Curve diagrams, two dimensional quantum processes and quantum computing

Zhenghan Wang Microsoft Station Q UC Santa Barbara Atiyah's Axioms of (2+1)-TQFT (TQFT w/o excitation and anomaly)

A functor (V, Z): cat of surfaces \rightarrow Vect

Oriented closed surface $Y \rightarrow$ vector space V(Y) Oriented 3-mfd X with $\partial X=Y \rightarrow$ vector Z(X) \in V(∂X)

- V(∅) ≅
- $V(Y_1 \sqcup Y_2) \cong V(Y_1) \otimes V(Y_2)$
- $V(-Y) \cong V^*(Y)$
- $Z(Y \times I) = Id_{V(Y)}$
- $Z(X_1 \cup_Y X_2) = Z(X_1) \cdot Z(X_2)$

Chern-Simons (CS) TQFTs

Using path integral (Witten) or quantum groups (Reshetikhin-Turaev), for each level k

$$Z_k(X^3) = \int_{\mathcal{A}} e^{2\pi i k \operatorname{cs}(A)} DA$$

What is V_k(Y)? a typical vector looks like a 3-mfd X s.t. ∂ X=Y (M. Atiyah, G. Segal, V. Turaev, K. Walker,...)

Reshetikhin-Turaev (R-T) or physically Witten-CS TQFTs do not satisfy the last axiom due to framing anomaly. Gluing of 3-manifolds along boundaries does NOT correspond to the composition of linear maps, only up to a scalar. Hence reps of mapping class groups are in general NOT linear, only projective.

But the Turaev-Viro (T-V) type TQFTs e.g. the diagram TQFTs are such examples.

Quantum Chern-Simons Theory

Topology Algebra

4-dim W^4 signature \in Z3-dimX³invariant \in C2-dimY²vector space \in Category1-dimS¹category \in 2-category0-dimpt3-category or Lurie ?

Example of Diagrams TQFTs

Z₂-homology TQFT

Closed surface Y, $V(Y)=C[H_1(Y;Z_2)]$

Closed 3-manifold X, $V(X)=2^{b_{-1}(X)-1}$

Z₂-homology TQFT Closed surface Y, V(Y)=S(Y)/~ S(Y)=linear span of simple closed curves =formal multicurves

isotopy and d=1

Formal=finite linear combination

Multicurve=simple closed curve, i.e., a collection of disjoint simple closed loops

(2+1)-Picture TQFTs

Given an oriented closed surface Y and $d \in C \{0\}$,

S(Y)=vector space generated by pictures in Y, e.g. multicurves, oriented multicurves, trivalent graphs, oriented trivalent graphs with colors

Let V(Y) be S(Y) modulo

- 1. d-isotopy (isotopy+trivial loop=d)
- 2. a local relation (a relative formal picture supported on the disk)

Some Local Relations

Fix 2n points on the boundary of the disk, and D_i=n disjoint arcs connecting the 2n points, i=1,2,..., Catalan number

A local relation is a formal equation

$\sum_{i} \lambda_{i} \cdot \mathbf{D}_{i} = \mathbf{0}.$

Quotient of S(Y) by a local relation: any vector in S(Y), if restricted to some topological disk=the local relation, is set to 0.

Jones-Wenzl projectors p

 $P_2 = \begin{vmatrix} -\frac{1}{d} & 0 \\ -\frac{1}{d} & 0 \end{vmatrix}$, P_2 generates a proper radical for d = 1, -1;

$$P_{3} = \left| \begin{array}{c} \left| \right| + \frac{1}{d^{2} - 1} \left(\begin{array}{c} \bigcup \\ \bigcap \end{array} + \begin{array}{c} \bigcup \\ \bigcap \end{array} \right) - \frac{d}{d^{2} - 1} \left(\begin{array}{c} \bigcup \\ \bigcap \end{array} + \begin{array}{c} \bigcup \\ \bigcap \end{array} \right) \right|$$

 p_3 generates a proprer radical for $d = \pm \sqrt{2}$, and d = 0;

$$+\frac{d^{2}}{d^{4}-3d^{2}+2} \quad \bigcirc \bigcup \\ \cap \bigcap \\ -\frac{d}{d^{4}-3d^{2}+2} \quad (\bigcirc \bigcup \\ \cap \\ -\frac{d}{d^{4}-3d^{2}+2} \quad (\bigcirc \bigcup \\ \cap \\ -\frac{d}{d^{4}-3d^{2}+2} \quad (\bigcirc \\ -\frac{d}{d^{4}-3d^{2}+2$$

Diagram (2+1)-TQFTs

Fix a level k=r-2 ≥ 1 , p_{k+1}=0 as the local relation for a primitive 2rth root of unity A, and d=-A²-A⁻² V^{diag}(Y)=S(Y)/~ is the modular functor space.

- Thm: 1. Diagram TQFTs are T-V type TQFTS defined intrinsically, i.e., without using triangulations.
 - Diagram TQFTs are quantum double or Drinfeld centers of the Jones-Kauffman TQFTs (Walker, Turaev)
 - 3. Jones-Wenzl projectors are unique essentially.

Jones-Kauffman (J-K) TQFTs

- They are NOT the same as the R-T SU(2) TQFTs, though closely related.
 Perhaps should not be regarded as the math realization of Witten-CS SU(2)-TQFTs.
- They are not anomaly-free, so are not picture TQFTs. Surfaces and 3-manifolds need to be endowed with extra structures such as Lagrangian subspaces and 2-framings, respectively.

Skein Spaces

Let A be a primitive 4rth root of unity, X be an oriented closed 3-manifold, S(X) be the vector space of formal framed links.

Set $K_A(X)=S(X)/\sim$, where ~

- 1. Regular d-isotopy of framed links, d=-A²-A⁻²
- 2. Kauffman bracket
- 3. Jones-Wenzl projectors p_{r-1}=0

All three relations are used inside a 3-ball.

Kauffman Bracket

Theorem: $K_A(X) \cong C$, but not canonically.

Overstrand counterclockwise rotated to the understrand, smooth two sweptout regions---A, other two---A⁻¹, independent of orientation

J-K Modular functor $V_A(Y)$

Let Y be an oriented closed surface, and X be an oriented 3-manifold such that ∂ X=Y.

Set $V_A(Y;X) = K_A(X)$

Thm: dim $V_A(Y;X)$ is independent of X, but no canonical identification of $V_A(Y;X)$'s.

Extended Surfaces

- An extension of an oriented closed surface Y is a choice of a Lagrangian subspace λ of H₁(Y;R)
- Given an extended surface (Y;λ), choose an oriented 3-mfd X such that ker (H₁(Y;R)→H₁(X;R))=λ,

Thm: $V_A(Y;X)$ can be canonically identified. Denoted it as $V_A(Y;\lambda)$

Projective Reps of MCGs

Oriented closed surface Y,

f: $Y \rightarrow Y$ orientation preserving diffeo.,

its mapping cylinder M_f gives rise to

 $V_{A}(f): V_{A}(Y) \rightarrow V_{A}(Y)$

since $\partial M_f = -Y \sqcup Y$, hence

 $Z(M_f) \in V_A(-Y \sqcup Y)$

 $\cong V^*{}_A(Y) {\otimes} V_A(Y) \cong Hom(V_A(Y), V_A(Y))$

Jones-Kauffman and Diagram TQFTs

- Thm: Let Y be an oriented closed surface, and A^{4r}=1 primitive root of unity, d=-A²-A⁻²
 - then: 1. $K_A(Y \times I)=V^{diag}(Y)$
 - 2. $K_A(Y \times I) = End(V_A(Y))$

Diagram TQFTs

- Given a spherical tensor category *C*, there is a procedure to construct a T-V type TQFT using triangulations. But the known literature seems inadequate.
- The intrinsic diagram approach generalizes using colored trivalent graphs.
- Theorem: T-V type TQFTs are well-defined for unimodal ribbon fusion categories (Turaev)
- Theorem: Drinfeld center Z(*C*) or quantum double of a spherical category *C* is modular (M. Mueger)
- Conjecture: R-T TQFT from Drinfeld center Z(*C*) is the same as T-V from *C*.

Asymptotic Faithfulness

Thm: Any infinite direct sum of Jones Kauffman TQFT representations faithfully represents the mapping class groups of oriented closed surfaces modulo center

i.e. for every non-central h in the MCG of an oriented closed surface, there is an integer $r_0(h)$ such that for any $r>r_0(h)$, and any primitive $4r^{th}$ root of unity A, the operator $V_A(h)$ is not the identity projectively. (Freedman, Walker, W.)

Ideas of Proof

- Y oriented closed surface, h: Y→Y orientation preserving diffeo., and V_A(h): V_A(Y)→V_A(Y) the J-K rep. Suppose there exists an unoriented ssc a in Y such that h(a) is not isotopic to a as a set, then V_A(h) is identity for at most finitely many r's.
- Let a, b be two non-trivial, non-isotopic sccs on an oriented closed surface Y. Then there exists a pants decomposition of Y such that a is a decomposing curve and b a non-trivial graph geodesic (ie no turn-backs wrt pants curves).

Topological Phase(=State) of Matter

- A quantum system whose low energy effective theory is described by a TQFT
- Some features:
- 1) Ground states degeneracy
- 2) No continuous evolution
- 3) Energy gap

Anyons=Simple Objects of MTCs

Elementary excitations (called quasiparticles or particles) in a topological quantum system are anyons.

In general the vector space V(Y) describes the ground states of a quantum system on Y, and the rep of the mapping class groups describes the evolutions.

Invariant for Anyon Trajectories

Each line is labeled by an anyon. Topological invariant=amplitude of the quantum process.

Doubled Topological Phases

Kitaev's toric code:

 $V =_{e} C^{2}, \qquad A_{v} =_{e \in st(v)} \sigma^{z}_{others} Id_{e},$ $B_{p} =_{e \in \partial p} \sigma^{x}_{others} Id_{e},$ $H = \sum_{v} (I - A_{v}) + \sum_{p} (I - B_{p})$

Toric code exactly solvable

- A_v , B_p all commute with each other
- Ground states are $\cong \mathbb{C}^4$, ie 4-fold degenerate
- Gapped in the thermodynamic limit: $\lambda_1 \lambda_0 \ge c > 0$
- Excitations are mutual anyons

Fault-tolerant

The embedding of the ground states

$$C^2 \oplus C^2$$
 (2 qubits $\cong C^4$) $\rightarrow V =_e C^2$

is an error correction code. Information encoded in the ground states is protected.

Conjecture: True for all picture TQFTs

Topological Computation

(2+1)-TQFT in Nature=Topological State of Matter

Topological quantum computing

- Topological phases of matter "are" quantum computers, and form the foundation for building a scalable universal quantum computer.
- "Electrons" \rightarrow TQFTs or UMTCs \rightarrow Quantum computers

Physical Conjectures

- Jones-Kauffman TQFTs are "realized" in fractional quantum Hall liquids.
 Experimental confirmation is making progress.
- Materials are designed to realize diagram TQFTs e.g. Kitaev's toric code and Levin-Wen model (=Hamiltonian formulaion of Turaev-Viro type TQFTs.)

Topological Charge Measurement

e.g. FQH double point contact interferometer

References

- A Magnetic model with a possible CS phase (Freedman)
- On (2+1)-picture TQFTs (Freedman, Nayak, Walker, and W.)
- A class of P,T invariant topological phases of interacting electrons (Freedman, Nayak, Shentgel, Walker and W.)
- Quantum SU(2) faithfully detects MCGS modulo center (Freedman, Walker, W.)
- Topological quantum computation (W., CBMS book April, 2010?)

