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Abstract: We show that the topological modular functor from Witten–Chern–Simons
theory is universal for quantum computation in the sense that a quantum circuit com-
putation can be efficiently approximated by an intertwining action of a braid on the
functor’s state space. A computational model based on Chern–Simons theory at a fifth
root of unity is defined and shown to be polynomially equivalent to the quantum circuit
model. The chief technical advance: the density of the irreducible sectors of the Jones
representation has topological implications which will be considered elsewhere.

1. Introduction

The idea that computing with quantum mechanical systems might offer extraordinary
advantages over ordinary “classical” computation has its origins in independent writings
of Benioff [B], Manin [M] and Feynman [Fey]. Feynman explained that local “quantum
gates”, the basis of his model, can efficiently simulate the evolution of any finite dimen-
sional quantum system evolving under a local HamiltonianHt and by extension any
renormalizable system. The details of this argument are (much clarified) in [Ll]. Topo-
logical quantum field theories (TQFTs), although possessing a finite dimensional Hilbert
space, lack a Hamiltonian – the derivative of time evolution on which the Feynman–
Lloyd argument is based. In [FKW], we provide a different argument for the poly-local
nature of TQFTs showing that quantum computers efficiently simulate these as well.
Here we give a converse to this simulation result. The Feynman–Lloyd argument is
reversible, so we may summarize the situation as:
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(1) finite dimensional local1 quantum systems.
(2) quantum computers (meaning the quantum circuit model QCM [D, Y]),
(3) certain topological modular functors (TMFs).

Each can efficiently simulate the others.
We wrote TMF above instead of TQFT as a matter of notation because we use only the

conformal blocks and the action of the mapping class groups on these – not the general
morphisms associated to 3-dimensional non-product bordisms. The two dimensional
aspects of a(2+ 1)-dimensional TQFT are referred to as a TMF.

2. A Universal Quantum Computer

The strictly 2-dimensional part of a TQFT is called atopological modular functor (TMF).
The most interesting examples of TMFs are given by the SU(2) Witten–Chern–Simons
theory at roots of unity [Wi]. These examples are mathematically constructed in [RT]
using quantum groups (see also [T, Wa]).A modular functor assigns to a compact surface
� (with some additional structures detailed below) a complex vector spaceV (�)and to a
diffeomorphism of the surface (preserving structures) a linear map ofV (�). In the cases
considered hereV (�) always has a positive definite Hermitian inner product〈 , 〉h and
the induced linear maps preserve〈 , 〉h, i.e. are unitary. The usual additional structures
are fixed parameterizations of each boundary component, a labeling of each boundary
component by an element of a finite label setL with an involution̂ : L → L, and a
Lagrangian subspaceLofH1(�,Q) ([T,Wa]). Since our quantum computer is built from
quantum-SU(2)-invariants of braiding, and the intersection pairing of a planar surface
is 0,L = H1(�;Q) and can be ignored. The parameterization of boundary components
can also be dropped at the cost of losing the overall phase information in the system
which in any case is not physical. Mathematically this means that all unitaries should
be regarded as projective. In three dimensional terms, this parameterization becomes
the framing of a “Wilson” loop and is essential to well definedness of the phase of
the Jones–Witten invariants. In our context it may be neglected. The involutionˆ is
simply the identity since the SU(2)-theory is self-dual. In fact, we can manage by only

considering the SU(2)-Chern–Simons theory atq = e
2πi
r , r = 5 and so our label set

will be the symbols{0,1,2,3}which are the quantum group analogs of the 0th,1st,2nd,

and 3rd symmetric powers of the fundamental representation of SU(2) in C2. Note
that in our notation, 0 labels the trivial representation, not 1. Since we are suppressing
boundary parameterizations, we may work in the disk withnmarked points thought of us
crushed boundary components. Because we only need the “uncolored theory” to make a
universal model, each marked point is assigned the label 1, and the boundary of the disk
is assigned the label 0. We consider the action of the braid groupB(n)which consists of
diffeomorphisms of the disk which leave thenmarked points and the boundary set-wise
invariant modulo those isotopic to the identity leaving all marked points fixed. The braid
group has the well-known presentation:

B(n) = {σ1, . . . , σn−1| σiσjσ−1
i σ−1

j = id if |i − j | > 1
σiσjσi = σjσiσj if |i − j | = 1},

whereσi is the half right twist of theith marked point about thei + 1st marked point.

1 Local refers to the ubiquitous physical assumption that the Hamiltonian contains onlyk-body terms for
k ≤ some fixedn. Note that such Hamiltonians well approximate lattice models with interactions which decay
exponentially.
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To describe a fault-tolerant computational model “Chern–Simons 5”CS5, we must
deal with the usual errors arising from decoherence as well as a novel “qubit smearing
error” resulting from imbedding the computational qubits within a modular functor
super-space. To explain our approach we initially ignore all errors; in particular formula
(1) below is a simplification valid only in the error-free context.

In fact, it is within the bounds of physical realism to study “Exact Chern–Simons 5”
ECS 5, a model in which it is assumed that no errors occur in the implementation of
the Jones representation from the braid group to the modular functorV . This may seem
strange given that the major focus of the field of quantum computation has, since 1995,
been on fault tolerance. The point is that topology represents a potential alternative path
toward computational stability. Topology can conferphysical error correction where
the traditional approach within qubit models is a kind ofsoftware error correction. By
definition topological structures, such as braids, are usually discrete so small variations
do not risk confusing one type with another. The idea that the discreteness in topology
can be used to protect quantum information first appears in [Ki1], though not yet in
the context of a computational model. In that paper Kitaev uses perturbation theory
to calculate an exponential decay, proportional toe−const.L, L a length scale, in the
probability of one important source of error (tunneling of virtual excitations). Thus
“ECS 5 computation” might be implemented in practice by adjusting the length scale
L (in this context the distance at which punctures− physically anyons− must be
kept separated) by a factor polylogrithmic in computation length. Perhaps a more likely
implementation would be a hybrid scheme in which topology is used toreach the rather
demanding threshold [P] required for software error correction. In this case modular
functors and the usual theory of fault tolerance must be fitted together. This is possible
using the perspective in [AB] and an argument for this sketched within the proof of Thm.
2.2. However, a comprehensive discussion of the interaction of the environment with
topological degrees of freedom, and how computational stability can be achieved in this
context is beyond the scope of this article. In fact recent work [AHHH] suggests that
earlier interaction models which assume an uncorrelated environment may be too naive.
We expect that the best framework for this discussion has not yet been constructed.

The state spaceSk = (C2)⊗k of our quantum computer consists ofk qubits, that
is the disjoint union ofk spin=1

2 systems which can be described mathematically
as the tensor product ofk copies of the state spaceC2 of the basic 2-level system,

C2 = span(|0〉, |1〉). For each even integerk, we will choose an inclusionSk
i
↪→

V (D2, 3k marked points) = V (D2,3k) and show how to use the action of the braid
groupB(3k) on the modular functorV to (approximately) induce the action of any
poly-local unitary operatorU : Sk → Sk. That is we will give an (in principle) efficient
procedure for constructing a braidb = b(U) so that

i ◦ U = V (b) ◦ i. (1)

To see that this allows us to simulate the QCM, we need to explain:(i) what we mean
by the hypothesis “poly-local” onU, (ii) what “efficient” means,(iii) what the effect of
the two types of errors are on line (1), and(iv) what measurement consists of within our
model.

We begin by explaining how to mapSk into V and how to perform 1 and 2 qubit
gates.

LetD be the unit 2-dimensional disk and{
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be a subset of 3k marked points on thex-axis. Without giving formulae the reader
should picturek disjoint sub-disksDi,1 ≤ i ≤ k, each containing one clump of 3
marked points in its interior (these will serve to support qubits in a manner explained

below) and further

(
k

2

)
disksDi,j ,1 ≤ i < j ≤ k, containingDi andDj , but with

Dij ∩ Dl = ∅, l �= i or j (which will allow 2-qubit gates). Strictly speaking, among
the larger subdisks, we only need to considerDi,i+1,1 ≤ i, i + 1 < k, and could
choose a standard (linear) arrangement for these but there is no cost in the exposition to
considering allDi,j above which will correspond in the model to letting any two qubits
interact. Also, curiously, we will see that any of the numerous topologically distinct
arrangements for the{Di,j } within D may be selected without prejudice.

Restricting toq = e2πi/5, defineV lk to be the SU(2)Hilbert space ofkmarked points
in the interior with labels equal 1 andl label on∂D. We need to understand the many
ways in whichV 0

m arises via the “gluing axiom” ([Wa]) from smaller pieces. The axiom
provides an isomorphism:

V (X ∪γ Y ) ∼= ⊕all consistent labelingslV (X, l)⊗ V (Y, l), (2)

where the notation has suppressed all labels noton the 1-manifoldγ along whichX
andY are glued. The sum is over all labelings of the components ofγ satisfying the
conditions that matched components have equal labels. According to SU(2)-Chern–
Simons theory [KL], for three-punctured spheres with boundary labelsa, b, c, the Hilbert
spaceVabc ∼= C if



(i) a + b + c = even,

(ii ) a ≤ b + c, b ≤ a + b, c ≤ a + b (triangle inequalities),

(iii ) a + b + c ≤ 2(r − 2);
(3)

andVabc ∼= 0 otherwise. The gluing axiom together with the above information allows
an inductive calculation ofV lk , where the superscript denotes the label on∂D. We easily
calculate that

dimV 1
3 = 2, dimV 3

3 = 1, dimV 0
6 = 5, dimV 2

6 = 8. (4)

Line (4) motivates takingV (Di , its 3 marked points and boundary all label 1) =:
Vi ∼= C2 as our fundamental unit of computation,the qubit. Note that whenV has only a
lower index, 1≤ i ≤ k, it denotes the qubit supported in the diskDi . We fix the choice of

an arbitrary “complementary vector”v in the state space ofD\ k∪
i=1
Di v ∈ V (D\

k∪
i=1
Di ,

all boundary labels= 1 except the label on the boundary ofD is 0)=: Vcomplement(To
keep this space nontrivial, we have taken k even.) Usingv, the gluing axiom defines an
injection:

iv : (C2)⊗k ∼= k⊗
i=1
Vi

⊗v→
(
k⊗
i=1
Vi

)
⊗ Vcomplement

as summand
↪→ V 0

3k. (5)
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This compositioniv determines the inclusion of the computational qubits within the
modular functorV 0

3k. Observe in the calculation of line (9) below that the complementary
vectorv will evolve to differentv′ but this will be irrelevant to the measurement which is
made at the end of the computation. The reader familiar with [FKW] will notice that we
use here a dual approach. In that paper, we imbedded the modular functor into a larger
Hilbert space that is a tensor power; here we imbedded a tensor power into the modular
functor.

The action ofB(3) on Di yields 1-qubit gates, whereas two qubit gates will be
constructed using the action of the six strand braid groupB(6) onDi,j . Supposing our
quantum computerSk is in states, a givenv as above determines a stateiv(s) = s⊗ v ∈
V 0

3k. Now suppose we wish to evolves by a 2-qubit gateg ∈ PU(4) acting unitarily on
C2
i ⊗C2

j and byid onC2
l , l �= i or j . Using the gluing axiom (2) and the inclusion (5),

we may write

s =
∑
h

th ⊗ uh, (6)

where{th} is a basis or partial basis forVi ⊗ Vj ∼= C2
i ⊗ C2

j anduh ∈ ⊗l �=i,jC2
l ,

so s ⊗ v = ∑
h(th ⊗ uh) ⊗ v. Decomposing alongγ = ∂Di,j , we may writev =

α0 ⊗ β0 + α2 ⊗ β2, whereαε ∈ V
(
Di,j\(Di ∪ Dj), ε on γ

)
, ε = 0 or 2 andβε ∈

V
(
D\(∪l �=i,jDl ∪Dij ), ε on γ , and 0 on∂D

)
. Thus

s ⊗ v =
∑
h

th ⊗ uh ⊗ α0 ⊗ β0 +
∑
h

th ⊗ uh ⊗ α2 ⊗ β2. (7)

An element ofB(6) applied to the 6 marked points inDi ∪ Dj ⊂ Dij acts via a
representationρ0⊕ ρ2 =: ρ onV 0(Dij ,6 pts)⊕V 2(Dij ,6 pts), where the superscript
denotes the label appearing when the surface is cut alongγ . In particularB(6) acts
on each factorth ⊗ α0 and th ⊗ α2 in (7). Note th ⊗ α0 belongs to the summand
of V 0(Dij ,6 pts) corresponding to boundary labels on∂

(
Dij\(Di ∪ Dj)

) = 0,1,1.
There is an additional 1-dimensional summand corresponding to boundary labels 0,3,3-
with 0,1,3 and 0,3,1 excluded by the triangle inequality (ii) in (3) above. Similarly
th ⊗ α2 belongs to the summand ofV 2(Dij ,6 pts) with boundary labels=2,1,1. There
are additional summands corresponding to (2,1,3), and (2,3,1) of dimensions 2 each.

Ideally we would find a braidb = b(g) ∈ B(6) so thatρ0(b)(th ⊗ α0) = gth ⊗ α0
andρ2(b)(th ⊗ α2) = gth ⊗ α2. Then referring to (7) we easily check that

ρ(b)(s ⊗ v) =
∑
h

(
(gth)⊗ uh

)⊗ v, (8)

i.e.ρ(b) implements the gateg on the state spaceSk of our quantum computer. In practice
there are two issues: (i) we cannot control the phase of the output of eitherρ0 orρ2, and
(ii) these outputs will be only approximations of the desired gateg. The phase issue (i)
leads to a change of the complimentary vectorv → v′ as follows as seen on line(9)
below. This is harmless since ultimately we only measure the qubits.
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s ⊗ v =
∑
h

th ⊗ uh ⊗ α0 ⊗ β0 +
∑
h

th ⊗ uh ⊗ α2 ⊗ β2

⇓ gate

ρ(b)(s ⊗ v) = ω0

∑
h

gth ⊗ uh ⊗ α0 ⊗ β0 + ω2

∑
h

gth ⊗ uh ⊗ α2 ⊗ β2

=
∑
h

ω0gth ⊗ uh ⊗ α0 ⊗ β0 +
∑
h

ω2gth ⊗ uh ⊗ α2 ⊗ β2

=
∑
h

(gth ⊗ uh)⊗ (ω0α0 ⊗ β0 + ω2α2 ⊗ β2)

=:
∑
h

(gth ⊗ uh)⊗ v′. (9)

The approximation issue is addressed by Theorem 2.1 below.

Theorem 2.1. There is a constant C > 0 so that for any positive ε and for all unitary
g : C2

i ⊗C2
j → C2

i ⊗C2
j , there is a braid bl of length ≤ l in the generators σi and their

inverses σ−1
i ,1≤ i ≤ n− 1, so that:

‖ω0ρ
0(bl)− g ⊕ id1‖ + ‖ω2ρ

2(bl)− g ⊕ id4‖ ≤ ε (10)

for some unit complex numbers (phases) ωi, i = 0,2 whenever ε satisfies

l ≤ C · ( log(1/ε)
)k for k ≥ 2. (11)

We use‖ ‖ to denote the operator norms and the subscripts onid indicate the dimension
of the orthogonal component in which we are tryingnot to act.

Proof. The main work in proving Theorem 2.1 is to show that the closure of the image
of the representationρ : B(6) → U(5) × U(8) contains SU(5) × SU(8). Once this is
accomplished the estimate (10) follows with some exponent≥ 2 from what is called
the Solovay–Kitaev theorem [So, Ki2, KSV]. This is a rapid effective approximation
theorem originally established in SU(2) with an exponent> 2 but in the last reference
proved in SU(n) for all n, with same exponentk ≥ 2.Also by [KSV] there is a log2(1/ε)
time classical algorithm which can be used to construct the approximating braidbl as a
word in {σi} and{σ−1

i }. � 
The actionρ(b) “approximately” executes the gateg onSk but not in the usual sense

of approximation since the image of the state spaceρ(b) (iv(Sk)) is only approximately
iv′(Sk). This impression in the location of the computational qubits within a larger Hilbert
space can be called “smearing”. We convert this “smearing of qubits” to errors of the type
usually considered in the fault tolerant literature.After eachg is approximately executed

by ρ(b) we measure the labels around
k

U
i=1
∂Di to project the new stateρ(b)(s ⊗ v)

into the forms′ ⊗ v′, s′ ∈ Sk, with probability 1− O(ε2), |s′ − s| ≤ O(ε). With
probabilityO(ε2) the label measurement around∂Di does not yield one; in this case
V 1(Di;3 pts.) ∼= V 1

3
∼= C2 has collapsed toV 3

3
∼= C and it is as if a qubit has been
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“traced out” of our state space. More specifically, if the label 3 is measured on∂Di ,
we replaceV 3(Di, its 3 marked pts.) with a freshly cooled qubitV 1(D′

i ,3 pts.) with
(say) a completely random initial state which we have been saving for such an occasion.
The reader may picture draggingDi off to the edge of the diskD and dragging the
ancillaeD′ in as its replacement (and then renamingD′ asDi .) The hypothesis that such
ancillae are available is discussed below. The error model of [AB] is precisely suited to
this situation; Aharanov and Ben-Or show in Chapter 8 that a calculation on the level
of “logical” qubits can be kept precisely on track with a probability≥ 2

3 provided the
ubiquitous errors at the level of “physical” qubits are of norm≤ O(ε) (even if they
are systematic and not random) and the large errors (in our case tracing a qubit) have
probability also≤ O(ε) for some threshold constantε > 0. For this, and all other fault
tolerant models, entropy must be kept at bay by ensuring a “cold” stream of ancillary
|0〉’s. In the context of our model we must now explain both the role of measurement
and ancilla.

Given any essential simple closed curveγ on a surface�, the gluing formula reads:

V (�) = ⊕l∈LV (�cutγ , l) (12)

so “measuring a label” means that we posit for everyγ a Hermitian operatorHγ with
eigenvalues distinguishing the summands of the r.h.s. of (12) above. For a more com-
prehensive computational study, we would wish to posit that ifγ has length= L,
thenHγ can be computed in poly(L) time. For the present purpose we only need that
Hγ , γ = ∂Di or ∂Di,j can be computed in constant time. Beyond measuring labels,
we hypothesize that there is some way of probing the quantum state of the smallest
nontrivial building blocks in the theory. For us these are thek qubits= V 1

3,i
∼= C2

i ,
1 ≤ i ≤ k, where the indexi refers to the qubit supported inDi . Fix a basis{|0〉, |1〉}
for V 1

3 and posit for eachDi,1 ≤ i ≤ k, with label 1 on its boundary, an observable

Hermitian operatorσ iz : V 1
3,i → V 1

3,i which acts as the Pauli matrix

(
1 0
0 −1

)
in the fixed

basis{|0〉, |1〉} for that qubit. In concrete terms, this Pauli operatorσ iz has eigen vectors
|0〉 and|2〉, where 0 and 2 are the two possible labels which can appear on the simple
closed curveαi ⊂ Di which separates exactly two of the three punctures from∂Di . The
Pauli matrixσ iz might be implemented by first fusing a pair of the punctures inDi and
then measuring the resulting particle type. This then is our repertoire of measurement:
Hγ is used to “unsmear physical qubits” after each gate and theσz’s to read out the final
state (according to the usual “von Neumann” statistical postulate on measurement) after
the computation is completed.

In fault tolerant models of computation it is essential to have available a stream of
“freshly cooled” ancillary qubits. If these are present from the start of the computation,
even if untouched, they will decohere from errors in employing the identity operator.
In the physical realization of a quantum computer, unless stored zeros were extremely
stable there would have to be some device (inherently not unitary!) for resetting ancillae
to |0〉, e.g. a polarizing magnetic field. As a theoretical matter, unbounded computation
requires such resetting. As discussed near the beginning of this section, in a topological
model such asV (�) it is not unreasonable to postulate that|0〉 ∈ V 1

3 = V 1(Di,3 pts.)
is stable if not involved in any gates. An alternative hypothesis is that there is some
mechanism outside the system analogous to the polarizing magnetic field above which
can “refrigerate” ancillae in the state|0〉 until they are to be used. We refer below to either
of these as the “fresh ancilli” hypothesis. To correct the novel qubit smearing errors, we
already encountered the need for ancilli which we took to be an easily maintained random
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stateρ =
(1

2 0
0 1

2

)
. Other uses of ancilli within fault tolerant schemes require a known

pure state|0〉.
Let us now return to line (1). LetU be the theoretical output of a quantum circuitC

of (i.e. composition of) gates to be executed on the physical qubit level so as to fault-
tolerantly solve a problem instance of lengthn. We assume the problem is inBQP and
that the above composition has length≤ poly(n). Actually, due to error,C will output a
completely positive trace preserving super-operatorO, called a physical operator. Now
simulateC in the modular functorV a gate at a time by a succession of braidings and
Hγ -measurements. With regard to parallelism (necessary in all fault tolerant schemes),
notice that disjoint 2 qubit gates can be performed simultaneously ifDi,j ∩Di′,j ′ = ∅.
For example this can always be arranged in the linear QCM for gates acting inDi,i+1
andDj,j+1 providedi + 1 �= j, j + 1 �= i, andi �= j , and even this model is known to
be fault tolerant [AB]. From line (9), the complementary vectorv ∈ Vcomplementevolves
probabilistically as the simulation progresses. Differentv’s will occur as a tensor factor
in a growing number of probabilistically weighted terms. However, the variousv′ −
factors are in the end inconsequential; they simply label a computational state (to be
observed with some probability) and are never read by the output measurementsσ iz .

We fix terminology and state the main theorems. QCM denotes the exact quantum
circuit model. It is known that a quantum circuit operating in the presence of certain
kinds of error can still simulate an exact QCM with only polylogrithmic cost in space
and time. The basic error model permits gate error of arbitrary super−operator norm (to
include identity gates) at some low rate, e.g.ε ≈ 10−6 per operation site, but demands
independence. This error model is enlarged (while retaining efficient simultability) in
two ways in [AB] which are important to use here. First (see line 2.6 [AB]), as long
as the probability of these arbitrary errors, which include tracing a qubit, is dominated
by the independent case along the “fault-path” correlationsare permitted. Second small
systematic errors are permitted everywhere in the model provided they are small enough,
e.g. unitaries may have systematic error of, again, about one part in 10−6.

Let BQP denote the class of decision problems which can be solved with probability
≥ 3

4 by an exact quantum circuit designed by a classical algorithm in time poly(L),
whereL is the length of the problem instanceM. This same class can be solved in
poly-time by a (slightly) error-prone QC.

Let CS5 denote the model of computation described in this section. It is based on
the Chern–Simons theory of SU(2) at the fifth root of unityq = e2πi/5. We review
its structure here; a list of generating “braid gates” is given in Sect. 3. The functor
is the Hilbert spaceV 1

3k, it containsk-qubits, iv : Sk ↪→ V 1
3k and can be assigned a

standard initial stateα ∈ iv(Sk). The 3k-strand braid groupB(3k) acts unitarily byρ
onV 1

3k and a classical poly-time algorithm converts a circuitC in the QCM to a word in
B(3k). Note that the braid group can be implemented in parallel (most of it generators
commute) in imitation of that essential feature of quantum circuits. The model has two
kinds of measurementsHγ andσ iz , but only the later is allowed in the exact version
of the modelECS5. In CS5 we envision access to “fresh ancilli”, inECS5 there is
no need for these. The actionρ(b) of the braidb produces an evolution ofα ⊗ vεV 1

3k
to a probabilistic mixture of statesγl = αl ⊗ vl with probabilitypl . Performingσ iz -
measurements 1≤ i ≤ k, then samplesγl and observes only theαl factor. Classical
poly (L)-time post−processing of thesek observations can be permitted in the model
but equivalently this step can be folded back into the quantum circuit phase to make the
observation ofσ 1

z on the first qubit the one and only read-out.
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Without error-correction no modelECS5 included can compute for very long if
subjected errors of any constant size or probability> 0. However we explicitly assume
that CS5 faces the kinds of environmental error analyzed in [AB] in addition to its
intrinsic “gate errors” (from the approximate output of the Solovay–Kitaev theorem) and
qubit smearing errors inherent in the model. Specifically for some smallδ > 0 permit (1)
δ-small systematic errors in each operationσ±i or identity and (2) a probability of large
environmental errors, which is dominated by the probability of independent individual
errors of probability< δ each.

Theorem 2.2. Given a problem in BQP and an instance M of length L a classical
poly-time algorithm can convert the quantum circuit C for M into a braid bεB(3k).
Implementing ρ(b) on V 1

3k and measuring σ 1
z will correctly solve M with probability

≥ 3
4 . The number of marked points to be braided space (= 3k) and the length of the

braiding exceed the size of the original circuit C by at most a multiplicative poly(log(L))
factor. Taken in triples, the points support represent the “physical qubits” of the [AB]
fault tolerant model. Thus CS5 provides a model which efficiently and fault tolerantly
simulates the computations of QCM. We note that the use of label measurements Hγ
introduces non-unitary steps in the middle of our simulation. As usual the probability
3
4 is independent w.r.t trials and so converges exponentially to 1 upon repetition of the
entire procedure.

Proof. The proof relies heavily on Chapter 8 [AB] to reduce the QCM to a linear quantum
circuit (with state spaceSk) stable under a very liberal error model – one permitting small
systematic errors plus rare large but uncorrelated qubit errors or trace over a qubit. In
the final stateγ = ∑

plγl , eachγl admits a tensor decomposition according to the
geometry:D = (∪iDi) ∪ (complement), but along the k boundary components∪i∂Di
all choices of labels 1 or 3 may appear. In writingβl = αl ⊗ vl we must remember that
associated tol is an element[l] ∈ {1,3}k which defines the subspace[l]-sector, of the
modular functor in whichγl lies. All occurrences of the label 3 correspond to aC tensor
factor,C ∼= V 3

3
∼= V 3(Di,3 pts) ⊂ V (Di,3 pts) whereas the label 1 corresponds to a

C2 factor. Thus in the [AB] framework each label 3 corresponds to a “lost” or according
to our replacement procedureDi ←→ D′, a traced qubit. (Losing an occasional qubit
from the computational spaceSk is the price we pay to “unsmear”Sk within the modular
functor.) Theorem 2.1 implies that for a braid length= O( 1

ε2 ) a qubit will be traced

with probabilityO(ε2) and if no qubit is lost the gate will be performed with errorO(ε)
on pure states. Factoring a mixed state as a probabilistic combination of pure states and
passing the error estimate across the probabilities we see that forδ > 0 sufficiently
small, theO(ε) error bound holds with high probability on the observedγ6. Thus for
ε sufficiently small (estimated≈ 10−6 [AB]), observingαl amounts to sampling from
an error prone implementation of the quantum circuitC. The error model is not entirely
random in that the approximation procedure used to constructb will have systematic
biases. This implies that theO(ε) errors introduced in the functioning of each gate are
not random and must be treated as “malicious”. The error model explained in Chapter 8
[AB] permits such small errors to be arbitrary as long as the large error, e.g. qubit losses,
occurs with a probability dominated by a small constant independent of the qubit and
the computational history. This is consistent with the assumptions on theCS5 model.
This completes the proof of Theorem 2.2 modulo the proof of the density Theorem 4.1.
� 

We now turn to the exact variantECS5, in which we assume that all the braid groups
act exactly (no error) on the modular functorV . The only difference in the algorithm
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for modeling the QCM inECS5 is the simplification thatHγ measurements are not
performed in the middle of the simulation, but only at the very end, prior to reading out
the qubitsSk with σkz measurements.

Theorem 2.3. There is an efficient and strictly unitary simulation of QCM by ECS5.
Thus given a problem instance M of length L in BQP, there is a classical poly(L) time
algorithm for constructing a braid b as a word of length poly(L) in the generators
σi,1≤ i ≤ polyL). Let k be another polynomial function of L. Applying b to a standard
initial state, ψinitial ∈ V 0(D,3k), results in a state ψfinal ∈ V 0(D,3k), so that the
results ofHγ on ∂Di followed by σ iz measurements on ψfinal correctly solve the problem
instanceM with probability ≥ 3

4 .

Proof. In the quantum circuitC forM (implied by the problem lying in BQP) count the
numbern of gates to be applied. Use line (11) to approximate each gateg by a braidb
of lengthl so that the operator norm error||ρ(b) − g|| of the approximating gate will
be less thanεn−1, for some fixedε > 0. The composition ofn braids which gate-wise
simulate the quantum circuit introduces an error on operator norm< ε. It follows that the
approximation of the desired unitary by the braid results in a8final′ so that the absolute
angle| < (8final′ , 8final)| ≤ 2 arcsinε2. The application of our two measurement steps
will therefore return an answer nearly as reliable as the original quantum circuitC: The
probability ρ that the sequential measurementsHγ andσ 1

z (which is defined if and
only if Hγ projects toV 1(D,3pts.)) will give different results for8final′ and8final is
≤ sin 2 arcsinε2 < ε. So with probability 1− p > 1− ε the final measurement|0〉 or
|1〉 will be the same in the quantum circuitC and theECS5 model. � 
Remark. Theorem 2.2 and 2.3 are complementary. One provided additional fault toler-
ance – fault tolerance beyond what might be inherent in a topological model – but at
the cost of introducing intermediate non-unitary steps (i.e. measurements). The other es-
chews intermediate measurements and so gives a strictly unitary simulation, but cannot
confer additional fault tolerance. It is an interesting open technical problem whether fault
tolerance and strict unitarity can be combined in a universal model of computation based
on topological modular functors. Looking ahead to a possible implementation, however,
intermediate measurements as in the fault tolerant model do not seem undesirable.

3. Jones’ Representation of the Braid Groups

A TMF gives a family of representations of the braid groups and mapping class groups. In
this section, we identify the representations of the braid groups from the SU(2) modular
functor at primitive roots of unity with the irreducible sectors of the representation
discovered by Jones whose weighted trace gives the Jones polynomial of the closure
link of the braid [J1, J2]. To prove universality of the modular functor for quantum
computation, we only use this portion of the TMF. Therefore, we will focus on these
representations.

First let us describe the Jones representation of the braid groups explicitly following
[We]. To do so, we need first to describe the representation of the Temperley-Lieb-

Jones algebrasAβ,n. Fix some integerr ≥ 3 andq = e
2πi
r . Let [k] be the quantum

integer defined as[k] = q
k
2−q −k2
q

1
2−q −1

2
. Note that[−k] = −[k], and[2] = q 1

2 + q −1
2 . Then

β := [2]2 = q + q̄ + 2 = 4cos2(π
r
). The algebrasAβ,n are the finite dimensional

C∗-algebras generated by 1 and projectorse1, · · · , en−1 such that
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1. e2
i = ei , ande∗i = ei ,

2. eiei±1ei = β−1ei ,
3. eiej = ej ei if |i − j | ≥ 2,

and there exists a positive tracetr : ∞
U
n=1
Aβ,n → C such thattr(xen) = β−1tr(x) for all

x ∈ Aβ,n.
The Jones representation ofAβ,n is the representation corresponding to the G.N.S.

construction with respect to the above trace. An important feature of the Jones rep-
resentation is that it splits as a direct sum of irreducible representations indexed by
some 2-row Young diagrams, which we will refer to assectors. A Young diagram
λ = [λ1, . . . , λs], λ1 ≥ λ2 ≥ · · · ≥ λs is called a(2, r) diagram ifs ≤ 2 (at most
two rows) andλ1 − λ2 ≤ r − 2. Let∧(2,r)n denote all(2, r) diagrams withn nodes.
Givenλ ∈ ∧(2,r)n , let T (2,r)λ be all standard tableaus{t} with shapeλ satisfying the in-
ductive condition which is the analogue of (iii) in (3): whenn, n−1, . . . ,2,1 are deleted
from t one at a time, each tableau appeared is a tableau for some(2, r)Young diagram.
The representation ofAβ,n is a direct sum of irreducible representationsπ(2,r)λ over all

(2, r)Young diagramsλ. The representationπ(2,r)λ for a fixed(2, r)Young diagramλ is

given as follows: letV (2,r)λ be the complex vector space with basis{vt , t ∈ T (2,r)λ }. Given

a generatorei in the Temperley–Lieb–Jones algebra and a standard tableaut ∈ V (2,r)λ .
Supposei appears int in row r1 and columnc1, i + 1 in row r2 and columnc2. Denote
by dt,i = c1− c2 − (r1− r2), αt,i = [dt,i+1]

[2][dt,i ] , andβt,i =
√
αt,i(1− αt,i). They are both

non-negative real numbers and satisfy the equationαt,i = α2
t,i + β2

t,i . Then we define

π
(2,r)
λ (ei)(vt ) = αt,ivt + βt,ivgi(t), (13)

wheregi(t) is the tableau obtained fromt by switchingi andi + 1 if gi(t) is in T (2,r)λ .

If gi(t) is not inT (2,r)λ , thenαt,i is 0 or 1 given by its defining formula. This can occur

in several cases. It follows thatπ(2,r)λ with respect to the basis{vt } is a matrix consisting
of only 2× 2 and 1× 1 blocks. Furthermore, the 1× 1 blocks are either 0 or 1, and the
2× 2 blocks are (

αt,i βt,i
βt,i 1− αt,i

)
. (14)

The identityαt,i = α2
t,i + β2

t,i implies that (14) is a projector. So all eigenvalues ofei
are either 0 or 1.

The Jones representation of the braid groups is defined by

ρβ,n(σi) = q − (1+ q)ei . (15)

Combining (15) with the above representation of the Temperley–Lieb–Jones algebra,
we get Jones’ representation of the braid groups, denoted still byρβ,n:

ρβ,n : Bn → Aβ,n → U(Nβ,n),

where the dimensionNβ,n =∑
λ∈∧(2,r)n

dimV (2,r)λ grows asymptotically asβn.
When |q| = 1, as we have seen already, Jones’ representationρβ,n is unitary. To

verify thatρ(σi)ρ∗(σi) = 1, noteρ∗(σi) = q̄ − (1+ q̄)e∗i . So we haveρ(σi)ρ∗(σi) =
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qq̄ + (1+ q)(1+ q̄)eie∗i − (1+ q)ei − (1+ q̄)e∗i = 1. We use the facte∗i = ei and
e2
i = ei to cancel out the last 3 terms.

From the definition,ρβ,n also splits as a direct sum of representations over(2, r)-
Young diagrams.A sector corresponding to a particularYoung diagramλwill be denoted
by ρλ,β,n.

Now we collect some properties about the Jones representation of the braid groups
into the following:

Theorem 3.1. (i) For each (2, r)-Young diagram λ, the representation ρλ,β,n is irre-
ducible.

(ii) The matrices ρλ,β,n(σi) for i = 1,2 generate an infinite subgroup of U(2) modulo
center for r �= 3,4,6,10.

(iii) Each matrix ρλ,β,n(σi),1≤ i ≤ n− 1, has exactly two distinct eigenvalues −1, q.
(iv) For the (2,5)-Young diagram λ = [4,2], n = 6, the two eigenvalues −1, q of every

ρλ,β,6(σi) have multiplicity of 3 and 5 respectively.

The proofs of (i) and (ii) are in [J2]. For (iii), first note that the matrixρλ,β,n(σ1) is a
diagonal matrix with respect to the basis{vt } with only two distinct eigenvalues−1, q.
Now (iii) follows from the fact that all braid generatorsσi are conjugate to each other.
For (iv), simply check the explicit matrix forρλ,β,6(σ1) at the end of this section.

Now we identify the sectors of the Jones representation with the representations of
the braid groups coming from the SU(2) Chern–Simons modular functor. The SU(2)
Chern–Simons modular functorCSr of level r has been constructed several times in
the literature (for example, [RT, T, Wa, G]). Our construction of the modular functor
CSr is based on skein theory [KL]. The key ingredient is the substitute of Jones–Wenzl
idempotents for the intertwiners of the irreducible representations of quantum groups
[RT,T,Wa].This is the same SU(2)modular functor as constructed using quantum groups
in [RT] (see [T]) which is regarded as a mathematical realization of the Witten–Chern–
Simons theory. All formulae we need for skein theory are summarized in Chapter 9 of

[KL] with appropriate admissible conditions. Fix an integerr ≥ 3. LetA = √−1·e− 2πi
4r ,

ands = A2, andq = A4. (Note the confusion caused by notations. Theq in [KL] is
A2 which is ours here. But in Jones’ representation of the braid groups [J2],q is A4.
In all formulae in [KL], q should be interpreted ass in our notation.) The label setL
of the modular functorCSr will be {0,1, . . . , r − 2} and the involution is the identity.
We are interested in a unitary modular functor and the one in [G] is not unitary. We
claim that if we follow the same construction of [G] using our choice ofA and endow
all state spaces of the modular functor with the following Hermitian inner product, the
resulting modular functorCSr is unitary. The relevant Hilbert space structure has also
been constructed earlier by others (e.g. in [KS, KSVo]).

Given a surface�, a pants decomposition of� determines a basis ofV (�): each
basis element is a tensor product of the basis elements of the constituent pants. The
desired inner products are determined by axiom(2.14) [Wa] if we specify an inner
product on each spaceVabc. Our choice ofAmakes all constantsS(a) appearing in the
axiom (2.14) [Wa] positive. Consequently, positive definite Hermitian inner products
on all spacesVabc determine a positive definite Hermitian inner product onV (�). The
vector spaceVabc of the three punctured spherePabc is defined to be the skein space
of the diskDabc enclosed by the seams of the punctured spherePabc. The numbering
of the three punctures induces a numbering of the three boundary “points” of the disk
Dabc labeled by{a, b, c}. Supposet is a tangle onDabc in the skein space ofDabc,
and let t̄ be the tangle onDabc obtained by reflecting the diskDabc through the first
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boundary point and the origin. Then the inner product〈 , 〉h : Vabc × Vabc → C is
as follows: given two tangless and t onDabc, their product〈s, t〉h is the Kauffman
bracket evaluation of the resulting diagram onS2 obtained by gluing the two disks with
s andt̄ on them respectively, along their common boundaries with matching numberings.
Extending〈 , 〉h on the skein space ofDabc linearly in the first coordinate and conjugate
linearly in the second coordinate, we obtain a positive definite Hermitian inner product
onVabc. It is also true that the mapping class groupoid actions in the basic data respect
this Hermitian product, and the fusion and scattering matricesF andS also preserve this
product. SoCSr is indeed a unitary modular functor.

This modular functorCSr defines representations of the central extension of the
mapping class groups of labeled extended surfaces, in particular forn-punctured disks
Dmn with all interior punctures labeled 1 and boundary labeledm. If m �= 1, then the
mapping class group is the braid groupBn. If m = 1, then the mapping class group is
the spherical braid groupSBn+1 = M(0, n + 1). Recall that we suppress the issues
of framing and central extension as they are inessential in our discussion. Also the
representation of the mapping class groups coming fromCSr will be denoted simply by
ρr .

Theorem 3.2. Let Dmn be as above.

(1) If m + n is even, and m �= 1, then ρr is equivalent to the irreducible sector of the
Jones representation ρλ,β,n for the Young diagram λ = [m+n2 , m−n2 ] up to phase.

(2) If n is odd, and m = 1, then the composition of ρr with the natural map ι : Bn →
SBn+1 is equivalent to the irreducible sector of the Jones representation ρλ,β,n for
the Young diagram λ = [n+1

2 ,
n−1

2 ] up to phase.

The equivalence of these two representations was first established in a non-unitary
version [Fu]. A computational proof of this theorem can be obtained following [Fu].
So we will be content with giving some examples forr = 5. To get a universal set of
gates using these matrices, all we need is to realize the Solovay-Kitaev theorem by an
algorithm for any prescribed precision [KSV, NC].

For the(2,5)Young diagramλ = [2,1], n = 3 with an appropriate ordering of the
basis:

ρ[2,1],β,3(σ1) =
(−1 0

0 q

)
,

ρ[2,1],β,3(σ2) =
(

q2

q+1 − q
√[3]
q+1

− q
√[3]
q+1 − 1

q+1

)
, where quantum[3] = q + q̄ + 1.

For the(2,5)Young diagramλ = [3,3], n = 6, the representation is 5-dimensional.
With an appropriate ordering of the basis, we have:

ρ[3,3],β,6(σ1) =



−1

q

−1
q

q


 ,

ρ[3,3],β,6(σ2) =




q2

q+1 − q
√[3]
q+1

− q
√[3]
q+1 − 1

q+1
q2

q+1 − q
√[3]
q+1

− q
√[3]
q+1 − 1

q+1
q



.
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For the(2,5)Young diagramλ = [4,2], n = 6, the representation is 8-dimensional.
Here the inductive condition on basis elements make one standard tableau illegal, so
the representation is not 9-dimensional as it would be ifr > 5. This is the restriction
analogous to(iii) in (3) for the modular functor. With an appropriate ordering of the
basis:

ρ[4,2],β,6(σ1) =




−1
q

−1
q

−1
q

q

q



.

4. A Density Theorem

In this section, we prove the density theorem.

Theorem 4.1. Let ρ := ρ[3,3] ⊕ ρ[4,2] : B6 → U(5)×U(8) be the Jones representation

of B6 at the 5th root of unity q = e
2πi
5 . Then the closure of the image of ρ(B6) in

U(5)× U(8) contains SU(5)× SU(8).

By Theorem 3.2, this is the same representationρ := ρ0⊕ρ2 : B6 → U(5)×U(8) in
the SU(2)Chern–Simons modular functor at the 5th root of unity used in Sect. 2 to build a
universal quantum computer. In the following, a key fact used is that the image matrix of
each braid generator under the Jones representation has exactly two eigenvalues{−1, q}
whose ratio is not±1. This strong restriction allows us to identify both the closed image
and its representation.

Proof. First it suffices to show that the images ofρ[3,3] andρ[4,2] contain SU(5) and
SU(8), respectively. Supposing so, ifK = ρ(B6) ∩ (SU(5) × SU(8)), then the two
projectionsp1 : K → SU(5) andp2 : K → SU(8) are both surjective. LetN2
(respectivelyN1) be the kernel ofp1 (respectivelyp2). ThenN1 (respectivelyN2)
can be identified as a normal subgroup of SU(5) (respectively SU(8)). By Goursat’s
Lemma (p. 54, [La]), the image ofK in SU(5)/N1 × SU(8)/N2 is the graph of some
isomorphism SU(5)/N1 ∼= SU(8)/N2. As the only nontrivial normal subgroups of
SU(n) are finite groups, this is possible only ifN1 = SU(5) andN2 = SU(8). Therefore,
K = SU(5)× SU(8).

The proofs of the density forρ[3,3] andρ[4,2] are similar. So we prove both cases at
the same time and give separate argument for the more complicated caseρ[4,2] when
necessary.

Let G be the closure of the image ofρ[3,3] (or ρ[4,2]) in U(5) (or U(8)) which we
will try to identify. By Theorem 3.1, G is a compact subgroup ofU(m) (m = 5 or 8)
of positive dimension. Denote byV the inducedm-dimensional faithful, irreducible
complex representation ofG. The representationV is faithful sinceG is a subgroup of
U(m). LetH be the identity component ofG. What we actually show is that the derived
group ofH ,Der(H) = [H,H ], is actually SU(m). We will divide the proof into several
steps.

Claim 1. The restriction ofV to H is an isotypic representation, i.e. a direct sum of
several copies of a single irreducible representation ofH .
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Proof. As G is compact,V = ⊕P VP , whereP runs through some irreducible repre-
sentations ofH , andVP is the direct sum of all the copies ofP contained inV . Since
H is a normal subgroup, and the braid generatorsσi topologically generateG, theσi ’s
permute transitively the isotypic componentsVP [CR, Sect. 49]. If there is more than 1
such component, then someσi acts nontrivially, so it must permute these blocks.� 

Now we need a linear algebra lemma:

Lemma 4.2. Suppose W is a vector space with a direct sum decomposition W =
⊕ni=1Wi , and there is a linear automorphism T such that T : Wi → Wi+1 1 ≤ i ≤ n
cyclically. Then the product of any eigenvalue of T with any nth root of unity is still an
eigenvalue of T .

Proof. Choose a basis ofW consisting of bases ofWi, i = 1,2, . . . , n. If k is not a
multiple of n, then trT k = 0, as all diagonal entries are 0 with respect to the above
basis. Let{λi} be all eigenvalues ofT . (They may repeat.) Consider all values of trT m =∑
λi
m (m = 1,2, . . . ) which are sums ofmth powers of all eigenvalues ofT . These

sums ofmth powers of{λi}are invariant if we simultaneously multiply all the eigenvalues
{λi} by annth root of unityω:

∑
(ωλi)

m =∑
ωmλi

m = ωm∑ λi
m which is equal to

trT m =∑
λi
m because whenm is not a multiple ofn, they are both 0, and whenm is,

ωm = 1. These values trT m uniquely determine the eigenvalues ofT , and therefore the
set of the eigenvalues ofT is invariant under multiplication by anynth root of unity.

Back to Claim 1, if there is more than one isotypic component, then someσi will
have an orbit of length at least 2. It is impossible to have an orbit of length 3 or more by
the above lemma as this will lead to at least 3 eigenvalues. If the orbit is of length 2 and
asρ(σi) has only two eigenvalues{a, b}, by the lemma,{−a,−b} are also eigenvalues.
It follows thata = −b which is impossible whenq �= −1. � 
Claim 2. The restriction ofV toH is an irreducible representation.

Proof. By Claim 1,V |H has only one isotypic component. IfV |H is reducible, then the
isotypic component is a tensor productV1⊗V2, whereV1 is the irreducible representation
of H in the isotypic component andV2 is a trivial representation ofH with dimV2 ≥ 2.
If V1 is 1-dimensional, thenρ(σi), i = 1,2 generate a finite subgroup ofU(m)modulo
center which is excluded by Theorem 3.1. So we have dimV1 ≥ 2. Now we recall a fact
in representation theory: a representation of a groupρ : G → GL(V ) is irreducible
if and only if the imageρ(G) of G generates the full matrix algebra End(V ). As V1
is an irreducible representation ofH , the imageρ(H) generates End(V1)⊗ id2, where
the subscript ofid indicate the tensor factor. As the elementsσi normalizeH , they also
normalize the subalgebra End(V1) ⊗ id2 in End(V1 ⊗ V2). Consequently they act as
automorphisms of the full matrix algebra End(V1). Any automorphism of a full matrix
algebra is a conjugation by a matrix, so the braid generatorsσi act via conjugation (up
to a scalar multiple) as invertible matrices in End(V1) ⊗ id2 modulo its centralizer. It
is not hard to see the centralizer of End(V1) ⊗ id2 in End(V1 ⊗ V2) is id1 ⊗ End(V2).
Therefore, the braid generatorsσi act via conjugation as invertible matrices in End(V1)⊗
End(V2), i.e. they preserve the tensor decomposition. This is impossible by the following
eigenvalue analysis. Consider a braid generatorσi , its imageρ(σi) is a tensor product of
two matrices each of sizes at least 2. Sinceρ(σi) has only two eigenvalues, neither factor
matrix can have 3 or more eigenvalues. If both factor matrices have two eigenvalues, the
fact thatρ(σi) has 2 eigenvalues in all implies that the ratio of these two eigenvalues
is±1 which is forbidden. If one factor matrix is trivial, thenρ(σi) acts trivially on this
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factor. As all braid generators are conjugate to each other, so the whole groupG will act
trivially on this factor which implies thatV is a reducible representation ofG. This case
cannot happen either, asV is an irreducible representation ofG. � 
Claim 3. The derived group, Der(H) = [H,H ], of H is a semi-simple Lie group, and
the further restriction ofV to Der(H) is still irreducible.

Proof. By Claim 2,V |H is a faithful, irreducible representation, soH is a reductive Lie
group [V, Theorem 3.16.3]. It follows that the derived group ofH is semi-simple. It also
follows that the derived group and the center ofH generateH . By Schur’s lemma, the
center act by scalars. SoV |Der(H) is still irreducible.

Claim 4. Every outer automorphism of Der(H) has order 1, 2, or 3.

First we recall a simple fact in representation theory. IfV is an irreducible represen-
tation of a product groupG1×G2, thenV splits as an outer tensor product of irreducible
representations ofGi, i = 1,2. The restriction ofV toG1 has only one isotypic com-
ponent, and the restriction ofV toG2 lies in the centralizer of the image ofG1. So the
representation splits.

Proof. It suffices to prove the same statement for the universal covering Deruc(H) of
Der(H), as the automorphism group of Der(H) is a subgroup of the automorphism
group of Deruc(H).

For the 5-dimensional case: as 5 is a prime, Deruc(H) is a simple group. Any outer
automorphism of a simple Lie group is of order 1, 2, or 3. This follows from the fact that
any outer automorphism of a simple Lie group is an outer automorphism of its Dynkin
diagram together with the A-G classification of Dynkin diagrams [V].

For the 8-dimensional case, if Deruc(H) is a simple group, it can be handled as
above, so we need only to consider the split cases. If Deruc(H) splits into two simple
factors, then one factor must be SU(2): of all simply connected simple Lie groups, only
SU(2) has a 2-dimensional irreducible representation. So the outer automorphism group
is eitherZ2 when both factors are SU(2), or the same as the outer automorphism group
of the other simple factor. Our claim holds. If there are three simple factors, they must
all be SU(2). The outer automorphism group is the permutation group on three letters
S3. Again our claim is true. � 
Claim 5. For each braid generatorσi , we can choose a corresponding elementσ̃i lying
in the derived group Der(H) which also has exactly two eigenvalues, whose ratio is not
±1. The multiplicity of each eigenvalue of̃σi is the same as that ofσi . (The choice of
σ̃i is not unique, but its two eigenvalues have ratioq.)

Proof. Since Der(H) is still a normal subgroup ofG, and the braid generatorsσi nor-
malize Der(H), so they determine outer-automorphisms of Der(H). By Claim 4, an
outer-automorphism of Der(H) is of order 1, 2, or 3. Henceσ 6

i acts as an inner automor-
phism of Der(H). By Schur’s lemma, eachσ 6

i is the product of an element in Der(H)
with a scalar, though the decomposition is not unique. Fix a choice for an elementσ̃i in
Der(H). Then it has exactly two desired eigenvalues.

To complete the proof ofTheorem 4.1, we summarize our situation: we have a nontriv-
ial semi-simple group Deruc(H)with an irreducible unitary representation. Furthermore,
it has a special elementx whose image under the representation has exactly two distinct
eigenvalues whose ratio is not±1.
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For the 5-dimensional case, Deruc(H) is a simple Lie group. Going through the
list [MP] of pairs (G,D), whereG is a simply connected Lie group andD a domi-
nant weight, the only possible 5-dimensional irreducible representations are as follows:
rank=1, (SU(2),4D1), rank=2,(Sp(4),D2) on p. 52 of [MP], and rank=4,(SU(5),
Di), i = 1,4 on p. 30. By examining the possible eigenvalues, we can exclude the first
two cases as follows: for the first case, supposeα, β are the two eigenvalues of the above
elementx in SU(2), then under the representation 4D1 the eigenvalues of the image ofx
areαiβj , i + j = 4, wherei andj both are non-negative integers. The only possibility
is two eigenvalues whose ratio is±1. For the second case, since 5 is an odd number, any
element in the image has a real eigenvalue. Other eigenvalues come in mutually recipro-
cal pairs. Again the only possibility is two eigenvalues whose ratio is±1. Therefore, the
only possible pair is the third case which gives Deruc(H) = SU(5). As V is a faithful
representation of Der(H), the image of Der(H) is the same as that of Deruc(H) which
is SU(5).

The 8-dimensional case forρ[4,2] is similar. By [MP], we see the possible pairs
for simply connected simple groups are

(
SU(2),7D1

)
,
(
SU(3),D1 +D2

)
on p. 26 of

[MP],
(
Spin(7),D3

)
on p. 40,

(
Sp(8),D1

)
on p. 56,

(
Spin(8),Di

)
, i = 1,3,4 on p.

66 and
(
SU(8),Di

)
, i = 1,7 on p. 36, whereDi is the fundamental weight. The same

eigenvalue analysis will exclude all but the
(
SU(8),Di

)
case. The proof follows the

same pattern as above with the following novelties. Case 2 is the adjoint representation
of SU(3), if the special elementx ∈ SU(3) has eigenvalues{α, β, γ }, the image matrix
of x will have eigenvalue 1 with multiplicity 2 and all six pair-wise ratios of{α, β, γ },
so they are±1. For Case 4, recall that ifλ is an eigenvalue of a symplectic matrix, so is
λ−1 with the same multiplicity, thus there are candidates for the special elementx, but
all such elements have the property that the multiplicity for both eigenvalues is 4. Notice
by Theorem 3.1 (iv), the multiplicity of the two distinct eigenvalue inρ̃(σi) is 3 and 5,
respectively. Case 5 is done just as Case 4. This excludes all the unwanted simple groups.
We have to consider also the product cases. For a product of two or three simple factors,
the same analysis of eigenvalues as at the end of the proof of Claim 2 excludes them.
Actually, there are only four cases here: SU(2)×SU(2), SU(2)×SU(4), SU(2)×Sp(4)
and SU(2)× SU(2)× SU(2). This completes the proof of our density theorem.� 
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