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• Modeling of fractional quantum Hall liquids 

 

• Theory of topological phases of matter 

 

• Topological quantum computation 



Classical Hall effect 

     On a new action of the magnet on electric currents 

     Am. J. Math. Vol. 2, No. 3, 287—292 

                                                                  E. H. Hall, 1879 

 

  “It must be carefully remembered, that the mechanical 

force which urges a conductor carrying a current across 

the lines of magnetic force, acts, not on the electric 

current, but on the conductor which carries it…” 

            Maxwell, Electricity and Magnetism  Vol. II, p.144 

 

                                                                          



These experimental data, available to the public 3 years 

before the discovery of the quantum Hall effect, contain 

already all information of this new quantum effect so that 

everyone had the chance to make a discovery that led to the 

Nobel Prize in Physics 1985. The unexpected finding in the 

night of 4./5.2.1980 was the fact, that the plateau values in 

the Hall resistance x-y are not influenced by the amount of 

localized electrons and can be expressed with high precision 

by the equation 𝑅𝐻 = 
ℎ

𝑒2 

New Method for High-Accuracy Determination of 

the Fine-Structure Constant Based on Quantized 

Hall Resistance,   

            K. v. Klitzing, G. Dorda and M. Pepper 

                        Phys. Rev. Lett. 45, 494 (1980). 

Birth of Integer Quantum Hall Effect 



 

In 1998, Laughlin, Stormer, and Tsui  

are awarded the Nobel Prize 

 

“ for their discovery of a new form 

of quantum fluid with fractionally 

charged excitations.” 

D. Tsui enclosed the distance between B=0 and the 

position of the last IQHE between two fingers of 

one hand and measured the position of the new 

feature in this unit.  He determined it to be three 

and exclaimed, “quarks!”                  H.  Stormer 

The FQHE is fascinating for a long list of reasons, 

but it is important, in my view, primarily for one:  It 

established experimentally that both particles 

carrying an exact fraction of the electron charge e  

and powerful gauge forces between these particles, 

two central postulates of the standard model of 

elementary particles, can arise spontaneously as 

emergent phenomena.                        R. Laughlin 

       Fractional Quantum Hall Effect 

D. C. Tsui, H. L. Stormer, and A. C. Gossard 

Phys. Rev. Lett. 48, 1559 (1982) 



 How Many Fractions Have Been Observed?    80 

1/3   1/5   1/7   1/9   2/11   2/13   2/15   2/17   3/19   5/21   6/23   6/25 

2/3   2/5   2/7   2/9   3/11   3/13   4/15   3/17   4/19  10/21 

4/3   3/5   3/7   4/9   4/11   4/13   7/15   4/17   5/19    

5/3   4/5   4/7   5/9   5/11   5/13   8/15   5/17   9/19 

7/3   6/5   5/7   7/9   6/11   6/13  11/15  6/17  10/19 

8/3   7/5   9/7  11/9  7/11   7/13  22/15  8/17    

        8/5 10/7  13/9  8/11 10/13  23/15  9/17 

      11/5 12/7  25/9 16/11 20/13 

      12/5 16/7          17/11 

              19/7                                                               

       m/5, m=14,16, 19                                                                    Pan et al (2008) 

 5/2 

 7/2 

19/8 

=
𝑁𝑒

𝑁
 

filling factor or fraction 

𝑁𝑒  = # of electrons 

𝑁 =# of flux quanta 

How to model the quantum 

state(s) at a filling fraction? 

 

What are the electrons doing 

at a plateau? 



Fractional Quantum Hall Liquids 

N electrons in a plane bound to the interface between two 

semiconductors immersed in a perpendicular magnetic field 

Fundamental Hamiltonian:  

H =1
𝑁 

1

2𝑚
  [𝛻𝑗−q A(𝑧𝑗)] 2 +𝑉𝑏𝑔(𝑧𝑗)} + 𝑗<𝑘V(𝑧𝑗-𝑧𝑘) 

 
Ideal Hamiltonian:    

H=1
𝑁

1

2𝑚
  [𝛻𝑗−q A(𝑧𝑗)] 2 } + ?,  e.g.  𝑗<𝑘 (𝑧𝑗-𝑧𝑘) 𝑧𝑗 position of j-th electron 

Classes of ground state wave functions that 

have similar properties or no phase 

transitions as N     (N  1011 𝑐𝑚−2) 

 

Interaction is dynamical entanglement and 

quantum order is materialized entanglement 



Laughlin wave function for =1/3 
Laughlin 1983 

Good trial wavefunction for N electrons at zi in ground state 

                                            Gaussian 

  𝟏/𝟑= i<j(zi-zj)
3 e-i|zi|

2/4 

  

Physical Theorem: 

1. Laughlin state is incompressible: density and gap in limit (Laughlin 83) 

2. Elementary excitations have charge e/3 (Laughlin 83) 

3. Elementary excitations are abelian anyons (Arovas-Schrieffer-Wilczek 84) 

 

Experimental Confirmation: 

 

1. and 2.  , but  3. ?, thus Laughlin wave function is a good model 

 
 



Excitations=Anyons 

Quasi-holes/particles in =1/3 are abelian anyons 

 

 
   e/3 e/3   

                                  e i/3   

 𝟏/𝟑= k(𝟎-zj)
3  i<j(zi-zj)

3  e-i|zi|
2/4 

 

= k(𝟏-zj)
 k(𝟐-zj)  k(𝟑-zj)

  i<j(zi-zj)
3  e-i|zi|

2/4 

n anyons at well-separated 𝑖, i=1,2,.., n, 

there is a unique ground state 



Moore-Read or Pfaffian State 
G. Moore, N. Read 1991 

           Pfaffian wave function (MR w/  charge sector) 

     𝟏/𝟐=Pf(1/(zi-zj)) i<j(zi-zj)
2  e-i|zi|

2/4 

 
                 Pfaffian of a 2n2n anti-symmetric matrix M=(𝑎𝑖𝑗) is 

               𝑛 =n! Pf (M) d𝑥1d𝑥2…d𝑥2𝑛  if =𝑖<𝑗 𝑎𝑖𝑗 d𝑥𝑖 d𝑥𝑗 

 

Physical Theorem: 

 

1. Pfaffian state is gapped 

2. Elementary excitations are non-abelian anyons, called Ising anyon   

                                                                                             ……   Read 09 



Non-abelian Anyons in Pfaffian State 

• 1-qh: Pf (
(−𝑧𝑖)(−𝑧𝑗)

𝑧𝑖−𝑧𝑗
) 

• 2-qh: Pf(
(1−𝑧𝑖)(2−𝑧𝑗) + (1−𝑧𝑗) (2−𝑧𝑖)

𝑧𝑖−𝑧𝑗
)   

• 4-qh: 𝑃[12,34]=Pf(
(1−𝑧𝑖)(2−𝑧𝑖) (3−𝑧𝑗) (4−𝑧𝑗)+(ij)

𝑧𝑖−𝑧𝑗
) 

              𝑃[13,24], 𝑃[14,23].   

 

   There is one linear relation among the three.  (Nayak-Wilczek 96) 

 

  Anyons w/ degeneracy in the plane are non-abelian anyons. 

 

 



Enigma of =5/2 FQHE 

    R. Willett et al discovered =5/2 in1987 

• Moore-Read State, Wen 1991 

• Greiter-Wilczek-Wen 1991 

• Nayak-Wilczek 1996 

• Morf 1998 

• …   

     MR (maybe some variation) is a good trial state for 5/2                                         

• Bonderson, Gurarie, Nayak 2011,                                    Willett et al, PRL 59 1987 

    A landmark (physical) proof for the MR state 

   “Now we eagerly await the next great step: experimental 

     confirmation.”                                                  ---Wilczek 

Experimental confirmation of 5/2: 

gap and charge e/4  , but  non-abelian anyons ??? 

 

 



Wave functions of bosonic FQH liquids  

• Chirality:   

    (z1,…,zN) is a polynomial (Ignore Gaussian) 

• Statistics:   

    symmetric=anti-symmetric divided by 𝑖<𝑗(zi-zj) 

• Translation invariant:  

    (z1+c,…,zN+c) = (z1,…,zN)  for any c 

• Filling fraction: 

   =lim 
𝑁

𝑁
, where 𝑁 is max degree of any zi 



Pattern of zeros 
joint work with X.-G. Wen 

  W.F. (z1,…,zN) “vanish” at certain powers {Sa} when a 

particles are brought together, a=1,2,…: 

                   (z1,…,zN)= cI Z
I, I=(i1,…,iN),  

    Sa=min{a ij}---minimal total degrees of a variables. 

 

   Morally, {Sa}  ideal wave function  ideal Hamiltonian 

 

    These powers {Sa} should be consistent to represent the 

same local physics of the quantum phase, and encode 

many topological properties of the FQH state. 



Conformal field theory examples 

       Laughlin:  Sa=qa(a-1)/2, =1/q 

       Pfaffian:   Sa=a(a-1)/2-[a/2], =1 bosonic 

 

   In a CFT,  if Ve is chosen as the electron 

operator and a conformal block as a W.F.  

 If Va=(Ve)
a  has scaling dimension ha,  then  

                         Sa=  ha-a h1
 

                           

 

 

       

          



Classification of FQH states 

Find necessary and sufficient conditions for patterns of zeros 
a) to be realized by polynomials 

b) to represent a topological phase 

 

Thm (Wen, W.)  If translation inv. symm. polys. {(zi)} satisfy UFC and nCF for n, then 

1) Set m=Sn+1-Sn, mn even, and =n/m 

2) Sa+b-Sa-Sb  0 

3) Sa+b+c-Sa+b-Sb+c-Sc+a +Sa +Sb +Sc  0 

4) S2a even 

5) 2Sn=0 mod n 

6) Sa+kn=Sa+kSn+kma+k(k-1)mn/2 

 

         Further works with Y. Lu and Z. Wang show pattern of zeros is not complete, 

though many topological properties can be derived from pattern of zeros.   

         More complete data use vertex operator algebra. 

    Puzzle:  Need to impose Sa+b+c-Sa+b-Sb+c-Sc+a +Sa +Sb +Sc  to be EVEN! 

 

 



Theory of Topological Phases of Matter 

• Low energy effective theory is a topological quantum 

field theory (TQFT) 

 

• Quantum information characterization  

 

   1) error correction codes  

      Kitaev, Freedman, Bravyi-Hastings-Michalakis 

 

   2) long range entanglement 

       Kitaev-Preskill, Levin-Wen 

 



Sensitivity to Topology 

Given a theory H, i.e. a Hamiltonian schema, and a surface 

Y, put H on Y.  Let V(Y) be its ground state manifold,  

(ground state (GS) manifold=Hilbert space of GSs.  

Degenerate if Dim GS manifold > 1) 

 

e.g. “Laughlin w.f.”s on 𝑇2 consist of classical -functions, 

which form a 3-dimensional Hilbert space.   

So Laughlin theory has a 3-fold degeneracy on torus (3𝑔 on 

genus g surface.) 

 

      Ground state degeneracy depends on topology. 

 

 



TQFT as Effective Theory 

   A theory H is topological if the functor  

  Surface Y    V(Y) (GS manifold) is a TQFT. 

 
Rm:  H is the Hamiltonian for all degrees of freedom.  Restricted to the topological 

degrees of freedom, the effective Hamiltonian is constant (or 0). 

 

Physical Thm:  Topological properties of abelian bosonic FQH liquids are 

modeled by Witten-Chern-Simons theories with abelian gauge groups 𝑇𝑛. 

 

Conjecture: NA statistics sectors of FQH liquids at =2+
𝑘

𝑘+2
 are modeled by   

 𝑆𝑈(2)𝑘-WCS theories.  k=1,2,3,4, = 
7

3
, 

5

2
, 

13

5
, 

8

3
.  (Read-Rezayi).   5/2  



   Atiyah’s Axioms of (2+1)-TQFT 
        (TQFT w/o excitations and anomaly) 

 

  A functor (V,Z): category of surfaces Vec 

               (Hilbert spaces for unitary TQFTs) 

  Oriented closed surface  Y   vector space V(Y) 

  Oriented 3-mfd X with X=Y  vector Z(X)V(X) 

 

●  V()  C 

●  V(Y1  Y2)  V(Y1)V(Y2)        𝑿𝟏        𝑿𝟐 

●  V(-Y)  V*(Y) 

●   Z(Y I)=IdV(Y)                                 

●   Z(X1YX2)=Z(X1)   Z(X2)         Z(𝑿𝟏)    Z(𝑿𝟐)  

 

  



Modeling Anyons 

     Put a theory H on a closed surface Y with anyons a1, a2, …, an at 

1,…,n  (punctures),  the (relative) ground states of the system 

“outside” 1,…,n is a Hilbert space V(Y; a1, a2, …, an). 

     For anyons in a surface w/ boundaries (e.g. a disk),  the 

boundaries need conditions.  

 

         

 

    Stable boundary conditions correspond to anyon types (labels, 

super-selection sectors, topological charges).  Moreover, each 

puncture (anyon) needs a tangent direction, so anyon is 

modeled by a small arrow, not a point.  Topological twist:  

 ● ● ● ● ● ● ● ● 

=𝑙 

label l 

𝑙 1 in general 



Non-abelian Anyons 

Given n anyons of type x in a disk D, their ground state degeneracy  

                              dim(V(D,x,…,x))=𝐷𝑛𝑑𝑛 
The asymptotic growth rate d is called the quantum dimension. 

 
An anyon d=1 is called an abelian anyon, e.g. Laughlin anyon, d=1 

An anyon with d >1 is an non-abelian anyon, e.g. the Ising anyon , d= 2. 

For n even, 𝐷𝑛=
1

2
 2

𝑛

2 with fixed boundary conditions,   

       n odd,  𝐷𝑛=2
𝑛−1

2 .   (Nayak-Wilczek 96) 

 

Degeneracy for non-abelian anyons in a disk grows exponentially with # of 

anyons, while for an abelian anyon, no degeneracy---it is always 1. 

  



(Extended) TQFT Axioms 
Moore-Seiberg, Walker, Turaev,… 

     Let L={a,b,c,…d}  be the labels (particle types), a    a*, and a**=a,  

      0 (or 1) =trivial type 

 

Disk Axiom:  

 V(D2; a)=0 if a 0, C if a=0 

 

Annulus Axiom: 

V(A; a,b)=0 if a b*, C if a=b* 

 

Gluing Axiom: 

V(Y; l)  𝑥𝐿 V(𝑌𝑐𝑢𝑡; l,x,𝑥∗) 

 

 

  

     

a 

a 
b 

x  𝑥∗ 



Algebraic Structure of Anyons 

L={a,b,c,…d}  a label set and 𝑃𝑎𝑏,𝑐  a pair of pants labeled by a,b,c. 

 𝑁𝑎𝑏,𝑐=dim V(𝑃𝑎𝑏,𝑐), then 𝑁𝑎𝑏,𝑐 is the fusion rule of the theory.  

                                                                      c 

                 ab=𝑁𝑎𝑏,𝑐c 

 

 

Every orientable surface Y can be cut into disks D, annuli A, and pairs of pants.  

If V(D), V(A), V(𝑃𝑎𝑏,𝑐) are known, then V(Y) is determined by the gluing axiom.  

Conversely a TQFT can be constructed from V(Y) of disk, annulus and pair of 

pants.  Need consistent conditions:  a modular tensor category 

Unitary modular categories (UMC) are algebraic data of unitary TQFTs  

and algebraic theories of anyons:  anyon=simple object, fusion=tensor product, 

statistics of anyons are representations of the mapping class groups. 

 

a           b 



Rank < 5 Unitary Modular Categories 
joint work w/ E. Rowell and R. Stong 

A                    1     

       Trivial 

A                    2 

      Semion  

NA                   2 

           Fib  

BU 

A                    2 

      (U(1),3) 

NA                    8 

           Ising 

NA                   2 

      (SO(3),5) 

BU 

A                   5 

   Toric code 

A                    4 

     (U(1),4) 

NA                    4  

     Fib x Semion 

BU 

NA                   2 

       (SO(3),7) 

BU 

NA                 3 

         DFib 

BU 

The ith-row is the classification of all rank=i unitary modular tensor categories.  

Middle symbol: fusion rule.  Upper left corner:  A=abelian theoy, NA=non-

abelian.  Upper right corner number=the number of distinct theories.  Lower 

left corner BU=there is a universal braiding anyon. 



Code Subspace Property 

Conjecture: H: 𝑉     𝑉 is a topological theory on a lattice   

    (graph in a surface Y),  where  𝑉 =𝑒 𝐶𝑚 for some m,   

         then GS(H)  𝑉 is an error correction code. 

 

If true, then local operators do not act on the ground states 

For some k, all k-local operators 𝑂𝑘: 𝑉      𝑉 the following 

composition is Id for some scalar  (possibly 0), 

              GS(H)  𝑉           𝑉      GS(H) 

 

    GS manifolds are fault-tolerant quantum memory. 

 



Kitaev’s Toric Code 

                 H=v (I-Av) +p(I-Bp) 

 

 

 

=T2 

                                     V=𝒆𝒅𝒈𝒆𝒔 C2  

                            Av=𝒆𝒗  z
  𝒐𝒕𝒉𝒆𝒓𝒔 Ide,  

                            Bp=𝒆𝒑  x  𝒐𝒕𝒉𝒆𝒓𝒔 Ide, 

  v 

  p 



GS Manifolds as Quantum Memory 

• Thm:  If a TQFT is from a Drinfeld center (or quantum 

double), then GS manifolds of the Levin-Wen 

model/Kitaev model are error correction codes.  

 

• Chiral theories (those with anomaly)? Open 

   including all WCS theories so FQH states 

    a) a holographic solution by Walker-W.  

    b) local degrees of freedom might be infinite. 

 

Topological phases of matter exist in both real systems 

(FQHE) and theories, what are they good for? 



initialize create  

anyons 

applying gates 

  
braiding particles 

readout 

 

fusion 

Computation Physics 

Topological Quantum Computation 

     Freedman 97, Kitaev 97, FKW 00, FLW 00 



Mathematical Theorems 

Theorem 1 (FKW):  Any unitary TQFT can be efficiently simulated by the 
quantum circuit model.  

  

  There are efficient additive approximation algorithms of quantum 
invariants by the quantum circuit model. 

 

Theorem 2 (FLW):  Anyonic quantum computers based on SU(2)-Chern-
Simons theory at level k are braiding universal except k=1,2,4.   

 

 The approximation of Jones poly of links at the (k+2)th root of unity 
(k1,2,4) is a BQ(F)P-complete problem. 

 

 Estimation of braid closure is DQC1-complete for k=3 (Shor-Jordan 07) 

 

 Exact or FPRAS approximation of Jones poly of links at the (k+2)th root 
of unity (k1,2,4) is P-hard.  (Vertigan 05, Kuperberg 09) 



                      Density Theorem 
 

In 1981, Jones proved that 𝑺𝑼 𝟐 ,𝒌,𝒍(Bn) is infinite 

 

if k 1,2,4 n3 or k=8, n4 (k=r-2). 

 

and asked: 

 

What are the closed images of 𝑺𝑼 𝟐 ,𝒌,𝒍(Bn)? 

 

 

Theorem (FLW 02): 

 

Always contain SU if k 1,2,4, n3 or k=8, n4. 

 

Others are finite groups which can be identified (using the 

classification of simple groups for all SU(n) theories). 



    FQHE at =5/2 w/  charge sector  

   The effective theory is Ising TQFT 

                   (Fradkin-Nayak-Tsvelik-Wilczek 98) 

 

Ising=M(3,4) minimal model 

         = 
𝑺𝑼(𝟐)𝟐

𝑼(𝟏)
 coset 

         =TL at 4th root 

 

Particle types are {1,,} 

                            
Fusion rules: 

  

                             2 1+,  

                             2 1,  

                                 

 

 

1 or  

  

1---ground state 

---Majarona fermion 

---Ising anyon 



                     Ising Quantum Computer 
 

4 Ising ’s in a disk is C2-qubit.  6 ’s  C4-2 qubits. 

       For 1-qubit gates,       : B4       U(2)  

       For 2-qubits gates,     : B6       U(4)  

 

 

 

 

 

 

 
●  ●  ●  ● ● ● ● ● ● ● 

 1 / 1 1   1/    1/ 1 1 

    1 



Ising Braiding Gates 

 

                           
e- i/8 

1 0 

0     i 

e- i/8 
(1-i)/2   (1+i)/2 

(1+i)/2   (1-i)/2 

e- i/4 
0   1 

1   0 

NOT Gate 

     1 2 2 1 

     4 ’s 


8
 -gate cannot be realized 

CNOT can be realized 



Fibonacci TQFT (FQHE at =12/5?) 
G2 level=1 CFT, c=14/5 mod 8 

• Particle types:     {1,},  ---Fib anyon 

• Quantum dimensions:    {1,}, =golden ratio 

• Fusion rules:                 2=1 

• Braiding: 

 

 

• Twist:  

=e3 i/5 

=e4 i/5 



                       Fibonacci Quantum Computer 
               for n qubits,  consider the 4n Fibonacci anyons 

             : B4n         U(𝑭𝟒𝒏−𝟐),  𝑭𝟒𝒏−𝟐---4n-2 Fib number 

 

                                   ●● ●● ●● ●● ●● ●● 

 

 

                 Given a quantum circuit on n qubits 

 

                        UL: (C2)n             (C2)n 

 

       Topological compiling:   find a braid bB4n so that the  

        following commutes for any UL:  

 

                                 (C2)n        𝑽𝟒𝒏                  𝑽𝟒𝒏-gs of 4n anyons 

 

 

                                 (C2)n        𝑽𝟒𝒏 

     

  UL (b) 



Universal Braiding Gates 

• Ising anyon  does not lead to universal braiding gates, 

but Fib anyon  does 

 

• Quantum dimension of Ising anyon  has quantum 

dimension= 2, while Fib anyon  has quantum 

dimension =( 5+1)/2---golden ratio 

 

• Given an anyon type x, when does it lead to universal 

braiding gate sets ?   

    Related: Can a NA-anyon has its own local Hilbert  

    space---an explicit locality of TQFT?  No!  Someway? 

 

 



Yang-Baxterizable Anyon 
joint work w/ E. Rowell 

Conjecture:  An anyon type x does not lead to 

universal braiding gates 

  
if and only if its quantum dimension  𝑑𝑥 is 𝑞 for some integer q 

 

if and only it is Yang-Baxterizable:   

         there is a unitary R-matrix R such that the rep 𝑉𝑛,𝑥 of the n-strand 

braid group 𝐵𝑛 from x is Yang-Baxterized by R for all n in the sense:    

                  Let 𝑉𝑛,𝑥 =               𝑉𝑛,𝑥,𝑙, then 

                                  𝑚𝑛,𝑥,𝑙  𝑉𝑛,𝑥,𝑙 𝑉𝑛,𝑅  

for some 𝑚𝑛,𝑥,𝑙, and 𝑉𝑛,𝑅-the rep of 𝐵𝑛 from R-matrix R  

 



Are we close to confirm non-abelian anyons? 

Challenging: 

 

Little correlation between anyons and 

local measurement  

 

Extreme conditions 

 

Can we do better?  We have to build a 

small topological quantum computer to 

confirm non-abelian anyons 

Freedman, Nayak, Das Sarma, 2005 

Halperin-Stern 06 

Bonderson-Kitaev-Shtengel 06 

   Willett reported data 09 

   Heiblum data on neutral mode 

   Spin polarization? 
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