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Outline

« Modeling of fractional quantum Hall liquids
* Theory of topological phases of matter

« Topological guantum computation



Classical Hall effect

On a new action of the magnet on electric currents
Am. J. Math. Vol. 2, No. 3, 287—292
E. H. Hall, 1879

“It must be carefully remembered, that the mechanical
force which urges a conductor carrying a current across
the lines of magnetic force, acts, not on the electric
current, but on the conductor which carries it..."

Maxwell, Electricity and Magnetism Vol. Il, p.144



Birth of Integer Quantum Hall Effect

Hall Effect

Edwin H. Hall (1879)
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New Method for High-Accuracy Determination of
the Fine-Structure Constant Based on Quantized
Hall Resistance,
K. v. Klitzing, G. Dorda and M. Pepper
Phys. Rev. Lett. 45, 494 (1980).

These experimental data, available to the public 3 years
before the discovery of the quantum Hall effect, contain
already all information of this new quantum effect so that
everyone had the chance to make a discovery that led to the
Nobel Prize in Physics 1985. The unexpected finding in the
night of 4./5.2.1980 was the fact, that the plateau values in
the Hall resistance x-y are not influenced by the amount of
localized electrons and can be expressed with high precision

by the equation Ry = _

ve?



Fractional Quantum Hall Effect

D. Tsui enclosed the distance between B=0 and the
position of the last IQHE between two fingers of
one hand and measured the position of the new
feature in this unit. He determined it to be three
and exclaimed, “quarks!” H. Stormer

The FQHE is fascinating for a long list of reasons,
but it is important, in my view, primarily for one: It
established experimentally that both particles
carrying an exact fraction of the electron charge e
and powerful gauge forces between these patrticles,
two central postulates of the standard model of
elementary particles, can arise spontaneously as
emergent phenomena. R. Laughlin
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In 1998, Laughlin, Stormer, and Tsui
are awarded the Nobel Prize

“for their discovery of a new form
of quantum fluid with fractionally
charged excitations.”

D. C. Tsui, H. L. Stormer, and A. C. Gossard
Phys. Rev. Lett. 48, 1559 (1982)



How Many Fractions Have Been Observed? ~80

Magnetic field (T)

1/3 1/5 1/7 1/9 2/11 2/13 2/15 2/17
213 2/5 2/7 2/9 3/11 3/13 4/15 3/17
4/3 3/5 3/7 4/9 4/11 4/13 7/15 4/17
5/3 4/5 4/7 5/9 5/11 5/13 8/15 5/17
7/3 6/5 5/7 7/9 6/11 6/13 11/15 6/17
8/3 7/5 9/7 11/9 7/11 7/13 22/15 8/17

8/5 10/7 13/9 8/11 10/13 23/15 9/17

11/5 12/7 25/9 16/11 20/13

12/5 16/7 17/11

19/7
m/5, m=14,16, 19

filling factor or fraction
V= N, =# of electrons
0] Ng, =# of flux quanta

How to model the quantum
state(s) at a filling fraction?

What are the electrons doing
at a plateau?

3/19 5/21 6/23 6/25

4/19 10/21
5/19
9/19
10/19
5/2
7/2
19/8

Pan et al (2008)



Fractional Quantum Hall Liquids

N electrons in a plane bound to the interface between two
semiconductors immersed in a perpendicular magnetic field

- o= h Classes of ground state wave functions that
have similar properties or no phase
transitions as N—o (N ~ 101! cm™2)
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AL ALK Interaction is dynamical entanglement and
o SRR el guantum order is materialized entanglement

Fundamental Hamiltonian:
1
H=x," 5 VA A(Z)] % +Vpg(2)} + Zj<iV(2j-21)

|deal Hamiltonian:
szlN{ﬁ [|7]—q A(Zj)] 2 } + ?, e.g. Zj<k S(Zj-Zk) Z; position of j-th electron



Laughlin wave function for v=1/3
Laughlin 1983

Good trial wavefunction for N electrons at z; in ground state

Gaussian
&
5. X2
¥1/3=I1(2-2)° e Xkl

Physical Theorem:

1. Laughlin state is incompressible: density and gap in limit (Laughlin 83)
2. Elementary excitations have charge e/3 (Laughlin 83)
3. Elementary excitations are abelian anyons (Arovas-Schrieffer-Wilczek 84)

Experimental Confirmation:

1.and 2., but 3. ?, thus Laughlin wave function is a good model



Excitations=Anyons

Quasi-holes/particles in v=1/3 are abelian anyons

| ,;y&»--»-f . e/3 e/3 \

¥1/3=I1k(Mo-z)° I1(z-2)° a-Zilzil?/4
=Hk(n1'zj) Hk(nZ'Zj) Hk(nB'Zj) Hi<j(zi'zj)3 e'zi|2i|2/4

n anyons at well-separated n;, i=1,2,.., n, _
there is a unique ground state \I’ en 1/3
— b4



Moore-Read or Pfafflan State
G. Moore, N. Read 1991

Pfaffian wave function (MR w/ ~ charge sector)
— _ 732 a-2ilz 24
Y1 ,2=Pf(1/(z;-2))) I1;<(z;-2))* e =il
Pfaffian of a 2nx2n anti-symmetric matrix M=(a;;) is
o™ =n! Pf (M) dxl/\dxz/\.../\dxzn if (D:zi<]’ Clij dxi/\ dX]
Physical Theorem:

1. Pfaffian state is gapped
2. Elementary excitations are non-abelian anyons, called Ising anyon o
...... Read 09



Non-abelian Anyons in Pfaffian State

i)(n-zj))

i Zj

e 1-gh: Pf ((n_z
o Z-th Pf((nl_Zi)(nz_Zj)z_tz(hl_zj) (nz_zi))

(N1—z)(N2=z) (Ns~z;) (n4—zj)+(i<—>j))

ZL'_Zj

*  4-gh: Ppy234=Pf(

P(13,24]s Pl14,23]-
There is one linear relation among the three. (Nayak-Wilczek 96)

Anyons w/ degeneracy in the plane are non-abelian anyons.



Enigma of v=5/2 FQHE

R. Willett et al discovered v=5/2 in1987
 Moore-Read State, Wen 1991
» Greiter-Wilczek-Wen 1991
« Nayak-Wilczek 1996
 Morf 1998

R, (hfe)

R, (k)

MR (maybe some variation) is a good trial state for 5/2
« Bonderson, Gurarie, Nayak 2011, Willett et al, PRL 59 1987
A landmark (physical) proof for the MR state
“‘Now we eagerly await the next great step: experimental

confirmation.” ---Wilczek
Experimental confirmation of 5/2:
gap and charge e/4 V, but non-abelian anyons ???



Wave functions of bosonic FQH liquids

Chirality:

Y(z,,...,Zy) IS a polynomial (Ignore Gaussian)
Statistics:

symmetric=anti-symmetric divided by I1;;(z;-z))

Translation invariant:
Y(z,*c,...,zy*+C) = ¥(z4,...,z\) foranyc
Filling fraction:

v=lim -, where N, is max degree of any z

"0



Pattern of zeros

joint work with X.-G. Wen

W.F. {¥(z,,...,zy)} “vanish” at certain powers {S_} when a
particles are brought together, a=1,2,...:

S,=min{2? i;}---minimal total degrees of a variables.

Morally, {S_.} = ideal wave function = ideal Hamiltonian

These powers {S_} should be consistent to represent the
same local physics of the quantum phase, and encode
many topological properties of the FQH state.



Conformal field theory examples

Laughlin: S_=ga(a-1)/2, v=1/q
Pfafflan: S_=a(a-1)/2-[a/2], v=1 bosonic

In a CFT, if V. Is chosen as the electron
operator and a conformal block as a W.F.

If V,=(V.)? has scaling dimension h,, then
S,= h-ah;



Classification of FQH states

Find necessary and sufficient conditions for patterns of zeros
a) to be realized by polynomials
b) to represent a topological phase

Thm (Wen, W.) If translation inv. symm. polys. {¥(z,)} satisfy UFC and nCF for n, then
1) Set m=S,,,-S,, mn even, and v=n/m

2) S,.p-S,-S,= 0

3) Sasbrc-Sasb-Spec-Scra +Sa +Sp +Sc 2 0

4) S,, even

5) 2S5,=0 mod n

6) S, =S, kS, +kma+k(k-1)mn/2

Further works with Y. Lu and Z. Wang show pattern of zeros is not complete,
though many topological properties can be derived from pattern of zeros.

More complete data use vertex operator algebra.
Puzzle: Need toimpose S, ic-Saib-SpicScsa +S4 S, +S,. to be EVEN!



Theory of Topological Phases of Matter

* Low energy effective theory is a topological quantum
field theory (TQFT)

* Quantum information characterization

1) error correction codes
Kitaev, Freedman, Bravyi-Hastings-Michalakis

2) long range entanglement
Kitaev-Preskill, Levin-Wen



Sensitivity to Topology

Given a theory H, i.e. a Hamiltonian schema, and a surface
Y,putHon Y. Let V(Y) be its ground state manifold,

(ground state (GS) manifold=Hilbert space of GSs.
Degenerate if Dim GS manifold > 1)

e.g. “Laughlin w.f.”s on T# consist of classical 0-functions,
which form a 3-dimensional Hilbert space.

So Laughlin theory has a 3-fold degeneracy on torus (39 on
genus g surface.)

Ground state degeneracy depends on topology.



TQFT as Effective Theory

A theory H is topological if the functor
Surface Y- V(Y) (GS manifold) is a TQFT.

Rm: H is the Hamiltonian for all degrees of freedom. Restricted to the topological
degrees of freedom, the effective Hamiltonian is constant (or 0).

Physical Thm: Topological properties of abelian bosonic FQH liquids are
modeled by Witten-Chern-Simons theories with abelian gauge groups T™.

Conjecture: NA statistics sectors of FQH liquids at v:2+£ are modeled by

SU(2),-WCS theories. k=1,2,3,4, v=_,2 L 2 (Read-Rezayi). 5/2

3'2 53



Atiyah’s Axioms of (2+1)-TQFT

(TQFT w/o excitations and anomaly)

A functor (V,2): category of surfaces—> Vec

(Hilbert spaces for unitary TQFTS)

Oriented closed surface Y > vector space V(Y)
Oriented 3-mfd X with 0X=Y = vector Z(X)eV(0X)

V(D) =C
VY, UY,)=V(Y)®V(Y,) X; X,

Z(YX I):IdV(Y) /'* \

Z(X U X)=Z(X)) o Z(Xy)  Z(Xq)  Z(X)




Modeling Anyons

Put atheory H on a closed surface Y with anyons a,, a,, ..., a, at
Ny---M, (PUNctures), the (relative) ground states of the system
“outside” n,,...,n, Is a Hilbert space V(Y; a;, a,, ..., a,).

For anyons in a surface w/ boundaries (e.g. a disk), the
boundaries need conditions.

Stable boundary conditions correspond to anyon types (labels,
super-selection sectors, topological charges). Moreover, each
puncture (anyon) needs a tangent direction, so anyon is
modeled by a small arrow, not a point. Topological twist:

~

label |

0; #1 in general




Non-abelian Anyons

Given n anyons of type x in a disk D, their ground state degeneracy

dim(V(D,x,....x))=D,, ~d"
The asymptotic growth rate d is called the quantum dimension.

An anyon d=1 is called an abelian anyon, e.g. Laughlin anyon, d=1
An anyon with d >1 is an non-abelian anyon, e.qg. the Ising anyon o, d=v/2.

For n even, Dn:% 22 with fixed boundary conditions,

n—1

nodd, D,=2 2. (Nayak-Wilczek 96)

Degeneracy for non-abelian anyons in a disk grows exponentially with # of
anyons, while for an abelian anyon, no degeneracy---it is always 1.



(Extended) TQFT Axioms

Moore-Seiberg, Walker, Turaev,...

Let L={a,b,c,...d} be the labels (particle types), a » a*, and a**=a,
0 (or 1) =trivial type

)
Disk Axiom:;

V(D?; a)=0if a= 0, C if a=0

Annulus Axiom: @

V(A: a,b)=0 if a= b*, C if a=b*

Gluing Axiom:
V(Y; I) = 6_Dx&ZL V(Ycut; I’X’x*)




Algebraic Structure of Anyons

L={a,b,c,...d} alabel setand P,;, . a pair of pants labeled by a,b,c.
Ngp c=dim V(Pgy ), then Ny, . Is the fusion rule of the theory.

a®b=@Ngy, .C &

a b

Every orientable surface Y can be cut into disks D, annuli A, and pairs of pants.
If V(D), V(A), V(Pgy ) are known, then V(Y) is determined by the gluing axiom.

Conversely a TQFT can be constructed from V(Y) of disk, annulus and pair of
pants. Need consistent conditions: a modular tensor category

Unitary modular categories (UMC) are algebraic data of unitary TQFTs
and algebraic theories of anyons: anyon=simple object, fusion=tensor product,
statistics of anyons are representations of the mapping class groups.



Rank < 5 Unitary Modular Categories

joint work w/ E. Rowell and R. Stong

A
Trivial
A NA 2
Semion Fib
BU
A NA 8 | NA 2
(U(1),3) Ising (SO(3),5)
BU
A 51A NA 4 | NA 2 | NA 3
Toric code (U(1),4) Fib x Semion (SO(3),7) DFib
BU BU BU

The ith-row is the classification of all rank=i unitary modular tensor categories.
Middle symbol: fusion rule. Upper left corner: A=abelian theoy, NA=non-
abelian. Upper right corner number=the number of distinct theories. Lower
left corner BU=there is a universal braiding anyon.




Code Subspace Property

Conjecture: H: I/ = V- Is a topological theory on a lattice I
(graph in a surface Y), where Vi =®_.r C™ for some m,
then GS(H) < V- Is an error correction code.

If true, then local operators do not act on the ground states

For some k, all k-local operators Oy: V- -» V- the following
composition is Aeld for some scalar A (possibly 0),

GS(H) c Vi == V- GS(H)

GS manifolds are fault-tolerant qguantum memory.



Kitaev’'s Toric Code

H=Y, (I-A,) +2,(1-B,)

P

Vz@edges o
Av:®68v o’ ®others' Ide’

Bp:®68p c* ®others Ide’



GS Manifolds as Quantum Memory

« Thm: Ifa TQFT is from a Drinfeld center (or quantum
double), then GS manifolds of the Levin-Wen
model/Kitaev model are error correction codes.

e Chiral theories (those with anomaly)? Open
Including all WCS theories so FQH states
a) a holographic solution by Walker-W.
b) local degrees of freedom might be infinite.

Topological phases of matter exist in both real systems
(FQHE) and theories, what are they good for?



Topological Quantum Computation
Freedman 97, Kitaev 97, FKW 00, FLW 00

Computation Physics

readout < \ / > fusion

-»> a» -» L\
applying gates / braiding particles
z
a» - 4P [/

initialize / N\ /T create




Mathematical Theorems

Theorem 1 (FKW): Any unitary TQFT can be efficiently simulated by the
guantum circuit model.

There are efficient additive approximation algorithms of quantum
invariants by the quantum circuit model.

Theorem 2 (FLW): Anyonic quantum computers based on SU(2)-Chern-
Simons theory at level k are braiding universal except k=1,2,4.

The approximation of Jones poly of links at the (k+2)t" root of unity
(k#1,2,4) is a BQ(F)P-complete problem.

Estimation of braid closure is DQC1l-complete for k=3 (Shor-Jordan 07)

Exact or FPRAS approximation of Jones poly of links at the (k+2)th root
of unity (k#1,2,4) is #P-hard. (Vertigan 05, Kuperberg 09)



Density Theorem
In 1981, Jones proved that psy2) k1(By) Is Infinite
If k# 1,2,4 n=23 or k=8, n>4 (k=r-2).
and asked:

What are the closed images of pgy2) k1(Bn)?

Theorem (FLW 02):
Always contain SU if k= 1,2,4, n>3 or k=8, n>4.

Others are finite groups which can be identified (using the
classification of simple groups for all SU(n) theories).



FQHE at v=5/2 w/ = charge sector
The effective theory Is Ising TQFT

(Fradkin-Nayak-Tsvelik-Wilczek 98)

IsSing=M(3,4) minimal model 1

or y
_SU(2),

= coset

=TL at 4t" root

Particle types are {1,o0,y} G o

Fusion rules:

1---ground state f/ftl\“

y---Majarona fermion o= 1+\|f1

c---Ising anyon 2~
y=1,
CY=yo=G /.



Ising Quantum Computer

4 Ising o’s in a disk is C?-qubit. 6 ¢’s C4-2 qubits.
For 1-qubit gates, p: B, = U(2)
For 2-qubits gates, p: By = U(4)




Ising Braiding Gates

\/ > e i/8 < 1 0 >
\ 0O i
\ o il8 (1-)/2  (1+1)/2
K <(1+i)/2 (1-1)/2
G, G,% G, 0,

5| e

7T ;
NOT Gate 5 -gate cannot be realized
CNOT can be realized




Fibonacci TQFT (FQHE at v=12/57)
G, level=1 CFT, c=14/5 mod 8

Particle types:

Quantum dimensions:

Fusion rules:

Braiding: ? Y

Twist:

Q

{1,7}, 7---Fib anyon

{1,0}, d=golden ratio
=11



Fibonacci Quantum Computer
for n qubits, consider the 4n Fibonacci anyons

p: By, — U(F4n_2), Fgn_2---4n-2 Fib number

<. 00 o0 oo ..>

Given a quantum circuit on n qubits

UL: (C2)®n : (C2)®n

Topological compiling: find a braid beB,, so that the
following commutes for any U, :

(C® 5 V4, V4,-9s of 4n anyons

u, l Jp<b)

(C2)®n —> V4n



Universal Braiding Gates

 Ising anyon o does not lead to universal braiding gates,
but Fib anyon t does

« Quantum dimension of Ising anyon ¢ has quantum
dimension=v'2, while Fib anyon t has quantum
dimension ¢=(v/5+1)/2---golden ratio

« Given an anyon type X, when does it lead to universal
braiding gate sets ?

Related: Can a NA-anyon has its own local Hilbert
space---an explicit locality of TQFT? No! Someway?



Yang-Baxterizable Anyon

joint work w/ E. Rowell

Conjecture: An anyon type x does not lead to
universal braiding gates

If and only if its quantum dimension d, is 4/q for some integer g

If and only it is Yang-Baxterizable:

there is a unitary R-matrix R such that the rep V,, ,, of the n-strand
braid group B,, from x is Yang-Baxterized by R for all n in the sense:

LetV, , = @ V,x1, then
> mn,x,l Vn,x,lE Vn,R

for some m,, ,;, and V, p-the rep of B, from R-matrix R



Are we close to confirm non-abelian anyons?

Quasiparticle interferometer
For an odd number of

. quasiholes on an antidot, Challen g in 0:

we have no interferencel

i I
//j /"‘ Ogy X 11]| 1 |1_)§ N n Odd
i

Little correlation between anyons and

| local measurement
The interference pattern for

an even number of
quasiholes is

Extreme conditions
aez o i 4 [t + (=12t |t cos (:i | n%). 1 6ven

Can we do better? We have to build a
This even-odd effect is drastically different from the Abelian case! small tOpO'OgiC&' quantum Computer to
confirm non-abelian anyons

Freedman, Nayak, Das Sarma, 2005

Halperin-Stern 06

Bonderson-Kitaev-Shtengel 06 A
Willett reported data 09 “
Heiblum data on neutral mode v
Spin polarization?
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