§4. Real numbers \mathbb{R} and completeness Axiom.

\mathbb{R}: the ordered field F containing \mathbb{Q}, with no "gaps".

Def. Let $S \subseteq F$.

(a) If S contains a largest element s_0 [i.e. $s_0 \in S$ and $s \leq s_0$ for all $s \in S$], call s_0 the maximum of S, and write $s_0 = \max S$.

(b) If S contains a smallest element s_0' [i.e. $s_0' \in S$ and $s \geq s_0'$ for all $s \in S$], call s_0' the minimum of S, and write $s_0' = \min S$.

Example:

1. Every finite subset S has a maximum $\max S$ and a minimum $\min S$.

 $\max \{1, 2, 3, 4\} = 4$, $\min \{1, 2, 3, 4\} = 1$.

2. Given $a, b \in F$, $a < b$.

 $[a, b] = \{x \in F : a \leq x \leq b\}$

 $[a, b) = \{x \in F : a \leq x < b\}$

 $(a, b] = \{x \in F : a < x \leq b\}$

 (closed interval, open interval, half-open interval).

 $\max [a, b] = b$, $\min (a, b] = a$.

 (a, b) has no maximum in general.

3. $\{x \in \mathbb{R} : 0 \leq x \leq \sqrt{2}\}$ has no maximum.

Def. Let $S \subseteq F$, $S \neq \emptyset$.

a) if \(M \in F \) and \(s \leq M \), then \(M \) is called an upper bound of \(S \) and \(S \) is said bounded from above.

b) if \(M \in F \) and \(m \leq S \), then \(m \) is called an lower bound of \(S \) and \(S \) is bounded from below.

c) \(S \) is said bounded if it is bounded above and below.

\[S \leq [m, M] \] for \(m, M \in F \).

Example: 1. if \(S \) has \(\text{max} S \), then \(\text{max} S \) is an upper bound.

Similarly \(\text{min} S \) is a lower bound of \(S \).

2. \(b \) is an upper bound of \((a, b) \), \((a, b) \), \([a, b) \) and \(a \) \(\text{b} \).

3. 2 is an upper bound of \(\{ r \in \mathbb{Q} : 0 \leq r \leq 5 \} \).

\(5 \) is the least upper bound.

Def: \(S \subseteq F \), \(S \neq \emptyset \).

a) if \(S \) is bounded from above and \(S \) has a least upper bound, then we call it the supremum of \(S \) and denote by \(\sup S \).

b) if \(S \) is bounded from below and \(S \) has an infimum, then \(\inf S \).

Least upper bd: \(M = \sup S \) if and only if

i) \(\forall M \leq s \in S \).

ii) if \(M < M \), then \(\exists s \in S \) such that \(s > M \).
Example: a) if \(S \) has a maximum, then \(\max S = \sup S \).

"Similar for minimum & \(\inf \)"

b) \(\sup \{a, b\} = \sup \{a, b\} = \sup \{a, b\} = \sup \{a, b\} = b \)

3. \(A = \{ r \in \mathbb{Q} : 0 \leq r < b \} \). \(\sup A = \delta + \Delta \).

Note: least upper bd. may not belong to \(S \).

"Completeness Axiom":

every non-empty subset \(S \subset \mathbb{R} \) that is bounded above has a least upper bound \(\Leftarrow \sup S \) exists and is a real number.

Def: the set of real numbers \(\mathbb{R} \) is an ordered field containing \(\mathbb{Q} \) and satisfies "Completeness Axiom".

Example: \(A = \{ r \in \mathbb{Q} : 0 < r < \delta \} \) shows that \(\mathbb{Q} \) does not satisfies "Completeness Axioms".

Cor: every bounded non-empty subset \(S \subset \mathbb{R} \) bounded from below has a greatest lower bound.

Proof: let \(-S = \{ -s : s \in S \} \). Since \(S \) is bounded from below \(\exists m \in \mathbb{R} : m < s \quad \forall s \in S \). \(\Rightarrow -m > -s \quad \forall s \in S \).

Thus \(-S \) is bounded from above \(\Rightarrow \inf (-S) \in \mathbb{R} \).

let \(s_0 = \sup (-S) \). Claim: \(-s_0 = \inf (S) \).
Need to prove:

1. \(-S < S \iff -S \leq 0 \iff -S < 0 \iff S < 0\)
2. \(t \leq S \iff t < -S\)
 \(\iff -t > -S \iff -t + S \iff -t > 0 \iff t < 0\)

Thus (Archimedian Property).

If \(a > 0\) and \(b > 0\), then for some new \(n > 0\), \(na > b\).

Case 1: if \(a > 0\) then \(\frac{1}{n} < a\) for some positive integer \(n\).

Case 2: if \(b > 0\) then \(b < n\) for -

Let \(b = 1\). Let \(a = 1\).

Assume not. Let \(a > 0\) \(b > 0\) such that \(na < b\), a new.

So \(b\) is an upper bound for \(S = \{na: n \in \mathbb{N}\}\)

By the completeness axiom, \(S = \sup S \in \mathbb{R}\).

Since \(a > 0\), \(S < S + a\). So \(S - a < S\).

Since \(S = \sup S\) is the least upper bound, \(S - a < na\) for some \(n > 0\).

\(\Rightarrow S < na + a = (n+1)a \in S\).

Contradiction to "\(S\) is an upper bound for \(S\)".

Then (Density of \(\mathbb{R}\)).

If \(a, b \in \mathbb{R}\), \(a < b\), then \(\exists \, r, \, \epsilon > 0\).

If need to find \(a < \frac{m}{n} < b\) for some \(m, n \in \mathbb{Z}\).

\(\Rightarrow an < m < bn\).
Since $b-a > 0$, by Archimedean property, there exists $n \in \mathbb{N}$ such that $n(b-a) > 1$.

By Archimedean property again:

2. $k \in \mathbb{N} > \max\{la, lb\}$.

i.e. $-k < na < nb < k$.

Consider \(\{ j \in \mathbb{Z}, -k < j < k, an < j \} \) is finite & non-empty at $m = \min\{j \in \mathbb{Z}, -k < j < k, an < j \}$.

Then $an < m$, but $an = m - 1$.

So $m = (an + 1) + 1 \leq an + 1 < an + (bn - an) = bn$.

\[an \]