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            Quantum Information Science: 

 

---Storage, processing and communicating  

                   information using quantum systems. 

 

Four important results in QIS: 

 

1. Shor's poly-time factoring algorithm (1994) 

 

2. Error-correcting code,  and fault-tolerant quantum 

     computing  (Shor, Stean, 1996) 

 

3. Security of private key exchange (BB84 protocol) 

 

4. A Counterexample to Additivity of Minimum 

Output Entropy (Hastings, 2009) 

 

 



●  Classical information source is modeled by a random 

      variable  X 

 

The bit---a random variable X {0,1} with equal probability.   

                Physically it is a switch 

 

  IX(p)= - i=1
n pi log2 pi ,      

 

●  A state of a quantum system is an information source 

 

The qubit---a quantum system whose states given by  

                    non-zero vectors in C2 up to non-zero scalars.   

                    Physically it is a 2-level quantum system. 

 

Paradox:  A qubit contains both more and less than 1 bit of 

                  information. 

 

           The average amount information of a qubit is 
𝟏

𝟐𝒍𝒏𝟐
. 
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A computing problem is given by a family of  

           Boolean maps {0,1}n       {0,1}m(n) 

 

Name: Factoring 

Instance: an integer N>0 

Question: Find the largest prime factor of N 

 

Encode N as a bit string of length=n log2 N, 

the factoring problem is a family of Boolean 

functions fn: {0,1}n       {0,1}m(n): 

 

          e.g. n=4,     f4(1111)=101  

 
 



How a quantum computer works 

  Given a Boolean map f: {0,1}n       {0,1}n,  

  for any x{0,1}n,   represent x as a basis  

   |x>(C2) n, then find a unitary matrix  U so 

that U (|x>) = |f(x)>.     

 

|x> 

|f(x)> 

Basis of (C2) n is 

in1-1correspondence 

with n-bit strings or 

0,1,…,2n-1 



Problems: 

●  x, f(x) does not have same  # of bits 

●  f(x) is not reversible 

● The final state is a linear combination 

● … 

●  Not every Ux is physically possible 

 



Universal Gate Set 

     Fix a collection of unitary matrices (called gates) and use 
only compositions of local unitaries from gates, e.g. 
standard gate set 

 

              z
1/4 =  1   0                           H=2-1/2   1  1 

                          0 e i/4                                      1 -1 

 

                               1  0  0  0            |00>     |00> 

           CNOT=       0 1   0  0             |01>     |01> 

                               0  0   0 1            |10>     |11> 

                               0  0  1  0            |11>     |10> 

 

                              C2 C2      C2  C2 

Hadamard 



The class BQP (bounded error quantum polynomial-time) 

Fix a physical universal gate set 

 

A computing problem fn: {0,1}n     {0,1}m(n)   is in BQP  if 

 

1)  there exists a classical algorithm of time poly (n) (i.e. a 

Turing machine) that computes a function x     Dx,  

where x {0,1}n,  and Dx encodes a poly(n)-qubit circuit Ux.  

 

2)  when the state Ux|0 0> is measured in the standard 

basis {|i1 ip(n)>},  the probability to observe the value 

fn(x) for any x {0,1}n is at least  ¾. 

 
Remarks:   

 

    1) Any function that can be computed by a QC can be computed  by a TM. 

 

    2) Any function can be efficiently computed by a TM can be 

         computed efficiently by a QC,  i.e. BPP BQP 
 



 

Factoring is in BQP (Shor's algorithm), but not known in 

    FP (although Primality is in P). 

 

Given an n bit integer N 2n 

 

Classically ~ ec n1/3 poly (log n) 

Quantum mechanically ~ n2 poly (log n) 

For N=2500, classically  billion years 

Quantum computer  a few days 

Pspace 

NP P 

BQP 

♪ ☻ 
Ф? 



Can we build a large scale universal QC? 

 

The obstacle is mistakes and errors (decoherence) 

 

Error correction by simple redundancy 

0    000, 1   111 

Not available due to the  No-cloning theorem: 

 

The cloning map |> |0>       |>|> is not linear. 

 

Fault-tolerant quantum computation shows if hardware can 

be built up to the accuracy threshold ~10-4, then a scalable 

QC can be built. 

 

                         Possible Solution---TOPOLOGY 

 



History 

• 1997  

    M. Freedman, (2+1)-Topological quantum field 

                           theory (TQFT) computing model 

    A. Kitaev,  fault-tolerant QC by anyons 

• 2000,  Freedman, Kitaev, Larsen, Wang  

    Two ideas lead to  the same model, and  

     equivalent to the standard QCM 

• TQFTs found in real systems would be 

inherently fault-tolerant quantum computers 

 



Topological Quantum Computing 

• TQC is an implementation of fault-tolerant 

quantum computation at hardware level 

(vs traditional quantum computation at 

software level) 

 

• Non-abelian topological phases of 

matter (=topological quantum field 

theories in Nature) are the hardware. 



(2+1)-TQFTs in Nature 

• FQHE  

   1980 Integral Quantum Hall Effect (QHE)---von Klitzing 

                                                                        (1985 Nobel)  

    1982   Fractional QHE---Stormer, Tsui, Gossard at ν=1/3 

                     (1998 Nobel for Stormer, Tsui and Laughlin)  

    1987  Non-abelian FQHE???---R. Willet  et al at ν=5/2 

    (All are more or less Witten-Chern-Simons TQFTs) 

 

• Topological superconductors p+ip  (Ising TQFT) 

• Engineered topological materials (ISH) 



Classical Hall effect 

     On a new action of the magnet on electric currents 

     Am. J. Math. Vol. 2, No. 3, 287—292 

                                                                  E. H. Hall, 1879 

 

  “It must be carefully remembered, that the mechanical 

force which urges a conductor carrying a current across 

the lines of magnetic force, acts, not on the electric 

current, but on the conductor which carries it…” 

            Maxwell, Electricity and Magnetism  Vol. II, p.144 

 

                                                                          



These experimental data, available to the public 3 years 

before the discovery of the quantum Hall effect, contain 

already all information of this new quantum effect so that 

everyone had the chance to make a discovery that led to the 

Nobel Prize in Physics 1985. The unexpected finding in the 

night of 4./5.2.1980 was the fact, that the plateau values in 

the Hall resistance x-y are not influenced by the amount of 

localized electrons and can be expressed with high precision 

by the equation 𝑅𝐻 = 
ℎ

𝑒2 

New Method for High-Accuracy Determination of 

the Fine-Structure Constant Based on Quantized 

Hall Resistance,   

            K. v. Klitzing, G. Dorda and M. Pepper 

                        Phys. Rev. Lett. 45, 494 (1980). 

Birth of Integer Quantum Hall Effect 



 

In 1998, Laughlin, Stormer, and Tsui  

are awarded the Nobel Prize 

 

“ for their discovery of a new form 

of quantum fluid with fractionally 

charged excitations.” 

D. Tsui enclosed the distance between B=0 and the 

position of the last IQHE between two fingers of 

one hand and measured the position of the new 

feature in this unit.  He determined it to be three 

and exclaimed, “quarks!”                  H.  Stormer 

The FQHE is fascinating for a long list of reasons, 

but it is important, in my view, primarily for one:  It 

established experimentally that both particles 

carrying an exact fraction of the electron charge e  

and powerful gauge forces between these particles, 

two central postulates of the standard model of 

elementary particles, can arise spontaneously as 

emergent phenomena.                        R. Laughlin 

       Fractional Quantum Hall Effect 

D. C. Tsui, H. L. Stormer, and A. C. Gossard 

Phys. Rev. Lett. 48, 1559 (1982) 



                 FQHE States?    80 

1/3   1/5   1/7   1/9   2/11   2/13   2/15   2/17   3/19   5/21   6/23   6/25 

2/3   2/5   2/7   2/9   3/11   3/13   4/15   3/17   4/19  10/21 

4/3   3/5   3/7   4/9   4/11   4/13   7/15   4/17   5/19    

5/3   4/5   4/7   5/9   5/11   5/13   8/15   5/17   9/19 

7/3   6/5   5/7   7/9   6/11   6/13  11/15  6/17  10/19 

8/3   7/5   9/7  11/9  7/11   7/13  22/15  8/17    

        8/5 10/7  13/9  8/11 10/13  23/15  9/17 

      11/5 12/7  25/9 16/11 20/13 

      12/5 16/7          17/11 

              19/7                                                               

       m/5, m=14,16, 19                                                                    Pan et al (2008) 

 5/2 

 7/2 

19/8 

=
𝑁𝑒

𝑁
 

filling factor or fraction 

𝑁𝑒  = # of electrons 

𝑁 =# of flux quanta 

How to model the quantum 

state(s) at a filling fraction? 

 

What are the electrons doing 

at a plateau? 



Fractional Quantum Hall Liquids 

N electrons in a plane bound to the interface between two 

semiconductors immersed in a perpendicular magnetic field 

Fundamental Hamiltonian:  

H =1
𝑁 

1

2𝑚
  [𝛻𝑗−q A(𝑧𝑗)] 2 +𝑉𝑏𝑔(𝑧𝑗)} + 𝑗<𝑘V(𝑧𝑗-𝑧𝑘) 

 
Ideal Hamiltonian:    

H=1
𝑁

1

2𝑚
  [𝛻𝑗−q A(𝑧𝑗)] 2 } + ?,  e.g.  𝑗<𝑘 (𝑧𝑗-𝑧𝑘) 𝑧𝑗 position of j-th electron 

Classes of ground state wave functions that 

have similar properties or no phase 

transitions as N     (N  1011 𝑐𝑚−2) 

 

Interaction is dynamical entanglement and 

quantum order is materialized entanglement 



Laughlin wave function for =1/3 
Laughlin 1983 

Good trial wavefunction for N electrons at zi in ground state 

                                            Gaussian 

  𝟏/𝟑= i<j(zi-zj)
3 e-i|zi|

2/4 

  

Physical Theorem: 

1. Laughlin state is incompressible: density and gap in limit (Laughlin 83) 

2. Elementary excitations have charge e/3 (Laughlin 83) 

3. Elementary excitations are abelian anyons (Arovas-Schrieffer-Wilczek 84) 

 

Experimental Confirmation: 

 

1. and 2.  , but  3. ?, thus Laughlin wave function is a good model 

 
 



Quasi-particles=Anyons 

Quasi-holes/particles in =1/3 are abelian anyons 

 

 
   e/3 e/3   

                                  e i/3   

 𝟏/𝟑= k(𝟎-zj)
3  i<j(zi-zj)

3  e-i|zi|
2/4 

 

= k(𝟏-zj)
 k(𝟐-zj)  k(𝟑-zj)

  i<j(zi-zj)
3  e-i|zi|

2/4 

n anyons at well-separated 𝑖, i=1,2,.., n, 

there is a unique ground state 



Moore-Read or Pfaffian State 
G. Moore, N. Read 1991 

           Pfaffian wave function (MR w/  charge sector) 

     𝟏/𝟐=Pf(1/(zi-zj)) i<j(zi-zj)
2  e-i|zi|

2/4 

 
                 Pfaffian of a 2n2n anti-symmetric matrix M=(𝑎𝑖𝑗) is 

               𝑛 =n! Pf (M) d𝑥1d𝑥2…d𝑥2𝑛  if =𝑖<𝑗 𝑎𝑖𝑗 d𝑥𝑖 d𝑥𝑗 

 

Physical Theorem: 

 

1. Pfaffian state is gapped 

2. Elementary excitations are non-abelian anyons, called Ising anyon   

                                                                                             ……   Read 09 



Enigma of =5/2 FQHE 

    R. Willett et al discovered =5/2 in1987 

• Moore-Read State, Wen 1991 

• Greiter-Wilczek-Wen 1991 

• Nayak-Wilczek 1996 

• Morf 1998 

• …   

     MR (maybe some variation) is a good trial state for 5/2                                         

• Bonderson, Gurarie, Nayak 2011,                                    Willett et al, PRL 59 1987 

    A landmark (physical) proof for the MR state 

   “Now we eagerly await the next great step: experimental 

     confirmation.”                                                  ---Wilczek 

Experimental confirmation of 5/2: 

gap and charge e/4  , but  non-abelian anyons ??? 

 

 



Topological Phases 

  Given a quantum theory H on a surface Y 

with Hilbert space 𝐿𝑌 ⨁Vi(Y), 

   where Vi(Y) has energy 𝜆𝑖 , and V0(Y) is the 

groundstate manifold  

 

   Assume energy gap  (𝜆1- 𝜆0 ≥ 0), 

                  Y     V0(Y) is well-defined 



TQFT as Effective Theory 

   A theory H is topological if the functor  

  surface Y    V(Y) (GS manifold) is a TQFT. 

 
Rm:  H is the Hamiltonian for all degrees of freedom.  Restricted to the topological 

degrees of freedom, the effective Hamiltonian is constant (or 0). 

 

Physical Thm:  Topological properties of abelian bosonic FQH liquids are 

modeled by Witten-Chern-Simons theories with abelian gauge groups 𝑇𝑛. 

 

Conjecture: NA statistics sectors of FQH liquids at =2+
𝑘

𝑘+2
 are modeled by   

 𝑆𝑈(2)𝑘-WCS theories.  k=1,2,3,4, = 
7

3
, 

5

2
, 

13

5
, 

8

3
.  (Read-Rezayi).   5/2  



   Atiyah’s Axioms of (2+1)-TQFT 
        (TQFT w/o excitations and anomaly) 

 

  A functor (V,Z): category of surfaces Vec 

               (Hilbert spaces for unitary TQFTs) 

  Oriented closed surface  Y   vector space V(Y) 

  Oriented 3-mfd X with X=Y  vector Z(X)V(X) 

 

●  V()  C 

●  V(Y1  Y2)  V(Y1)V(Y2)        𝑿𝟏        𝑿𝟐 

●  V(-Y)  V*(Y) 

●   Z(Y I)=IdV(Y)                                 

●   Z(X1YX2)=Z(X1)   Z(X2)         Z(𝑿𝟏)    Z(𝑿𝟐)  

 

  



Topological Phases of Matter 

• Gapped quantum phases of matter at T=0 with 

topological order (physics) 

• Phases of matter whose low energy physics modeled by 

TQFTs (math) 

• Gapped quantum phases whose groundstates are 

quantum error-correction codes (information science) 

 

Phases of matter of many interacting constituents such 

as electrons,  characterized by entanglement rather 

than by thermal energy (classical states of matter) 

 



Anyons=Elementary Excitations 

Elementary excitations in topological 

phases of matter are predicted to be 

anyons (with physical proof and 

experimental evidences) 

 

Quasi-particles in 2D (space) whose 

statistics given by unitary matrices not +1 

(bosons) or -1 (fermions)  

 

 



(Extended) TQFT Models Anyons 

     Put a theory H on a closed surface Y with anyons a1, a2, …, an at 

1,…,n  (punctures),  the (relative) ground states of the system 

“outside” 1,…,n is a Hilbert space V(Y; a1, a2, …, an). 

     For anyons in a surface w/ boundaries (e.g. a disk),  the 

boundaries need conditions.  

 

         

 

    Stable boundary conditions correspond to anyon types (labels, 

super-selection sectors, topological charges).  Moreover, each 

puncture (anyon) needs a tangent direction, so anyon is 

modeled by a small arrow (combed point), not just a point. 

 ● ● ● ● ● ● ● ● 

 

label l 



Non-abelian Anyons 

Given n anyons of type x in a disk D, their ground state degeneracy  

                              dim(V(D,x,…,x))=𝐷𝑛𝑑𝑛 
The asymptotic growth rate d is called the quantum dimension. 

 
An anyon d=1 is called an abelian anyon, e.g. Laughlin anyon, d=1 

An anyon with d >1 is an non-abelian anyon, e.g. the Ising anyon , d= 2. 

For n even, 𝐷𝑛=
1

2
 2

𝑛

2 with fixed boundary conditions,   

       n odd,  𝐷𝑛=2
𝑛−1

2 .   (Nayak-Wilczek 96) 

 

Degeneracy for non-abelian anyons in a disk grows exponentially with # of 

anyons, while for an abelian anyon, no degeneracy---it is always 1. 

  



Non-abelian Statistics 

If the ground state is not unique, and has 
a basis 1, 2, …, k  

  

Then after braiding some particles: 

        
1
       a111+a122+…+ak1k 

        
2
       a121+a222+…+ak2k   

              ……. 

              : Bn             U(k),   

   when k>1, non-abelian anyons.            

     

 



initialize create  

anyons 

applying gates 

  
braiding particles 

readout 

 

fusion 

Computation Physics 

    How Do We Compute: Circuits=Braids 

     Freedman 97, Kitaev 97, FKW 00, FLW 00 



What Do We Compute:  
Approximation of Link Invariants 

time 

Each line is labeled by an anyon.  Topological 

invariant=amplitude of the quantum process. 

V(D2, a1,a2,a3,a4) 

V(D2,a4,a1) 

T 



                     How To Implement Shor’s Algorithm 
                   For n qubits,  consider the 4n Fibonacci anyons 

             : B4n         U(𝑭𝟒𝒏−𝟐),  𝑭𝟒𝒏−𝟐---4n-2 Fib number 

 

                                   ●● ●● ●● ●● ●● ●● 

 

 

                 Given a quantum circuit on n qubits 

 

                        UL: (C2)n             (C2)n 

 

       Topological compiling:   find a braid bB4n so that the  

        following commutes for any UL:  

 

                                 (C2)n        𝑽𝟒𝒏                  𝑽𝟒𝒏-gs of 4n anyons 

 

 

                                 (C2)n        𝑽𝟒𝒏 

     

  UL (b) 



Mathematical Theorems 

Theorem 1 (FKW):  Any unitary TQFT can be efficiently simulated by the 
quantum circuit model.  

  

    There are efficient additive approximation algorithms of quantum 
invariants by the quantum circuit model. 

 

Theorem 2 (FLW):  Anyonic quantum computers based on SU(2)-Chern-
Simons theory at level k are braiding universal except k=1,2,4.   

 

  The approximation of Jones poly of links at the (k+2)th root of unity 
(k1,2,4) is a BQ(F)P-complete problem. 

 

   Exact or FPRS approximation of Jones poly of links at the (k+2)th root 
of unity (k1,2,4) is P-hard.  (Vertigan 05, Kuperberg 09) 



Math Questions 

• Classify TQFTs or modular categories 

• Conjecture:  Fix the rank, there are only 

finitely many isomorphism classes of MCs 

 

• When an anyon leads to universal QC 

• Conjecture: only if the square of its 

quantum dimension is an integer 



Physics Questions 

• What is the microscopic mechanism of 

topological phases 

 

• What are the experimental signatures of non-

abelian statistics 

 

Can we have a smoking-gun experiment for 

non-abelian anyons w/o building a small 

TQC? (which will be a large scale TQC!) 

 



Information Questions 

• What is the architecture of TQCs? 

 

• How to program TQCs? 

 

• Braiding gates form the machine 

language, are there higher order 

languages? 

 



Future Directions 

• Topological orders in (3+1)-dimension 

 

• Topological orders for fermions or anyons 

 

• Topological order with symmetries 

 

• Topological order at finite temperature 



      Are we close to building a TQC? 

Hard: 

 

Little correlation between anyons 

and local measurement  

 

Extreme conditions 

 

Are we stupid?  We have to build a 

small topological quantum computer 

to confirm non-abelian anyons 

Freedman, Nayak, Das Sarma, 2005 

Halperin-Stern 06 

Bonderson-Kitaev-Shtengel 06 

   Willett reported data 09 

   Heiblum data on neutral mode 

   Spin polarization? 

 

 

Math Phys 

CS 

TQC   
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