign ofs the same as that of

t*, thenJ is either(? (1)> or <_01 _01>. Therefore,J defines an orthogonal pairing.

If the signs oftr and+* are different, therv/ is <_01 é) or (2 _01), soJ defines a

symplectic pairing. Ay - J 1 = x ® P, up to the charactey, p is either a symplectic
or an orthogonal matrix with respect to either the symplectic form or inner product given
by J~1. Checking signs gives (2).0

The converse of (2) is also true fer> 4. This is a slight refinement of a result of
[GW], and we follow the proof given there.

Theorem 3.3. Letr > 4andl < kq,kp <r — 1.

(1) Letas € A% anda, € AXZ" | If A; are not of trivial type, them;, is equivalent
to the tensor product gf,, with a character ofB,, if and only ifA1 = Az.

(2) Letas € A% andag e AX2" If A; are not of trivial type, them;, is equivalent
to the tensor product qﬁz with a character ofB,, if and only ifA1 = (12)}.

Proof. For any pair of distinct diagrams anda,, the sets of diagrams of the fomﬁl)

andkél) cannot coincide. In other words, there exists an admissible subdiggraim
one of the two, obtained by removing a single box, which cannot be so obtained from
the other. Unless one or both is the Burau hgok- 1, 1] or its conjugatey is not of
trivial type. If p,, andp,, are equivalent up to tensoring by a character, the same is true
of their restrictions ta,,_1. We may therefore proceed by induction, the base case being
that in which eithei.q or A, is [n — 1, 1] and the other i$2, 1, ... , 1]. These are not
equivalent fom > 4 by Theorem 2.2.

Part (2) is an immediate consequence of (1) and Theorem 811.

4. Closed I mages of Jones-Wenzl Sectors

In this section, we compute the universal cogarof the identity component g of the
closure ofo, (B,,) for eachp; with infinite image. We also give the ambient representation

V of Gg (specified as a representation®f.) Sincep, (B,) is the product ofGp and a
group of scalar matrices, this is enough information to determine the actual closure of
the image of the sector.

Theorem 4.1. Fix integersr, n such that- > 5, » # 6, andn > 3. Letk be an integer
lessthan—1and let. € A%". We assume thatis not of trivial type, and if = 10, we
assume that is neither{2, 1] nor [2, 2]. LetG denote the universal cover of the identity
component of the closure pf (B,) and V, of dimensionV, denote the representation
space ofo, regarded as a1-module. Then
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(1) if A is neitherr-symmetric nor a hook, thei@1, V) is equivalent tqSU (N), Ve, ).
(2) if & is a hook witha 4+ 1 columns and + 1 rows, then(G1, V) is equivalent to
(SU(a + b), Vi).
Q) Itfhk is not a hook but is-symmetricT; = (z;;) is ther-tile of 4, and® = }_,_ ; 1;j,
en
if X is even, theriG1, V) is equivalent taSpin(N), Vz,);
if X is odd, then(G1, V) is equivalent taSp(N), V).

The rest of the section is devoted to the proof of this theorem. We remark that the
excluded cases, € {3,4, 6}, r = 10 andx € {[2, 1], [2, 2]}, or A of trivial type, are
precisely the cases in which the image was already known to be finite [J2, BW, GJ].

We have already seen that(o;) has two distinct eigenvalues whose ratig is not
—1. Since the braid generators are all conjugate to one another, the conjugacy class of
0, (0;) topologically generates the closure@f B,,). Thus,G1 is simple,V isirreducible
with highest weightz, and(G1, @) appears on the list given in Theorem 1.1.

Definition 6. A pair (G1, V) consisting of a simply connected simple Lie group and
an irreducible representation istandard if G1 is isomorphic toSU(N), Sp(N), or
Spin(N), anddimV = N.

Our main goal is to show that the paif§€1, V) arising from diagrams which are
not hooks are standard. We rule out the other possibilities offered by Theorem 1.1 by
means of two pieces of information: divh and the closure aB,_1 in G, as computed
by means of the Bratteli diagram. In order to start the induction argument, we need to
compile results in a number of special cases. We begin with hooks.

Proposition 4.2. Theorem 4.1 holds for all hooks

Proof. By Theorem 2.2, it suffices to consider the case of Burau haoks [m, 1].
We use induction om. Form = 2 (resp.m = 3), we can appeal to Theorem 1.6 or
to classical results characterizing all finite subgroups of Zpl(resp. GL(3)) [Ft] to
show thatGyo = G1 = SU(2) (resp. SU(3)) except whem = 2 andr = 10. For
generaln < r, dim py,,, 17 = m, and by the induction hypothesisg > SU(m — 1), so
Go=G1=SU(@m). O

We now consider diagraniswith < 7 boxes which are neither hooks nor of trivial
type. Forn = 4,1 = [2, 2], and dimp, = 2, soG1 = SU(2), except when = 10, in
which caseG is trivial. Forn = 5, there are two possible diagrams, and

dim p3.2) = dimpp22.1) =5,

and by Theorem 1.1G; = SU(5) in each case. This is enough information for the
induction argument when = 5, so we now restrict attention to> 7. Forn = 6, the
diagramg4, 2], [3, 3],[3, 2, 1], [2, 2, 2], and[2, 2, 1, 1] give sectors of dimensions 9, 5,

16, 5, and 9 respectively. Thug71, V) is obviously standard for each case except the
symmetric diagranii3, 2, 1], which contains the admissible subdiagrgh2, 1]. In this

case, thereforgi o contains SW5). It follows that here again, the pair is standard. For

n = 7, we havgb, 2], [4, 3], [4, 2, 1], and[3, 2, 2] together with their conjugates; the
dimensions are 14, 14, 35, and 21 respectively, so Theorem 1.1 implies all are standard.
Forn > 8,1 € {[4,4],[2, 2,2, 2]} gives dimp, = 14 and(G,, V) standard, and
otherwise, dinp, > 15.
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We can already prove the main theorem in the casertkab. Indeed, every with
three rows is 5-conjugate to one with two, so we consider only diagrams of the form
[[,m],0<1[—m < 3. By a Bratteli diagram computation,

o ifl=m,
dimpogm = Foms1 fl=m+1,
Fopyo fm+2<l<m+3,

whereF, denotes th&™ Fibonacci number. If dinV = Fry1andGo D SU(Fy), then
Go = G1 = SU(Fy41), so the theorem follows by induction @n

The general proof of the theorem follows this strategy but is technically more difficult.
We assume henceforth that- 7.

Lemma 4.3. The pair(Spin(8), 8) never appears among pait& 1, dim V). The pairs
(SU(5), 10), and (SU(6), 15) occur only wherk is a hook.

Proof. We know already that asranges over diagrams which are not hooks, gdins
never 8, 10, or 15. Whehis a hook,G1 is always a special unitary groupo

Lemmad4.d. LetA C |, Af,k”) denote a set of diagrams. Suppose that for each
A, the corresponding paitG1, V) is standard. Lefo, denote the direct sum of the
representationg;, A € A. Then

dim PA
3

Proof. Let A’ denote a maximal subset af containing no two--conjugate diagrams.
Let H, denote the quotient gfy (B,,) by its center. This is always a simple group, either
PSU(N), PSO(N), or PSp(N). The closure of the direct sum & p,, maps toH,, x H,,,

and its image maps onto each factor. By Goursat’s Lemma, either the image is the graph
of an isomorphism betweeH,, andH,, or it is the whole product. Up to isomorphism,
PSU(N) has exactly two non-triviaV -dimensional projective representations, and they
are dual to one another. By Theorem 3.3,,ifx € A’, there cannot be an isomorphism
H, — H, commuting with the maps frorB,,, in the PSU(N) case. There is only one
isomorphism class of non-trivial projectivé-dimensional representations BEp(N),

and the same is true f@@SO(N) whenN > 6 andN # 8. Thus, again there cannot be
an isomorphisn¥, — H, commuting with the maps from,. By Goursat's lemma,
we conclude that the closure pf/(B,) maps ontd [, . .- Hy.. The same is true a fortiori

of the closure o (B,). If A is notr-symmetric, therH, has rankVv — 1 > 2, and the
sum of the dimensions of; andp;x is 2N < 3(N — 1). Otherwise the rank of; is

N /2 and the contribution of to dimp, is N. Thus, dimp, is at most 3 times the rank
of pa(By). O

rank(pa (Bp) ) > @)

We note that among pait§, V) satisfying Theorem 1.1, the only non-standard ones
satisfying
dimvV

rankG <

are Spiri7) with its spin representation and $4) and SU5) with their fundamental
representations of dimensions 6 and 10 respectively. By Lemma 4.3, these cases are
ruled out for pairs arising from; (B,). We cannot proceed immediately by induction,
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however, since the base cases, which are the hooks, do not in general satisfy Ineq. (4).
To remedy this, we need to analyze partitianfom which hooks can be obtained by
removing a single box. We therefore define

hap=la+1,2,1,...,1], Map=[a+21,2,1,...,1].
e ——’ ———
b b—1
Note that the admissibility of, , implies the admissibility of:, , except in the case
a=r—2,b=1.
Proposition 4.5. If a + b > 5andh, j is admissible, then
dimpy,, > (14/5) dimpy,, ,.

Proof. Eithera + b < r — 1 andh,, has two admissible subdiagrams witht b
boxesi,—1 andh, p—1, 0ra + b = r — 1 and there is only onei,_1 5. In the first
case and ib > 1, 4, has three admissible subdiagrams with- » + 1 boxes, p,
ra—1.b, @Nd A, p_1; in the second or ib = 1, only the first two are admissible. We
proceed by induction, the proposition being true in the ea$eb = 5 and sharp when
(a, b) = (4, 1). Suppose that is given and the proposition is true wher-b = n — 1.
Now takea + b = n. In the first case, ib > 1,

dimp,, =dimp,,_;, +dimpo,,, ; +dimpp,,
> (14/5)(dim py,_, , +dimpy, , ;) +dimpp, , = (19/5)dim pp, ,,
while if b = 1, thena > 4, so
a®+3a _14a+1) 14

dimp;,, = 5 2 5 = Edimpha,l-

In the second case,
dimpy,, =dimp,, ., +dimp,,, > (14/5 dimpy,_,, +dimpy,,
= (19/5 dimpy, . O
Proposition 4.6. For anya, b > 1, A, satisfies Theorem 4.1.

Proof. By the case analysis following Proposition 4.2, we may takeb = n > 6, and
we may assume the proposition is true wheR b < n. The induction hypothesis gives
rankG1 > 13. Applying Lemma 4.4ta,_1 5 and (assuming > 1 anda +b < r — 1)
*a.b—1, the induction hypothesis together with Lemma 4 implies that the rask if at
least 314 times the dimension of the representation. Among the possible(gaird’)

in Theorem 1.1, only the standard ones satisfy both conditions. By Lemmé& 318,
unitary, spin, or orthogonal, depending on which of the conditions in Theorem,4.1
satisfies. The proposition follows by induction en O

We can now prove Theorem 4.1.

Proof. We use induction on. We may assume thatis not a hook and that for every
admissible tableau with shape neither isAY. Let A denote the set of admissible
diagrams of the form.D for some admissible tableau. By Ineq. (4),

dim p;,

rankp; (B,) > rankpa (B,_1) > 3

By Lemma 4.3, this inequality together with the fact thas not a hook implies that the
pair (G1, V) arising fromp;,, is standard. The theorem follows by inductior




192 M.H. Freedman, M.J. Larsen, Z. Wang

For completeness, we point out the closed images of the remaining cases using
Theorem 1.6. They have all been identified earlier in [J2, BW, GJ]. As we mentioned
earlier, they are all finite groups. The images for(8Jr = 4 are given by Theorem
1.6, (b) [J2]; SU2), r = 6 by Theorem 1.6, (c) case€¥), (2), (6) [BW]; SU(2),r =10
andn = 3, 4 by Theorem 1.6, (a) [J2]; The images for @ r = 6 are identified first
by D. Goldschmidt and V. Jones (see [GJ]), the images are given by Theorem 1.6, (¢)
caseg3), (5). The images for SWY), r = 6 are the same as those for @) r = 6 by
rank-level duality.

5. Digtribution of Evaluations of Jones Polynomials

In this section, we fix an integer > 3,r # 3,4,6, andg = =% . Given a braid

o € By, leté be the usual closure of. Then the Jones polynomial of the ligkatq is:

o) Z [A1—22+1]

o Tr(p®" (o)),

J(©6,q) = ()" g~
A=[A1.02]€eAZ"
wheree(o) is the sum of all exponents of standard braid generators appearngnn
the following, we denoté::=22+4 by ;.
The sum of exponents(c) defines a homomorphism frol, to Z. Let p denote
the direct sum of the representatignsasa ranges over\,(f”). LetG = p(By) X Zoy.

There is a natural map’ : B, — G defined byp’(c) = (p(0),r(n — 1+ e(c)) —
3e(o) (mod 2)). Let
To:( [] UW)x2Za—C
rean
be defined by
Ta((up).m)=q?% ) wTr(us).
keAflz”)

The definitions are designed so that
J (6, q) =Tu(p'(0)).
Let G’ C G denote the closure qf (B,,).

Lemmab.l. If n > 5, then
(Gho= [] suw,

reAP”
andG’ = (G")oZ(G)).

Proof. Asn > 4, a diagram with two rows cannot be symmetric, nor can two distinct
diagrams with two rows be conjugate to one another. The computatioG’nf now
follows immediately from the proof of Lemma 4.4. &E is a subgroup of

( I1 m(Bn))xZZ,

reA?)
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and has the same identity component, it suffices to prove that the latter group is the
product of its identity component and its center. This is immediate from Theorem 1.4.
o

Lemmab5.2. Letu, ; denote the probability measure @hgiven by values af (6, g¢),
if o is chosen randomly and uniformly from (non-reduced) words of lehgtlthe braid
generatorg *, . .. ,G,fil € B,.The weak-*limit ofs, x ask — oo is the push-forward
of Haar measure o6/, T,,,.dg’.

Proof. Let v denote the probability measure 6t given by the average éffunctions
centered ap’(o1)™*, ..., p'(6,—1)F. By [Bh], sincep’(B,) is dense inG’, the weak-
* limit of the k-fold convolutionv** is Haar measurdg’. Thus the weak-* limit of
T, (%) is T, dg’. O

The only significance of the choice of the $elft} is that it generates,,; any other
semigroup generators would do as well. Much more sophisticated results in ergodic
theory can be applied to prove convergence of the measure on more refined ensembles
of braids. For example, the Stein—Nevo theorem [SN] allows the study of reduced words
in the free group. Ift, andu, 11 are measures uniformly supported on reduced words in
y1, - - - ¥m @nd their inverses, the}‘(ur + r+1) Will also converge weakly to Haai().

One may also ask about using the braid group — not the free group — to count braids and
whether a similar uniformity is obtained. We do not know at present.

Lemmab5.3.If n > r — 2, then

reA? r

Proof. There are four cases, depending on the parity ahdr. If both are even, the
sum in question is

r/2—1 r/2—1
[2]2 Z [2k + 112 = (q _q—l)—z Z (q2k+1+q—1—2k _ 2) _ r2n _
k=0 =0 sir? 2%
If r is even and: is odd, the sum is
r/2—2 r/2=2 r
2 -2 2k 4 2 2 — _ -1\-2 2k+2 + —2-2k _ 2 — .
2] k;[ P=(-q7" kX:(:)(q q )= 57z
If » is odd and: is even, the sum is
r/2—3/2 r/2—3/2 .
k=0 k=0 S|r‘]2 T
Finally, if both are odd,
r/2—3/2 r/2—3/2 .
(2172 Z [2k + 112 = (q _q—l)—z Z (q2k+1+q—1—2k _ 2) -
k=0 k=0 sir? &

O
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Thefactthad , wf does notdepend on the paritydfias the interesting consequence
that the distribution of values of on braids of: strands tends to a limit asgoes taco:

Theorem 5.4. The weak-* limit of the sequence of measufgsdg’ is the Gaussian
. . . 1 _:;; - _
d|Str|bUt|On ZJT_Ure r dZdZ, WhereO} = m

Proof. By Lemma 5.1, we can writ€’ = (H x A)/H N A, whereH is a product

of special unitary groups andl is finite and abelian. Every representationfcan be
regarded as a representatiortbk A and every irreducible representation as an exterior
tensor product of an irreducible representatiorfodnd an irreducible character af

In particular, the restriction df;, to G’ can be regarded as a function Bnx A: namely
aw;-weighted sum of traces of representatiop& 7, , whereo; is the composition of
the standard representation with the projection onto the factox)Sdf H.

LetN = infkeAa,,) dim p;. If a,, b, are non-negative integers with

Z (ap+b)) <N,

PN

then
Q) (02 B 1)%% @ ((0) W r)* ™
YN

is isotypic onZ (H) and non-trivial unless; = b, for all . In this case, the represen-
tation is trivial onA, so the dimension of the space of invariants is

H

dim ® 0)?9%@0*@“” = H ay!

PN reAP"

by the invariant theory of SW.) [WI].
Let {X,} denote a set of independent Gaussian random variables with distribution

%e*zzdzdz indexed byi € A,(lz”). The expectation is

al fa=>b

EQXGX)) = {0 otherwise.

Since allX;, A € A,(f”), are independent, if

X = Z w,\XA,
reAB”
then
5 —b -
EXXN) = [ 16T dg = [ 2T,.d¢
G' C
whenevern + b < N.As N goes taxo with n, by [Fe], this implies that each moment of

T,.dg' equals the corresponding moment of the meaggkee ™o dzdz of X whenn

is sufficiently large. This implies weak convergence by [Fe] VIII.6 and XV.5. (Actually,
the results in [Fe] are stated only for distributionsi®rbut the method works fdR”.)

O
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We conclude that if is a fixed integer > 5,r # 6, then in the limitaz — oo, the
. . . +2mi . . .
distribution of values a¢~+ of the Jones polynomial of a “random” link withstrands

tends to a fixed Gaussian. The variance of this Gaussian depend@sdgrows like-3
asr — oo.

Theorem 5.5. For eachn andk, Ietu',‘lf‘,?tdenote the distribution of values 65 , ¢27'/7),

whereo ranges over those non-reduced words of lerigth B,, for whichs is a knot.
If r =5o0rr > 7, then in the weak-* topology,

knot _ 1 —Zdzdz -
’ r — . .
n—00k—o0' " 2n o, sin? %

Proof. A braid o gives rise to a knat if and only if the image ob under the standard
quotient mapB, — S, is ann-cycle. For eaclh > 5 we consider the homomorphism
¢ : B, — G’ x S, obtained fromp’ and the standard quotient m&y — S,. By
Goursat’'s lemma, the closure of the image is either al’of S,, or an index-2 subgroup.
Applying [Bh] to the topological generatoa;s(ol.ﬂ) of this subgroup, we see that in the
largek limit, if we condition on a fixed element of,,, the resulting distribution o’
approaches one of three possible limits: Haar mea#giren G’, twice the restriction of
dg’ to an index-2 subgrou@g,., C G’, or twice the restriction ofg’ to the non-trivial
cosetGyy = G'\ Gyeny (Note that the factor of 2 is needed in the last two cases to give
a probability measure.) The argument of Lemma 5.1 goes through unchanged;iwhen
is replaced byG,en SO the integral ot“z” with respect tof}, .dgb,en Coincides with
the integral with respect t8,.dg’ whena + b < N. By additivity in measure, the
decomposition

/ I / 1 / 1 /
dg' =dg'lGy,.,+dg |ngd = Edgeven+ Edgodd

gives

/‘Zaszn*dg(/')ddzZ/ZaZan*dg/_/ZaZan*dg/evenz/zaszn*dg/
fora + b < N. The theorem now follows from [Fe].O

Remark.In [DLL], the evaluations of Jones polynomials at several roots of unity are
plotted for prime knots, or prime alternating knots up to 13 crossings. While density still
holds for these cases, we do not know if there exist any limiting distributions for these
ensembles of knots (note that our filtration in Theorem 5.5 and their filtration for the
plotting are different.)

Another interesting direction is to study subgroups of the braid groups. By [Sta], a
braid » belonging toBy (n), thek™ stage of the lower central series of the braid group
B, determines a braid closubevhose finite type invariants vanish through type 1.
Since the groups Slh) are simple, ifo : B, — SU(m) is dense then the restriction
p : Bx(n) — SU(m) is also dense. Thus link invariants with vanishing invariants of type
< k + 1 can approximate the non-perturbative Jones invariants of an arbitrary link. It
would be nice to follow this with a uniformity (in measure) statement, but this seems to
lie outside the scope of the ergodic theorem we know since in the free giouyghich
we use to parameterize the braid group,kfeerm of the lower central serigg (n) is
infinitely generated.
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Let us now come to the question of the rate of approximation. Here to have any
kind of general positive answer, one must restrict to semisimple Lie groups (which
fortunately is where the Jones representations we have studied take their values). To see
this, consideG = $* and the Liouville numbey = (3", 10~")2x, while y generates
a dense subgroup and the atomic measure on its partial orbit converges to the rotationally
invariant measure, one must wait an exceptionally long time for the orbit to come near
certain points. In contrast semisimple groups have a distinctly limited supply of finite
subgroups and nothing similar can occur. A theorem to this effect can be found in [Ki,
So] and appears in its best form in [NC].

Theorem 5.6. Let X be a set closed under inverse in a compact semisimple Lie group
G (with Killing metrics) such that the group closut&) is dense inG. Let X; be the
words of length< [ in X, thenX; is ane-netinG for [ = O(Iog"(%))k for somek > 2,

i.e., forallg € G, dist(g, X;) < e.

Conjecturally the theorem should still hold fbe= (’)(Iog(%)) and there are some
number theoretically special generating sets ot BJGJS] for which such an estimate
for [ can in fact be obtained. Such results now translate into topological statements:

Corallary 5.7. Given a “conceivable” value for the evaluation of Jones polynomial of

b at a root of unity, i.e., one that lies in the computed support of the limiting distribution
for b € B,, then-string braids, to approximate by v’, ||[v — V|| < e, itis sufficient

to consider braids; € B, of lengthl = O(Iogz(%)) with Jones evaluations, = v’,
[lv="|| < e.

6. Fibonacci Representations

In this section, we apply the techniques of Sects. 2 and 4 to prove a density theorem for
a different class of representations. These arise from Chern—Simons theory=fér
andG = SO(3), what G. Kuperberg calls tHebonacci TQFT[KK].

We briefly recall the setup. The geometric objects we consider are compact oriented
surfaces with boundary, not necessarily connected, endowed with a parameterization of
each boundary component, i.e., a homeomorphism fbrEach boundary component
is labeled with an element @b, 2}. To each labeled surface there is an associated
finite-dimensional Hilbert spacesy such that

VZl]_[EZ = V):l ® sz.

If = is alabeled surface anfl: S — ¥ is a simple closed curve, we can &italong
£(S1). We call the resulting labeled surfady , if the two new boundary components
are labeled:, and

VE = Vz_ﬁo &) VZ_/‘z- (5)

If Aut (X) denotes the group of isotopy classes of orientation, label, and parameterization
preserving homeomorphisms — X, there is a natural projective unitary actionn,
provided the Hilbert space in question is nonzero. The restriction of this action to the
subgroup stabilizing the points gf(S1) decomposes according to Eq. (5). WHemas
genus 0, the projective representation lifts canonically to a linear representation.

If ¥ is a disk with labekl, then dimVs, = §g,. If £ is an annulus with labels and
b, then dimVy = §,5,. Whena = b, it makes sense to ask for the scalar given by the
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Dehn twist. Ifa = 0, itis 1: ifa = 2, itisw = ¢ If ¥ has genus 0 and 3 boundary
components with labels, b, ¢ € {0, 2}, then

0 fa+b+c=2,
1 otherwise.

dim Vs = { (6)

Lemma6.l. If X, , , has genug andm (resp.n) boundary components labelled O
(resp. 2), then

g+n—1 g+n—1
: - 1 5 1-45
dimVvs,,, =57 < +2f) +(~1gt ( 2*/_>

Proof. Immediate by induction. o

Note that the dimension does not dependwomve can “cap off” a boundary compo-
nent with label 0 by gluing on a disk with label 0. To simplify bookkeeping, we regard
eachVy as a projective representation space®gy, ., the pure mapping class group
for a surface of genug with m + n boundary components. The representation factors
through P, , and is independent ofi. Without abuse of notation, we may therefore
denote itpg .

Theorem 6.2. Except wherg +n = 1, pg n (P ) is dense irPUdim Vs, ).

The exceptional pair€l, 0) and(0, 1) arise in different ways. In the first case, there is
atwo-dimensional projective representation whose image is known to be the icosahedral
group; in the second case, there is no representation Bine0-dimensional. The rest
of this section is devoted to the proof of the theorem.

Lemma 6.3. Theorem 6.2 holds fag, n) = (0, 4).

Proof. We first compute explicitly the representation of this case using [KL]. The rep-
resentation of a braid generator (in an appropriate basis) is

e% Ol
O—e%”‘

It follows that any finite subgroup of RQ) = SO(3) can be ruled out quickly except

the binary icosahedral group. For this, we compute the trace of the product of two
consecutive braid generators. This trace cannot arise as the trace of an element of the
binary icosahedral group in the 2-dimensional representation. Therefore, the image must
be dense in P(2). O

The fusion matrix is

Proposition 6.4. If dim Vsen >0, thenp, , is irreducible.
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Proof. First letg = 0. The proposition holds fot < 4. Forn = 5, we have a 3-
dimensional representation, so it is reducible only if it has an invariant line. Regarding
Po 5 as a quotient of the braid grougs, we observe thai1, o2, andos must all fix the

line, and all three eigenvalues must be the same, eithewl lorthe first case, the line

is precisely the subspace bt ; associated to a loop with label O enclosing the first
two boundary components & s; it is also the subspace associated to a loop with label
0 enclosing the last two boundary component&gg. However, if we cut along both
loops, we are left with a pair of pants whose labels sum to 2. This is impossible by (6).
On the other hand, if the eigenvalueusthe line in question lies in the 2-dimensional
space associated to a loop with label 2 enclosing the last two boundary components of
Y05, and this line is fixed by1 andoy, contrary to Lemma 6.3.

Now we use induction on. The dimension o¥s,, is F,_1, whereF denotes the
Fibonacci sequence. We can divillg , by a loop enclosing the last two boundary com-
ponents or by a loop enclosing the last three. In the first case, we obtain a representation
of the loop stabilizer which, by the induction hypothesis, is a sum of irreducible pieces
of dimensionsF,_» and F,,_3. In the second case, we obtain a representation of the
(different) loop stabilizer which decomposes into irreducible pieces of dimet#gion
and 2F,_3. As

Foa<Fy3<Fy,2<2F, 3,

the representation df , is irreducible.

For the higher genus case, we use a similar argument, but in this case, we choose a
non-separating loop and a loop which splits ofEga;. In this way, we can write two
different restrictions ofo, , as (projectivizations of) a direct sum of two irreducible
representations in two different ways. The inequality

dimvs, ,, <inf(dimVs,_,, . 2dimVvs_, )

gives the induction step whenever it holds, which means in every case except when
g +n < 3. The casél, 0) is well-known. For(1, 1) there is nothing to prove. F@g, 0)

the decompositions 5 1 + 4 = 2 + 3 are different. This leaves the cagés2) and

(3, 0) which can be handled in the same way@s5) above . O

We can now prove Theorem 6.2. We start with= 0 and use induction. Far = 5,
Theorem 1.1 implies the desired density. ko> 6, F,_2 > F"*l, so any closed
subgroup o (F,,—1) acting irreducibly and containing SB,_») contains SUF,,_1).
Excluding the casedl, 0), (1, 1), and(l, 2), in each casg > 0,

dim VzgYn

—

so the induction hypothesis together with irreducibility is enough to give density. For
(1, 2), we use Theorem 1.1, and there is nothing to proveXo®) or (1, 1).

dim Vzg—l,n+2 >
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