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Atiyah’s Axioms of (2+1)-TQFT

(TQFT w/o excitation and anomaly)

A functor (V, 2): cat of surfaces-> Vect

Oriented closed surface Y > vector space V(Y)
Oriented 3-mfd X with oX=Y = vector Z(X)e V(0X)

o V0)=C

VY, U Y,) = V(Y)@ V(Y,)
V(-Y) =2 V'(Y)

Z(Y x 1)=Idyy,

Z(X Uy X3)=Z(X1)-Z(X,)



Chern-Simons (CS) TQFTs

Using path integral (Witten) or qguantum groups
(Reshetikhin-Turaev), for each level k

Zk()(S):f/4 e2nik cs(ADA

What is V,(Y)?
a typical vector looks like a 3-mfd X s.t. 0 X=Y
( M. Atiyah, G. Segal, V. Turaev, K. Walker,...)



Reshetikhin-Turaev (R-T) or physically
Witten-CS TQFTs do not satisfy the last
axiom due to framing anomaly.

Gluing of 3-manifolds along boundaries
does NOT correspond to the composition
of linear maps, only up to a scalar.
Hence reps of mapping class groups are
In general NOT linear, only projective.

But the Turaev-Viro (T-V) type TQFTs
e.g. the diagram TQFTs are such
examples.



Quantum Chern-Simons Theory

Topology

4-dim W+4
3-dim X3
2-dim  Y?
1-dim St
O-dim pt

Algebra

sighature € Z

invariant € ¢

vector spacee Category
category € 2-category
3-category or Lurie ?



Example of Diagrams TOQFTs

Z,-homology TQFT
Closed surface Y, V(Y)=C[H,(Y;Z,)]

Closed 3-manifold X, V(X)=2b-1(X)-1



Z,-homology TQFT

Closed surface Y, V(Y)=S(Y)/~
S(Y)=linear span of simple closed curves
=formal multicurves
Multicurve=simple

closed curve, i.e.,

) < _ 1/d u a collection of

Yo ;jISjOIn'[ simple closed
oops

Formal=finite linear
g g combination

Isotopy and d=1



(2+1)-Picture TQFTs
Given an oriented closed surface Y and de C\{0},

S(Y)=vector space generated by picturesin, e.g.
multicurves, oriented multicurves, trivalent graphs,
oriented trivalent graphs with colors

Let V(Y) be S(Y) modulo
1. d-isotopy (isotopy+trivial loop=d)

2. alocal relation (a relative formal picture
supported on the disk)



Some Local Relations

Fix 2n points on the boundary of the disk,
and D;=n disjoint arcs connecting the 2n
points, i=1,2,..., Catalan number

A local relation is a formal equation
Zi }\vi ¢ Di:O.

Quotient of S(Y) by a local relation: any vector In
S(Y), If restricted to some topological disk=the
local relation, Is set to O.



Jones-Wenzl| projectors p,
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Diagram (2+1)-TQFTs

Fix a level k=r-2> 1, p,,,=0 as the local relation
for a primitive 2rt" root of unity A, and d=-A2-A-2
Vdiag(Y)=S(Y)/~ is the modular functor space.

Thm: 1. Diagram TQFTs are T-V type TOQFTS defined
intrinsically, 1.e., without using triangulations.
2. Diagram TQFTs are quantum double or Drinfeld
centers of the Jones-Kauffman TQFTs
(Walker, Turaev)
3. Jones-Wenzl| projectors are unique essentially.



Jones-Kauffman (J-K) TQFTSs

‘hey are NOT the same as the R-T SU(2)
'QFTs, though closely related.

Perhaps should not be regarded as the math

realization of Witten-CS SU(2)-TQFTs.

They are not anomaly-free, so are not picture
TQFTs. Surfaces and 3-manifolds need to be
endowed with extra structures such as
Lagrangian subspaces and 2-framings,
respectively.



Skein Spaces

Let A be a primitive 4rth root of unity, X be an
oriented closed 3-manifold, S(X) be the vector
space of formal framed links.

Set K,(X)=S(X)/~, where ~
1. Regular d-isotopy of framed links, d=-A%-A-~
2. Kauffman bracket
3.Jones-Wenzl projectors p, ,=0
All three relations are used inside a 3-ball.



Kauffman Bracket

Theorem: K,(X)= C, but not canonically.

Overstrand counterclockwise rotated to the understrand, smooth two
sweptout regions---A, other two---A-1, independent of orientation

AN \/

Kauffman = A + A1l

Bracket \ m




J-K Modular functor V(Y)

Let Y be an oriented closed surface, and X
be an oriented 3-manifold such that 0 X=Y.

Set V,(Y:X)=K,(X)

Thm: dim V,(Y;X) Is iIndependent of X, but
no canonical identification of V,(Y;X)'s.



Extended Surfaces

 An extension of an oriented closed surface Y Is
a choice of a Lagrangian subspace A of H,(Y;R)

* Given an extended surface (Y;\), choose an
oriented 3-mfd X such that

ker (H,(Y;R)2H,(XR))=A,

Thm: V,(Y;X) can be canonically identified.
Denoted it as V,(Y;\)



Projective Reps of MCGs

Oriented closed surface Y,
f. Y=>Y orientation preserving diffeo.,
Its mapping cylinder M; gives rise to
Va(): VA(Y)DV,A(Y)
since 0 M=-Y LI 'Y, hence
Z(M: )e V,A(-Y UY)
= V*¥A(Y)@ V(YY) = Hom(VA(Y),Va(Y))



Jones-Kauffman and Diagram TQFTs

Thm: LetY be an oriented closed surface,
and A4=1 primitive root of unity, d=-A2-A

then:
1. K, (Yx )=Vdag(y)

2. KA(Yx D=End(VA(Y))



Diagram TQFTs

Given a spherical tensor category ¢, there is a procedure

to construct a T-V type TQFT using triangulations. But
the known literature seems inadequate.

The intrinsic diagram approach generalizes using
colored trivalent graphs.

Theorem: T-V type TQFTs are well-defined for unimodal
ribbon fusion categories (Turaev)

Theorem: Drinfeld center Z(¢) or quantum double of a
spherical category ¢ is modular (M. Mueger)

Conjecture: R-T TQFT from Drinfeld center Z(¢) is the
same as T-V from ¢.



Asymptotic Faithfulness

Thm: Any infinite direct sum of Jones
Kauffman TQFT representations faithfully
represents the mapping class groups of
oriented closed surfaces modulo center

l.e. for every non-central h in the MCG of an
oriented closed surface, there is an integer ry(h)
such that for any r>ry(h), and any primitive 4rt
root of unity A, the operator V,(h) is not the
identity projectively. (Freedman, Walker, W. )



|deas of Proof

Y oriented closed surface, h: Y=Y orientation
preserving diffeo., and V,(h): VA(Y)2V(Y) the
J-K rep. Suppose there exists an unoriented ssc
a In 'Y such that h(a) is not isotopic to a as a set,
then V,(h) is identity for at most finitely many r's.

* Let a, b be two non-trivial, non-isotopic sccs on
an oriented closed surface Y. Then there exists
a pants decomposition of Y such that a is a
decomposing curve and b a non-trivial graph
geodesic (Ie no turn-backs wrt pants curves).




Topological Phase(=State) of Matter

e A quantum system whose low energy
effective theory is described by a TOFT

e Some features:
1) Ground states degeneracy
2) No continuous evolution

3) Energy gap



Anyons=Simple Objects of MTCs

Elementary excitations (called quasi-
particles or particles) in atopological
guantum system are anyons.

In general the vector space V(Y)
describes the ground states of a
guantum system on Y, and the rep of
the mapping class groups describes
the evolutions.




Invariant for Anyon Trajectories

O\ p V(D21:314,a1)
P A

Each line is labeled by an anyon. Topological
Invariant=amplitude of the quantum process.

time

V(D?, a,,a,,a83,8,)



Doubled Topological Phases

Kitaev’s toric code:

V —T2
P
V:e ¢2’ Av_ee st(v )G othersId
B,= Id.,

p eeap others

HZZ:V (I_Av) +Zp(|_Bp)



Toric code exactly solvable

A, B, all commute with each other
Ground states are = €4, ie 4-fold degenerate
Gapped In the thermodynamic limit: A -\ > ¢>0

Excitations are mutual anyons



Fault-tolerant

The embedding of the ground states
¢2a C2 (2 qubitsz ¢*) — V=, (2

IS an error correction code. Information
encoded In the ground states Is protected.

Conjecture: True for all picture TQFTs



Topological Computation

Computation Physics
- =
output \ / measure=fusion
- L -
apply operators / braid anyons
~
L - =B -
initialize /L create

\5 anyons

(2+1)-TQFT in Nature=Topological State of Matter




Topological guantum computing

* Topological phases of matter “are”
guantum computers, and form the
foundation for building a scalable
universal quantum computer.

« “Electrons”— TOQFTs or UMTCs
— Quantum computers

29



Physical Conjectures

 Jones-Kauffman TQFTs are “realized” in
fractional quantum Hall liquids.

Experimental confirmation is making progress.

« Materials are designed to realize diagram
TQFTs e.qg. Kitaev’s toric code and Levin-Wen
model (=Hamiltonian formulaion of Turaev-Viro

type TQFTS.)



Topological Charge Measurement

e.g. FQH double point contact interferometer
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