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Abstract: We show that the topological modular functor from Witten—Chern—Simons
theory is universal for quantum computation in the sense that a quantum circuit com-
putation can be efficiently approximated by an intertwining action of a braid on the
functor’s state space. A computational model based on Chern—Simons theory at a fifth
root of unity is defined and shown to be polynomially equivalent to the quantum circuit
model. The chief technical advance: the density of the irreducible sectors of the Jones
representation has topological implications which will be considered elsewhere.

1. Introduction

The idea that computing with quantum mechanical systems might offer extraordinary
advantages over ordinary “classical” computation has its origins in independent writings
of Benioff [B], Manin [M] and Feynman [Fey]. Feynman explained that local “quantum
gates”, the basis of his model, can efficiently simulate the evolution of any finite dimen-
sional quantum system evolving under a local Hamiltontarand by extension any
renormalizable system. The details of this argument are (much clarified) in [LI]. Topo-
logical quantum field theories (TQFTS), although possessing a finite dimensional Hilbert
space, lack a Hamiltonian — the derivative of time evolution on which the Feynman—
Lloyd argument is based. In [FKW], we provide a different argument for the poly-local
nature of TQFTs showing that quantum computers efficiently simulate these as well.
Here we give a converse to this simulation result. The Feynman-Lloyd argument is
reversible, so we may summarize the situation as:
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(1) finite dimensional localquantum systems.
(2) quantum computers (meaning the quantum circuit model QCM [D, Y]),
(3) certain topological modular functors (TMFs).

Each can efficiently simulate the others.

We wrote TMF above instead of TQFT as a matter of notation because we use only the
conformal blocks and the action of the mapping class groups on these — not the general
morphisms associated to 3-dimensional non-product bordisms. The two dimensional
aspects of &2 + 1)-dimensional TQFT are referred to as a TMF.

2. A Universal Quantum Computer

The strictly 2-dimensional part of a TQFT is calletbpol ogical modular functor (TMF).

The most interesting examples of TMFs are given by the SU(2) Witten—Chern—Simons
theory at roots of unity [Wi]. These examples are mathematically constructed in [RT]
using quantum groups (see also [T, Wa]). A modular functor assigns to a compact surface
¥ (with some additional structures detailed below) a complex vector dpéceand to a
diffeomorphism of the surface (preserving structures) a linear m#gBj. In the cases
considered her& (X) always has a positive definite Hermitian inner product, and

the induced linear maps preservg;, i.e. are unitary. The usual additional structures
are fixed parameterizations of each boundary component, a labeling of each boundary
component by an element of a finite label getvith an involution”: £ — £, and a
Lagrangian subspadeof H1(Z, Q) ([T, Wa]). Since our quantum computer is built from
quantum-SWg2)-invariants of braiding, and the intersection pairing of a planar surface
is0,L = H1(X; Q) and can be ignored. The parameterization of boundary components
can also be dropped at the cost of losing the overall phase information in the system
which in any case is not physical. Mathematically this means that all unitaries should
be regarded as projective. In three dimensional terms, this parameterization becomes
the framing of a “Wilson” loop and is essential to well definedness of the phase of
the Jones—Witten invariants. In our context it may be neglected. The involuson
simply the identity since the S@)-theory is self-dual. In fact, we can manage by only

considering the S(2)-Chern—Simons theory at = e$, r = 5 and so our label set

will be the symbolg0, 1, 2, 3} which are the quantum group analogs of tHe 08¢, 2nd,

and 39 symmetric powers of the fundamental representation of2$lih C2. Note

that in our notation, O labels the trivial representation, not 1. Since we are suppressing
boundary parameterizations, we may work in the disk witharked points thought of us
crushed boundary components. Because we only need the “uncolored theory” to make a
universal model, each marked point is assigned the label 1, and the boundary of the disk
is assigned the label 0. We consider the action of the braid gBgupwhich consists of
diffeomorphisms of the disk which leave thenarked points and the boundary set-wise
invariant modulo those isotopic to the identity leaving all marked points fixed. The braid
group has the well-known presentation:

B(n) ={o1,...,0,-1| G,-ojalflajfl =id if i—j|>1

0i0j0; = 0j0;0} if |i—j|=1},
whereo; is the half right twist of the™" marked point about the+ 15t marked point.
1 Local refers to the ubiquitous physical assumption that the Hamiltonian containg-bolgy terms for

k < some fixed:. Note that such Hamiltonians well approximate lattice models with interactions which decay
exponentially.
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To describe a fault-tolerant computational model “Chern—SimorGSs, we must
deal with the usual errors arising from decoherence as well as a novel “qubit smearing
error” resulting from imbedding the computational qubits within a modular functor
super-space. To explain our approach we initially ignore all errors; in particular formula
(1) below is a simplification valid only in the error-free context.

In fact, it is within the bounds of physical realism to study “Exact Chern—Simons 5”
ECS 5, a model in which it is assumed that no errors occur in the implementation of
the Jones representation from the braid group to the modular fuvicinis may seem
strange given that the major focus of the field of quantum computation has, since 1995,
been on fault tolerance. The point is that topology represents a potential alternative path
toward computational stability. Topology can conf#ysical error correction where
the traditional approach within qubit models is a kindsoftware error correction. By
definition topological structures, such as braids, are usually discrete so small variations
do not risk confusing one type with another. The idea that the discreteness in topology
can be used to protect quantum information first appears in [Kil], though not yet in
the context of a computational model. In that paper Kitaev uses perturbation theory
to calculate an exponential decay, proportionakt6°"stL I a length scale, in the
probability of one important source of error (tunneling of virtual excitations). Thus
“ECS 5 computation” might be implemented in practice by adjusting the length scale
L (in this context the distance at which puncturesphysically anyons— must be
kept separated) by a factor polylogrithmic in computation length. Perhaps a more likely
implementation would be a hybrid scheme in which topology is useebtth the rather
demanding threshold [P] required for software error correction. In this case modular
functors and the usual theory of fault tolerance must be fitted together. This is possible
using the perspective in [AB] and an argument for this sketched within the proof of Thm.
2.2. However, a comprehensive discussion of the interaction of the environment with
topological degrees of freedom, and how computational stability can be achieved in this
context is beyond the scope of this article. In fact recent work [AHHH] suggests that
earlier interaction models which assume an uncorrelated environment may be too naive.
We expect that the best framework for this discussion has not yet been constructed.

The state spacs, = (C?)®* of our quantum computer consists lofjubits, that

is the disjoint union ofk spin:% systems which can be described mathematically

as the tensor product @f copies of the state spad® of the basic 2-level system,

C? = spar(|0), |1)). For each even integdr, we will choose an inclusiors; <
V(D?, 3k marked points= V(D?, 3k) and show how to use the action of the braid
group B(3k) on the modular functo¥ to (approximately) induce the action of any
poly-local unitary operatad : Sy — Si. That is we will give an (in principle) efficient
procedure for constructing a brakd= b(U) so that

ioU=V(®)oi. (1)

To see that this allows us to simulate the QCM, we need to exglidiwhat we mean
by the hypothesis “poly-local” ob, (ii) what “efficient” means(iii) what the effect of
the two types of errors are on line (1), afid what measurement consists of within our
model.

We begin by explaining how to ma§ into V and how to perform 1 and 2 qubit
gates.

Let D be the unit 2-dimensional disk and

11 12 13 21 22 23 10t+1 10k +2 10k +3
100" 100k’ 100¢” 100k ™ 100k™ 100"~~~ ° 10k °~ 10Ck °~ 10Qk
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be a subset of @marked points on the-axis. Without giving formulae the reader
should picturek disjoint sub-disksD;,1 < i < k, each containing one clump of 3
marked points in its interior (these will serve to support qubits in a manner explained

below) and furthe g disksD; ;,1 < i < j < k, containingD; and D;, but with

D;jj N D; = @,1 # i or j (which will allow 2-qubit gates). Strictly speaking, among

the larger subdisks, we only need to considgr;1,1 < i,i +1 < k, and could
choose a standard (linear) arrangement for these but there is no cost in the exposition to
considering allD; ; above which will correspond in the model to letting any two qubits
interact. Also, curiously, we will see that any of the numerous topologically distinct
arrangements for thgD; ;} within D may be selected without prejudice.

Restricting ta7 = 27/, defineV/ to be the SW2) Hilbert space ok marked points
in the interior with labels equal 1 aridabel ond D. We need to understand the many
ways in WhichVn‘f arises via the “gluing axiom” ([Wa]) from smaller pieces. The axiom
provides an isomorphism:

V(X Uy Y) = ®all consistent labelingg VX, D V({Y,D), (2)

where the notation has suppressed all labelsonothe 1-manifoldy along whichx

andY are glued. The sum is over all labelings of the components sditisfying the
conditions that matched components have equal labels. According (@)-8bern—
Simons theory [KL], for three-punctured spheres with boundary labélsc, the Hilbert
spaceV,. = Cif

() a+b+c=even
(i) a<b+4+c,b<a+b,c<a+b (triangle inequalities) 3)
(i) a+b+c=<20r-2);
andV,;,. = 0 otherwise. The gluing axiom together with the above information allows

an inductive calculation oVk[, where the superscript denotes the labed &n We easily
calculate that

dimvi=2, dimv=1 dmvQ=5 dimvZ=8. (4)

Line (4) motivates taking/ (D;, its 3 marked points and boundary all labgl:
V; = C2 as our fundamental unit of computatidhe qubit. Note that wherV has only a
lowerindex, 1< i < k, itdenotes the qubit supported in the digk We fix the choice of

k k
an arbitrary “complementary vector'in the state space @\ ‘Ul D; v e V(D\ _U1 D;,
1= 1=

all boundary labels= 1 except the label on the boundaryBfis 0) =: Vcomplemend TO
keep this space nontrivial, we have taken k even.) Usirthe gluing axiom defines an
injection:

as summand g

. ~ Kk ov(k
iy 1 (C?)®F = _®1Vi = <_®1Vi> ® Veomplement — V3. (®)
1= 1=
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This compositiori,, determines the inclusion of the computational qubits within the
modular functoﬂ/:,f}{. Observe in the calculation of line (9) below that the complementary
vectorv will evolve to different’ but this will be irrelevant to the measurement which is
made at the end of the computation. The reader familiar with [FKW] will notice that we
use here a dual approach. In that paper, we imbedded the modular functor into a larger
Hilbert space that is a tensor power; here we imbedded a tensor power into the modular
functor.

The action ofB(3) on D; yields 1-qubit gates, whereas two qubit gates will be
constructed using the action of the six strand braid grB(§) on D; ;. Supposing our
guantum computes; is in states, a givenv as above determines a staié) = sQu €
Vgc}c. Now suppose we wish to evolweby a 2-qubit gate € PU (4) acting unitarily on
C? ® C% and byid onC}, 1 # i or j. Using the gluing axiom (2) and the inclusion (5),
we may write

S=Zth®uh, (6)
h

where({z,} is a basis or partial basis fdf; ® V; = C2 ® (C? andu;, € ®4 ;C?,
Sos @ v = ) ,(th ® up) ® v. Decomposing along = 9D, j, we may writev =
a0 ® Bo + a2 ® B2, wherea, € V(D; ;j\(D; UDj),e ony),e = 0or2andg €
V(D\(U[#,’JD[ U D;j),e ony, and 0 onBD). Thus

s®v=Zth®uh®ao®ﬂo+zth®u11®012®/32~ ()
h h

An element ofB(6) applied to the 6 marked points i; U D; C D;; acts via a
representatiop® @ p2 =: p on VO(Dij, 6 pts & V2(D1-j, 6 pt9, where the superscript
denotes the label appearing when the surface is cut gorig particular B(6) acts
on each factor;, ® ag and#, ® a2 in (7). Noter;, ® ag belongs to the summand
of VO(D;;, 6 pty corresponding to boundary labels 60D;;\(D; U D;)) = 0,1, 1.
There is an additional 1-dimensional summand corresponding to boundary labels 0,3,3-
with 0,1,3 and 0,3,1 excluded by the triangle inequality (ii) in (3) above. Similarly
thn ® a2 belongs to the summand MZ(D,-j, 6 pt9 with boundary labels=2,1,1. There
are additional summands corresponding to (2,1,3), and (2,3,1) of dimensions 2 each.

Ideally we would find a braid = b(g) € B(6) so thatp®(b) (1, ® ag) = gtn ® o
andp?(b) (1, ® a2) = gty @ a. Then referring to (7) we easily check that

p(b)(s ®@v) =Y ((gth) @ up) @ v, (8)

h

i.e.p(b) implements the gatgon the state spack of our quantum computer. In practice
there are two issues: (i) we cannot control the phase of the output of ptleep?, and
(i) these outputs will be only approximations of the desired gafehe phase issue (i)
leads to a change of the complimentary veator> v" as follows as seen on lin@®)
below. This is harmless since ultimately we only measure the qubits.
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SQU=Y 5Ouao® Po+ Y 1 @up Qa2 ® B2
h h

| gate

,o(b)(s®v)=wothh ®uh®ao®ﬂo+w22gm®uh ®oa2® B2
h h

=) wogh ®u; ® a0 ® fo+ ) wagly @ up @2 ® B2
h h

= (8t ® up) ® (oo ® Po + w202 ® B2)
h

: Z(gth Qup) V. 9)
h

The approximation issue is addressed by Theorem 2.1 below.

Theorem 2.1. Thereis a constant C > 0 so that for any positive ¢ and for all unitary
g: CZ®C% — C? @ CF, thereisabraid by of length < / in the generators o; and their

inverseso; 1,1 <i <n—1, sothat:

lwop®(br) — g @ idl + |lw2p?(b)) — g ® idall < (10)
for some unit complex numbers (phases) w;, i = 0, 2 whenever ¢ satisfies
I <C-(log(1/e))* fork > 2. (11)

We us€|| || to denote the operator norms and the subscripig amdicate the dimension
of the orthogonal component in which we are tryimg to act.

Proof. The main work in proving Theorem 2.1 is to show that the closure of the image
of the representatiop : B(6) — U(5) x U(8) contains SW5) x SU(8). Once this is
accomplished the estimate (10) follows with some exponrei2t from what is called

the Solovay-Kitaev theorem [So, Ki2, KSV]. This is a rapid effective approximation
theorem originally established in $2) with an exponent- 2 but in the last reference
proved in SUn) for all n, with same exponetit> 2. Also by [KSV] there is a log(1/¢)

time classical algorithm which can be used to construct the approximatingihrasch
word in {o;} and{o; Y}, O

The actionp (b) “approximately” executes the gageon Sy but not in the usual sense
of approximation since the image of the state spa@g (i, (Sx)) is only approximately
i (Sx). Thisimpression in the location of the computational qubits within a larger Hilbert
space can be called “smearing”. We convert this “smearing of qubits” to errors of the type
usually considered in the fault tolerant literature. After eaghapproximately executed

k
by p(b) we measure the labels arour[dlaD,- to project the new statg(b)(s ® v)
1=

into the forms’ ® v/, s’ € S, with probability 1— O(€?), |s' — s| < O(e). With
probability O(e?) the label measurement aroud; does not yield one; in this case
Vi(D;; 3 pts) = V4 = C2? has collapsed t&3 = C and it is as if a qubit has been
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“traced out” of our state space. More specifically, if the label 3 is measuredipn
we replaceV3(D;, its 3 marked pt3.with a freshly cooled qubivl(le, 3 pts) with
(say) a completely random initial state which we have been saving for such an occasion.
The reader may picture draggidg; off to the edge of the dislD and dragging the
ancillaeD’ in as its replacement (and then renamibigas D, .) The hypothesis that such
ancillae are available is discussed below. The error model of [AB] is precisely suited to
th|s situation; Aharanov and Ben-Or show in Chapter 8 that a calculation on the level
f “logical” qubits can be kept precisely on track with a probab|1:|=ty2 provided the
ubiquitous errors at the level of “physical” qubits are of n01:m(’)(e) (even if they
are systematic and not random) and the large errors (in our case tracing a qubit) have
probability also< O(e) for some threshold constant> 0. For this, and all other fault
tolerant models, entropy must be kept at bay by ensuring a “cold” stream of ancillary
|0)’s. In the context of our model we must now explain both the role of measurement
and ancilla.
Given any essential simple closed cupven a surface&, the gluing formula reads:

V(ZE) = ®iecV (Zeuw,, 1) (12)

S0 “measuring a label” means that we posit for everg Hermitian operatof,, with
eigenvalues distinguishing the summands of the r.h.s. of (12) above. For a more com-
prehensive computational study, we would wish to posit that tias length= L

then H,, can be computed in poly(L) time. For the present purpose we only need that
H,,y = dD; or 3D; ; can be computed in constant time. Beyond measuring labels,
we hypothesize that there is some way of probing the quantum state of the smallest
nontrivial building blocks in the theory. For us these are khgubits= V3, = C?,

1 <i < k, where the index refers to the qubit supported ;. Fix a basis{|0), |l>}

for V3 and posit for eactD;, 1 < i < k, with label 1 on its boundary, an observable
_°1> in the fixed
basis{|0), |1)} for that qubit. In concrete terms, this Pauli opera:tphas eigen vectors

|0) and|2), where 0 and 2 are the two possible labels which can appear on the simple
closed curvey; C D; which separates exactly two of the three punctures ffén The

Pauli matrixo! might be implemented by first fusing a pair of the puncture®jrand

then measurlng the resulting particle type. This then is our repertoire of measurement:
H, is used to “unsmear physical qubits” after each gate and théo read out the final

state (according to the usual “von Neumann” statistical postulate on measurement) after
the computation is completed.

In fault tolerant models of computation it is essential to have available a stream of
“freshly cooled” ancillary qubits. If these are present from the start of the computation,
even if untouched, they will decohere from errors in employing the identity operator.
In the physical realization of a quantum computer, unless stored zeros were extremely
stable there would have to be some device (inherently not unitary!) for resetting ancillae
to |0), e.g. a polarizing magnetic field. As a theoretical matter, unbounded computation
requires such resetting. As discussed near the beginning of this section, in a topological
model such a¥ () it is not unreasonable to postulate thait e V31 = VY(D;, 3 pts)
is stable if not involved in any gates. An alternative hypothesis is that there is some
mechanism outside the system analogous to the polarizing magnetic field above which
can “refrigerate” ancillae in the stali@ until they are to be used. We refer below to either
of these as the “fresh ancilli” hypothesis. To correct the novel qubit smearing errors, we
already encountered the need for ancilli which we took to be an easily maintained random

Hermitian operatos! : V3, — V4, which acts as the Pauli matré%
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statep = . Other uses of ancilli within fault tolerant schemes require a known

1

01

pure state0).
Let us now return to line (1). Ldd be the theoretical output of a quantum ciratiit

of (i.e. composition of) gates to be executed on the physical qubit level so as to fault-

tolerantly solve a problem instance of lengthVe assume the problem is BQP and

that the above composition has lengtipoly(n). Actually, due to error¢ will output a

completely positive trace preserving super-operétpcalled a physical operator. Now

simulateC in the modular functoV a gate at a time by a succession of braidings and

H,-measurements. With regard to parallelism (necessary in all fault tolerant schemes),

notice that disjoint 2 qubit gates can be performed simultaneously ifn D;/ ;; = ¢.

For example this can always be arranged in the linear QCM for gates acting in

andD; ;1 providedi + 1 # j, j +1# i, andi # j, and even this model is known to

be fault tolerant [AB]. From line (9), the complementary veata Veomplemen€Volves

probabilistically as the simulation progresses. Differgatwill occur as a tensor factor

in a growing number of probabilistically weighted terms. However, the varidus

factors are in the end inconsequential; they simply label a computational state (to be

observed with some probability) and are never read by the output measureijlents

We fix terminology and state the main theorems. QCM denotes the exact quantum
circuit model. It is known that a quantum circuit operating in the presence of certain
kinds of error can still simulate an exact QCM with only polylogrithmic cost in space
and time. The basic error model permits gate error of arbitrary stqg@rator norm (to
include identity gates) at some low rate, exgv 10~ per operation site, but demands
independence. This error model is enlarged (while retaining efficient simultability) in
two ways in [AB] which are important to use here. First (see line 2.6 [AB]), as long
as the probability of these arbitrary errors, which include tracing a qubit, is dominated
by the independent case along the “fault-path” correlatawagermitted. Second small
systematic errors are permitted everywhere in the model provided they are small enough,
e.g. unitaries may have systematic error of, again, about one partf 10

Let BQP denote the class of decision problems which can be solved with probability
> % by an exact quantum circuit designed by a classical algorithm in time pnly
where L is the length of the problem instandé. This same class can be solved in
poly-time by a (slightly) error-prone QC.

Let CS5 denote the model of computation described in this section. It is based on
the Chern-Simons theory of $2) at the fifth root of unityg = ¢27//5. We review
its structure here; a list of generating “braid gates” is given in Sect. 3. The functor
is the Hilbert spac6/31k, it containsk-qubits,i, : Sy — V?ilic and can be assigned a
standard initial state € i,(S;). The X-strand braid groum (3k) acts unitarily byp
on V31k and a classical poly-time algorithm converts a circliih the QCM to a word in
B(3k). Note that the braid group can be implemented in parallel (most of it generators
commute) in imitation of that essential feature of quantum circuits. The model has two
kinds of measurementd,, ando?, but only the later is allowed in the exact version
of the modelECS5. In CS5 we envision access to “fresh ancilli”, iIBCS5 there is
no need for these. The actigrib) of the braidh produces an evolution of ® ve V3
to a probabilistic mixture of states = o; ® v; with probability p;. Performingazi-
measurements ¥ i < k, then samples; and observes only the factor. Classical
poly (L)-time post-processing of theske observations can be permitted in the model
but equivalently this step can be folded back into the quantum circuit phase to make the
observation obzl on the first qubit the one and only read-out.
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Without error-correction no moddtCS5 included can compute for very long if
subjected errors of any constant size or probabiit9. However we explicitly assume
that CS5 faces the kinds of environmental error analyzed in [AB] in addition to its
intrinsic “gate errors” (from the approximate output of the Solovay—Kitaev theorem) and
gubit smearing errors inherent in the model. Specifically for some smald permit (1)
§-small systematic errors in each operam;‘h or identity and (2) a probability of large
environmental errors, which is dominated by the probability of independent individual
errors of probability< & each.

Theorem 2.2. Given a problem in BQP and an instance M of length L a classical
poly-time algorithm can convert the quantum circuit C for M into a braid be B(3k).
Implementing p(b) on V31k and measuring azl will correctly solve M with praobability

> %. The number of marked points to be braided space (= 3k) and the length of the
braiding exceed the size of the original circuit C by at most a multiplicative poly(log(L))
factor. Taken in triples, the points support represent the “ physical qubits’ of the [ AB]
fault tolerant model. Thus CS5 provides a model which efficiently and fault tolerantly
simulates the computations of QCM. We note that the use of label measurements H,
introduces non-unitary steps in the middle of our simulation. As usual the probability
% is independent w.r.t trials and so converges exponentially to 1 upon repetition of the
entire procedure.

Proof. The proofrelies heavily on Chapter 8 [AB]to reduce the QCMto alinear quantum
circuit (with state spacéy) stable under a very liberal error model — one permitting small
systematic errors plus rare large but uncorrelated qubit errors or trace over a qubit. In
the final statey = )_ p;y;, eachy, admits a tensor decomposition according to the
geometry:D = (U; D;) U (complemeny, but along the k boundary componetts D;

all choices of labels 1 or 3 may appeatr. In writifg= «; ® v; we must remember that
associated to is an elemenf!] € {1, 3}* which defines the subspafié-sector, of the
modular functor in whichy, lies. All occurrences of the label 3 correspond t0 gensor
factor,C = V3 = v3(D;, 3 pt9 C V(D;, 3 pt9 whereas the label 1 corresponds to a
C? factor. Thus in the [AB] framework each label 3 corresponds to a “lost” or according
to our replacement procedury «<— D’, a traced qubit. (Losing an occasional qubit
from the computational spacg is the price we pay to “unsmeasy, within the modular
functor.) Theorem 2.1 implies that for a braid Ieng-th(?(;lz) a qubit will be traced

with probability O (¢?) and if no qubit is lost the gate will be performed with erédge)

on pure states. Factoring a mixed state as a probabilistic combination of pure states and
passing the error estimate across the probabilities we see th&at=fo0 sufficiently
small, theO(¢) error bound holds with high probability on the obseryedThus for

¢ sufficiently small (estimateet 10~ [AB]), observinge; amounts to sampling from

an error prone implementation of the quantum cir€uithe error model is not entirely
random in that the approximation procedure used to consbrwsli have systematic
biases. This implies that th8(¢) errors introduced in the functioning of each gate are
not random and must be treated as “malicious”. The error model explained in Chapter 8
[AB] permits such small errors to be arbitrary as long as the large error, e.g. qubit losses,
occurs with a probability dominated by a small constant independent of the qubit and
the computational history. This is consistent with the assumptions oG $8anodel.

This completes the proof of Theorem 2.2 modulo the proof of the density Theorem 4.1.
O

We now turn to the exact variaBCS5, in which we assume that all the braid groups
act exactly (no error) on the modular functér The only difference in the algorithm
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for modeling the QCM inECSS is the simplification that/, measurements are not
performed in the middle of the simulation, but only at the very end, prior to reading out
the qubitsSy with o measurements.

Theorem 2.3. There is an efficient and strictly unitary simulation of QCM by ECS5.
Thus given a probleminstance M of length L in BQP, thereis a classical poly(L) time
algorithm for constructing a braid » as a word of length poly(L) in the generators
0;,1 <i < polyL). Let k beanother polynomial function of L. Applying b to a standard
initial state, Yintiar € VO(D, 3k), results in a state ysinal € VO(D, 3k), so that the
resultsof H,, on d D; followed by azi measurements on yinal correctly solve the problem

instance M with probability > 2.

Proof. In the quantum circui€ for M (implied by the problem lying in BQP) count the
numbern of gates to be applied. Use line (11) to approximate eachghiea braidb

of length! so that the operator norm errfdp (b) — g|| of the approximating gate will
be less thamn 1, for some fixedt > 0. The composition of. braids which gate-wise
simulate the quantum circuitintroduces an error on operator roemit follows that the
approximation of the desired unitary by the braid results gy so that the absolute
angle| < (Winar, ¥final)| < 2 arcsins. The application of our two measurement steps
will therefore return an answer nearly as reliable as the original quantum «ftctiie
probability o that the sequential measuremefis and ozl (which is defined if and
only if H, projects toV1(D, 3pts)) will give different results for¥snay and Wsing) is

< sin2arcsir§ < €. So with probability 1- p > 1 — e the final measuremef®) or
|1) will be the same in the quantum circditand theECS5 model. O

Remark. Theorem 2.2 and 2.3 are complementary. One provided additional fault toler-
ance — fault tolerance beyond what might be inherent in a topological model — but at
the cost of introducing intermediate non-unitary steps (i.e. measurements). The other es-
chews intermediate measurements and so gives a strictly unitary simulation, but cannot
confer additional fault tolerance. Itis an interesting open technical problem whether fault
tolerance and strict unitarity can be combined in a universal model of computation based
on topological modular functors. Looking ahead to a possible implementation, however,
intermediate measurements as in the fault tolerant model do not seem undesirable.

3. Jones Representation of the Braid Groups

ATMF gives afamily of representations of the braid groups and mapping class groups. In
this section, we identify the representations of the braid groups from the SU(2) modular
functor at primitive roots of unity with the irreducible sectors of the representation
discovered by Jones whose weighted trace gives the Jones polynomial of the closure
link of the braid [J1,J2]. To prove universality of the modular functor for quantum
computation, we only use this portion of the TMF. Therefore, we will focus on these
representations.

First let us describe the Jones representation of the braid groups explicitly following
[We]. To do so, we need first to describe the representation of the Temperley-Lieb-
Jones algebradg ,. Fix some integer > 3 andg = e Let [k] be the quantum

k —k
integer defined ag] = Qlﬁ‘}. Note thatf—k] = —[k], and[2] = q% + q%l. Then
q?—qT
B =121 = g+ G + 2 = 4cos*(Z). The algebrasig,, are the finite dimensional
C*-algebras generated by 1 and projectars - - , e¢,,_1 such that
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2
1. ef =¢;, ande] = ¢;,

-1
2. eiejr1e; = B e,
3. eiej =eje; if i —j|>2,

o0
and there exists a positive trage: UlAﬂ’n — Csuch thatr(xe,) = B~ 1tr(x) for all

n=

x € Agy.

Thg Jones representation A% ,, is the representation corresponding to the G.N.S.
construction with respect to the above trace. An important feature of the Jones rep-
resentation is that it splits as a direct sum of irreducible representations indexed by
some 2-row Young diagrams, which we will refer to setors. A Young diagram

A=1[A,..., A, A1 = A2 > --- > A, is called a(2, r) diagram ifs < 2 (at most
two rows) andry — A2 < r — 2. Let /\,(12") denote all(2, r) diagrams withn nodes.

Givenx € A% let TA(Z”) be all standard tableays} with shape\ satisfying the in-
ductive condition which is the analogue of (iii) in (3): whem —1, ... , 2, 1 are deleted
fromt one at a time, each tableau appeared is a tableau for @mgeYoung diagram.

The representation ofg , is a direct sum of irreducible representatioaﬁ’r) over all
(2, r) Young diagrams.. The representatiomk(z”) for a fixed(2, r) Young diagrant is
given as follows: IeV)\(Z’” be the complex vector space with bgsis ¢ € TA(Z”)}. Given

a generatoe; in the Temperley-Lieb—Jones algebra and a standard tablealt’,fz”).
Suppose appears it in row r1 and columrey, i + 1 in rowr, and columre,. Denote

byd,; =c1—co— (r1—r2), i = % andg, ; = \/a;;(1— ay;). They are both
non-negative real numbers and satisfy the equatjgn= “tzi + ,BIZJ.. Then we define

2
27 (e) (V1) = s + BriVg ). (13)

whereg; (¢) is the tableau obtained fromby switchingi andi + 1 if g; (¢) isin TA(Z”).

If g;(¢) is notin TA(Z”), thene, ; is 0 or 1 given by its defining formula. This can occur

in several cases. It follows tha;fz”) with respect to the basi®;} is a matrix consisting
of only 2 x 2 and 1x 1 blocks. Furthermore, thexd 1 blocks are either 0 or 1, and the

2 x 2 blocks are
ari Bri
(ﬂt.i 1- Olt,i) ' (14)

The identitye; ; = O‘zzi + ,3[21. implies that (14) is a projector. So all eigenvaluegof
are eitherOor1. ’
The Jones representation of the braid groups is defined by
ppn(0i) = q — (1+q)e. (15)
Combining (15) with the above representation of the Temperley—Lieb—Jones algebra,
we get Jones’ representation of the braid groups, denoted spl by
P By — Agn — U(WNg,),

where the dimensiog ,, = ZAEA(Z’” dimeZ”) grows asymptotically ag”.

When|q| = 1, as we have seen already, Jones’ representaggnis unitary. To
verify thatp(o;)p*(0;) = 1, notep*(0;) = g — (14 g)e;. So we havep(0;)p*(0;) =
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99 + L+ @)L+ @eief — (L+q)e; — (14 g)ef = 1. We use the fadt’ = ¢; and
el.2 = ¢; to cancel out the last 3 terms.
From the definitionpg , also splits as a direct sum of representations ¢2er)-
Young diagrams. A sector corresponding to a particular Young diagraithbe denoted
by Pxr,B,n-
Noﬁv we collect some properties about the Jones representation of the braid groups
into the following:

Theorem 3.1. (i) For each (2, r)-Young diagram 1, the representation p;, g, isirre-
ducible.

(i) The matrices py .. (0;) for i = 1, 2 generate an infinite subgroup of U(2) modulo
center for r #£ 3, 4, 6, 10.

(iif) Each matrix p; g, (07),1 <i <n —1, hasexactly two distinct eigenvalues —1, 4.

(iv) For the (2,5)-Young diagram . = [4, 2], n = 6, thetwo eigenvalues —1, ¢ of every
px.8,6(07) have multiplicity of 3 and 5 respectively.

The proofs of (i) and (ii) are in [J2]. For (iii), first note that the maipixg., (01) is a
diagonal matrix with respect to the basgis} with only two distinct eigenvalues1, g.

Now (iii) follows from the fact that all braid generatosg are conjugate to each other.
For (iv), simply check the explicit matrix fqu, g s(o1) at the end of this section.

Now we identify the sectors of the Jones representation with the representations of
the braid groups coming from the $2) Chern—Simons modular functor. The &)
Chern—-Simons modular funct@Sr of level » has been constructed several times in
the literature (for example, [RT, T, Wa, G]). Our construction of the modular functor
CSr is based on skein theory [KL]. The key ingredient is the substitute of Jones—Wenz|
idempotents for the intertwiners of the irreducible representations of quantum groups
[RT, T, Wa]. Thisis the same S@) modular functor as constructed using quantum groups
in [RT] (see [T]) which is regarded as a mathematical realization of the Witten—Chern—
Simons theory. All formulae we need for skein theory are summarized in Chapter 9 of

[KL] with appropriate admissible conditions. Fix aninteger 3.LetA = \/—_1~e*%,

ands = A2, andg = A%. (Note the confusion caused by notations. Thie [KL] is

A? which is ours here. But in Jones’ representation of the braid groups [I%,A%.

In all formulae in [KL], ¢ should be interpreted asin our notation.) The label set

of the modular functo€Sr will be {0, 1, ... , r — 2} and the involution is the identity.
We are interested in a unitary modular functor and the one in [G] is not unitary. We
claim that if we follow the same construction of [G] using our choiceiand endow

all state spaces of the modular functor with the following Hermitian inner product, the
resulting modular functo€Sr is unitary. The relevant Hilbert space structure has also
been constructed earlier by others (e.g. in [KS, KSVo]).

Given a surface:, a pants decomposition &f determines a basis ¢f(X): each
basis element is a tensor product of the basis elements of the constituent pants. The
desired inner products are determined by axi@i4) [Wa] if we specify an inner
product on each spadg;.. Our choice ofA makes all constant$(a) appearing in the
axiom (2.14) [Wa] positive. Consequently, positive definite Hermitian inner products
on all space¥/,,. determine a positive definite Hermitian inner productiofk). The
vector spacé/,;. of the three punctured spheRy,. is defined to be the skein space
of the diskD,;. enclosed by the seams of the punctured spligse. The numbering
of the three punctures induces a numbering of the three boundary “points” of the disk
D.pc labeled byla, b, c}. Suppose is a tangle onD,;. in the skein space 0D,
and letr be the tangle oD, obtained by reflecting the disk,;. through the first
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boundary point and the origin. Then the inner product, : Vape X Vape — Cis
as follows: given two tangles and¢ on D, their product(s, ¢);, is the Kauffman
bracket evaluation of the resulting diagram$fobtained by gluing the two disks with
s andr on them respectively, along their common boundaries with matching numberings.
Extending(, ), on the skein space d,,. linearly in the first coordinate and conjugate
linearly in the second coordinate, we obtain a positive definite Hermitian inner product
on V.. Itis also true that the mapping class groupoid actions in the basic data respect
this Hermitian product, and the fusion and scattering mattasds also preserve this
product. SACSr is indeed a unitary modular functor.

This modular functoiICSr defines representations of the central extension of the
mapping class groups of labeled extended surfaces, in particulasdfonctured disks
D) with all interior punctures labeled 1 and boundary labeledf m # 1, then the
mapping class group is the braid groBp. If m = 1, then the mapping class group is
the spherical braid groug B, +1 = M(0,n + 1). Recall that we suppress the issues
of framing and central extension as they are inessential in our discussion. Also the
representation of the mapping class groups coming fe@mwill be denoted simply by
Pr-
Theorem 3.2. Let D)} be as above.

(1) If m 4+ n iseven, and m # 1, then p, is equivalent to the irreducible sector of the

Jones representation p; g, for the'Young diagrama = [’"3”, #>=] up to phase.
(2) If nisodd, and m = 1, then the composition of p, with the natural map ¢ : B, —

SB,41 isequivalent to the irreducible sector of the Jones representation p; ., for

the Young diagram 2 = ["F2, “51] up to phase.

The equivalence of these two representations was first established in a non-unitary
version [Fu]. A computational proof of this theorem can be obtained following [Fu].
So we will be content with giving some examples foe= 5. To get a universal set of
gates using these matrices, all we need is to realize the Solovay-Kitaev theorem by an
algorithm for any prescribed precision [KSV, NC].

For the(2, 5) Young diagram.. = [2, 1], n = 3 with an appropriate ordering of the
basis:

-10
P2,11,8,3(01) = 04)

qzl —W[f]

— q+ q+ _ p

pr.1.p302) = | T 970 |, where quantunid] = ¢ + g + 1.
q+1 q+1

For the(2, 5) Young diagrant = [3, 3], n = 6, the representation is 5-dimensional.
With an appropriate ordering of the basis, we have:

q
£13,31,5,6(01) = -1 ,
q
q
g% g3
q+1 q+1
_gvB8 _ 1
q+1 q+ )
02) = 4q°  _gJ13l
£13,31,8,6(02) - il
_avB _ 1
q+1 q+1
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For the(2, 5) Young diagrank = [4, 2], n = 6, the representation is 8-dimensional.
Here the inductive condition on basis elements make one standard tableau illegal, so
the representation is not 9-dimensional as it would be¥ 5. This is the restriction
analogous tdiii) in (3) for the modular functor. With an appropriate ordering of the
basis:

p14,21,8.6(01) = _1

4. A Density Theorem
In this section, we prove the density theorem.

Theorem 4.1. Let p := p3,31 P p[4,2] - Bg — U(5) x U(8) bethe Jones representation

of Bg at the 5™ root of unity ¢ = ¢%". Then the closure of the image of p(Bg) in
U(5) x U(8) contains SU(5) x SU(8).

By Theorem 3.2, this is the same representatioa p°@® p2 : Bs — U(5) x U(8)in
the SU2) Chern—Simons modular functor at tHe ot of unity used in Sect. 2 to build a
universal quantum computer. In the following, a key fact used is that the image matrix of
each braid generator under the Jones representation has exactly two eigervalyes
whose ratio is not-1. This strong restriction allows us to identify both the closed image
and its representation.

Proof. First it suffices to show that the images @g 3) and pj4,2) contain SU5) and
SU(8), respectively. Supposing so, K = p(Bg) N (SUB) x SU(8)), then the two
projectionsp; : K — SU(5) and p2 : K — SU(8) are both surjective. Lel,
(respectivelyN;) be the kernel ofp1 (respectivelyp;). Then Ny (respectivelyNy)
can be identified as a normal subgroup of(SJJ(respectively Si@8)). By Goursat’s
Lemma (p. 54, [La]), the image & in SU(5)/N1 x SU(8)/N2 is the graph of some
isomorphism SB)/N1 = SU(8)/N2. As the only nontrivial normal subgroups of
SU(n) are finite groups, this is possible onlyWf = SU(5) andN»> = SU(8). Therefore,
K = SU(5) x SU(8).

The proofs of the density fauz 31 and pj4,27 are similar. So we prove both cases at
the same time and give separate argument for the more complicated gaseshen
necessary.

Let G be the closure of the image pfz 3; (Or ppa,2) in U(5) (or U(8)) which we
will try to identify. By Theorem 3.1, G is a compact subgroupsin) (m = 5 or 8
of positive dimension. Denote by the inducedn-dimensional faithful, irreducible
complex representation @f. The representatioW is faithful sinceG is a subgroup of
U(m). Let H be the identity component @¢f. What we actually show is that the derived
group ofH, Der(H) = [H, H], is actually SUWm). We will divide the proof into several
steps.

Claim 1. The restriction ofV to H is an isotypic representation, i.e. a direct sum of
several copies of a single irreducible representatioH of
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Proof. As G is compactV = @®pVp, whereP runs through some irreducible repre-
sentations off, andVp is the direct sum of all the copies &f contained inV. Since
H is a normal subgroup, and the braid generatgit®pologically generaté, theo;’s
permute transitively the isotypic componems [CR, Sect. 49]. If there is more than 1
such component, then soragacts nontrivially, so it must permute these blocksl

Now we need a linear algebra lemma:

Lemma4.2. Suppose W is a vector space with a direct sum decomposition W =
®!_;W;, and thereis alinear automorphism 7" suchthat 7 : W; — W;y11<i <n
cyclically. Then the product of any eigenvalue of 7 with any nt" root of unity is still an
eigenvalue of T'.

Proof. Choose a basis dV consisting of bases dV;,i = 1,2,... ,n. If k is not a
multiple of n, then t’* = 0, as all diagonal entries are 0 with respect to the above
basis. Le{};} be all eigenvalues df . (They may repeat.) Consider all values @f'tr =
> ™ (m = 1,2,...) which are sums ofnth powers of all eigenvalues df. These
sums ofn™ powers of(A;} are invariant if we simultaneously multiply all the eigenvalues
{r;} by ann' root of unityw: > (wd)™ =Y ™A™ = o™ > 1™ which is equal to
tr7™ =) 2, because whem is not a multiple ofz, they are both 0, and when is,
o™ = 1. These valuesTi" uniquely determine the eigenvaluesiafand therefore the
set of the eigenvalues @f is invariant under multiplication by amy" root of unity.

Back to Claim 1, if there is more than one isotypic component, then sgmal
have an orbit of length at least 2. It is impossible to have an orbit of length 3 or more by
the above lemma as this will lead to at least 3 eigenvalues. If the orbit is of length 2 and
asp(o;) has only two eigenvaludg, b}, by the lemma{—a, —b} are also eigenvalues.
It follows thata = —b which is impossible wheg #= —1. O

Claim 2. The restriction ofv to H is an irreducible representation.

Proof. By Claim 1,V |y has only one isotypic component.Wf ; is reducible, then the
isotypic componentis atensor prodigt Vo, whereVs is the irreducible representation

of H in the isotypic component arib is a trivial representation df with dimV, > 2.

If V1is 1-dimensional, thep(o;),i = 1, 2 generate a finite subgroup dfm) modulo
center which is excluded by Theorem 3.1. So we haveidim 2. Now we recall a fact

in representation theory: a representation of a groupG — GL(V) is irreducible

if and only if the imagep(G) of G generates the full matrix algebra EM). As V3

is an irreducible representation &f, the imageo (H) generates End1) ® id2, where

the subscript ofd indicate the tensor factor. As the elemest®iormalizeH, they also
normalize the subalgebra E{id) ® id2 in End(V1 ® V). Consequently they act as
automorphisms of the full matrix algebra En@). Any automorphism of a full matrix
algebra is a conjugation by a matrix, so the braid generatoast via conjugation (up

to a scalar multiple) as invertible matrices in EWg) ® id> modulo its centralizer. It

is not hard to see the centralizer of Eifg) ® id> in End(V1 ® V») is id1 ® End(V>).
Therefore, the braid generatersact via conjugation as invertible matrices in Eng) ®
End(V»), i.e. they preserve the tensor decomposition. This is impossible by the following
eigenvalue analysis. Consider a braid genergtdts imagep (o;) is a tensor product of
two matrices each of sizes at least 2. Sip¢e ) has only two eigenvalues, neither factor
matrix can have 3 or more eigenvalues. If both factor matrices have two eigenvalues, the
fact thatp (o;) has 2 eigenvalues in all implies that the ratio of these two eigenvalues
is +1 which is forbidden. If one factor matrix is trivial, ther(o;) acts trivially on this
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factor. As all braid generators are conjugate to each other, so the whole@wilipact
trivially on this factor which implies that’ is a reducible representation@f This case
cannot happen either, &sis an irreducible representation6f 0O

Claim 3. The derived group, DéH) = [H, H], of H is a semi-simple Lie group, and
the further restriction o¥ to Der(H) is still irreducible.

Proof. By Claim 2,V |y is a faithful, irreducible representation, gbis a reductive Lie
group [V, Theorem 3.16.3]. It follows that the derived groupghbis semi-simple. It also
follows that the derived group and the centerbfyenerateH . By Schur’'s lemma, the
center act by scalars. SOperx) is still irreducible.

Claim 4. Every outer automorphism of Dgi) has order 1, 2, or 3.

First we recall a simple fact in representation theory. i an irreducible represen-
tation of a product grougy1 x G2, thenV splits as an outer tensor product of irreducible
representations af;, i = 1, 2. The restriction oV to G1 has only one isotypic com-
ponent, and the restriction &f to G lies in the centralizer of the image 6f;. So the
representation splits.

Proof. It suffices to prove the same statement for the universal coverin¢f 0gy of
Der(H), as the automorphism group of Déf) is a subgroup of the automorphism
group of Def“(H).

For the 5-dimensional case: as 5 is a prime,"D@t) is a simple group. Any outer
automorphism of a simple Lie group is of order 1, 2, or 3. This follows from the fact that
any outer automorphism of a simple Lie group is an outer automorphism of its Dynkin
diagram together with the A-G classification of Dynkin diagrams [V].

For the 8-dimensional case, if D¥€(H) is a simple group, it can be handled as
above, so we need only to consider the split cases. If D& splits into two simple
factors, then one factor must be &) of all simply connected simple Lie groups, only
SU(2) has a 2-dimensional irreducible representation. So the outer automorphism group
is eitherZ, when both factors are SB), or the same as the outer automorphism group
of the other simple factor. Our claim holds. If there are three simple factors, they must
all be SU?2). The outer automorphism group is the permutation group on three letters
S3. Again our claim is true. O

Claim5. For each braid generatey, we can choose a corresponding elem#nying

in the derived group D€H ) which also has exactly two eigenvalues, whose ratio is not
+1. The multiplicity of each eigenvalue éf is the same as that of. (The choice of

g; is not unique, but its two eigenvalues have ratip

Proof. Since DetH) is still a normal subgroup of;, and the braid generatoss nor-
malize De(H), so they determine outer-automorphisms of @&r. By Claim 4, an
outer-automorphism of DéH) is of order 1, 2, or 3. Hencze,6 acts as an inner automor-
phism of DefH). By Schur’s lemma, eauiﬂ,.6 is the product of an element in D&f)
with a scalar, though the decomposition is not unique. Fix a choice for an eléiant
Der(H). Then it has exactly two desired eigenvalues.

To complete the proof of Theorem 4.1, we summarize our situation: we have a nontriv-
ial semi-simple group Dé&f (H) with anirreducible unitary representation. Furthermore,
it has a special elementwhose image under the representation has exactly two distinct
eigenvalues whose ratio is nfl.
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For the 5-dimensional case, DétH) is a simple Lie group. Going through the
list [MP] of pairs (G, @), whereG is a simply connected Lie group are a domi-
nant weight, the only possible 5-dimensional irreducible representations are as follows:
rank=1, (SU(2), 4w1), rank=2, (Sp(4), @) on p.52 of [MP], and rank=4(SU(5),
w;),i = 1,4 on p. 30. By examining the possible eigenvalues, we can exclude the first
two cases as follows: for the first case, suppasgare the two eigenvalues of the above
elementx in SU(2), then under the representatiomrdthe eigenvalues of the image.of
area’p’,i + j = 4, wherei and; both are non-negative integers. The only possibility
is two eigenvalues whose ratiodsl. For the second case, since 5 is an odd number, any
element in the image has a real eigenvalue. Other eigenvalues come in mutually recipro-
cal pairs. Again the only possibility is two eigenvalues whose ratiglisTherefore, the
only possible pair is the third case which gives B¢H) = SU(5). As V is a faithful
representation of D€H ), the image of DetH ) is the same as that of DE(H) which
is SU(5).

The 8-dimensional case fqi4 2 is similar. By [MP], we see the possible pairs
for simply connected simple groups di8U(2), 7w1), (SU(3), w1 + w2) on p. 26 of
[MP], (Spin(7), @3) on p. 40,(Sp(8), w1) on p.56,(Spin®), w;),i = 1,3,4 on p.
66 and(SU(8), m;), i = 1,7 on p. 36, where; is the fundamental weight. The same

eigenvalue analysis will exclude all but tIﬁSU(S), w,-) case. The proof follows the
same pattern as above with the following novelties. Case 2 is the adjoint representation
of SU(3), if the special element € SU(3) has eigenvaluegy, 8, y}, the image matrix

of x will have eigenvalue 1 with multiplicity 2 and all six pair-wise ratios{af 8, y},

so they aret1. For Case 4, recall thatifis an eigenvalue of a symplectic matrix, so is

1~ with the same multiplicity, thus there are candidates for the special elembat

all such elements have the property that the multiplicity for both eigenvalues is 4. Notice
by Theorem 3.1 (iv), the multiplicity of the two distinct eigenvaluepifw;) is 3 and 5,
respectively. Case 5is done just as Case 4. This excludes all the unwanted simple groups.
We have to consider also the product cases. For a product of two or three simple factors,
the same analysis of eigenvalues as at the end of the proof of Claim 2 excludes them.
Actually, there are only four cases here: @WUx SU(2), SU(2) x SU(4), SU(2) x Sp(4)

and SU2) x SU(2) x SU(2). This completes the proof of our density theoremm
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