§1. The set \mathbb{N} of natural numbers.

$\mathbb{N} = \{1, 2, 3, \ldots\}$ all natural numbers

or positive integers.

- each n has a successor $n+1$

 e.g. the successor of 5 is 6.

Properties:
- $i \in \mathbb{N}$
- if $n \in \mathbb{N}$, the its successor $n+1 \in \mathbb{N}$
- 1 is not the successor of any element in \mathbb{N}
- if n and m have the same successor then $n = m$
- A subset $S \subseteq \mathbb{N}$ s.t. (such that) $i \in \mathbb{N}$ and

 if $n \in S$ then $n+1 \in S \Rightarrow S = \mathbb{N}$

Peano Axioms or Peano Postulates

\mathbb{N} is the basis for mathematical induction.

Let P_1, P_2, \ldots be a list of statements or propositions

that may or may not be true.

The principle of mathematical induction asserts that:

all P_1, P_2, P_3, \ldots are true provided

P_1 is true \Rightarrow basis of induction

P_{n+1} is true if P_n is true \Rightarrow induction step.
Example: all numbers of form $7^n - 2^n$ are divisible by 5.

Proof: The n-th proposition is

P_n: "$7^n - 2^n$ is divisible by 5."

P_1: $7^1 - 2^1 = 5$ is true.

Suppose P_n is true, i.e., $P_n = 7^n - 2^n = 5m$.

To verify P_{n+1}:

$$7^{n+1} - 2^{n+1} = 7^{n+1} - 2 \cdot 7^n + 2 \cdot 7^n - 2^{n+1} = 7^n (7 - 2) + 2 (7^n - 2^n)$$

$$= 5 \cdot 7^n + 2 \cdot 5m = 5 (7^n + 2m).$$

Therefore, P_n implies P_{n+1}, so the induction step holds.

Example. Show $|\sin(nx)| \leq n |\sin x|$ for all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$.

Proof: The n-th proposition is

P_n: "$|\sin nx| \leq n |\sin x|$".

• Basis of induction. P_1: $|\sin x| = |\sin x| = 1$ is true.

• Induction step. Suppose P_n is true.

To verify P_{n+1}:

$$|\sin (n+1)x| = |\sin (nx + x)| = |\sin nx \cos x + \cos nx \sin x|$$

$$\leq |\sin nx| \cos x| + |\cos nx| \sin x|$$

$$\leq |\sin nx| + |\sin x|$$

$$\leq n |\sin x| + |\sin x| = (n+1) |\sin x|$$

By P_n. (Therefore, P_n implies P_{n+1}, so we finish the proof.)
82. The set \(\mathbb{Q} \) of rational numbers.
- \(\mathbb{Z} = \{ 0, 1, -1, 2, -2, \ldots \} \) integers
- \(\mathbb{Q} = \{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \} \) all rational numbers

- good algebraic system, basis operations like addition, multiplication, subtraction, and division can be studied
- inadequate when solving algebraic equations like \(x^2 - 2 = 0 \)

\[
\begin{align*}
\sqrt{1+1} &= 2 \\
\text{Pythagorean Thm.}
\end{align*}
\]

- the graph of \(y = x^2 - 2 \) crosses the \(x \)-axis at solutions of \(x^2 - 2 = 0 \)
- there are gaps in \(\mathbb{Q} \)
- there are more exotic numbers such as \(\pi \) & \(e \)
 - \(\pi \) appears when studying circles and spheres
 - \(e \) appears when studying \(\sum \frac{1}{n!} \)

Def: a number is called an "algebraic number" if it satisfies a polynomial equation.
\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0 \]
where \(a_i \in \mathbb{Z} \), \(a_n \neq 0 \), \(n \geq 1 \)
rational numbers are always algebraic numbers if \(r = \frac{m}{n} \Rightarrow \) it satisfies \(nx - m = 0 \).

\(\sqrt{2}, \sqrt{5} \) are algebraic numbers.

ordinary algebraic operations on rational numbers.

\[a = (2 + 5^{\frac{3}{2}})^{\frac{1}{2}}, \quad \left(4 - 2.3^{\frac{3}{2}}/7\right)^{\frac{1}{2}} \]

\[(17)^{\frac{3}{2}}, \quad x^2 - 17 = 0. \]

\[a = (2 + 5^{\frac{3}{2}})^{\frac{1}{2}}, \quad a^2 = 2 + 5^{\frac{3}{2}}, \quad \left(a^2 - 2\right)^{\frac{3}{2}} = 5 \]

\[\Rightarrow \quad a^6 - 6a^4 + 12a^2 - 8 = 5 \Rightarrow a^6 - 6a^4 + 12a^2 - 13 = 0. \]

\[b = \left(4 - 2.3^{\frac{3}{2}}/7\right)^{\frac{1}{2}}, \quad b^2 = 4 - 2.3^{\frac{3}{2}} \Rightarrow 2.3^{\frac{3}{2}} = 4 - b^2 \]

\[\Rightarrow \quad 12 = (4 - b^2)^2 = 49b^4 - 56b^2 + 16 \]

\[\Rightarrow \quad 49b^4 - 56b^2 + 4 = 0. \]

Recall: an integer \(k \) is a factor of an integer \(m \), or divides \(m \) if \(\frac{m}{k} \) is also an integer.

an integer \(p > 2 \) is a prime provided the only positive factors are 1 and \(p \).

Proposition: \(\sqrt{2} \) is not a rational number.
\[p^2 = \frac{p^2}{q} \text{ where } p \text{ and } q \text{ are integers with no common factor and } q \neq 0. \]

then \[\frac{p^2}{q} = 2 \implies p^2 = 2q^2. \]

Lemma: If \(p^2 \) is an even number, then \(p \).

Proof: Suppose not. \(p \) is odd. Then \(p = 2m + 1 \).

and \(p^2 = (2m+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1 \)

is also odd.

By the lemma, \(p \) is even, i.e., \(p = 2m \).

\[\implies p^2 = (2m)^2 = 4m^2 = 2q^2 \implies q^2 = 2m^2. \]

By the lemma again, \(q \) is even.

\[\implies \text{ contradiction to the fact that } p \text{ and } q \text{ have no common factor} \]

Rational Zero Theorem

Suppose that \(a_n, a_{n-1}, \ldots, a_0 \) are all integers and \(r \) is a rational number satisfying the polynomial equation:

\[a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0 \quad (1) \]

where \(n \geq 1, \ a_n \neq 0, \ a_0 \neq 0 \). Write \(r = \frac{p}{q} \) where \(p, q \in \mathbb{Z} \) having no common factors and \(q \neq 0 \). Then \(q \) divides \(a_0 \) and \(p \) divides \(a_0 \).

\[\implies a_n \left(\frac{p}{q} \right)^n + \cdots + a_0 = 0. \]
multiply y^n:

\[\text{an} \; p^n + \text{an} \; p^{n-1} \; y + \text{an} \; p^{n-2} \; y^2 + \cdots + a_1 \; p \; y^{n-1} + a_0 \; y^n = 0 \]

\[\Rightarrow \text{an} \; p^n = -p \left(\text{an} \; p^{n-1} + \text{an} \; p^{n-2} \; y + \cdots + a_1 \; p \; y^{n-1} \right) \]

\[\Rightarrow p \; y \text{ divides } \text{an} \; p^n. \text{ But } p, q \text{ have no common factor} \]

\[\Rightarrow q \text{ divides } \text{an} \; p^n. \text{ Similarly for } q. \]

\[\text{an} \; q^n = -q \left(\text{an} \; q^{n-1} + \text{an} \; q^{n-2} \; y + \cdots + a_1 \; q \; y^{n-1} \right) \]

\[\Rightarrow p \text{ divides } \text{an} \; q^n \Rightarrow p \text{ divides } a_0 \text{ and } q \text{ divides } a_0. \]

\[\text{Use the aboveThm to show } \sqrt{2} \text{ is not rational.} \]

\[\text{pf.} \text{ The only roots of } x^2 - 2 = 0 \text{ are } \pm \sqrt{2}, \text{ where } p \text{ divides } -2 \text{ and } q \text{ divides } 1 \]

\[\text{i.e. } p = \pm 1, \pm 2; \quad q = \pm 1 \]

\[\Rightarrow \text{ the rational solutions must be of form } \pm 2, \pm 1 \]

\[\text{By substitution back to } x^2 - 2 = 0. \text{ None of these are solutions.} \]

\[\text{Example. } a = (2 + 5^{1/2})^{1/2} \text{ is not a rational number.} \]

\[\text{pf. } a \text{ is a soln of } x^6 - 6x^4 + 12x^2 - 13 = 0. \]

\[\text{By Thm, the rational solutions are } \pm 1, \pm 13 \text{. \underline{The only possible}} \]

\[\text{By substitution back shows none of them are real soln's.} \]