Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook \[1\].

Contents

1. The set \(\mathbb{N} \) of natural numbers \hspace{1cm} 2
2. The set \(\mathbb{Q} \) of rational numbers \hspace{1cm} 4
3. Ordered fields \hspace{1cm} 7
4. Real numbers \(\mathbb{R} \) and the Completeness Axiom \hspace{1cm} 11
5. \(+\infty \) and \(-\infty \) \hspace{1cm} 15
6. Limits of sequences \hspace{1cm} 16
7. Proofs \hspace{1cm} 18
8. Problem session \hspace{1cm} 21
9. Limit theorems for sequences \hspace{1cm} 23
10. Monotone sequences and Cauchy sequences \hspace{1cm} 29
11. Subsequences \hspace{1cm} 35
12. \(\lim \sup \) and \(\lim \inf \) revisited \hspace{1cm} 40
13. Series \hspace{1cm} 42
14. Alternating series and Integral Tests \hspace{1cm} 47
15. Continuous functions \hspace{1cm} 50
16. Properties of continuous functions \hspace{1cm} 55
References \hspace{1cm} 59

Date: December 5, 2017.
1. The set \mathbb{N} of natural numbers

We introduce basic properties for the set of natural numbers.

- $\mathbb{N} = \{1, 2, 3, \cdots \}$ denotes the set of all natural numbers, or all positive integers;
- each $n \in \mathbb{N}$ has a successor $n + 1$. For example, the successor of 5 is 6.

Proposition 1.1. The set \mathbb{N} satisfies the following properties:

- **N1.** $1 \in \mathbb{N}$;
- **N2.** if $n \in \mathbb{N}$, then its successor $n + 1 \in \mathbb{N}$;
- **N3.** 1 is not the successor of any element in \mathbb{N};
- **N4.** if n and m have the same successor, then $n = m$;
- **N5.** suppose S is a subset of \mathbb{N} satisfying: 1 $\in \mathbb{N}$ and if $n \in S$ then $n+1 \in S$, then $S = \mathbb{N}$.

Property (N5) is called the Peano Axiom or Peano Postulate.

Property (N5) is the basis for mathematical induction:

- Let P_1, P_2, \cdots be a list of statements of propositions that may or may not be true;
- The Principle of Mathematical Induction asserts that:
 - All of P_1, P_2, \cdots are true provided:
 - P_1 is true; (this is called the basis of induction)
 - if P_n is true, then P_{n+1} is true for all $n \in \mathbb{N}$. (this is called induction step)

Example 1.2. All numbers of form $7^n - 2^n$ ($n \in \mathbb{N}$) is divisible by 5.

Proof. The n-th proposition is:

$$P_n: \text{“} 7^n - 2^n \text{ is divisible by 5”}.$$

- **Basis of induction** P_1: $7^1 - 2^1 = 5$ is divisible by 5, so P_1 is true;
- **Induction step**: Suppose P_n is true, then $7^n - 2^n = 5m$ for some $m \in \mathbb{N}$.
 To verify P_{n+1}, we have
 $$7^{n+1} - 2^{n+1} = 7^{n+1} - 2 \cdot 7^n + 2 \cdot 7^n - 2^{n+1}$$
 $$= 7^n(7 - 2) + 2(7^n - 2^n)$$
 $$= 5 \cdot 7^n + 2(5m) = 5(7^n + 2m).$$

1The symbol $n \in \mathbb{N}$ means “n is an element of the set \mathbb{N}”
That is, $7^{n+1} - 2^{n+1}$ is also divisible by 5. Therefore P_n implies P_{n+1}, and the induction step holds.

□

Example 1.3. Show that $|\sin(nx)| \leq n|\sin(x)|$ for all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$.

Proof. The n-th proposition is:

P_n: “$|\sin(nx)| \leq n|\sin(x)|$ for all $x \in \mathbb{R}$”.

• Basis of induction: $|\sin(x)| = 1 \cdot |\sin(x)|$, hence P_1 is true;

• Induction step: Suppose P_n is true, that is $|\sin(nx)| \leq n|\sin(x)|$ for all $x \in \mathbb{R}$. To verify P_{n+1}, we have

$$|\sin((n+1)x)| = |\sin(nx + x)| = |\sin(nx) \cos(x) + \sin(x) \cos(nx)|$$

$$\leq |\sin(nx) \cos(x)| + |\sin(x) \cos(nx)| - (|\sin(x)|, |\cos(nx)| \leq 1)$$

$$\leq |\sin(nx)| + |\sin(x)| - (by \ P_n)$$

$$\leq n|\sin(x)| + |\sin(x)| = (n + 1)|\sin(x)|.$$

That is, P_{n+1} is true. Therefore P_n implies P_{n+1}, and the induction step holds.

□
2. The set \(\mathbb{Q} \) of rational numbers

We introduce basic properties for the set of integers and rational numbers.

- \(\mathbb{Z} = \{0, -1, 1, -2, 2, \ldots\} \) denotes the set of all integers;
- \(\mathbb{Q} = \{\frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0\} \) denotes the set of all rational numbers.
 - \(\mathbb{Q} \) is a good algebraic system: one can do basic operations like additions, multiplication, subtraction, division over \(\mathbb{Q} \);
 - \(\mathbb{Q} \) is inadequate when solving algebraic equations like: \(x^2 - 2 = 0 \).

Actually, the solutions of \(x^2 - 2 = 0 \) makes sense:

1. by the Pythagorean Theorem, if \(d \) is the length of the diagonal of a square of edge length 1, then \(d^2 = 1^2 + 1^2 = 2 \), and hence \(d \) is a solution;
2. the graph of the function \(y = x^2 - 2 \) will pass through the \(x \)-axis at two points which are both solutions of \(x^2 - 2 = 0 \).

This means that:

\[
\text{there are gaps in } \mathbb{Q}, \text{ as } \sqrt{2} \notin \mathbb{Q}.
\]

Moreover, there are more exotic numbers like “\(\pi \)”, and “\(e \)”:
- “\(\pi \)” appears when studying the perimeters of circles and spheres;
- “\(e \)” appears when studying the infinite sums: \(\sum_{n \in \mathbb{N}} \frac{1}{n!} \).

Definition 2.1. A number is called an algebraic number if it satisfies a polynomial equation:

\[
a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0,
\]

where \(a_i \in \mathbb{Z} \) for all \(i = 0, \cdots, n \), and \(a_n \neq 0 \).

Example 2.2. We know that:

- all rational numbers are algebraic numbers:
 if \(r = \frac{m}{n}, m, n \in \mathbb{Z}, n \neq 0 \), then it satisfies \(nx - m = 0 \);
- square root \(\sqrt{\gamma} \), cubic root \(\sqrt[3]{\gamma} \), etc, are algebraic numbers;
- ordinary algebraic operations (including addition, multiplication, subtraction, division, taking roots) of algebraic numbers are also algebraic numbers.

Example 2.3. \(17^{1/3}, (2+5^{1/3})^{1/2}, [(4-2\cdot3^{1/2})/7]^{1/2} \) are all algebraic numbers.

Proof.
1. \(17^{1/3} \) is a solution of \(x^3 - 17 = 0 \);
2. Let \(a = (2 + 5^{1/3})^{1/2}, \Rightarrow a^2 = 2 + 5^{1/3}, \Rightarrow (a^2 - 2)^3 = 5, \Rightarrow a^6 - 2a^4 + 4a^2 - 8 = 5, \Rightarrow a^6 - 2a^4 + 4a^2 - 13 = 0; \)
(3) Let \(b = \left[(4 - 2 \cdot 3^{1/2})/7 \right]^{1/2} \), \(\Rightarrow 7b^2 = 4 - 2 \cdot 3^{1/2} \), \(\Rightarrow 7b^2 - 4 = -2 \cdot 3^{1/2} \), \(\Rightarrow (7b^2 - 4)^2 = 12 \), \(\Rightarrow 49b^4 - 56b^2 + 16 = 12 \), \(\Rightarrow 49b^4 - 56b^2 + 4 = 0 \). □

Recall that

- an integer \(k \) is a factor of another integer \(m \), or \(k \) divides \(m \), if \(m/k \) is also an integer;
- an integer \(p \geq 2 \) is a prime provided that the only positive factors of \(p \) is 1 and \(p \).

Proposition 2.4. \(\sqrt{2} \) is not a rational number.

Proof. We prove by contradiction argument. Suppose the statement is not true, that is \(\sqrt{2} \in \mathbb{Q} \), \(\Rightarrow \sqrt{2} = \frac{p}{q} \), where \(p, q \) are both integers with no common factor and \(q \neq 0 \). Then

\[
\frac{p^2}{q^2} = 2, \quad \Rightarrow p^2 = 2q^2.
\]

Lemma 2.5. If \(p^2 \) is an even number \((p \in \mathbb{Z})\), then \(p \) is also even.

Proof. Using contradiction argument again, suppose not, then \(p \) is odd, \(\Rightarrow p = 2m + 1 \) for some \(m \in \mathbb{Z} \). Then

\[
p^2 = (2m + 1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2) + 1,
\]
so \(p^2 \) is odd, and this is a contradiction. □

Let us go back to the proof of Proposition 2.4. Since \(p^2 \) is even, by the above lemma \(p \) is also even, \(\Rightarrow p = 2m \), hence

\[
p^2 = 4m^2 = 2q^2, \quad \Rightarrow q^2 = 2m^2.
\]

So \(q^2 \) is even, and hence \(q \) is even by the above lemma. But this is a contradiction to the assumption that \(p, q \) has no common factor. □

Theorem 2.6 (Rational Zero Theorem). Suppose \(a_0, a_1, \ldots, a_n \) are all integers, and \(r \) is a rational number satisfying the polynomial equation:

\[
a_nx^n + \cdots + a_1x + a_0 = 0,
\]
where \(n \geq 1 \), \(a_n \neq 0 \), \(a_0 \neq 0 \). Write

\[
r = \frac{p}{q},
\]
where \(p, q \in \mathbb{Z} \) have no common factor and \(q \neq 0 \). Then

\(q \) divides \(a_n \), and \(p \) divides \(a_0 \).
Proof. Plug in $r = \frac{p}{q}$ into the equation:

$$a_n\left(\frac{p}{q}\right)^n + a_{n-1}\left(\frac{p}{q}\right)^{n-1} + \cdots + a_1\left(\frac{p}{q}\right) + a_0 = 0.$$

Multiply by q^n, \Rightarrow

$$a_np^n + a_{n-1}p^{n-1}q + \cdots + a_1pq^{n-1} + a_0q^n = 0.$$

Re-arrange the equation:

$$a_np^n = -q(a_{n-1}p^{n-1} + \cdots + a_1pq^{n-2} + a_0q^{n-1}),$$

$\Rightarrow q$ divides a_np^n. Since p, q has no common factor, q must divide a_n.

We can prove p divides a_0 in a similar manner. In particular,

$$a_0q^n = -p(a_np^{n-1} + a_{n-1}p^{n-2} + \cdots + a_1q^{n-1}),$$

$\Rightarrow p$ divides a_0q^n, and hence p must divide a_0. \square

Example 2.7. Use the above theorem to prove that $\sqrt{2}$ is not a rational number.

Proof. Suppose the equation $x^2 - 2 = 0$ has a rational root $\frac{p}{q}$, where $p, q \in \mathbb{Z}$ has no common factor and $q \neq 0$. Then by Theorem 2.6

$$q \divides 1, \text{ and } p \divides -2.$$

There p can only be ± 1 or ± 2, and q can only be ± 1, $\Rightarrow \frac{p}{q}$ must be of the forms ± 1, ± 2. By substituting back to $x^2 - 2 = 0$, we can see that none of them is a solution. This is a contradiction. \square

Example 2.8. Prove that $a = (2 + 5^{1/3})^{1/2}$ is not a rational number.

Proof. By the above example, we know that a satisfies:

$$a^6 - 2a^4 + 4a^2 - 13 = 0.$$

If a is a rational number, then write $a = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ has no common factor and $q \neq 0$. By the Rational Zero Theorem,

$q \divides 1, \text{ and } p \divides -13.$

There p can only be ± 1 or ± 13, and q can only be ± 1, $\Rightarrow \frac{p}{q}$ must be of the forms ± 1, ± 13. By substituting back, we can see that none of them is a solution. This is a contradiction. \square
3. Ordered fields

The basic algebraic operations on \(\mathbb{Q} \) are “+” and “.”. The following properties hold in this algebraic system \((\mathbb{Q}, +, \cdot)\):

Properties for “+”:

A1. \(a + (b + c) = (a + b) + c, \forall a, b, c \in \mathbb{Q} \) – associative law;
A2. \(a + b = b + a, \forall a, b \in \mathbb{Q} \) – commutative law;
A3. \(a + 0 = a, \forall a \in \mathbb{Q} \) – existence of 0;
A4. For each \(a \in \mathbb{Q} \), there exists an element \(-a \in \mathbb{Q}\), such that \(a + (-a) = 0 \) – existence of reverse;

Properties for “.”:

M1. \(a \cdot (b \cdot c) = (a \cdot b) \cdot c, \forall a, b, c \in \mathbb{Q} \) – associative law;
M2. \(a \cdot b = b \cdot a, \forall a, b \in \mathbb{Q} \) – commutative law;
M3. \(a \cdot 1 = a, \forall a \in \mathbb{Q} \) – existence of 1;
M4. For each \(a \in \mathbb{Q}, a \neq 0 \), there exists an element \(a^{-1} \in \mathbb{Q} \), such that \(a \cdot (a^{-1}) = 1 \) – existence of reciprocal;

A property relating “.” and “.”:

DL. \(a \cdot (b + c) = a \cdot b + a \cdot c, \forall a, b, c \in \mathbb{Q} \) – distributive law.

Definition 3.1. A set \(F \) is a **field** if it has two operations “+” and “.”, and elements 0 and 1 satisfying all the properties (A1)...(A4) (M1)...(M4) (DL) (with \(\mathbb{Q} \) changed to \(F \)).

Example 3.2. There are two examples which are not fields:

- \(\mathbb{N} \) (the natural numbers) fails properties (A4) and (M4);
- \(\mathbb{Z} \) (the integers) fails (M4).

\(\mathbb{Q} \) also has an order structure “\(\leq \)” satisfying the properties:

O1. given \(a, b \in \mathbb{Q} \), either \(a \leq b \) or \(b \leq a \);
O2. if \(a \leq b \) and \(b \leq a \), then \(a = b \);
O3. if \(a \leq b \) and \(b \leq c \), then \(a \leq c \) – transitive law;
O4. if \(a \leq b \), then \(a + c \leq b + c \);
O5. if \(a \leq b \) and \(0 \leq c \), then \(a \cdot c \leq b \cdot c \).

Definition 3.3. A field \(F \) is called an **ordered field** if it has an order structure satisfying properties (O1)...(O5).

\(^2\)Here the symbol \(\forall \) means “for all”.

Remark 3.4. \(a < b \) means that \(a \leq b \) and \(a \neq b \).

Properties of ordered fields: based on the defining properties, we can deduce more properties for a field or an ordered field.

Theorem 3.5. Suppose \((F, +, \cdot)\) is a field with elements 0, 1, and \(a, b, c\) denote arbitrary elements in \(F\), then:

1. \(a + c = b + c \Rightarrow a = b\);
2. \(a \cdot 0 = a, \forall a\);
3. \((-a) \cdot b = -(a \cdot b)\);
4. \((-a) \cdot (-b) = a \cdot b\);
5. \(a \cdot c = b \cdot c, \text{ and } c \neq 0 \Rightarrow a = b\);
6. \(a \cdot b = 0 \Rightarrow \text{ either } a = 0 \text{ or } b = 0\).

Proof.

(i) \((a + c) + (-c) = a + (c + (-c)) = a + 0 = a\)

\[= (b + c) + (-c) = b + (c + (-c)) = b + 0 = b.\]

(ii) \(a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0, \Rightarrow \) (by (i)) \(a \cdot 0 = 0\).

(iii) \((-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0 \cdot b = 0\) (by (ii)), so \((-a) \cdot b = -(a \cdot b)\).

(iv) By (iii), \((-a) \cdot (-b) = -a \cdot (-b) = -(a \cdot b) = ab\).

(v) Homework.

(vi) Homework.

\(\square\)

Theorem 3.6. Suppose \(F\) is an ordered field with order structure “\(\leq\)”, and \(a, b, c\) denotes arbitrary elements in \(F\), then:

1. if \(a \leq b\), then \(-b \leq -a\);
2. if \(a \leq b\) and \(c \leq 0\), then \(bc \leq ac\);
3. if \(0 \leq a\) and \(0 \leq b\), then \(0 \leq ab\);
4. \(0 \leq a^2 = a \cdot a, \forall a\);
5. \(0 < 1\);
6. if \(0 < a\), then \(0 < a^{-1}\);
7. if \(0 < a < b\), then \(0 < b^{-1} < a^{-1}\).

Proof.

(i) By (O4), \(a + (-b) \leq b + (-b) \Rightarrow a + (-b) \leq 0\); by (O4), \(-a + [a + (-b)] \leq -a + 0 = -a\); by (A1), \(-b \leq -a\).
(ii) By (i), $0 \leq -c$, so by (O5), $a \cdot (-c) \leq b \cdot (-c)$; by Theorem 3.5(iii), $-ac \leq -bc$; by (i), $bc \leq ac$.

(iii) By(ii).

(iv) If $0 \leq a$, then it follows from (iii); if $a \leq 0$, then by (i), $0 \leq (-a)$; by (iii), $0 \leq (-a) \cdot (-a) = a^2$ (by Theorem 3.5(iv)).

(v) Since $1^2 = 1$, by (v), $0 \leq 1$; also as $0 \neq 1$, we have $0 < 1$.

(vi) Homework.

(vii) Homework.

□

Definition 3.7. Let F be an ordered field. Given an element $a \in F$, we can define the absolute value $|a|$ of a as:

$$|a| := a \text{ if } a \geq 0, \text{ and } |a| := -a \text{ if } a < 0.$$

Here $a \geq 0$ is an equivalent way to write $0 \leq a$.

The absolute value gives rise to the notion of distance.

Definition 3.8. Given $a, b \in F$, the distance between them is defined as:

$$\text{dist}(a, b) := |a - b|.$$

Theorem 3.9. Let F be an ordered field. For all $a, b \in F$,

(i) $|a| \geq 0$;

(ii) $|a \cdot b| = |a| \cdot |b|$;

(iii) $|a + b| \leq |a| + |b|$.

Proof.

(i) If $a \geq 0$, then by definition $|a| = a \geq 0$; if $a < 0$, then $|a| = -a \geq 0$ by Theorem 3.6(i).

(ii) We can compare both sides in four cases: (1) $a \geq 0, b \geq 0$, (2) $a \geq 0, b < 0$, (3) $a < 0, b \geq 0$, (4) $a < 0, b < 0$.

For case (1): $a \cdot b \geq 0$ by Theorem 3.6(iii), so $|ab| = ab$; on the other hand, $|a| = a, |b| = b$, so $|a| \cdot |b| = ab$.

We will leave other cases as exercises.

(iii) By definition, since either $a = |a|$ or $a = -|a|$, we have

$$-|a| \leq a \leq |a|, \text{ and } -|b| \leq b \leq |b|.$$

Using (O4),

$$-|a| + (-|b|) \leq -|a| + b \leq a + b \leq |a| + b \leq |a| + |b|.$$

Therefore
\[-(|a| + |b|) \leq a + b \leq |a| + |b|\]
\[-(|a| + |b|) \leq -(a + b) \leq |a| + |b|\]
\[|a + b| \leq |a| + |b|.

\[\square\]

Corollary 3.10. We have the **triangle inequality**:
\[\text{dist}(a, c) \leq \text{dist}(a, b) + \text{dist}(b, c)\]

Proof.
\[\text{dist}(a, c) = |a - c| = |a - b + b - c| \leq |a - b| + |b - c| = \text{dist}(a, b) + \text{dist}(b, c)\]

\[\square\]
4. Real numbers \(\mathbb{R} \) and the Completeness Axiom

Heuristically, the set of real numbers \(\mathbb{R} \) is the order field \(\mathbb{F} \) containing \(\mathbb{Q} \) with “no gaps”. We will make rigorous what does “no gap” mean.

Definition 4.1. Let \(S \subset \mathbb{F} \) be a subset of an ordered field \(\mathbb{F} \), and \(S \neq \emptyset \).

(a) If \(S \) contains a largest element \(s_0 \), [that is to say, \(s_0 \in S \), and \(s \leq s_0, \forall s \in S \)], we call \(s_0 \) the **maximum** of \(S \), and write \(s_0 = \max S \);

(b) If \(S \) contains a smallest element \(s'_0 \), [that is to say, \(s'_0 \in S \), and \(s'_0 \leq s, \forall s \in S \)], we call \(s'_0 \) the **minimum** of \(S \), and write \(s'_0 = \min S \).

Example 4.2.

(1) Every finite subset of \(\mathbb{Q} \) has a maximum and a minimum, i.e.

\[
\max \{1, 2, 2.6, 3, 4\} = 4, \quad \text{and} \quad \min \{1, 2, 2.6, 3, 4\} = 1.
\]

(2) Given \(a, b \in \mathbb{F} \), with \(a < b \), we denote by

\[
[a, b] = \{x \in \mathbb{F} : a \leq x \leq b\} - \text{closed interval}, \\
(a, b) = \{x \in \mathbb{F} : a < x < b\} - \text{open interval}, \\
[a, b) = \{x \in \mathbb{F} : a \leq x < b\} - \text{half-open interval}, \\
(a, b] = \{x \in \mathbb{F} : a < x \leq b\} - \text{half-open interval}.
\]

Among them:

\[
\max [a, b] = b, \quad \min [a, b] = a,
\]

\((a, b)\) has no maximum and minimum in general.

(3) The set \(\{r \in \mathbb{Q} : 0 \leq r \leq \sqrt{2}\} \) has no maximum.

These examples say that maximums and minimums may not always exist. Nevertheless, we can generate the concepts to upper and lower bounds.

Definition 4.3. Let \(S \subset \mathbb{F} \) be a subset and \(S \neq \emptyset \).

(a) If \(M \in \mathbb{F} \) and \(s \leq M, \forall s \in S \), then \(M \) is called an upper bound of \(S \), and \(S \) is said to be **bounded from above**;

(b) If \(m \in \mathbb{F} \) and \(m \leq s, \forall s \in S \), then \(m \) is called a lower bound of \(S \), and \(S \) is said to be **bounded from below**;

(c) \(S \) is said to be bounded if it is bounded above and below, and this is equivalent to say \(S \subset [m, M] \) for some \(m, M \in \mathbb{F} \).

Example 4.4.

(1) If \(S \) has the maximum \(\max S \), then \(\max S \) is an upper bound of \(S \); similarly \(\min S \) is a lower bound of \(S \) if it exists.

(2) \(b \) is an upper bound of the intervals \([a, b], (a, b), (a, b] \) and \([a, b)\).
(3) 2 is an upper bound of \(\{ r \in \mathbb{Q} : 0 \leq r \leq \sqrt{2} \} \); \(\sqrt{2} \) is the least upper bound.

Now we summarize the definition for least upper bound and greatest lower bound.

Definition 4.5. Let \(S \subset F \) be a subset and \(S \neq \emptyset \).

(a) If \(S \) is bounded from above and \(S \) has a least upper bound, then we call it the supreme of \(S \) and denote it by \(\sup S \).

(b) If \(S \) is bounded from below and \(S \) has a greatest lower bound, then we call it the infimum of \(S \) and denote it by \(\inf S \).

We have the following criterion for least upper bound: \(M = \sup S \) if and only if

1. \(s \leq M, \forall s \in S \),
2. if \(M_1 < M \), then \(\exists s_1 \in S \), such that \(s_1 > M \).

Example 4.6.

(a) If \(S \) has a maximum, then \(\max S = \sup S \), and similarly for the minimum and infimum of \(S \).

(b) \(\sup[a,b] = \sup[a,b] = \sup(a,b) = \sup(a,b) = b \).

(c) Let \(A = \{ r \in \mathbb{Q} : 0 \leq r \leq \sqrt{2} \} \), then \(\sup A = \sqrt{2} \notin A \).

Let us elaborate a bit about this example using decimal expansions: first it is obvious that \(\sqrt{2} \) is an upper bound, and we will explain why it is the least one; the decimal expansion for \(\sqrt{2} \) is 1.4142135623.....; if \(M_1 \) is any number less than \(\sqrt{2} \), even if it is very close to \(\sqrt{2} \), there should exist a first decimal of \(M_1 \) that is less than the corresponding one for \(\sqrt{2} \); for instance, \(M_1 = 1.4141 \), or \(M_1 = 1.414212 \), or \(M_1 = 1.41421355 \); and for these numbers we can find \(s_1 = 1.4142, s_1 = 1.414213, s_1 = 1.41421356 \) that is less than \(\sqrt{2} \) but greater than \(M_1 \).

Remark 4.7. By case (c) above, the least upper bound may not belong to \(S \). This is a way to say that there exist gaps in \(F \).

Completeness Axiom:

every nonempty subset \(S \subset \mathbb{R} \) that is bounded above has a least upper bound, \(\iff \sup S \) exists and is a real number.

Definition 4.8. The set of real numbers \(\mathbb{R} \) is an ordered field containing \(\mathbb{Q} \) that satisfies the “Completeness Axiom”.
Remark 4.9. The example \(A = \{ r \in \mathbb{Q} : 0 \leq r \leq \sqrt{2} \} \) shows that \(\mathbb{Q} \) does not satisfy the “Completeness Axiom”.

Corollary 4.10. Every nonempty subset \(S \subseteq \mathbb{R} \) which is bounded from below has a greatest upper bound.

Proof. Consider the subset, denoted by \(-S = \{ -s : s \in S \} \). Since \(S \) is bounded from below, \(\exists m \in \mathbb{R}, \) such that \(m \leq s, \forall s \in S, \implies -s \leq -m, \forall -s \in -S. \) Thus \(-S \) is bounded from above.

By the “Completeness Axiom”, the supreme of \(-S \) exists and \(\sup(-S) \in \mathbb{R} \).

Let \(s_0 = \sup(-S) \), and we claim that \(-s_0 = \inf S \). In particular,

1. \(-s \leq s_0, \forall -s \in -S, \implies -s_0 \leq s, \forall s \in S, \) and hence \(-s_0 \) is a lower bound of \(S \);
2. To show that \(-s_0 \) is the greatest lower bound, consider any other lower bound \(t \in \mathbb{R}, \) such that \(t \leq s, \forall s \in S, \implies -s \leq -t, \forall -s \in -S; \) thus \(-t \) is an upper bound of \(-S, \) so \(s_0 \leq -t, \implies t \leq -s_0; \) therefore \(-s_0 \) is the greatest lower bound.

There are two important corollaries of the completeness axiom.

Theorem 4.11 (Archimedean Property). Given two real numbers \(a, b \in \mathbb{R}, \) if \(a > 0 \) and \(b > 0, \) then for some positive integer \(n \in \mathbb{N}, \) we have \(na > b. \)

Proof. We use the contradiction argument. Suppose the conclusion is not true, which means that \(na \leq b, \forall n \in \mathbb{N}. \) Denote the set \(S \) as

\[
S = \{ na : n \in \mathbb{N} \}.
\]

Then \(b \) is an upper bound of \(S. \) By the completeness axiom: the supreme of \(S \) exists and \(s_0 = \sup S \in \mathbb{R}. \)

Since \(a > 0, \) then \(s_0 < s_0 + a, \) or equivalently \(s_0 - a < s_0. \) By the definition of supreme, we know that \(s_0 - a \) is no longer an upper bound of \(S, \) so there exists an element \(n_0 a, \) for some \(n_0 \in \mathbb{N}, \) such that

\[
s_0 - a < n_0 a.
\]

\[
\implies s_0 < n_0 a + a = (n_0 + 1)a \in S.
\]

There is a contradiction to the fact that \(s_0 \) is an upper bound of \(S. \)

Corollary 4.12.

1. if \(a > 0, \) then \(1/n (= n^{-1}) < a \) for some positive integer \(n \in \mathbb{N}; \)
2. if \(b > 0, \) then \(b < n \) for some positive integer \(n \in \mathbb{N}. \)
Proof.

(1) follows from the Archimedean Property by letting $b = 1$, and (2) by letting $a = 1$.

\[\square \]

Theorem 4.13 (Denseness of \mathbb{Q}). Given two real numbers $a, b \in \mathbb{R}$, if $a < b$, then there exists a rational number $r \in \mathbb{Q}$, such that $a < r < b$.

Proof. We need to find some integers $m, n \in \mathbb{Z}$, $n > 0$, such that $a < \frac{m}{n} < b$, and this is equivalent to

$$na < m < nb.$$

Since $a < b \Rightarrow (b - a) > 0$, by the Archimedean property, there exists $n \in \mathbb{N}$, such that

$$n(b - a) > 1.$$

By the Archimedean property again, there exists $k \in \mathbb{N}$, such that

$$k > \max\{|na|, |nb|\}.$$

Therefore,

$$-k < na < nb < k.$$

Consider the set \(\{ j \in \mathbb{Z} : -k < j \leq k, \text{ and } na < j \} \), and it is a finite and nonempty set (since k belongs to it). As it is finite, we pick the minimum

$$= \min\{ j \in \mathbb{Z} : -k < j \leq k, \text{ and } na < j \}.$$

Then $na < m$, and moreover, $m - 1 \leq na$. Therefore

$$na < m = (m - 1) + 1 \leq na + 1 < na + (nb - na) = nb.$$

So the pair (m, n) satisfies the requirement.

\[\square \]
5. $+\infty$ AND $-\infty$

We add in two elements $+\infty$ and $-\infty$ into \mathbb{R} so that $\mathbb{R} \cup \{+\infty, -\infty\}$ is still a good ordered system, and it makes taking supreme and infimum easier in many cases.

- $+\infty$ and $-\infty$ denote plus infinity and minus infinity;
- we will write $+\infty$ as ∞;
- we can add the ordering to $\mathbb{R} \cup \{+\infty, -\infty\}$ so that $\forall a \in \mathbb{R} \cup \{+\infty, -\infty\}$,
\[-\infty \leq a \leq +\infty;
- this ordering system satisfies O1, O2, O3;
- $+\infty, -\infty$ do not represent any real numbers, and there is no algebraic structure like “+” and “.” on $\mathbb{R} \cup \{+\infty, -\infty\}$;
- we can introduce new notations:
\[
(a, \infty) = \{x \in \mathbb{R} : a < x\} - \text{unbounded open interval},
(b, \infty) = \{x \in \mathbb{R} : a \leq x\} - \text{unbounded closed interval},
(\infty, b] = \{x \in \mathbb{R} : x \leq b\} - \text{unbounded closed interval},
(\infty, b) = \{x \in \mathbb{R} : x < b\} - \text{unbounded open interval},
(\infty, +\infty) = \mathbb{R};
- given an nonempty subset $S \subset \mathbb{R}$, denote
\[
\sup S = +\infty, \quad \text{if } S \text{ is not bounded from above},
\inf S = -\infty, \quad \text{if } S \text{ is not bounded from below};
- therefore, if $S \subset \mathbb{R}$ and $S \neq \emptyset$, then
\[
\sup S \text{ and } \inf S \text{ always make sense in } \mathbb{R} \cup \{+\infty, -\infty\}.
6. LIMITS OF SEQUENCES

We introduce the concept of sequences and their limits in this section.

- A sequence is a function, with domain a set of natural numbers of the form \(\{ n \in \mathbb{Z} : n \geq m \} \), where \(m \) is usually chosen to be 1 or 0, with ranges in \(\mathbb{R} \).
- Denote a sequence by \((s_n)_{n=m}^{\infty}, s_n \in \mathbb{R}\), or \((s_m, s_{m+1}, s_{m+2}, \cdots)\).
- If \(m = 2 \), write \((s_n)_{n \in \mathbb{N}}\).

Example 6.1.

a) Let \(s_n = \frac{1}{n^2} \), then the sequence is \((1, \frac{1}{2^2}, \frac{1}{3^2}, \frac{1}{4^2}, \cdots) = (1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \cdots)\). The set of values is \(\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \cdots\}\).

b) Let \(a_n = (-1)^n \) for \(n \geq 0 \), then the sequence is \((1, -1, 1, -1, \cdots)\), and the set of values is \(\{1, -1\}\).

Remark 6.2. Note the difference between a sequence and its set of values: we use \((\cdot, \cdot, \cdots)\) to denote a sequence, and \(\{\cdot, \cdot, \cdots\}\) to denote the set of values. In particular, the sequence \((a_n = (-1)^n)\) has infinite number of terms, while its set of values \(\{(−1)^n\}\) consists of only two numbers.

c) Consider the sequence \((\cos(\frac{n\pi}{3}))_{n \in \mathbb{N}}\). It can be written as \((\frac{1}{2}, -\frac{1}{2}, -1, -\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}, \cdots)\). The set of values is \(\{1, -1, \frac{1}{2}, \frac{1}{2}\}\).

d) Let \(s_n = n^{1/n} \) for \(n \in \mathbb{N} \), then the sequence is \((1, \sqrt{2}, 3^{1/3}, \cdots)\). We will show that \(n^{1/n} \) is close to 1 for very large \(n \).

e) Let \((s_n = (1 + \frac{1}{n})^n)_{n \in \mathbb{N}}\).

The limit of a sequence \((s_n)\) is intuitively a real number for which the values \(s_n\) accumulate to. To be more precise,

Definition 6.3. A sequence \((s_n)\) of real numbers is said to converge to the real number \(s \), provided that

\[
\text{(6.1)} \quad \text{for each } \epsilon > 0, \text{ there exists a number } N, \text{ such that } n > N \text{ implies } |s_n - s| < \epsilon.
\]

If \((s_n)\) converges to \(s \), we will write \(\lim_{n \to \infty} s_n = s \), or \(s_n \to s \). \(s \) is called the limit of the sequence \((s_n)\).

A sequence that does not converge to some real number is said to diverge.

Remark 6.4.

(1) \(\epsilon, \delta \) represent small numbers;

(2) \(\text{(6.1)} \) is an infinite number of statements. We sometime denote \(N = N(\epsilon) \) to show the dependence of \(N \) on \(\epsilon \), and in principle \(N(\epsilon) \) is large when \(\epsilon \) is small;
(3) \(N \) can be any large real or rational numbers by the Archimedean property.

Example 6.5.

a) \(\lim_{n \to \infty} \frac{1}{n^2} = 0 \), and this will be proved soon.

b) The sequence \((a_n = (-1)^n) \) diverges:

Proof. Assume by contradiction that the sequence converges to some real number \(s \in \mathbb{R} \), \(\lim (-1)^n = s \). Since (6.1) is assumed to be true for any \(\epsilon > 0 \), we choose \(\epsilon = \frac{1}{2} \). By (6.1), there exists a number \(N > 0 \), such that when \(n > N \), we have

\[
|(-1)^n - s| < \frac{1}{2} \implies s - \frac{1}{2} < (-1)^n < s + \frac{1}{2}.
\]

In particular, we can let \(n = 2N \) or \(n = 2N + 1 \) which are both greater than \(n \), and then

\[
\begin{align*}
\text{When } n &= 2N, s - \frac{1}{2} < 1 < s + \frac{1}{2} \implies \frac{1}{2} < s < \frac{3}{2}, \\
\text{When } n &= 2N + 1, s - \frac{1}{2} < -1 < s + \frac{1}{2} \implies -\frac{3}{2} < s < -\frac{1}{2}.
\end{align*}
\]

This is a contradiction, so we finish the proof. \(\square \)

c) The sequence \(\left(\cos \left(\frac{2n\pi}{3} \right) \right)_{n \in \mathbb{N}} \) diverges, and this is an exercise.

d) \(\lim n^{\frac{1}{n}} = 1 \), and this will be proved later.

e) \(\lim s_n = (1 + \frac{1}{n})^n = e \), and this will be proved later.

Using the definition, we can show that the limit, if it exists, is uniquely determined.

Proposition 6.6. Let \((s_n) \) be a sequence, and assume that \(\lim s_n = s \) and \(\lim s_n = t \) for some real numbers \(s, t \in \mathbb{R} \), then \(s = t \).

Proof. By (6.1) and the assumptions, for any \(\epsilon > 0 \), there exists \(N_1 > 0 \), such that

\[
n > N_1 \implies |s_n - s| < \frac{\epsilon}{2};
\]

and there exists \(N_2 > 0 \), such that

\[
n > N_2 \implies |s_n - t| < \frac{\epsilon}{2}.
\]

So for \(n > \max\{N_1, N_2\} \),

\[
|s - t| \leq |s - s_n| + |s_n - t| < \epsilon.
\]

Therefore \(s = t \). (If this were not true, then take \(\epsilon = \frac{1}{2}|s - t| \) to get a contradiction.) \(\square \)
7. Proofs

The main purpose of this section is to introduce how to write rigorous proofs for limits.

Example 7.1. \(\lim_{n \to \infty} \frac{1}{n^2} = 0 \).

Discussion: given \(\epsilon > 0 \), we want to find \(N > 0 \), such that if \(n > N \), then
\[
\left| \frac{1}{n^2} - 0 \right| < \epsilon.
\]

Algebra:
\[
\left| \frac{1}{n^2} - 0 \right| < \epsilon\iff \frac{1}{n^2} < \epsilon \iff n^2 > \frac{1}{\epsilon}, \text{ or } n > \frac{1}{\sqrt{\epsilon}}.
\]
Take \(N = \frac{1}{\sqrt{\epsilon}} \), then it should serve our purpose.

Proof. For any \(\epsilon > 0 \), let \(N = \frac{1}{\sqrt{\epsilon}} \). If \(n > N \), then \(n > \frac{1}{\sqrt{\epsilon}} \), so \(n^2 > \frac{1}{\epsilon} \), hence \(\epsilon > \frac{1}{n^2} \).

Thus \(n > N \) implies \(\left| \frac{1}{n^2} - 0 \right| < \epsilon \), and this proves \(\lim_{n \to \infty} \frac{1}{n^2} = 0 \). \(\Box \)

Example 7.2. \(\lim_{n \to \infty} \frac{3n+1}{7n-4} = \frac{3}{7} \).

Discussion: given \(\epsilon > 0 \), we want to find \(N > 0 \), such that if \(n > N \), then
\[
\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon.
\]

Algebra:
\[
\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| = \left| \frac{19}{7(7n-4)} \right|.
\]
\[
\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon\iff \frac{19}{7(7n-4)} < \epsilon \iff \frac{19}{7n-4} < \frac{1}{\epsilon} \iff \frac{19}{7n} < 7n - 4 \iff 7n > \frac{19}{7} + 4 \iff n > \frac{19}{49} + \frac{4}{7}.
\]
So put \(N = \frac{19}{49} + \frac{4}{7} \).

Proof. For any \(\epsilon > 0 \), let \(N = \frac{19}{49} + \frac{4}{7} \). If \(n > N \), then we can reverse all steps above to show that \(\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon \). \(\Box \)

Example 7.3. \(\lim_{n \to \infty} \frac{4n^3+3n}{n^3-6} = 4 \).

Discussion: given \(\epsilon > 0 \), we want to find \(N > 0 \), such that if \(n > N \), then
\[
\left| \frac{4n^3+3n}{n^3-6} - 4 \right| < \epsilon, \iff \left| \frac{3n+24}{n^3-6} \right| < \epsilon.
\]

There is no way to easily solve this inequality for \(n \) by \(\epsilon \), so we need to do some rough estimates:

1. \(3n + 24 \leq 3n + 24n \leq 27n \);
2. \(n^3 - 6 > n^3/2 \) provide \(n \) is large, actually this is equivalent to \(n^3 > 12 \), which holds true when \(n > 2 \).
By what we have above, we have

\[7.1 \iff \frac{27n}{n^3/2} < \epsilon, \text{ and } n > 2; \]
\[\iff \frac{54}{n^2} < \epsilon, \text{ and } n > 2; \]
\[\iff n > \sqrt{\frac{54}{\epsilon}}, \text{ and } n > 2. \]

Proof. For any \(\epsilon > 0 \), let \(N = \max\{\sqrt{\frac{54}{\epsilon}}, 2\} \). If \(n > N \), then we can reverse all steps above to (7.1).

Example 7.4. Let \((s_n) \) be a sequence of nonnegative numbers, i.e. \(s_n \geq 0 \). Suppose that \(\lim_{n \to \infty} s_n = s \). (Show that \(s \geq 0 \) as an exercise). Prove that \(\lim \sqrt{s_n} = \sqrt{s} \).

Discussion: given \(\epsilon > 0 \), we want to find \(N > 0 \), such that if \(n > N \), then

\[|\sqrt{s_n} - \sqrt{s}| < \epsilon. \]

Note that

\[\sqrt{s_n} - \sqrt{s} = \frac{s_n - s}{\sqrt{s_n} + \sqrt{s}}. \]

We will divide the discussion into two cases:

(1) if \(s > 0 \), then \(\sqrt{s_n} + \sqrt{s} \geq \sqrt{s} \), hence

\[|\sqrt{s_n} - \sqrt{s}| \leq \frac{s_n - s}{\sqrt{s}}. \]

By the assumption \(\lim_{n \to \infty} s_n = s \), we can select \(N > 0 \), such that \(n > N \implies |s_n - s| < \sqrt{s} \epsilon \), and this will serve our purpose.

(2) The case when \(s = 0 \) will be left as homework.

Proof. We only discuss the case when \(s > 0 \) here. For any \(\epsilon > 0 \), since \(\lim_{n \to \infty} s_n = s \), there exists \(N > 0 \), such that \(n > N \implies |s_n - s| < \sqrt{s} \epsilon \). This implies that

\[|\sqrt{s_n} - \sqrt{s}| \leq \frac{s_n - s}{\sqrt{s}} < \epsilon, \]

and this finishes the proof.

Example 7.5. Let \((s_n)_{n \in \mathbb{N}} \) be a sequence of real numbers such that \(s_n \neq 0 \) for all \(n \in \mathbb{N} \) and \(\lim s_n = s \neq 0 \). Prove that

\[\inf\{|s_n| : n \in \mathbb{N}\} > 0. \]
Discussion: Let $\epsilon = |s|/2$ in the definition (6.1). For $N = N(\epsilon)$ in (6.1), if $n > N$, then we have

$$|s_n - s| < \epsilon \implies s_n \in (s - \epsilon, s + \epsilon).$$

Proof. Let $\epsilon = |s|/2$. Since $\lim s_n = s$, there exists $N > 0$, such that

$$n > N \implies |s_n - s| < \epsilon = \frac{|s|}{2}.$$

So $n > N$ implies that

$$|s_n| = |s + s_n - s| \geq |s| - \frac{|s|}{2} = \frac{|s|}{2}.$$

Now set

$$m = \min\{\frac{|s|}{2}, |s_1|, |s_2|, \ldots, |s_N|\},$$

then $|s_n| \geq m$, for all $n \in \mathbb{N}$, and this finishes the proof. \qed
8. Problem session

(1) (4.15) Let $a, b \in \mathbb{R}$. Show if $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.

Proof. Suppose not. Then $a > b$, or $a - b > 0$. By the Archimedean Property, there exists $n \in \mathbb{N}$, such that

$$\frac{1}{n} < a - b.$$

And this is equivalent to $a > b + \frac{1}{n}$, but this is a contradiction. \(\square\)

(2) Show that the Archimedean Property of the real numbers holds if and only if the set of natural numbers \mathbb{N} is not bounded above.

Proof. First assume that the Archimedean Property holds. Then for any positive number $M > 0$, there exists a $n \in \mathbb{N}$, such that $M < n$. This means that \mathbb{N} is not bounded above.

Now assume that \mathbb{N} is not bounded above, and this means that for any $N > 0$, there exists $n \in \mathbb{N}$, such that $N < n$. Now given any two numbers $a, b \in \mathbb{R}$, $a > 0$, $b > 0$. Consider the number $N = b/a$, so there exists $n \in \mathbb{N}$, such that $N = b/a < n$, which is equivalent to $na > b$. \(\square\)

(3) (HW3.2) Show that if $S \subset \mathbb{Z}$ is bounded above then S has a maximum, i.e., $\sup S \in S$.

(4) Let $x \in \mathbb{R}$. We define the Greatest Integer function of x as the largest integer $m \in \mathbb{Z}$ such that $m \leq x$; it is denoted by $[x]$ and satisfies the inequality

$$[x] \leq x < [x] + 1.$$

For instance, $[0.1] = 0$, $[1.1] = 1$, $[-2.1] = -3$, $[5] = 5$, $[-4] = -4$, etc. Show that for any real number $x \in \mathbb{R}$, $[x]$ exists. Hint: Consider the set

$$S = \{n \in \mathbb{Z}: n \leq x\}.$$

Then consider two cases depending on whether $x \geq 0$ or $x < 0$. In the case when $x < 0$, use the Archimedean property of \mathbb{R} to show that S is nonempty. Then apply the completeness axiom and finally show that $\sup S = [x]$, i.e., show that $\sup S$ is an integer (this follows from Problem 3) and it satisfies

$$\sup S \leq x < \sup S + 1.$$
Proof. Let us only consider the case when $x \geq 0$, then $0 \in S$, hence $S \neq \emptyset$. Since S is bounded from above, (x is an upper bound), by the Completeness Axiom, sup S exists. By Problem 3, sup $S \in S$, and sup $S = \max S$. Then the only thing we need to prove is

$$x < \text{sup} \ S + 1.$$

Assume by the contrary that $x \geq \text{sup} \ S + 1$. Then since sup S is an integer, and hence sup $S + 1$ is an integer, so by the definition of S, we have

$$\text{sup} \ S + 1 \in S.$$

This is a contradiction to the fact that sup $S = \max S$. \square
9. Limit theorems for sequences

Definition 9.1. A sequence \((s_n)\) of real numbers is said to be bounded if the set of values \(\{s_n : n \in \mathbb{N}\}\) is bounded. This is equivalent to saying that:

\[\exists M \in \mathbb{R}, \text{ such that } |s_n| \leq M \text{ for all } n \in \mathbb{N}.\]

Theorem 9.2. Convergent sequences are bounded.

Proof. Let \((s_n)\) be a convergent sequence, and let \(s\) be the limit, or equivalently \(s = \lim s_n\).

Apply the definition of convergence with \(\epsilon = 1\), then we get some large number \(N \in \mathbb{N}\), such that

\[n > N \text{, then } |s_n - s| < 1.\]

By the triangle inequality, \(|s_n - s| < 1 \implies |s_n| \leq |s + s_n - s| \leq |s| + |s_n - s| \leq |s| + 1.\]

Define

\[M = \max\{|s_1|, |s_2|, \ldots, |s_N|, |s| + 1\}.\]

Then we have

\[|s_n| \leq \begin{cases} M & \text{if } n \leq N \\ |s| + 1 & \text{if } n > N \end{cases}.\]

Therefore \(|s_n| \leq M\) for all \(n \in \mathbb{N}\), and so \(\{s_n\}\) is bounded. \(\square\)

Remark 9.3. In the proof above, we only apply the defining condition (6.1) for a single \(\epsilon = 1\). Actually, we can take \(\epsilon\) to be any finite positive number in the proof, and this is left as an exercise.

Theorem 9.4. If a sequence \((s_n)\) converges to \(s\), and \(k \in \mathbb{R}\), then the sequence \((ks_n)\) converges to \(ks\). That is,

\[\lim(ks_n) = k \lim s_n.\]

Proof. If \(k = 0\), the proof is trivial as \(ks_n \equiv 0\), and \(\lim(0 \cdot s_n) = 0 = 0 \cdot \lim s_n\).

Assume \(k \neq 0\) now. Let \(\epsilon > 0\) be any positive real number, and we need to show that

\[|ks_n - ks| < \epsilon, \text{ for large } n \in \mathbb{N}.\]

Note that the above inequality is equivalent to saying that

\[|s_n - s| < \frac{\epsilon}{|k|}, \text{ for large } n \in \mathbb{N}.\]
Since \(\lim s_n = s \), for \(\frac{\varepsilon}{|k|} > 0 \), by (6.1) there exists \(N > 0 \), such that
\[
\text{if } n \geq N, \text{ then } |s_n - s| < \frac{\varepsilon}{|k|}.
\]
Therefore for \(n > N \), we have \(|ks_n - ks| < \varepsilon \).

\[\square \]

Theorem 9.5. If \((s_n) \) converges to \(s \) and \((t_n) \) converges to \(t \), then \((s_n + t_n) \) converges to \(s + t \). That is to say,
\[
\lim (s_n + t_n) = \lim s_n + \lim t_n.
\]

Proof. Let \(\varepsilon > 0 \) be any positive real number, and we want to show that
\[
|(s_n + t_n) - (s + t)| < \varepsilon, \text{ for all large } n \in \mathbb{N}.
\]
Note that
\[
|(s_n + t_n) - (s + t)| \leq |s_n - s| + |t_n - t|.
\]

(\textbf{Hint:} so we can try to show \(|s_n - s| < \varepsilon/2 \) and \(|t_n - t| < \varepsilon/2 \).)

Since \(\lim s_n = s \), \(\exists N_1 \in \mathbb{N} \), such that
\[
\text{if } n \geq N_1, \text{ then } |s_n - s| < \varepsilon/2.
\]
Similarly by \(\lim t_n = t \), \(\exists N_2 \in \mathbb{N} \), such that
\[
\text{if } n \geq N_2, \text{ then } |t_n - t| < \varepsilon/2.
\]

Let
\[
N = \max\{N_1, N_2\}.
\]
Then if \(n > N \), we have
\[
|(s_n + t_n) - (s + t)| \leq |s_n - s| + |t_n - t| < \varepsilon.
\]

\[\square \]

Theorem 9.6. If \((s_n) \) converges to \(s \) and \((t_n) \) converges to \(t \), then \((s_n \cdot t_n) \) converges to \(s \cdot t \). That is to say,
\[
\lim (s_n \cdot t_n) = (\lim s_n) \cdot (\lim t_n).
\]

Discussion:
\[
|s_n t_n - st| = |s_n t_n - s_n t + s_n t - st| \leq |s_n||t_n - t| + |t||s_n - s| \leq M|t_n - t| + |t||s_n - s|.
\]

- In the above inequality, \(|t_n - t| \) and \(|s_n - s| \) can be very small for large \(n \);
- \(|s_n| \) is bounded by Theorem 9.2 i.e. \(|s_n| \leq M \).
Proof. Let $\epsilon > 0$ be any positive real number. By Theorem 9.2, $\exists M > 0$, such that $|s_n| \leq M$, for all $n \in \mathbb{N}$.

Since $\lim t_n = t$, $\exists N_1 \in \mathbb{N}$, such that

if $n \geq N_1$, then $|t_n - t| < \epsilon/(2M)$.

Similarly by $\lim s_n = s$, $\exists N_2 \in \mathbb{N}$, such that

if $n \geq N_2$, then $|s_n - s| < \frac{\epsilon}{2(|t| + 1)}$.

Let $N = \max\{N_1, N_2\}$.

Then if $n > N$, we have

$$|s_n t_n - st| \leq |s_n||t_n - t| + |t||s_n - s|$$

$$\leq M \cdot \frac{\epsilon}{2M} + |t| \cdot \frac{\epsilon}{2(|t| + 1)} < \epsilon.$$

\[\square \]

Lemma 9.7. If (s_n) converges to s and if $s_n \neq 0$ for all $n \in \mathbb{N}$, and if $s \neq 0$, then

$$\lim \frac{1}{s_n} = \frac{1}{s}.$$

Discussion:

$$\left| \frac{1}{s_n} - \frac{1}{s} \right| = \left| \frac{s_n - s}{s_n s} \right| \leq \frac{|s_n - s|}{m|s|}.$$

We know that $|s_n - s|$ is very small for n very large. To show the right hand side is small, we need the denominator $|s_n s|$ to be bounded away from 0. By Example 7.5, we do have that

$$m = \inf \{|s_n| : n \in \mathbb{N}\} > 0.$$

Proof. Let $\epsilon > 0$ be any positive real number, and m be defined as above. Since $\lim s_n = s$, there exists $N > 0$, such that

if $n \geq N$, then $|s_n - s| < \epsilon \cdot m \cdot |s|$.

Therefore if $n \geq N$, then

$$\left| \frac{1}{s_n} - \frac{1}{s} \right| \leq \frac{\epsilon \cdot m \cdot |s|}{|s_n| \cdot |s|} < \epsilon.$$

\[\square \]
Theorem 9.8. Suppose \(\lim s_n = s \) and \(\lim t_n = t \). If \(s \neq 0 \) and \(s_n \neq 0 \) for all \(n \in \mathbb{N} \), then
\[
\lim \left(\frac{t_n}{s_n} \right) = \frac{t}{s}.
\]

Proof. By the previous lemma, \(\lim \frac{1}{s_n} = \frac{1}{s} \). Then
\[
\lim \frac{t_n}{s_n} = (\lim t_n)(\lim \frac{1}{s_n}) = \frac{t}{s}.
\]

\[\square\]

A few basic examples:

a) \(\lim \frac{1}{n^p} = 0 \) for \(p > 0 \) (assume \(p \in \mathbb{N} \) at this moment);

b) \(\lim a^n = 0 \) if \(|a| < 1 \);

c) \(\lim n^{1/n} = 1 \);

d) \(\lim a^{1/n} = 1 \) for \(a > 0 \).

Proof. a). Let \(\epsilon > 0 \) be any positive real number. (We want to show \(\frac{1}{n^p} < \epsilon \), which is equivalent to \(n > (\frac{1}{\epsilon})^{1/p} \).)

Let \(N = (\frac{1}{\epsilon})^{1/p} \),

(Exercise: use the completeness axiom to show that: “for any \(n \in \mathbb{N} \), and \(a > 0 \), there exists \(x > 0 \), such that \(x^n = a \), and we write \(x = a^{1/n} \).”)

then if \(n > N \), we have \(\frac{1}{n^p} < \epsilon \). Therefore
\[
\left| \frac{1}{n^p} - 0 \right| = \frac{1}{n^p} < \epsilon.
\]

b). If \(a = 0 \), then \(a^n = 0 \), and the proof is trivial.

If \(a \neq 0 \) and \(|a| < 1 \), then \(|a| = \frac{1}{1+b} \) for some \(b > 0 \). Using the binomial expansion,
\[
(1 + b)^n \geq 1 + nb > nb.
\]

So
\[
|a^n = 0| = |a|^n = \frac{1}{(1+b)^n} < \frac{1}{nb}.
\]

Let \(\epsilon > 0 \) be any positive real number, and let \(N = \frac{1}{\epsilon b} \). Then if \(n > N \), we have
\[
|a^n = 0| < \frac{1}{nb} < \epsilon.
\]

c). Let \(s_n = n^{1/n} - 1 \). Note that \(s_n \geq 0 \). It suffices to show \(\lim s_n = 0 \). Note that
\[
1 + s_n = n^{1/n} \iff (1 + s_n)^n = n.
\]
By the binomial expansion:
\[n = (1 + s_n)^n = 1 + n \cdot s_n + \frac{1}{2}n(n + 1)s_n^2 > \frac{1}{2}n(n + 1)s_n^2. \]
So
\[s_n^2 < \frac{2}{n - 1}, \implies s_n < \sqrt{\frac{2}{n - 1}}. \]

Exercise: use the above formula to show \(\lim s_n = 0. \)

d). First assume that \(a \geq 1. \) Then for \(n \geq a, \) we have
\[1 \leq a^{1/n} \leq n^{1/n}. \]

Exercise: use the fact \(\lim n^{1/n} = 1 \) to prove \(\lim a^{1/n} = 1. \)

(Hint: let \(\epsilon > 0 \) be any positive real number, there exists \(N > 0, \) such that
\[n > N \implies n^{1/n} - 1 < \epsilon \implies a^{1/n} - 1 < \epsilon.) \]

Suppose \(0 < a < 1, \) then \(\frac{1}{a} > 1. \) So \(\lim \left(\frac{1}{a}\right)^{1/n} = 1. \) By Lemma 9.7, we can get \(\lim a^{1/n} = 1. \)

Definition 9.9. A sequence \((s_n) \) is said to diverges to \(+\infty, \) provided:
\[(9.1) \quad \text{for each } M > 0, \exists N > 0, \text{ such that } n > N, \implies s_n > M. \]

We write \(\lim s_n = +\infty. \)

Similarly we write \(\lim s_n = -\infty, \) provided
\[(9.2) \quad \text{for each } M < 0, \exists N > 0, \text{ such that } n > N, \implies s_n < M. \]

Example 9.10. Prove that \(\lim (\sqrt{n} + 5) = +\infty. \)

Discussion: consider an arbitrarily large \(M > 0, \) we need to find \(N > 0, \) such that
\[n > N \implies \sqrt{n} + 5 > M \iff n > (M - 5)^2. \]

Proof. Given \(M > 0, \) let \(N = (M - 5)^2, \) then \(n > N \) implies \(\sqrt{n} + 5 > M. \)

Theorem 9.11. Assume that \(\lim s_n = +\infty \) and \(\lim t_n > 0, \) then
\[\lim (t_n \cdot s_n) = +\infty. \]

Discussion: consider an arbitrarily large \(M > 0, \) we want \((s_n \cdot t_n) > M. \)
- Since \(\lim s_n = +\infty, \) \(s_n \) can be as large as we want when \(n \) is large, so we need to show that \(t_n \)'s are bounded away from 0;
- Choose \(0 < m < \lim t_n, \) and observe that \(t_n > m \) for \(n \) large;
- Then we only need \(s_n > M/m \) for large \(n. \)
Proof. Let \(M > 0 \) be an arbitrarily large number. Select \(m > 0 \), such that
\[
0 < m < \lim t_n.
\]
By Problem 8.10 in textbook, \(\exists N_n > 0 \), such that
\[
n > N_1 \implies t_n > m.
\]
Since \(\lim s_n = +\infty \), \(\exists N_2 > 0 \), such that
\[
n > N_2 \implies s_n > \frac{M}{m}.
\]
Let \(N = \max\{N_1, N_2\} \), then
\[
n > N \implies s_n \cdot t_n > \frac{M}{m} \cdot m = M.
\]
\(\square \)

Theorem 9.12. Let \((s_n) \) be a sequence of positive numbers, then
\[
\lim s_n = +\infty \iff \lim \left(\frac{1}{s_n} \right) = 0.
\]

Proof.

1. Assume \(\lim s_n = +\infty \). Given any \(\epsilon > 0 \), let \(M = \frac{1}{\epsilon} > 0 \), then \(\exists N_1 \), such that
\[
n > N_1 \implies s_n > M = \frac{1}{\epsilon}, \implies \frac{1}{s_n} < \epsilon.
\]

2. Assume \(\lim \left(\frac{1}{s_n} \right) = 0 \). Given \(M > 0 \), let \(\epsilon = \frac{1}{M} \), then \(\exists N_2 \), such that
\[
n > N_2 \implies \frac{1}{s_n} > M = \frac{1}{\epsilon}, \implies s_n > M.
\]
\(\square \)
10. Monotone sequences and Cauchy sequences

Definition 10.1. Let \((s_n)\) be a sequence.

- \((s_n)\) is called a **non-decreasing sequence** if \(s_n \leq s_{n+1}\) for all \(n \in \mathbb{N}\).
- \((s_n)\) is called a **non-increasing sequence** if \(s_n \geq s_{n+1}\) for all \(n \in \mathbb{N}\).

Such sequences are called **monotone sequences**.

Example 10.2.

- \(a_n = 1 - \frac{1}{n}\), \(b_n = n^3\), \(c_n = (1 + \frac{1}{n})^n\) are non-decreasing sequences;
- \(d_n = \frac{1}{n^2}\) is a non-increasing sequence;
- \(s_n = (-1)^n\), \(t_n = \cos\left(\frac{n\pi}{3}\right)\), \(u_n = (-1)^n\cdot n\), \(v_n = \frac{(-1)^n}{n}\) are not monotone sequences;
- \(x_n = n^{1/n}\) is not monotone.

Theorem 10.3. All bounded monotone sequences converge.

Proof. Let \((s_n)\) be a bounded non-decreasing sequence. Consider the set of values:

\[S = \{ s_n : n \in \mathbb{N} \}. \]

Since \((s_n)\) is bounded, the set \(S\) is also bounded. By the Completeness Axiom, we can take

\[u = \sup S. \]

Claim: \(\lim s_n = u\).

Given \(\epsilon > 0\), since \(u\) is the supremum, there exists \(N \in \mathbb{N}\), such that

\[s_N > u - \epsilon. \]

Since \((s_n)\) is non-decreasing,

\[\forall n > N, \quad s_n \geq s_N > u - \epsilon. \]

On the other hand, since \(u\) is an upper bound for \(S\), we have

\[\forall n \in \mathbb{N}, \quad s_n \leq u. \]

Combining the two inequalities above, \(\forall n > N,\)

\[u - \epsilon < s_n \leq u \implies |s_n - u| < \epsilon. \]

If \((s_n)\) is a bounded non-increasing sequence, the proof is similar and will be left as an exercise. (Hint: let \(u = \inf S\).) \(\square\)

Decimals:
Different decimal expansions can represent the same real number;
Focus on non-negative decimals expansions and non-negative real numbers.

Given a decimal:
\[k.d_1d_2d_3d_4\cdots, k \in \mathbb{Z}_+, d_j \in \{0, 1, 2, \cdots, 9\} \]

Let
\[s_n = k + \frac{d_1}{10} + \frac{d_2}{10^2} + \cdots + \frac{d_n}{10^n}, \]
then \((s_n)\) is a non-decreasing sequence, and \((s_n)\) is bounded from above by \(k + 1\). By Theorem \[10.3\] \((s_n)\) converges and we denote the limit by
\[s = k.d_1d_2d_3d_4\cdots. \]

Theorem 10.4.

1. If \((s_n)\) is an unbounded non-decreasing sequence, then \(\lim s_n = +\infty\);
2. If \((s_n)\) is an unbounded non-increasing sequence, then \(\lim s_n = -\infty\).

Proof.

1. Since \((s_n)\) is unbounded, and \(s_n \geq s_1\), \((s_n)\) is unbounded from above. This implies that:

 for any \(M > 0\), \(\exists N > 0\), such that \(s_N > M\).

 Since \((s_n)\) is non-decreasing,

 \[\forall n > N, \quad s_n \geq s_N > M. \]

2. Exercise.

Corollary 10.5. If \((s_n)\) is a monotone sequence, then it either converges, diverges to \(+\infty\), or diverges to \(-\infty\). Therefore \(\lim s_n\) always is meaningful.

lim sup and lim inf:

Let \((s_n)\) be a bounded sequence. It may or may not converge. The limiting behavior of \((s_n)\) depends only on the terms \(\{s_n : n > N\}\) for \(N\) large. Let \(N \in \mathbb{N}\) be an arbitrary natural number:

Claim 1: if \(\lim s_n\) exists, then \(\lim s_n \in [u_N, v_N]\), where
\[u_N = \inf\{s_n : n > N\}, \quad v_N = \sup\{s_n : s > N\}. \]
Claim 2: we have:
\[u_1 \leq u_2 \leq u_3 \leq \cdots; \]
\[v_1 \geq v_2 \geq v_3 \geq \cdots. \]

Note that as \(N \) increases, the sets \(S_N = \{s_n : n > N\} \) get smaller:
\[S_1 \supset S_2 \supset S_3 \supset \cdots. \]

The above inequalities follow by Problem 4.7 in textbook.

By Theorem 10.3 the following limits exist:
\[u = \lim u_N, \quad v = \lim v_N, \quad \text{and} \quad u \leq v. \]

Moreover,
\[\text{if } \lim s_n \text{ exists, } \longrightarrow \ u \leq \lim s_n \leq v. \]

Definition 10.6.
\[
\limsup s_n := \lim_{n \to \infty} \left(\sup \{s_n : n > N\} \right);
\]
\[
\liminf s_n := \lim_{n \to \infty} \left(\inf \{s_n : n > N\} \right).
\]

Remark 10.7. In the above definition, the sequence \((s_n)\) is not restricted to be bounded.

- If \(\sup\{s_n : n > N\} = +\infty \), then \(\limsup s_n = +\infty \);
- If \(\inf\{s_n : n > N\} = -\infty \), then \(\liminf s_n = -\infty \).

Theorem 10.8. Let \((s_n)\) be a sequence.

(i) If \(\lim s_n \) exists \((in \ \mathbb{R}, \ or \ is \ +\infty, \ or \ -\infty)\), then
\[
\liminf s_n = \lim s_n = \limsup s_n.
\]

(ii) If \(\liminf s_n = \limsup s_n \), then \(\lim s_n \) exists, and
\[
\lim s_n = \liminf s_n = \limsup s_n.
\]

Proof. As in the definition, denote
\[
u_N = \inf\{s_n : n > N\}, \quad v_N = \sup\{s_n : s > N\},
\]
and \(u = \lim \inf s_n = \lim u_N, \quad v = \lim \sup s_n = \lim v_N. \)
(i) **Case 1**: \(\lim s_n = +\infty \). Then \(\forall M > 0, \exists N > 0 \), such that
\[
n > N, \implies s_n > M.
\]
Then \(u_N \geq M \), \(\implies \) if \(m > N \), then \(u_m \geq u_N \geq M \), so \(\lim u_N = +\infty \).
Therefore
\[
\lim sup s_n = \lim v_N \geq \lim u_N = +\infty.
\]
Case 2: \(\lim s_n = -\infty \) can be proven similarly.
Case 3: assume \(\lim s_n = s \). Then \(\forall \epsilon > 0, \exists N > 0 \), such that
\[
|s_n - s| < \epsilon, \quad \text{for } n > N.
\]
We have
\[
\begin{align*}
\implies s_n &< s + \epsilon, \quad \text{for } n > N; \\
\implies v_N &\leq \sup\{s_n : n > N\} \leq s + \epsilon; \\
\text{if } m > N, \implies &u_m \leq v_N \leq s + \epsilon; \\
\implies \lim sup s_n &= \lim v_N \leq s.
\end{align*}
\]
Similarly, we have
\[
\begin{align*}
\implies s_n &> s - \epsilon, \quad \text{for } n > N; \\
\implies u_N &\geq \inf\{s_n : n > N\} \leq s - \epsilon; \\
\text{if } m > N, \implies &u_m \geq u_N \geq s - \epsilon; \\
\implies \lim inf s_n &= \lim u_m \geq s.
\end{align*}
\]
Since we know \(\lim inf s_n \leq \lim sup s_n \), they must all equal to \(s \).
(ii) The proof when \(\lim sup s_n = \lim inf s_n = \pm \infty \) is left as exercise.

Assume \(\lim sup s_n = \lim inf s_n = s \). Given \(\epsilon > 0 \), since \(\lim v_N = s \), there exists \(N_1 > 0 \), such that if \(n > N_1 \)
\[
|v_N - s| = |\sup\{s_n : n > N\} - s| < \epsilon.
\]
Note that \(\{v_N\} \) is monotone non-increasing, so we have \(v_N \geq s \), and hence
\[
\sup\{s_n : n > N\} - s < \epsilon,
\]
\[
\implies s_n < s + \epsilon, \quad \text{if } n > N_1.
\]
Similarly, since since \(\lim u_N = s \), there exists \(N_2 > 0 \), such that if \(n > N_2 \)
\[
|u_N - s| = |\inf\{s_n : n > N\} - s| < \epsilon.
\]
Note that \(\{u_N\} \) is monotone non-decreasing, so we have \(u_N \leq s \), and hence
\[
s - \inf\{s_n : n > N\} < \epsilon,
\]
\[s_n > s - \epsilon, \quad \text{if } n > N_2. \]

Let \(N = \max\{N_1, N_2\} \), then if \(n > N \),

\[s - \epsilon < s_n < s + \epsilon. \]

This implies that \(\lim s_n = s \).

\[\square \]

Definition 10.9. A sequence \((s_n)\) is called a **Cauchy sequence** if

\[\forall \epsilon > 0, \exists N > 0, \text{ such that } m, n > M, \implies |s_m - s_n| < \epsilon. \]

(10.1)

Lemma 10.10. Convergent sequences are Cauchy sequences.

Proof. Assume that \(\lim s_n = s \). Let \(\epsilon > 0 \), then there exists \(N > 0 \), such that

\[n > N, \implies |s_n - s| < \frac{\epsilon}{2}. \]

Therefore, if \(n, m > N \),

\[|s_n - s_m| \leq |s_n - s| + |s - s_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]

\[\square \]

Lemma 10.11. Cauchy sequences are bounded.

Proof. Apply (10.1) with \(\epsilon = 1 \). Then there exists \(N > 0 \), such that

\[m, n > N, \implies |s_n - s_m| < 1. \]

In particular, \(|s_n - s_{N+1}| < 1 \), and so

\[|s_n| < |s_{N+1}| + 1. \]

Let

\[M = \max\{|s_{N+1}| + 1, |s_1|, \ldots, |s_N|\}. \]

Then \(|s_n| \leq M \).

\[\square \]

Theorem 10.12. A sequence converges if and only if it is a Cauchy sequence.

Proof. According Lemma \[10.10\] we only need to show that Cauchy sequence must converge. Assume \((s_n)\) is Cauchy. By Lemma \[10.11\] \((s_n)\) is bounded, so by Theorem \[10.8\] we only need to show that

\[\liminf s_n = \limsup s_n. \]

Given \(\epsilon > 0 \), there exists \(N > 0 \), such that

\[\text{if } m, n > N, \implies |s_m - s_n| < \epsilon. \]
\[s_n < s_m + \epsilon; \]
\[v_N = \sup s_n : n > N \leq s_m + \epsilon, \forall m > N; \]
\[v_N - \epsilon \leq s_m, \forall m > N; \]
\[v_N - \epsilon \leq \inf \{ s_m : m > N \} = u_N; \]
\[\limsup s_n \leq v_N \leq u_N + \epsilon \leq \liminf s_N + \epsilon. \]
11. Subsequences

Definition 11.1. Let \((s_n)\) be a sequence. A subsequence of \((s_n)\) is a sequence \((t_k)_{k \in \mathbb{N}}\), such that \(t_k = s_{n_k}\), with
\[
n_1 < n_2 < n_3 < \cdots < n_k < n_{k+1} < \cdots.
\]

Example 11.2. Consider \(s_n = n^2(-1)^n\). The positive terms form a subsequence:
\[
(t_k) = (4, 16, 36, \cdots).
\]

Here \(t_k = s_{2k}\).

Example 11.3. Consider \(a_n = \sin\left(\frac{n\pi}{3}\right)\). The nonnegative terms are
\[
\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, 0, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \cdots\right)
\]

Example 11.4. \(\mathbb{Q}\) can be listed as a sequence \((r_n)\).

Proposition 11.5. Given any real number \(a\), there exists a subsequence \((r_{n_k})\) of \((r_n)\) that converges to \(a\).

Discussion: we want to construct \(r_{n_k}\), such that
\[
|r_{n_k} - a| < \frac{1}{k}, \quad \text{for all } k \in \mathbb{N}.
\]

Proof. We use “Definition/construction by induction”.

1. Select \(n_1\), such that \(|r_{n_1} - a| < 1\), and this follows from the Denseness of \(\mathbb{Q}\);
2. Suppose \(n_1, \cdots, n_k\) have been selected such that
\[
n_1 < n_2 < \cdots < n_k,
\]
and \(|r_{n_j} - a| < \frac{1}{j}\) for \(j = 1, 2, \cdots, k\).

We want to find \(r_{n_{k+1}}\), with \(n_{k+1} > n_k\) and \(|r_{n_{k+1}} - a| < \frac{1}{k+1}\), which is equivalent to \(r_{n_{k+1}} \in \left(a - \frac{1}{k+1}, a + \frac{1}{k+1}\right)\).

By Problem 4.11 in the textbook, there are infinitely many rationals in \(\left(a - \frac{1}{k+1}, a + \frac{1}{k+1}\right)\). Therefore, there exists \(n_{k+1} > n_k\), such that \(r_{n_{k+1}} \in \left(a - \frac{1}{k+1}, a + \frac{1}{k+1}\right)\).

By Mathematical Induction, there exists a subsequence \((r_{n_k})\), with \(\lim r_{n_k} = a\). □
Example 11.6. Let \((s_n)\) be a sequence of positive numbers, i.e. \(s_n > 0\), such that
\[
\inf\{s_n : n \in \mathbb{N}\} = 0.
\]
Prove that a subsequence of \((s_n)\) converges monotonically to 0.

Discussion: we want to construct \(s_{n_k}\), such that
\[
s_1 > s_2 > \cdots > s_k \cdots; \quad \text{and} \quad s_k < \frac{1}{k}, \quad \text{for all } k \in \mathbb{N}.
\]

Proof. We use “Definition/construction by induction”.

(1) Since \(\inf\{s_n : n \in \mathbb{N}\} = 0\), there exists \(n_1 \in \mathbb{N}\), such that \(s_1 < 1\);
(2) Suppose \(n_1, \cdots, n_k\) have been selected such that
\[
n_1 < n_2 < \cdots < n_k,
\]
and
\[
s_{n_{j+1}} < \min\{s_{n_j}, \frac{1}{j+1}\}, \quad \text{for } j = 1, 2, \cdots, k - 1.
\]

We want to find \(s_{n_{k+1}}\), such that \(s_{n_{k+1}} < \min\{s_{n_k}, \frac{1}{k+1}\}\). Note that
\[
\min\{s_n : 1 \leq n \leq n_k\} > 0, \implies \inf\{s_n : n > n_k\} = 0.
\]
Therefore, there exists \(n_{k+1} > n_k\), such that
\[
s_{n_{k+1}} < \min\{s_{n_k}, \frac{1}{k+1}\}.
\]

By Mathematical Induction, there exists a decreasing subsequence \((s_{n_k})\), with \(\lim s_{n_k} = 0\).

Theorem 11.7. If a sequence \((s_n)\) converges, then every subsequence converges to the same limit.

Proof. Let \(\lim s_n = s\), and \((s_{n_k})\) be a subsequence of \((s_n)\). Note that \(n_k \geq k\) for all \(k\).

Given \(\epsilon > 0\), there exists \(N > 0\), such that \(n > N, \implies |s_n - s| < \epsilon\).
If \(k > N\), then \(n_k > N\), so \(|s_{n_k} - s| < \epsilon\). This implies that \(\lim s_{n_k} = s\).

Theorem 11.8. Every sequence \((s_n)\) has a monotone subsequence.

Proof. Say that “the \(n\)-term \(s_n\) is dominant if \(s_n > s_m\) for all \(m > n\).”

We divide the proof into two cases:
Case 1: there exists infinitely many dominant terms \((s_{n_k})\), then \(s_{n_k+1} < s_{n_k}\), so \((s_{n_k})\) is a decreasing sequence.

Case 2: suppose there are only finitely many dominant terms, and we only focus on this case in the following.

Select \(n_1\), such that \(s_{n_1}\) is larger than all dominant terms. Then

\[(11.1) \quad \text{For any } N \geq n_1, \text{ there exists } m > N, \text{ such that } s_m \geq s_N.\]

We are going to use “inductive construction” to find a monotone sequence.

1. Applying \((11.1)\) with \(N = n_1\) gives \(n_2 > n_1\), such that \(s_{n_2} \geq s_{n_1}\);
2. Suppose \(n_1, \ldots, n_k\) have been selected such that \(n_1 < n_2 < \cdots < n_k\), and \(s_{n_1} \leq s_{n_2} \leq \cdots \leq s_{n_k}\).

Applying \((11.1)\) with \(N = n_k\) gives \(n_{k+1} > n_k\), such that \(s_{n_{k+1}} \geq s_{n_k}\).

By Mathematical Induction, \((s_{n_k})\) is a nondecreasing subsequence. \(\blacksquare\)

Corollary 11.9. Let \((s_n)\) be a sequence, then there exists

- a monotone subsequence with limit \(\limsup s_n\), and
- a monotone subsequence with limit \(\liminf s_n\).

Proof. We only prove the first statement for \(\limsup s_n\).

Let \(v_N = \sup\{s_n : s > N\}\), \(N \in \mathbb{N}\), then \(v = \lim v_N = \limsup s_n\).

If \(v = -\infty\), then \(\lim s_n = -\infty\), so any monotone sequence will converge to \(\limsup s_n\), and we finished.

If \(v \neq -\infty\), select an arbitrary monotone increasing sequence \((t_N)\), such that \(\lim t_N = v\):

- if \(v\) is finite, let \(t_N = v - \frac{1}{N}\);
- if \(v = +\infty\), let \(t_N = N\).

Now we discuss the two cases as in the proof of the above theorem.

Case 1: by assumption, \(s_{n_k} = \sup\{s_m : m \geq n_k\} = v_{n_k-1}\), so \(\{s_{n_k}\}\) is decreasing and

\[\lim_{k \to \infty} s_{n_k} = \lim v_N = \limsup s_n.\]

Case 2: Given \(N > n_1\) as above, by \((11.1)\), there exists \(m_1 > N\), such that \(s_{m_1} \geq s_N\). Since

\[t_N < v \leq v_N = \sup\{s_m : m > N\},\]
there exists $m_2 > N$, such that $s_{m_2} > t_N$.

\[
\begin{cases}
\text{either} & s_{m_1} \geq s_{m_2}, \implies s_{m_1} \geq s_N \text{ and } s_{m_1} > t_N; \\
\text{or} & s_{m_2} \geq s_{m_1}, \implies s_{m_2} \geq s_N \text{ and } s_{m_2} > t_N.
\end{cases}
\]

Then we have

(11.2) Given $N \geq n_1$, there exists $m > N$, such that $s_m \geq s_N$ and $s_m > t_N$.

We are going to use “inductive construction” to find the monotone subsequence.

1. Applying (11.2) with $N = n_1$ gives $n_2 > n_1$, such that $s_{n_2} \geq s_{n_1}$ and $s_{n_2} > t_{n_1}$.
2. Suppose n_1, \cdots, n_k have been selected such that

\[
\begin{align*}
n_1 &< n_2 < \cdots < n_k, \\
s_{n_1} &\leq s_{n_2} \leq \cdots \leq s_{n_k},
\end{align*}
\]

and

\[
s_{n_{j+1}} > t_{n_j}, \quad \text{for all } 1 \leq j \leq k - 1.
\]

Applying (11.2) with $N = n_k$ gives $n_{k+1} > n_k$, such that $s_{n_{k+1}} \geq s_{n_k}$ and $s_{n_{k+1}} > t_{n_k}$. Moreover, $s_{n_{k+1}} \leq \sup \{s_m : m > n_k\} = v_{n_k}$, so

\[
t_{n_k} < s_{n_{k+1}} \leq v_{n_k}.
\]

By Mathematical Induction, (s_{n_k}) is a nondecreasing sequence and $\lim s_{n_k} = \limsup s_n$. \qed

Definition 11.10. Let (s_n) be a sequence. A subsequential limit is any real number, or $+\infty$, or $-\infty$, that is the limit of some subsequence.

Example 11.11. If $\lim s_n = s$, then the set of subsequential limit is $\{s\}$.

Example 11.12. Let (r_n) be the list of rational numbers, then the set of subsequential limits are $\mathbb{R} \cup \{+\infty, -\infty\}$.

Theorem 11.13. Let (s_n) be a sequence, and S be the set of subsequential limits of (s_n). Then

(i) $S \neq \emptyset$;
(ii) $\sup S = \limsup s_n$, $\inf S = \liminf s_n$;
(iii) $\lim s_n$ exists if and only if S consists of only one element, i.e. $S = \{s\}$.

Proof. (i) follows from the above corollary since \(\lim \sup s_n, \lim \inf s_n \in S \), and (iii) follows from (ii).

To prove (ii), let \(t = \lim s_{n_k} \) for some subsequence \((s_{n_k}) \), then
\[
t = \lim \sup s_{n_k} = \lim \inf s_{n_k}.
\]
Note that
\[
\{s_{n_k} : k > N\} \subset \{s_n : n > N\}.
\]
So
\[
\sup\{s_{n_k} : k > N\} \leq \sup\{s_n : n > N\};
\]
\[
\inf\{s_{n_k} : k > N\} \geq \inf\{s_n : n > N\}.
\]
Therefore,
\[
\lim \inf s_n \leq \lim \inf s_{n_k} = t = \lim \sup s_{n_k} \leq \lim \sup s_n.
\]
So
\[
\lim \inf s_n \leq \inf S \leq \sup S \leq \lim \sup s_n.
\]
Also \(\lim \sup s_n, \lim \inf s_n \in S \), so we finish the proof.

Theorem 11.14. Let \(S \) be the set of subsequential limits of \((s_n) \). If \(t_n \in S \cap \mathbb{R} \) and \(\lim t_n = t \), then \(t \in S \).

Proof. We use “construction by induction”.

1. Since \(t_1 = \lim s_{n_k} \) for some subsequence \((s_{n_k}) \), there exists \(n_1 \), such that
\[
|s_{n_1} - t_1| < 1;
\]
2. Assume \(n_1 < \cdots < n_k \) have been selected with
\[
|s_{n_j} - t_j| < \frac{1}{j}, \text{ for } j = 1, \cdots, k.
\]
Since \(t_{k+1} = \lim s_n \) for some other subsequence \((s_n) \), there exists \(n_{k+1} > n_k \), such that
\[
|s_{n_{k+1}} - t_{k+1}| < \frac{1}{k + 1}.
\]
By induction, we found a subsequence \((s_{n_k}) \) such that \(|s_{n_k} - t_k| < \frac{1}{k} \). It is then an easy exercise to show that \(t = \lim s_{n_k} \).

Definition 11.15. A subset \(S \subset \mathbb{R} \) is called closed, if for any convergent sequence \((t_n) \) where \(t_n \in S \), then the limit \(t = \lim t_n \in S \).
Theorem 12.1. If \((s_n)\) is a sequence with \(\lim s_n = s\) and \(s > 0\), and \((t_n)\) is an arbitrary sequence, then
\[
\lim sup(s_n \cdot t_n) = s \cdot \lim sup t_n.
\]

Proof. First we will show \(\lim sup(s_n \cdot t_n) \geq s \cdot \lim sup t_n\). Denote \(\beta = \lim sup t_n\).

Case 1: \(\beta \in \mathbb{R}\). There exists a subsequence \((t_{n_k})\) of \((t_n)\), such that \(\lim t_{n_k} = \lim sup t_n = \beta\). Then
\[
\lim (s_{n_k} t_{n_k}) = s \beta \leq \lim sup(s_n t_n).
\]

Case 2: \(\beta = +\infty\). There exists a subsequence \((t_{n_k})\) of \((t_n)\), such that \(\lim t_{n_k} = +\infty\). Since \(\lim s_{n_k} = s > 0\), we have \(\lim(s_{n_k} t_{n_k}) = +\infty\) by Theorem 9.11. Hence
\[
\lim sup(s_n t_n) = +\infty.
\]

Case 3: \(\beta = -\infty\). Exercise.

To show the reverse direction: assume \(s_n \neq 0\) by ignore the first few terms. Then
\[
\lim sup t_n = \lim sup \left(\frac{1}{s_n} \cdot (s_n t_n) \right) \geq \lim \left(\frac{1}{s_n} \right) \cdot \lim sup(s_n t_n) = \frac{1}{2} \lim sup(s_n t_n).
\]
This finishes the proof. \(\square\)

Theorem 12.2. Let \((s_n)\) be a sequence with \(s_n \neq 0\). Then
\[
\lim inf \left| \frac{s_{n+1}}{s_n} \right| \leq \lim inf |s_n|^{1/n} \leq \lim sup |s_n|^{1/n} \leq \lim sup \left| \frac{s_{n+1}}{s_n} \right|.
\]

Proof. Let \(\alpha = \lim sup |s_n|^{1/n}\), and \(L = \lim sup \left| \frac{s_{n+1}}{s_n} \right|\). If \(L = +\infty\), then we are done.

Assume \(L < +\infty\). It suffices to show \(\alpha \leq L_1\) for any \(L_1 > L\). Since
\[
L = \lim_{N \to \infty} \left(\sup \left\{ \left| \frac{s_{n+1}}{s_n} \right| : n > N \right\} \right) < L_1,
\]
there exists \(N > 0\), such that
\[
\sup \left\{ \left| \frac{s_{n+1}}{s_n} \right| : n \geq N \right\} < L_1.
\]
Then by iteration, for $n > N$,
\[
|s_n| = \left| \frac{s_n}{s_{n-1}} \right| \cdot \frac{|s_{n-1} - s_{n-2}|}{|s_{n-2}|} \cdot \frac{|s_{n-2} - s_{n-3}|}{|s_{n-3}|} \cdot \cdots \cdot \frac{|s_{N+1} - s_N|}{|s_N|} \cdot |s_N| < L_1^{n-N} |s_N| = L_1^n \cdot \frac{|s_N|}{L_1^n}.
\]

Let $a = L_1^{-N} |s_N| > 0$, then
\[
|s_n| < a \cdot L_1^n \implies |s_n|^{1/n} < L_1 a^{1/n}.
\]

As $\lim a^{1/n} = 1$, we have
\[
\alpha = \limsup |s_n|^{1/n} \leq L_1.
\]

The other part $\liminf \left| \frac{s_{n+1}}{s_n} \right| \leq \liminf |s_n|^{1/n}$ is left as an exercise. \qed
13. Series

Denote
\[\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \cdots + a_n. \]

We are interested in infinite series \(\sum_{n=m}^{\infty} a_n \). Let
\[s_n = a_m + a_{m+1} + \cdots + a_n = \sum_{k=m}^{n} a_k. \]

Definition 13.1.

1. The infinite series \(\sum_{n=m}^{\infty} a_n \) is said to converge provided the sequence of partial sums \((s_n) \) converges to a real number \(s \in \mathbb{R} \), and we define
\[\sum_{n=m}^{\infty} a_n = s. \]
2. A series that does not converge is said to diverge.
3. Say \(\sum_{n=m}^{\infty} a_n = \text{diverges to } +\infty \), and write \(\sum_{n=m}^{\infty} a_n = +\infty \), provided \(\lim s_n = +\infty \). Similarly we can define \(\sum_{n=m}^{\infty} a_n = -\infty \).
4. If we do not care the initial index \(m \), just write \(\sum a_n \).
5. If \(a_n \geq 0 \), then \((s_n) \) is nondecreasing, so \(\sum a_n \) either converges or diverges to \(+\infty \). Hence for any series \(\sum a_n \), the sum of absolute values \(\sum |a_n| \) is meaningful.
6. \(\sum a_n \) is said to converge absolutely or be absolutely convergent if \(\sum |a_n| \) converges.

Example 13.2. A series \(\sum_{n=0}^{\infty} ar^n \) for constants \(a \) and \(r \) is called a geometric series. For \(r \neq 1 \),
\[s_n = \sum_{k=0}^{n} ar^k = a \frac{1 - r^{n+1}}{1 - r}. \]

For \(|r| < 1 \), \(\lim_{n \to \infty} r^{n+1} = 0 \), we have
\[\lim_{n \to \infty} s_n = \frac{a}{1 - r}. \]

And
\[\sum_{n=0}^{\infty} ar^n = \frac{a}{1 - r}. \]

If \(a \neq 0 \), and \(|r| \geq 1 \), the series does not converge.
Example 13.3. The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if $p > 1$. (This will be proved later.)

Definition 13.4. We say a series $\sum a_n$ satisfies the “Cauchy criterion” if the sequence of partial sums (s_n) is a Cauchy sequence:

$$(13.1) \quad \text{for each } \epsilon > 0, \exists N > 0, \text{ such that if } n, m > N, \implies |s_n - s_m| < \epsilon.$$

And this is equivalent to

$$(13.2) \quad \text{for each } \epsilon > 0, \exists N > 0, \text{ such that } n \geq m > N, \implies |s_n - s_{m-1}| < \epsilon.$$

This is equivalent to

$$(13.3) \quad \text{for each } \epsilon > 0, \exists N > 0, \text{ such that } n \geq m > N, \implies \left| \sum_{k=m}^{n} a_k \right| < \epsilon.$$

As a direct corollary of Theorem 10.12, we have,

Theorem 13.5. A series converges if and only if it satisfies the Cauchy criterion.

Corollary 13.6. If $\sum a_n$ converges, then $\lim a_n = 0$.

Proof. For any $\epsilon > 0$, by the Cauchy criterion, there exists $N > 0$, such that if $n \geq m > N$, then $|\sum_{k=m}^{n} a_k| < \epsilon$. We can take $n = m$, then we have $|a_m| < \epsilon$. This implies that $\lim a_m = 0$. \qed

Remark 13.7. The converse of the above result is not true. For instance, $\sum \frac{1}{n} = +\infty$, although $\lim \frac{1}{n} = 0$.

Theorem 13.8 (Comparison Test). Consider a series $\sum a_n$, with $a_n \geq 0$ for all $n \in \mathbb{N}$.

(i) If $\sum a_n$ converges, and $|b_n| \leq a_n$, then $\sum b_n$ converges;

(ii) If $\sum a_n = +\infty$, and $b_n \geq a_n$, then $\sum b_n = +\infty$.

Proof.

(i) For any $n \geq m$, by the triangle inequality,

$$\left| \sum_{k=m}^{n} b_k \right| \leq \sum_{k=m}^{n} |b_k| \leq \sum_{k=m}^{n} a_k.$$

Therefore $\sum a_n$ satisfies the Cauchy criterion implies that $\sum b_k$ also satisfies the Cauchy criterion.

(ii) Denote $t_n = \sum_{k=0}^{n} b_k$ and $s_n = \sum_{k=0}^{n} a_k$. Then $t_n \geq s_n$. So $\lim s_n = +\infty$ implies $\lim t_n = +\infty$.

Corollary 13.9. Absolutely convergent series are convergent.

Proof. This is an easy corollary of the comparison test. □

Theorem 13.10 (Ratio Test). Consider a series \(\sum a_n \) of nonzero terms \(a_n \neq 0 \) for all \(n \in \mathbb{N} \).

(i) \(\sum a_n \) converges absolutely, if \(\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1 \);
(ii) \(\sum a_n \) diverges if \(\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1 \);
(iii) otherwise if \(\liminf \left| \frac{a_{n+1}}{a_n} \right| \leq 1 \leq \limsup \left| \frac{a_{n+1}}{a_n} \right| \), then the test gives no information.

We will use the following root test to prove the ratio test.

Theorem 13.11 (Root Test). Let \(\sum a_n \) be a series, and \(\alpha = \limsup |a_n|^{1/n} \).

The series \(\sum a_n \)

(i) converges absolutely, if \(\alpha < 1 \);
(ii) diverges if \(\alpha > 1 \);
(iii) otherwise if \(\alpha = 1 \), then the test gives no information.

Proof.
(i) Suppose \(\alpha < 1 \), and select \(\beta \) such that \(\alpha < \beta < 1 \).

By the definition of \(\limsup \), there exists \(N > 0 \), such that

\[
\sup \{|a_n|^{1/n} : n > N\} < \beta.
\]

In particular, \(|a_n|^{1/n} < \beta \) for all \(n > N \), and hence

\[
|a_n| < \beta^n, \text{ for all } n > N.
\]

Since \(0 < \beta < 1 \), the series \(\sum \beta^n \) converges. By the comparison test, \(\sum |a_n| \) converges.

(ii) If \(\alpha > 1 \), then a subsequence of \(|a_n|^{1/n} \) will converge to \(\alpha > 1 \), hence

\[
|a_n| > 1 \text{ for infinitely many choices of } n.
\]

By Corollary [13.6] \(\sum a_n \) cannot converge.

(iii) For \(\sum \frac{1}{n} \) and \(\sum \frac{1}{n^2} \), \(\alpha \) turns out to be 1, but \(\sum \frac{1}{n} \) diverges, and \(\sum \frac{1}{n^2} \) converges.

\[\square \]

Proof of Ratio Test. Let \(\alpha = \limsup |a_n|^{1/n} \). By Theorem 12.2.
• if \(\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1 \), then \(\alpha < 1 \), so \(\sum a_n \) converges absolutely by Root Test;
• if \(\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1 \), then \(\alpha > 1 \), so \(\sum a_n \) diverges by Root Test;
• if \(\liminf \left| \frac{a_{n+1}}{a_n} \right| \leq 1 \leq \limsup \left| \frac{a_{n+1}}{a_n} \right| \), nothing is known by checking the examples: \(\sum \frac{1}{n} \) and \(\sum \frac{1}{n^2} \).

□

Example 13.12. Given \(\sum_{n=2}^{\infty} \left(-\frac{1}{3} \right)^n = \frac{1}{9} \sum_{n=0}^{\infty} \left(-\frac{1}{3} \right)^n \), does it converge or not? If converge, calculate the limit.

Solution. Since this is a geometric series with \(a = \frac{1}{9} \) and \(r = \frac{1}{3} \), so

\[
\frac{1}{9} \sum_{n=0}^{\infty} \left(-\frac{1}{3} \right)^n = \frac{1/9}{1 - (-1/3)} = \frac{1}{12}.
\]

□

Example 13.13. Given \(\sum_{n=0}^{\infty} \frac{n}{n^2 + 3} \), does it converge or not?

Solution.

• If denote \(a_n = \frac{n}{n^2 + 3} \), then

\[
\frac{a_{n+1}}{a_n} = \frac{n + 1}{n} \cdot \frac{n^2 + 3}{n^2 + 2n + 4},
\]

so \(\lim \left| \frac{a_{n+1}}{a_n} \right| = 1 \). Neither Ratio nor Root Test works.

• As \(a_n \) approaches \(\frac{1}{n} \) for \(n \) large, we have

\[
a_n = \frac{n}{n^2 + 3} \geq \frac{n}{n^2 + 3n^2} = \frac{1}{4n}.
\]

Since \(\sum \frac{1}{n} \) diverges, \(\sum \frac{1}{4n} \) also diverges. By Comparison Test, \(\sum_{n=0}^{\infty} \frac{n}{n^2 + 3} \) diverges.

□

Example 13.14. Given \(\sum \frac{1}{n^2 + 1} \), does it converge or not?

Solution.

• Neither Ratio nor Root Test works;

• Since \(\frac{1}{n^2 + 1} \leq \frac{1}{n^2} \) and \(\sum \frac{1}{n^2} \) converges, so by Comparison Test, \(\sum \frac{1}{n^2 + 1} \) converges.

□
Example 13.15. Given $\sum \frac{n}{3^n}$, does it converge or not?

Solution. Let $a_n = \frac{n}{3^n}$.

1. $\frac{a_{n+1}}{a_n} = \frac{n+1}{3n}$, so $\lim |\frac{a_{n+1}}{a_n}| = \frac{1}{3} < 1$. Then $\sum \frac{n}{3^n}$ converges by Ratio Test;

2. $\lim |a_n|^{1/n} = \lim \frac{n^{1/n}}{3} = \frac{1}{3} < 1$, so Root Test also works.

\[\square\]

Example 13.16. Given $\sum a_n$ where $a_n = \left[\frac{2}{(-1)^n - 3}\right]^n$, does it converge or not?

Solution.

- When n is even, $a_n = (-1)^n = 1$, so $|a_n|^{1/n} = 1$; when n is odd, $a_n = (-\frac{1}{2})^n$, so $|a_n|^{1/n} = \frac{1}{2}$. (As an exercise):

\[
\alpha = \lim \sup |a_n|^{1/n} = 1.
\]

So Root Test does not work.

- Since $a_n = 1$ for all even n, (a_n) cannot converge to 0, so $\sum a_n$ diverges by Corollary 13.6.

\[\square\]

Example 13.17. Given $\sum_{n=0}^{\infty} 2(-1)^n - n$, does it converge or not?

Solution. Let $a_n = 2(-1)^n - n$.

- $a_n \leq \frac{1}{2^{n+1}}$, so $\sum a_n$ converges by Comparison Test;

- $\frac{a_{n+1}}{a_n} = \frac{1}{8}$ for even n, and $\frac{a_{n+1}}{a_n} = 2$ for odd n. Ratio Test fails since

\[
\frac{1}{8} = \lim \inf |a_{n+1}| \leq |a_n|^{1/n} < 1 < \lim \sup |a_{n+1}| = 2;
\]

- $|a_n|^{1/n} = 2^{\frac{1}{n}} - 1$ for n even, and $|a_n|^{1/n} = 2^{-\frac{1}{n}} - 1$ for n odd, so

\[
\lim |a_n|^{1/n} = \frac{1}{2},
\]

and Root Test implies that $\sum a_n$ converges.

\[\square\]
14. Alternating series and Integral Tests

Example 14.1. Show that $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$.

Solution. Consider $f(x) = \frac{1}{x}$:

$$\sum_{k=1}^{n+1} \frac{1}{k} = \text{sum of the area of the rectangles with base } [i, i + 1] \text{ and height } \frac{1}{i}$$

for $1 \leq i \leq n$

$$\geq \text{area under the curve } f(x) = \frac{1}{x} \text{ between } 1 \text{ and } n + 1$$

$$= \int_{1}^{n+1} \frac{1}{x} = \log(n+1).$$

Since $\log(n+1) \to +\infty$ as $n \to \infty$, we have $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$. \square

Example 14.2. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \text{ converges.}$

Solution. Consider $f(x) = \frac{1}{x^2}$:

$$\sum_{k=1}^{n+1} \frac{1}{k^2} = \text{sum of the area of the rectangles with base } [i - 1, i] \text{ and height } \frac{1}{i^2}$$

for $1 \leq i \leq n$

$$\leq 1 + \text{area under the curve } f(x) = \frac{1}{x^2} \text{ between } 1 \text{ and } n$$

$$= 1 + \int_{1}^{n} \frac{1}{x^2} = 2 - \frac{1}{n} \leq 2.$$

Therefore the sequence of partial sums (s_n) is non-decreasing and bounded from above by 2, so $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. \square

Theorem 14.3. $\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 0, \text{ converges if and only if } p > 1$.

Proof. If $p > 1$, then by similar comparison argument with areas under the graph $f(x) = \frac{1}{x^p}$ as Example 14.2 we have

$$\sum_{k=1}^{n+1} \frac{1}{k^p} \leq 1 + \int_{1}^{n} \frac{1}{x^p} = 1 + \frac{1}{p-1} \left(1 - \frac{1}{n^{p-1}}\right)$$

$$< 1 + \frac{1}{p-1} = \frac{p}{p-1}.$$

Therefore, the sequence of partial sums (s_n) is non-decreasing and bounded from above by $\frac{p}{p-1}$, so $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.
If \(p \leq 1 \), then \(\frac{1}{n^p} \geq \frac{1}{n} \) for all \(n \in \mathbb{N} \). Since \(\sum \frac{1}{n} \) diverges to \(+\infty\) by Example \(14.1 \), we have \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) diverges to \(+\infty\) by the Comparison Test (Theorem 13.8). \(\square \)

Theorem 14.4 (Alternating Series Theorem). If \((a_n) \) is a non-increasing sequence of nonnegative numbers, i.e.\[a_1 \geq a_2 \geq \cdots \geq a_n \geq \cdots \geq 0, \]
and if \(\lim a_n = 0 \), then the alternating series
\[\sum_{n=1}^{\infty} (-1)^n a_n \]
converges.

Proof. First we introduce the following observation: given \(n \geq m \), denote \(A = a_m - a_{m+1} + a_{m+1} - a_{m+2} \pm a_n \), where the sign of \(a_n \) depends on whether \(n - m \) is even or odd. In particular, we have
\[\sum_{k=m}^{n} (-1)^k a_k = (-1)^k A. \]

(1) If \(n - m \) is odd, then the last term in \(A \) is \(-a_n\), so
\[A = [a_m - a_{m+1}] + [a_{m+2} - a_{m+3}] + \cdots + [a_{n-1} - a_n] \geq 0, \]
because each \([\cdot]\)-term is nonnegative by the monotonicity; moreover
\[A = a_m - [a_{m+1} - a_{m+2}] - \cdots - [a_{n-2} - a_{n-1}] - a_n \leq a_m, \]
because each \([\cdot]\)-term is nonnegative and \(a_n \) is nonnegative.

(2) If \(n - m \) is even, then the last term in \(A \) is \(a_n \), so
\[A = [a_m - a_{m+1}] + \cdots + [a_{n-2} - a_{n-1}] + a_n \geq 0, \]
because each \([\cdot]\)-term is nonnegative and \(a_n \) is nonnegative; and
\[A = a_m - [a_{m+1} - a_{m+2}] - \cdots - [a_{n-1} - a_n] \leq a_m, \]
because each \([\cdot]\)-term is nonnegative.

Therefore, we proved:
\[0 \leq A \leq a_m. \]

Using the fact that \(\lim a_m = 0 \), for any \(\epsilon > 0 \), there exists \(N > 0 \), such that \(m > N \) implies \(a_m < \epsilon \). Therefore if \(n \geq m > N \), we have
\[\left| \sum_{k=m}^{n} (-1)^k a_k \right| = |A| = A \leq a_m < \epsilon. \]
The Cauchy Criterion (Definition 13.4) implies that \(\sum_{n=1}^{\infty} (-1)^n a_n \) converges.

\[\square \]

Example 14.5. Prove that \(\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) converges.

Proof.

- Since \(\lim \sqrt{\frac{n}{n+1}} = 1 \), the Ratio test does not apply. Similarly, since \(\lim \left| \frac{1/n}{1/n+1} \right| = 1 \), the Root test does not apply.
- Since \(\sum \frac{1}{\sqrt{n}} = +\infty \), the Comparison test does not apply.
- This is a standard situation to apply the Alternating Series Theorem. We can let \(a_n = \frac{1}{\sqrt{n}} \), and it is easy to check that this series satisfies the requirement of Theorem 14.4.

\[\square \]
15. Continuous functions

Let f be a real-valued function. The **defining domain** of f, denoted as $\text{dom}(f) = \text{the subset (in } \mathbb{R})$ where f is defined.

Example 15.1. Let $f(x) = \sqrt{4 - x^2}$, then $\text{dom}(f) = [-2, 2]$.

Definition 15.2. Let f be a function.

(i) Given $x_0 \in \text{dom}(f)$, f is said to be **continuous at** x_0 if for any sequence (x_n) in $\text{dom}(f)$ converging to x_0, we have

$$\lim_{n \to \infty} f(x_n) = f(x_0).$$

(ii) If f is continuous at each point of a subset $S \subset \text{dom}(f)$, then we say f is **continuous on** S.

(iii) f is said to be **continuous** if f is continuous on $\text{dom}(f)$.

Theorem 15.3. Let f be a real valued function whose domain is a subset of \mathbb{R}. Then f is continuous at $x_0 \in \text{dom}(f)$ if and only if

$$\text{for each } \epsilon > 0, \text{ there exists a number } \delta > 0, \text{ such that}$$

if $x \in \text{dom}(f)$, and $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$.

Proof.

Step 1: Suppose (15.2) holds true. Consider a sequence (x_n), $x_n \in \text{dom}(f)$, such that $\lim x_n = x_0$. We want to show $\lim f(x_n) = f(x_0)$.

Let $\epsilon > 0$, then there exists $\delta > 0$ satisfying the requirement of (15.2). Since $\lim x_n = x_0$, there exists $N > 0$, such that if $n > N$, then $|x_n - x_0| < \delta$. According to (15.2), we have $|f(x_n) - f(x_0)| < \epsilon$. This implies $\lim f(x_n) = f(x_0)$.

Step 2: Assume f is continuous at x_0. If (15.2) fails, then there exists $\epsilon > 0$, such that for any $\delta > 0$, there exists $x \in \text{dom}(f)$, $|x - x_0| < \delta$, but $|f(x) - f(x_0)| \geq \epsilon$. In particular, let $\delta = \frac{1}{n}$, then there exists $x_n \in \text{dom}(f)$, $|x_n - x_0| < \frac{1}{n}$, but $|f(x_n) - f(x_0)| \geq \epsilon$.

However, we thus get a sequence (x_n), $x_n \in \text{dom}(f)$, such that $\lim x_n = x_0$, but we cannot have $\lim f(x_n) = f(x_0)$, hence a contradiction. □

Example 15.4. Let $f(x) = 2x^2 + 1$, $x \in \mathbb{R}$. Prove that f is continuous on \mathbb{R}, by

(a) using the definition;

(b) using the $\epsilon - \delta$ property.
Proof.

(a) Suppose \((x_n)\) is a sequence and \(\lim x_n = x_0\). Then we have
\[
\lim f(x_n) = \lim [2x_n^2 + 1] = 2(\lim x_n)^2 + 1 = 2x_0^2 + 1 = f(x_0).
\]

Therefore \(f\) is continuous at \(x_0\).

(b) Given \(x_0 \in \mathbb{R}, \) let \(\epsilon > 0,\) and we want to show
\[
|f(x) - f(x_0)| < \epsilon, \text{ provided } |x - x_0| < \delta.
\]

We have
- \(|f(x) - f(x_0)| = |2x^2 - 2x_0^2| = 2|x + x_0| \cdot |x - x_0|;
- Need to bound \(|x + x_0|\) from above;
- If \(|x - x_0| < 1,\) then \(|x| < |x_0| + 1,\) and \(|x + x_0| \leq |x| + |x_0| < 2|x_0| + 1.\)

Thus:
\[
|f(x) - f(x_0)| < 2|2|x_0| + 1| \cdot |x - x_0|, \text{ provided } |x - x_0| < 1.
\]

Let
\[
\delta = \min \left\{ 1, \frac{\epsilon}{2(2|x_0| + 1)} \right\}.
\]

Then \(|x - x_0| < \delta\) implies \(|f(x) - f(x_0)| < \epsilon.\)

\(\square\)

Example 15.5. Let \(f(x) = x^2 \sin \left(\frac{1}{x}\right)\) for \(x \neq 0\) and \(f(0) = 0.\) Prove that \(f\) is continuous at 0.

Proof. Let \(\epsilon > 0.\) We have
\[
|f(x) - f(0)| = x^2 \left|\sin \left(\frac{1}{x}\right)\right| \leq x^2.
\]

Set \(\delta = \sqrt{\epsilon}.\) Then if \(|x - 0| < \delta, \implies x^2 < \delta^2 = \epsilon,\) so
\[
|f(x) - f(0)| \leq x^2 < \epsilon.
\]

\(\square\)

Example 15.6. Let \(f(x) = \frac{1}{x} \sin \left(\frac{1}{x^2}\right)\) for \(x \neq 0,\) and \(f(0) = 0.\) Show that \(f\) is discontinuous at 0.

Proof. If suffices to find a sequence \((x_n)\) such that \(\lim x_n = 0,\) but
\[
(f(x_n)) \text{ does not converge to } f(0) = 0.
\]
Since \(f(x_n) = \frac{1}{x_n^2} \sin\left(\frac{1}{x_n^2}\right) \), we can find \(x_n \to 0 \), such that \(\sin\left(\frac{1}{x_n^2}\right) = 1 \). That is we can let
\[
\frac{1}{x_n^2} = \frac{\pi}{2} + 2n\pi, \quad \text{that is:} \quad x_n = \frac{1}{\sqrt{\frac{\pi}{2} + 2n\pi}}.
\]
Then \(\lim x_n = 0 \), but
\[
\lim f(x_n) = \lim \frac{1}{x_n} = +\infty.
\]

\[\square\]

Algebraic operations on functions.

Let \(f \) be a real-valued function. For any \(k \in \mathbb{R} \), we can define
\[
(kf)(x) = kf(x), \quad \text{for} \quad x \in \text{dom}(f);
\]
\[
|f|(x) = |f(x)|, \quad \text{for} \quad x \in \text{dom}(f).
\]

Example 15.7. Let \(f(x) = \sqrt{x} - 4 \) for \(x \geq 0 \), then \(3f = 3\sqrt{x} - 12 \), and \(|f| = |\sqrt{x} - 4| \).

Given \(f, g \) two real-valued functions: we can define
\[
(1) \quad (f + g)(x) = f(x) + g(x);
\]
\[
(2) \quad (fg)(x) = f(x)g(x);
\]
\[
(3) \quad (f/g)(x) = f(x)/g(x);
\]
\[
(4) \quad g \circ f(x) = g(f(x));
\]
\[
(5) \quad \max\{f, g\}(x) = \max\{f(x), g(x)\};
\]
\[
(6) \quad \min\{f, g\}(x) = \min\{f(x), g(x)\}.
\]

The defining domains are:
- For (1)(2)(5)(6), the defining domain is \(\text{dom}(f) \cap \text{dom}(g) \);
- For (3), \(\text{dom}(f/g) = \text{dom}(f) \cap \{x \in \text{dom}(g) : g(x) \neq 0\} \);
- For (4), \(\text{dom}(g \circ f) = \{x \in \text{dom}(f) : f(x) \in \text{dom}(g)\} \).

Theorem 15.8. Let \(f \) be a real-valued function. If \(f \) is continuous at \(x_0 \in \text{dom}(f) \), then \(|f|, kf \) (for \(k \in \mathbb{R} \)) are continuous at \(x_0 \).

Proof. Consider a sequence \((x_n), x_n \in \text{dom}(f) \), such that \(\lim x_n = x_0 \), then we have
\[
\lim f(x_n) = f(x_0).
\]
Therefore
Consider the function kf:

$$
\lim ((kf)(x_n)) = \lim k(f(x_n)) = k \lim f(x_n) = kf(x_0) = (kf)(x_0).
$$

This proved that kf is continuous at x_0.

To show $|f|$ is continuous at x_0, we need to prove

$$
\lim |f(x_n)| = |f(x_0)|.
$$

By triangle inequality,

$$
| |f(x_n)| - |f(x_0)| | \leq |f(x_n) - f(x_0)|.
$$

For any $\epsilon > 0$, since $\lim f(x_n) = f(x_0)$, then there exists $N > 0$, such that if $n > N$, we have $|f(x_n) - f(x_0)| < \epsilon$, so

$$
| |f(x_n)| - |f(x_0)| | < \epsilon.
$$

This implies $\lim |f(x_n)| = |f(x_0)|$.

\[\square \]

Theorem 15.9. Let f, g be real-valued functions that are continuous at $x_0 \in \text{dom}(f) \cap \text{dom}(g)$. Then

(i) $f + g$ is continuous at x_0;

(ii) fg is continuous at x_0;

(iii) f/g is continuous at x_0 if $g(x_0) \neq 0$.

Proof. These follow by Limit Theorems (Section 9). \[\square \]

Theorem 15.10. If f is continuous at $x_0 \in \text{dom}(f)$, and g is continuous at $f(x_0) \in \text{dom}(g)$, then $g \circ f$ is continuous at x_0.

Proof. Let (x_n) be a sequence, such that $x_n \in \text{dom}(f)$, $f(x_n) \in \text{dom}(g)$, and

$$
\lim x_n = x_0.
$$

Since f is continuous at x_0, we have $\lim f(x_n) = f(x_0)$, and as g is continuous at $f(x_0)$, we have

$$
\lim g \circ f(x_n) = \lim g(f(x_n)) = g(f(x_0)) = g \circ f(x_0).
$$

This implies that $g \circ f$ is continuous at x_0. \[\square \]

Example 15.11. Let f, g be continuous at $x_0 \in \text{dom}(f) \cap \text{dom}(g)$. Prove that $\max\{f, g\}$ is continuous at x_0.

Proof. We have the following equation:

$$\max\{f, g\} = \frac{1}{2}(f + g) + \frac{1}{2}|f - g|,$$

since $\max\{a, b\} = \frac{1}{2}(a + b) + \frac{1}{2}|a - b|$.

We know that $f + g, f - g$ are both continuous at x_0, so is $|f - g|$. Therefore $\frac{1}{2}(f + g), \frac{1}{2}|f - g|$ are continuous at x_0. The conclusion then follows. \qed
16. Properties of continuous functions

Definition 16.1. Let \(f \) be a real-valued function. \(f \) is said to be bounded if \(\{ f(x) : x \in \text{dom}(f) \} \) is a bounded set: that is to say, there exists \(M \in \mathbb{R} \), such that \(|f(x)| \leq M \) for all \(x \in \text{dom}(f) \).

Theorem 16.2. Let \(f \) be a continuous function on a closed interval \([a, b]\), then \(f \) is bounded.

Proof. Assume by contradiction that \(f \) is not bounded on \([a, b]\). Then to each \(n \in \mathbb{N} \), the set of values \(\{ |f(x)| : x \in [a, b] \} \) is not bounded by \(n \): that is to say, there exists an element in \([a, b]\), denoted as \(x_n \), such that \(|f(x_n)| > n \).

For considering all \(n \in \mathbb{N} \), we obtain a sequence \((x_n), x_n \in [a, b]\), such that \(|f(x_n)| > n \).

By the Bolzano-Weierstrass Theorem, \((x_n)\) has a subsequence \((x_{n_k})\), such that \(\lim_{k \to \infty} x_{n_k} = x_0 \). Since \(a \leq x_n \leq b \), we have \(x_0 \in [a, b] \). By the continuity of \(f \) on \([a, b]\), we have

\[
\lim_{k \to \infty} f(x_{n_k}) = f(x_0).
\]

This is a contradiction to \(\lim_{k \to \infty} |f(x_{n_k})| = +\infty \). \(\square \)

Theorem 16.3. Let \(f \) be a continuous function on a closed interval \([a, b]\). Then \(f \) assumes it maximum and minimum on \([a, b]\): that is to say, there exist \(x_0, y_0 \in [a, b] \), such that \(f(x_0) \leq f(x) \leq f(y_0) \) for all \(x \in [a, b] \).

Proof. Since the set of values \(\{ f(x) : x \in [a, b] \} \) is bounded, the supremum exists by the Completeness Axiom:

\[
M = \sup \{ f(x) : x \in [a, b] \}.
\]

For each \(n \in \mathbb{N} \), by the definition of supremum, there exists an element in \([a, b]\), denoted as \(y_n \), such that

\[
M - \frac{1}{n} < f(y_n) \leq M.
\]

We obtain a sequence \((y_n), y_n \in [a, b]\), by considering all \(n \in \mathbb{N} \), and

\[
\lim_{n \to \infty} f(y_n) = M.
\]

By the Bolzano-Weierstrass Theorem, there exists a subsequence \((y_{n_k})\) of \((y_n)\), such that

\[
\lim_{k \to \infty} y_k = y_0.
\]
Since \(a \leq y_n \leq b \), we have \(y_0 \in [a, b] \). By the continuity of \(f \) on \([a, b]\), we have
\[
\lim_{k \to \infty} f(y_{n_k}) = f(y_0) = M.
\]
So \(M \) is a maximum of \(\{f(x) : x \in [a, b]\} \).

The case for \(\inf \{f(x) : x \in [a, b]\} \) is left as an exercise. \(\Box \)

Remark 16.4. The theorems fail if we change the defining domain \([a, b]\) to an open interval \((a, b)\). A counter-example is:
\[
f(x) = \frac{1}{x} : \quad x \in (0, 1).
\]

\(f(x) \) is continuous on \((0, 1)\), but \(f \) is not bounded on \((0, 1)\).

Theorem 16.5 (Intermediate Value Theorem). If \(f \) is continuous on on interval \(I \), and when \(a, b \in I \), \(a < b \), and
\[
f(a) < y < f(b), \quad \text{or} \quad f(b) < y < f(a),
\]
there exists at least one \(x \in (a, b) \), such that \(f(x) = y \).

Proof. Assume that \(f(a) < y < f(b) \), (the other case is left as an exercise).

Let
\[
S = \{x \in [a, b] : f(x) < y\}.
\]

Since \(f(a) < y \), \(a \in S \) and \(S \neq \emptyset \).

Let \(x_0 = \sup S \), then \(x_0 \in [a, b] \).

For each \(n \in \mathbb{N} \), there exists an element in \(S \), denoted as \(s_n \), such that
\[
x_0 - \frac{1}{n} < s_n \leq x_0.
\]

Therefore, \(\lim s_n = x_0 \).

Since \(s_n \in S \), we have \(f(s_n) < y \), and hence by continuity of \(f \)
\[
f(x_0) = \lim f(s_n) \leq y.
\]

On the other hand, let
\[
t_n = \min\{b, x_0 + \frac{1}{n}\},
\]
then \(x_0 \leq t_n \leq x_0 + \frac{1}{n} \), hence
\[
\lim t_n = x_0.
\]

However, since \(b \in S \) (as \(f(b) > y \)), and \(x_0 + \frac{1}{n} \in S \), we have \(t_n \notin S \), and hence
\[
f(t_n) \geq y, \quad \text{for all} \quad n \in \mathbb{N}.
\]
Using continuity of \(f \) again,
\[
f(x_0) = \lim_{t \to x_0} f(t) \geq y.
\]
Therefore,
\[
f(x_0) = y.
\]
Since \(y \neq f(a), f(b) \), we deduce that \(x_0 \neq a, b \), and hence \(x_0 \in (a, b) \).

Corollary 16.6. Let \(f \) be a continuous function on a closed interval \(I = [a, b] \), then the image
\[
f(I) = \{ f(x) : x \in I \}
\]
is a closed interval or a point.

Proof. Using the Intermediate Value Theorem, we are easily show that \(J = f(I) \) has the following property:

\[\text{if } y_0, y_1 \in J, \ y_0 < y < y_1, \ \text{then } y \in J.\]

By Theorem \(\text{16.3} \), \(J \) has maximum \(\max J \) and minimum \(\min J \), hence
\[
J \subset [\min J, \max J].
\]
moreover, there exists \(y_0, y_1 \in I \), such that
\[
\max J = f(y_0), \ \min J = f(y_1).
\]
If \(\inf J < \sup J \), then \(J \) must be an interval. In fact, if \(\inf J < y < \sup J \), then \(f(y_0) < y < f(y_1) \), and by the Intermediate Value Theorem, there exists \(x \in (y_0, y_1) \) or \(x \in (y_1, y_0) \), such that \(f(x) = y \in J \), hence
\[
(\inf J, \sup J) \subset J.
\]
And hence
\[
J = [\min J, \max J].
\]

Example 16.7. Let \(f : [0, 1] \to [0, 1] \) be a continuous function defined on \([0, 1]\). Prove that there exists \(x_0 \in [0, 1] \), such that \(f(x_0) = x_0 \).

Proof. Consider the function:
\[
g(x) = f(x) - x.
\]
It is continuous on \([0, 1]\) by Theorem \(\text{15.9} \).

Notice that
\[
g(0) = f(0) - 0 \geq 0;
\]
\[
g(1) = f(1) - 1 \leq 0.
\]
Actually if either \(g(0) = 0 \) or \(g(1) = 0 \), then we can let \(x_0 = 0 \), or \(x_0 = 1 \). Otherwise
\[
g(0) = f(0) - 0 > 0; \\
g(1) = f(1) - 1 < 0.
\]
By the Intermediate Value Theorem, there exists \(x_0 \in (0,1) \), such that \(g(x_0) = 0 \), and this is
\[
f(x_0) = x_0.
\]
\[\square\]

Example 16.8. If \(y > 0 \) is a positive real number, and \(m \in \mathbb{N} \) is an integer, then \(y \) has a positive \(m \)-th root.

Proof. Consider the continuous function \(f(x) = x^m \) defined on \(\mathbb{R} \).

First we claim that there exists \(b > 0 \), such that \(y < b^m \). In fact
- if \(y \leq 1 \), let \(b = 2 \);
- if \(y > 1 \), let \(b = y \).

Then we have that
\[
f(0) = 0 < y < b^m = f(b).
\]
By the Intermediate Value Theorem, there exists \(x \in (0,b) \), such that
\[
f(x) = x^m = y.
\]
\[\square\]
References