Introduction to the min-max theory of minimal surfaces

Xin Zhou

July 25, 2013

Syllabus:

1. Overview, first and second variations [CM1, CM2];
2. Curvature estimates for stable minimal hypersurfaces [CM1, CM2, SSY];
3. Introduction to “varifolds” part 1 [Si];
4. Introduction to “varifolds” part 2 [Si];
5. Colding-De Lellis paper [CD] part 1;
6. Colding-De Lellis paper [CD] part 2;
7. Colding-De Lellis paper [CD] part 3;
8. Index bound of the min-max surface [MN1, Z];

References

[Si] L. Simon, Lectures on geometric measure theory, Australian National University Centre for Mathematical Analysis, Canberra, 1983.

[Z] X. Zhou, Min-max minimal hypersurface in \((M^{n+1}, g)\) with \(Ric_g > 0\) and \(2 \leq n \leq 6\). arXiv:math.DG/1210.2112, (2012).
30. Overview

- $\Sigma^k \rightarrow \mathbb{M}^n$ \textbf{k}-dim submanifold.
 - Σ is minimal if Σ is a critical pt of the volume functional.

- Variational theory of min submanifold

"Prototype" Baby case

Question: given $f: \mathbb{R}^2 \rightarrow \mathbb{R}^1$ find an critical pt of f.

Case 1:

minimize f

$$m_0 = \min_{x \in \Omega} f(x).$$

Case 2:

min-max

$$\min_{x \in \Omega} f(x) \text{ does not exist.}$$

$P: \mathbb{R}^2 \rightarrow \mathbb{S}^2 \quad P(\pi) \cdot P(\pi) \in \mathbb{S}^2.$
\[
\min_{p \in [P]} \max_{t \in [0,1]} f(p(t)) = \omega_0.
\rightarrow \text{ interior critical pt.}
\]

Examples of minimizing minimal surfaces.

\[
D \subset \mathbb{R}^2 \rightarrow \Omega
\]

Classical Plateau Problem: \(u \) minimizes area among all such maps.

- Douglas - Rado 1931: solution exists!
- Extension to high dim & co-dimensions
- Extension to the case of closed submanifold \(M \) in arbitrary \(\mathbb{R}^n \) closed \(M \).
 \[\downarrow \text{geometric measure theory.} \]

Examples of min-max.

\[
S^n \rightarrow S^{n+1} \rightarrow \text{min-max, min surface.}
\]
2°. The case of $\dim = 2$: find closed geodesics on (S^2, g).

- Birkhoff. 1910s. - existence of a closed geodesic on any (S^2, g).

- sweep out S^2 by S^1's

- $\min_{\gamma \in \gamma_0} \max_{t \in \mathbb{R}} \| \dot{\gamma}(t) \|_g = \omega$.

- Final critical pt of ω.

3°. Extended to high-dim and co-dim cases.

- Almgren- Pitts. 1970's. - existence of a closed minimal hypersurface in any (\mathbb{R}^n, g).

- $n = 7$ - due to Schoen-Simon (M^n, g). $\exists n < 7$

- Similar ideas as the above.

- $F \in (S^1) \rightarrow (n+1)$-dim generalized closed submanifold γ. γ.

- $W = \inf_{F \in [f_0, f_1]} \max_{t \in [0, 1]} \text{Area}(\gamma(t))$. $\gamma \in [0, 1]$.
Syllabus

1. First and 2nd variation.
2. Curvature estimates for stable min-hyper surface.
3. Introduction to "varifolds".
4. Introduction to "Colding-De Lellis" paper.
5. Almost minimizing and Regularity 1.
7. Index issue about min-max.
8. Sacks-Uhlenbeck's work on minimal S^2's.
31. Minimal submanifold, first & second variation

- $\Sigma^k \hookrightarrow (M^n, g)$.

|\begin{align*}
\Sigma^k & : n \text{-dimensional Riemannian manifold} \\
& \text{with Riemannian metric } g \\
& \nabla : \text{covariant derivative}
\end{align*}|

|\begin{align*}
\text{\textit{X} vector field of } M & \text{ on } \Sigma \\
& = x^T : \text{tangential}
\end{align*}|

Def. ∇ induces a covariant derivative ∇_Σ on Σ

and the second fundamental form $A \not\Sigma$

$\begin{align*}
X, Y \in T_p \Sigma. \\
\nabla_\Sigma X \cdot Y = (\nabla X Y)^T \\
A(X, Y) = (\nabla Y X)^T \\
\text{\textit{\nabla}} \text{ symmetric \ bilinear form}
\end{align*}$

Def. The \textit{mean curvature} of Σ is defined as:

$\begin{align*}
H_\Sigma = \text{Tr} A = \frac{1}{k} \sum_{i=1}^{k} A(e_i, e_i)
\end{align*}$

$\{e_1, \ldots, e_k\}$ orthonormal base of $T_x \Sigma$

with respect to $g|_\Sigma$.
Def: 2 is called minimal if \(\bar{F} = 0 \)

Examples:
- \(\mathbb{R}^k \to \mathbb{R}^n \)
- \(S^k \to S^2 \) - equator
- Catenoid:
 \(y = \cosh z \)
- Helicoid:
- Clifford torus \(T^2 \to S^3 \)
 \(y^2 + z^2 = \frac{1}{2}, x^2 + 8y^2 = 1 \)

First Variational formula:
\(I^k \to M^n \) submanifold.

F: \(\Sigma \times (-\varepsilon, \varepsilon) \to M^n \) variation.

\(F(0, \cdot) = \text{id} \), \(\frac{d}{dt} \bigl|_{t=0} F(t, \cdot) = X \)

\(\Sigma + v = F^+(\Sigma) \left(= F(\Sigma, v) \right) \)
Prop: \(\partial \Sigma (x) = \frac{1}{\alpha^2 t} \text{vol}(\Sigma^t) = \int_{\Sigma} \text{div}_{\Sigma} (x) \, d\mu \)

- \(\text{div}_{\Sigma} (x) = \frac{\delta}{\alpha^2 t} \langle \partial_t x, e_i \rangle \).
- \(\{ e_i \ldots e_n \} \) o.n. basis for \(T_x \).
- \(d\mu \) -- volume element of \(\Sigma \).

Proof: Using local coordinates \(\{ x^i \} \) for \(\Sigma \).

\[g_{ij}(x) = g \left(\left(F_i \right)_{\theta} \frac{\partial}{\partial x^i}, \left(F_j \right)_{\theta} \frac{\partial}{\partial x^j} \right) \]

\[|\Sigma^t| = \int_{\Sigma} \sqrt{\text{det} g_{ij}(x)} \, d^nx. \]

\[= \int_{\Sigma} \frac{\sqrt{\text{det} g_{ij}(x)}}{\sqrt{\text{det} g_{ij}(0)}} \, d\mu_x. \]

\[\frac{d}{dt} \bigg|_{t=0} |\Sigma^t| = \int_{\Sigma} \frac{d}{dt} \bigg|_{t=0} \text{vol}_{\Sigma^t} \, d\mu_x. \]

Assume \(\{ x^i \} \) o.n. basis at point \(x \).

\[\frac{d}{dt} \bigg|_{t=0} \sqrt{\text{det} g_{ij}(x)} = \frac{d}{dt} \bigg|_{t=0} \sqrt{\text{det} g_{ij}(0)} = \frac{1}{2} \frac{d}{dt} \bigg|_{t=0} (\text{det} g_{ij}(0)) \]

Fact: \(\frac{d}{dx} \left[\text{det} (a_{ij}(x)) \right] = \sum_{ij} a_{ij}(x) \frac{d}{dx} a_{ij}(x) \frac{d^2 a_{ij}(x)}{dx^2} \]

\[[a_{ij}]^{-1} \text{ -- inverse matrix of } a_{ij} \]
\[\frac{1}{2} \sum_{i=1}^{K} \frac{d}{dt} \langle F_{x_i}, F_{x_i} \rangle = \sum_{i=1}^{K} \langle F_{t}, F_{x_i} \rangle \langle F_{t}, F_{x_i} \rangle \]

- \[F_{x_i} = (F_0) \frac{\partial}{\partial x_i} \]
- \[F_t = (F_0) \frac{\partial}{\partial t} \]

as \[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial t} \] - coordinate vector field.

\[\sum_{i=1}^{K} \frac{\partial}{\partial x_i} \langle F_{x_i}, F_t \rangle = 0 = \sum_{i=1}^{K} \frac{\partial}{\partial x_i} \langle F_{x_i}, F_t \rangle = \text{div}_I F_t \]

\[= \text{div}_I X. \]

Q.E.D.

Write \[X = X^T + X^N \] then

\[\Sigma (X) = \int_\Sigma \left(\text{div}_I X^N + \text{div}_I X^T \right) \, d\Sigma. \]

\[\text{div}_I X^N = \frac{1}{2} \sum_{i=1}^{K} \langle \nabla_e X^N, e_i \rangle = -\frac{1}{2} \sum_{i=1}^{K} \langle X^N, \nabla_e e_i \rangle. \]

\[\nabla_e \langle X^N, e_i \rangle = \nabla_e 0 = 0. \]

\[= -\langle X^N, H \rangle \]

\[= -\langle X, H \rangle \]

- divergence

\[\Sigma (X) = -\int_\Sigma \langle X, H \rangle \, d\Sigma + \int_\Sigma \langle X^T, \eta \rangle \, d\Sigma. \]

\(\eta \) unit outer normal of \((I, \partial I)\).
So I is minimal ($\tilde{H} \equiv 0$) $\iff \delta \Sigma(x) = 0 \; \forall \; x$ of compact support.

Second Variational Formula.

\[
\delta \Sigma(x, \dot{x}) = \frac{d^2}{dt^2} \bigg|_{t=0} [\Sigma(x, \dot{x})] = \int_\Sigma \left[|\nabla^2 \sigma|^2 - |\langle A \times x \rangle|^2 - \sum_{i=1}^{k} R(e_i \times e_i \times e_i \times x) \right] \, dx.
\]

where $\{e_1, ..., e_k\}$ o.n. basis for Σ.

\[
|\langle A \times x \rangle|^2 = \frac{1}{2} \sum_{i=1}^{k} |A(x \times e_i)|^2.
\]

As above $\{x^1, ..., x^k\}$ local o.n. coordinates at $x \in \Sigma$.

\[
\frac{d}{dt} V(t) = \frac{1}{\sqrt{\text{det} G_{ij}(t)}}\dot{G}_{ij}(t)
\]

\[
= \frac{1}{2} \left(\text{det} G_{ij}(t) \right)^{-\frac{1}{2}} \ \dot{G}_{ij}(t) \dot{G}_{ij}(t)
\]

\[
\frac{d^2}{dt^2} \bigg|_{t=0} V(t) = -\frac{1}{4} \left(\text{det} G_{ij}(t) \right)^{-\frac{3}{2}} \ \left(\dot{G}_{ij}(t) \dot{G}_{ij}(t) \right)^2
\]

\[+ \frac{1}{2} \left(\text{det} G_{ij}(t) \right)^{-\frac{3}{2}} \ \dot{G}_{ij}(t) \dot{G}_{ij}(t) \dot{G}_{ij}(t) \dot{G}_{ij}(t)
\]

\[+ \frac{1}{2} \left(\text{det} G_{ij}(t) \right)^{-\frac{3}{2}} \ \dot{G}_{ij}(t) \dot{G}_{ij}(t) \dot{G}_{ij}(t) \dot{G}_{ij}(t)
\]
\[\langle \hat{A} (\mathbf{x}) \rangle \big|_{t=0} = -2 \langle \mathbf{A}, \mathbf{x} \rangle = 0. \]
\[\hat{g}_{ij}(0) = -g_{ik}g_{jl} \hat{g}_{kl}(0) \]
\[\hat{g}_{ij} + \hat{g}_{ji}(0) = -4 \]

\[\hat{g}_{ij}(0) = \frac{1}{2} \langle \nabla \frac{\partial \mathbf{A}}{\partial x^i}, \nabla \frac{\partial \mathbf{A}}{\partial x^j} \rangle \]
\[= \langle \nabla \frac{\partial \mathbf{A}}{\partial x^2}, \nabla \frac{\partial \mathbf{A}}{\partial x^2} \rangle + \langle \nabla \frac{\partial \mathbf{A}}{\partial x^1}, \nabla \frac{\partial \mathbf{A}}{\partial x^1} \rangle \]
\[= \langle \nabla \frac{\partial \mathbf{A}}{\partial x^2}, \nabla \frac{\partial \mathbf{A}}{\partial x^2} \rangle + \cdots \]
\[= -2 \langle \mathbf{A} \left(\frac{\partial \mathbf{A}}{\partial x^2}, \frac{\partial \mathbf{A}}{\partial x^2} \right), \mathbf{x} \rangle \]

\[\hat{g}_{ij}(0) = \hat{g}_{ij}(0) = -4 \langle \mathbf{A}, \mathbf{x} \rangle \]

\[\hat{g}_{ij}(0) = \nabla \left(\langle \nabla \frac{\partial \mathbf{A}}{\partial x^i}, \nabla \frac{\partial \mathbf{A}}{\partial x^j} \rangle + ij \text{ reverse} \right) \]
\[= \langle \nabla \frac{\partial \mathbf{A}}{\partial x^2}, \nabla \frac{\partial \mathbf{A}}{\partial x^2} \rangle + \langle \nabla \frac{\partial \mathbf{A}}{\partial x^1}, \nabla \frac{\partial \mathbf{A}}{\partial x^1} \rangle \]
\[+ (ij \text{ reverse term}) \]
\[= \langle \nabla \frac{\partial \mathbf{A}}{\partial x^2}, \nabla \frac{\partial \mathbf{A}}{\partial x^2} \rangle + \langle \nabla \frac{\partial \mathbf{A}}{\partial x^1}, \nabla \frac{\partial \mathbf{A}}{\partial x^1} \rangle \]
\[+ \langle \nabla \frac{\partial \mathbf{A}}{\partial x^2}, \nabla \frac{\partial \mathbf{A}}{\partial x^1} \rangle + \langle \nabla \frac{\partial \mathbf{A}}{\partial x^1}, \nabla \frac{\partial \mathbf{A}}{\partial x^2} \rangle \]
\[+ (ij \text{ reverse term}) \]
\[
= \left< \nabla \frac{\partial F}{\partial x_i}, \dot{F} \cdot \frac{\partial F}{\partial x_i} \right> - R^m \left(\frac{\partial^2 F}{\partial x_i \partial x_j} \cdot \frac{\partial^2 F}{\partial x_i \partial x_j} \right).
\]

\[
+ \left< \nabla \frac{\partial F}{\partial x_i}, \frac{\partial^2 F}{\partial x_j \partial x_j} \right> + \left< \nabla \frac{\partial F}{\partial x_i}, \frac{\partial^2 F}{\partial x_j \partial x_j} \right> + \text{i,j reverse terms}
\]

\[
S_0 \overset{\mathbf{j} \to \mathbf{j} (\mathbf{0})}{\Rightarrow} = \text{div} \, \dot{F} - 2 \mathbf{g}^* \mathbf{R}^m \left(\dot{F}, \mathbf{e}_i \right) \cdot \left(\dot{F}, \mathbf{e}_i \right)
\]

\[
+ 2 \left| \left< \dot{\mathbf{A}} \times \mathbf{x} \right> \right|^2 + 2 \left| \nabla \dot{\mathbf{F}} \right|^2.
\]

Combining all above:

\[
\frac{d^2}{dt^2} \mathbf{N} \bigg|_{t=0} = \text{div} \, \dot{F} - \sum_{i=1}^{k} \mathbf{R}^m \left(\mathbf{x}, \mathbf{e}_i \times \mathbf{x} \mathbf{e}_i \right) + \mathbf{K} \mathbf{A} \cdot \mathbf{x}^2
\]

\[
+ \left| \nabla \dot{\mathbf{F}} \right|^2 - 2 \left| \left< \dot{\mathbf{A}} \times \mathbf{x} \right> \right|^2.
\]

\[
\square
\]

Hyperurface case: \(\Sigma \subset M \). Assume \(\Sigma \) is "two-sided", i.e., a nontrivial normal vector field \(\mathbf{u} \).

Let \(\mathbf{x} = \varphi \mathbf{u} \), \(\varphi \in C^0(\Sigma) \).

\[
I(\varphi, \varphi) := \frac{\partial^2}{\partial x^2} (\mathbf{x}, \mathbf{x}) = -\int_{\Sigma} \varphi \mathbf{u} \cdot \varphi \mathbf{u} \, d\mathbf{u}
\]
\[L \psi = \Delta \psi + (18 \psi^2 + \text{Ricm}(\delta \delta \nabla) \psi) \]

\[\phi^2 \delta \Gamma (x, x) = \int \frac{1}{2} \nabla^2 \rho \left(\delta \psi \right)^2 = \int \left(\nabla^2 \psi \right)^2 - \int \rho \phi \nabla \psi \]

\[\int \phi^2 \left(\nabla \psi \right)^2 = \int \phi \nabla \psi \phi \]

L - self-adjoint, elliptic, discrete eigenvalues \(\lambda_j \) with eigenfunction \(\psi_j \).

\[L \psi_j + \lambda_j \psi_j = 0, \quad \lambda_1 < \lambda_2 < \lambda_3 \ldots \]

Def.: \(\Sigma \) is stable if \(\lambda > 0 \), i.e. \(L \psi, \psi > 0 \).

Morse index of \(\Sigma \) = number of negative eigenvalues counted with multiplicity.

\[\text{Ric}^1, \quad L \psi, \psi > 0 \text{ has area} \quad (\psi, \psi) \]

\[\text{Ric}^2, \quad \text{if} \quad \text{Ric}^2 > 0, \quad \text{no stable}\quad \Sigma^m \]
§2. Curvature estimates for stable min hypersurfaces.

Thm: \(\Sigma \hookrightarrow \mathbb{R}^n \) stable \(2 \)-sided min hypersurf.

- \(x_0 \in \Sigma \), \(d \Sigma < \mathcal{A}B_0(\delta_0) \),
- \(\mathcal{A}B_0(\delta_0) \leq V r_0^{-1} \)
- \(n \leq 6 \).

Then \(\sup \ |A|^2 \leq (\text{Cn}. \ V) \ r_0^{-2} \).

1°. Simons' inequality.

- \(\Sigma \hookrightarrow \mathbb{R}^n \) min hypersurface, \(2 \)-sided
- \(h \sim \text{hij} \) second fundamental form
- \(\{e_1, \ldots, e_n\} \) or. frame.

The rough Laplacian:

\[\Delta h_{ij} = \sum_{k=1}^{n-1} h_{ij} \ k k. \]

Prop: \(\Delta h_{ij} + \partial^2 h_{ij} = 0 \), \(0 \leq i, j \leq n-1 \).

Proof: Gauss eq: \(R_{ijkl} = R_{ijkl}^{\text{sym}} + h_{ik}h_{jl} - h_{ij}h_{kl} \).
Codazzi - eq.

\[R^{m}_{ij;k} = h_{ik;j} - h_{ij;k} = 0 \]

Ricci identity (for symmetric 2-tensor)

\[h_{ij,kl} - h_{ij,kl} = \sum_{p=1}^{n} h_{pi} R_{pjkl} + \frac{1}{2} h_{pk} R_{pjk}. \]

Now:

\[\Delta h_{ij} = h_{ij,kk} = h_{ik,jk}. \]

\[= h_{ik,j} + \sum_{p=1}^{n} h_{pi} R_{pjik} + \frac{1}{2} h_{pk} R_{pijk}. \]

\[= h_{ik,j} + \sum_{p=1}^{n} h_{pi} (h_{pj} h_{ik} - h_{pk} h_{ij}) \]

\[+ h_{pk} (h_{pj} h_{ik} - h_{pk} h_{ij}). \]

\[= -1h_{i}^{2} h_{j} + (-h_{ip} h_{pk} h_{ij} + h_{ik} h_{k} h_{ij}). \]

\[= -1h_{i}^{2} h_{j}. \]

Cor.: \[\frac{1}{2} \Delta_{s} |A|^{2} = |D|^{2} - |A|^{4}. \]

\[\Delta_{s} |A|^{2} = (h_{ij} h_{ij})_{kk} = 2h_{ij,k} h_{ij;k} + 2h_{ij} h_{ij,kk}. \]
Prop \text{ Set } L \varphi = \Delta_{n} \varphi + \| \varphi \|^{2} \varphi \text{ - stability operator.}

then \text{ } | \varphi | L(\varphi) \geq \frac{2}{n+1} | \nabla \varphi |^{2}.

\text{If } \frac{1}{2} \Delta_{n} | \varphi |^{2} = | \nabla \varphi |^{2} - | \varphi |^{4}.

\Rightarrow \text{ } (\varphi | L(\varphi) = | \nabla \varphi |^{2} - | \nabla \varphi |^{2}.

\text{Trick, Choose o.n. eigenbasis } \{ e_{1} \ldots e_{n} \} \text{ for } \nabla^{2}.

\text{st. } \varphi_{ij} = \varphi i \delta_{ij}.

| \nabla \varphi |^{2} = \sum_{i,j,k} (\sum_{i} \varphi_{ij} \varphi_{jk})^{2} = \sum_{i} (\sum_{i} \varphi_{ii})^{2} \frac{1}{| \varphi |^{2}}.

\text{ } \leq \frac{2}{n+1} \sum_{i} (\sum_{i} \varphi_{ii})^{2} \frac{1}{| \varphi |^{2}} = \frac{2}{n+1} \sum_{i} \varphi_{ii}^{2}. \frac{2}{n+1} \sum_{i} \varphi_{ii}^{2}.

\text{ } = \sum_{i} \varphi_{ii}^{2} + \sum_{i} \varphi_{ii}^{2} \left(- \sum_{j \neq i} \frac{\varphi_{ij}^{2}}{\varphi_{ii}} \right)^{2}.

= \sum_{i} \varphi_{ii}^{2} + \sum_{i} \varphi_{ii}^{2} \left(- \sum_{j \neq i} \frac{\varphi_{ij}^{2}}{\varphi_{ii}} \right)^{2}.
\[
\begin{align*}
&= \sum_{i \neq k} h_{i,k}^2 + (n-2) \sum_{i \neq j} h_{j,i}^2 \\
&= \mathfrak{O} (n^{-1}) \sum_{i \neq k} h_{i,k}^2 \\
&= \frac{n-1}{2} \sum_{i \neq j} \left(h_{i,j}^2 + h_{j,i}^2 \right) \\
\Rightarrow \quad &\left(1 + \frac{2}{n-1} \right) (\partial A) \le \sum_{i \neq k} h_{i,k}^2 + \sum_{i \neq j} h_{i,j}^2 + \sum_{i \neq j} h_{j,i}^2 \\
&\le \sum_{i \neq k} h_{i,k}^2 = (\partial A)^2.
\end{align*}
\]

\[L^2 \text{- curvature estimates} \]

\[\text{Proof: } \sum_{i} \le Q^n \text{ stable min-hyper. } L^2 \text{- sided.} \]

\[\forall \rho \in \left[2, 2 + \sqrt{n-1} \right) \]

\[\int_{\Sigma} |\partial^{2p} \varphi|^2 \le C(n,p) \int_{\Sigma} |\partial^{p} \varphi|^2. \]

\[\forall \varphi \in C^1(\Sigma). \]

\[\varphi \in L^{(\varphi, 0)} \]

\[\begin{align*}
&\varphi \in L^{(\varphi, 0)} = \varphi \partial A \left(\Delta (\varphi A A) + \varphi |\varphi A| \right) \\
&= \varphi |\varphi A| \left(\Delta \varphi A A + 2 \partial A \varphi A A + \varphi A A A A + \varphi^2 A A A \right) \\
&= \varphi |\varphi A|^2 \Delta \varphi + 2 \varphi |\varphi A| \varphi A A A + \frac{2}{n-1} \left(\varphi^2 |\varphi A| \right)^2 \\
&\ge \varphi |\varphi A|^2 \Delta \varphi + 2 \varphi |\varphi A| \varphi A A A + \frac{2}{n-1} \varphi^2 |\varphi A|^2.
\end{align*} \]

Integrate on \(\Sigma \).
Together with stability inequality

\[\frac{2}{n-1} \sum \varphi^2 |\nabla \psi|^{2} \leq - \sum \varphi \varphi_{\psi} \varphi_{\psi} - 2 \sum \varphi \psi_{\psi} \varphi_{\psi} \psi_{\psi} \]

\[\geq \frac{\varepsilon}{\theta} + \sum \nabla \cdot (\varphi \psi \varphi_{\psi}) \cdot \nabla \psi - 2 \sum \varphi \psi_{\psi} \varphi_{\psi} \psi_{\psi} \]

\[= \left[\sum \varphi \varphi_{\psi} \varphi_{\psi}^{2} + 2 \varphi \psi_{\psi} \varphi_{\psi} \psi_{\psi} \right] - 2 \varphi \psi_{\psi} \varphi_{\psi} \psi_{\psi} \]

\[\Rightarrow \frac{2}{n-1} \sum \varphi^2 |\nabla \psi|^{2} \leq \sum \varphi \varphi_{\psi} \varphi_{\psi}^{2} \]

* Change \(\varphi \rightarrow \varphi |\theta|^{q} \).

\[\Rightarrow \frac{2}{n-1} \sum \varphi^{2} |\theta|^{2q} |\nabla |\theta| |^{2} = \sum \theta \theta_{\varphi}^{2} \left[\varphi \varphi_{\varphi} |^{q} + \theta \theta_{\varphi} \theta_{\varphi} |^{q} \right]^{2} \]

\[\leq \left(q^{2} + 3 \right) \sum \varphi^{2} |\theta|^{2q} |\nabla |\theta| |^{2} \]

\[+ \left(1 + \frac{1}{q} \right) \sum \theta^{2} |\theta|^{2q+2} |\theta|^{2} \]

If \(q < \sqrt{2} \), then

\[\sum \varphi^{2} |\theta|^{2q} |\nabla |\theta| |^{2} \leq C(n, q) \sum \theta^{2} |\theta|^{2q+2} |\theta|^{2} \]

Set \(\varphi = q+2 \):

\[\sum \varphi^{2} |\theta|^{2q+2} |\nabla |\theta| |^{2} \leq C(n, p) \sum \left(|\theta|^{2q+2} |\theta|^{2} \right) \]

* Change \(\varphi \rightarrow \varphi |\theta|^{q+1} \).

* Let \(\varphi \rightarrow \varphi |\theta|^{q+1} \) in stability inequality.
\[\sum_1 |\varphi|^2 \leq \sum_1 |\varphi|^2 \]
\[\Rightarrow \sum_1 |\varphi|^2 \leq \sum_1 |A(\varphi|18\varphi_{\perp}|^2)|^2 \]
\[\leq 2 \sum_1 |A\varphi|^2 |\varphi|^2 + |\varphi|^2 |A\varphi|^2 |^2 \]
\[\Rightarrow \sum_1 |\varphi|^2 \leq C(n,p) \int_\Sigma (|\varphi|^2)^2 d\rho \varphi \]
Replace \(\varphi \) by \(\varphi^p \)
\[\Rightarrow \sum_1 |\varphi|^2 \leq C(n,p) \int_\Sigma (|\varphi|^2)^2 p |\varphi|^2 d\rho \varphi \]
\[\leq C(n,p) \left(\int_\Sigma |\varphi|^2 \right)^{2/p} \left(\int_\Sigma |\varphi|^2 \right)^{1-p} \]
\[\Rightarrow \left(\int_\Sigma |\varphi|^2 \right)^{2/p} \leq C(n,p) \int_\Sigma |\varphi|^2 \]
\[A \quad p < 2 + \sqrt{\frac{2}{n-1}} \]

Poincare estimates

Theorem
\[\Sigma^{n-1} \subset R^n \text{ stable min-hypersurface}, \quad 2\text{-sided} \]
\[x_0 \in \Sigma, \quad \Sigma < x \subset B_{\rho_0}(x_0) \]
\[|\Sigma \cap B_{\rho_0}(x_0)| \leq V_{\rho_0}^{n-1} \]
\[n \leq 6 \]
Then, \(\sup_{\sum \lambda B_{\lambda} \subseteq U} |A|^2 \leq C(\ln U) r_0^{-2} \).

Take \(2p \geq n+1 \), i.e.,

\[n+1 < 4 + 2 \sqrt{\frac{2}{n+1}} \Rightarrow n \leq 6 \]

i.e.,

\[\sum |A|^{2p} \varphi \leq C(n) \sum |\lambda B_{\lambda}|^{2p} \varphi. \]

Take \(\varphi(x) = \varphi(x_0, x_0) = \frac{1}{r_0} \) in \(B_{2r_0} \times x_0 \).

Let \(\varphi = \text{dist}(x, x_0) \):

\[18 \varphi | \leq \frac{C}{r_0} \]

then

\[\sum \lambda B_{\lambda} \subseteq U \quad |A|^2 \leq C \sum \lambda B_{\lambda} \frac{1}{r_0^{2p}} \text{ dist} \]

\[\leq C(n,p) \frac{\text{vol}(B_{r_0}(x_0) \setminus \Sigma)}{r_0^{2p}} \]

\[\leq C(n,p) \frac{r_0^{-n}}{r_0^{2p}} \]

Using Simon's inequality:

\[\frac{1}{2} |A|^2 + |A|^4 \geq 0 \quad (\Rightarrow \Delta |A|^2 + |A|^4 \geq 0) \]

A Moser iteration. (on \(U \))

\[\sup_{\sum \lambda B_{\lambda} \subseteq U} |A|^2 \leq C \left(\frac{1}{r_0^{-n}} \sum |\lambda B_{\lambda}|^{4} \text{ dist} \right)^{1/2} \]
where c depends on $n + 8 \geq p - (n + 1)$,

\[
\sum_{i}^{\infty} \frac{1}{r_i^{n-1}} \int_{B_{r_i}(x_i)} |\Theta_i| \, du_i \leq c.
\]

Let $p = q$,

\[
\sum_{i}^{\infty} \frac{1}{r_i^{n-1}} \int_{B_{r_i}(x_i)} |\Theta_i| \, du_i \leq c(n, p, V) \cdot \frac{r_i^{n-1}}{r_i^4 \cdot r_i^m} \to \frac{c}{r_i^4}.
\]

\[\Rightarrow \sup_{\Sigma_i} |\Theta_i|^2 \leq \frac{c}{r_i^2}.
\]

\[\text{Rk1: Need to check the Sobolev inequality on } \Sigma_i.
\]

\[\text{Rk2: When } \Sigma_i \subset M^n, \text{ all the above estimates similarly work, except that there are curvature terms of } M^n \text{ appearing } \text{[ESS]}.
\]

\[\text{Rk3: Uniform curvature estimates + uniform volume estimates } \Rightarrow \text{ compactness.}
\]

\[\text{i.e., } \Sigma_i \subset \Sigma \quad \text{and } c \subset \Sigma.
\]

\[\sup_{i} \|\Theta_i\| < C < \infty \quad \sup_{i} \text{Area}(\Sigma_i \cap K) \leq C\]

\[\Rightarrow \Sigma_i \to \Sigma_\infty.
\]
$L_{4.5} \quad I^2 \leftrightarrow M^3 \quad \Sigma^2 \text{ stable, \ 2-sided.}$

always have volume growth estimates, hence curvature estimates.
3. Introduction to the theory of Varifold.

1. Hausdorff measure H^n on \mathbb{R}^{n+k}.

\[H^n_\delta(A) = \lim_{\delta \to 0} \frac{1}{\delta^n} \int_A \frac{1}{\delta^n} \left(\text{diam} C_i \right)^n. \]

\[A = \bigcup C_i \]

\[H^n(A) = \lim_{\delta \to 0} H^n_\delta(A). \]

Density, μ^n measure on $\mathbb{R}^{n+k} \times \mathbb{R}^{n+k}$.

\[\Theta^n_\mu (M, x) = \lim_{\rho \to 0} \frac{\mu(B_r(x))}{H^n(B_r(x))} \cdot \frac{1}{\rho^n} \]

\[\Theta^n_\mu (M, x) = \lim_{\rho \to 0} \frac{\mu(B_r(x))}{\rho^n} \cdot \frac{1}{\rho^n} \]

If $\Theta^n_{\bar{\mu}}(M, x) = \Theta^n_\mu (M, x)$.

\[\Theta^n_{\bar{\mu}}(M, x) = \Theta^n_\mu (M, x) \]

$M^n = n$-dim Riem manifold.

$\mathcal{G}_k(M^n) = \text{Grassmannian bundle of un-oriented } k\text{-planes over } M.$
Def. A \(k \)-varifold \(V \) on \(U \) is a Radon measure on \(G_k(U) \). Write \(V_k(U) \) to be the set of all \(k \)-varifolds on \(U \).

Given \(V \in V_k(U) \), there is a Radon measure \(\mu_V \) on \(U \), defined by:

\[
\mu_V(B) = V(z^-(B)),
\]

where \(z : G_k(U) \rightarrow U \),

\[
(z, s) \rightarrow s.
\]

We call such \(\mu_V \) weight of \(V \).

The mass \(m(V) \) is \(m(V) = \mu_V(U) \).

Rectifiability:

Def. A \(H^k \)-measurable set \(M \subset U^n \) is said to be countably \(k \)-rectifiable if \(M = \bigcup_{j=0}^{\infty} M_j \)

where \(H^k(M_0) = 0 \), \(M_j \subset F_j(A_j) \), \(j \geq 1 \).

\(F_j : A_j \subset \mathbb{R}^k \rightarrow \mathbb{R}^n \) Lipschitz.

Lemma. Given \(M \) a countably \(k \)-rectifiable set,

\(\delta \) locally \(k \) integrable function on \(M \).
Can define a k-varifold $V = V(M, \theta)$ as

$$V(M, \theta)(A) = \left(H^k(\theta) \left(M \cap x^{-1}(B(x, \mathbb{R}^n) \cap A) \right) \right)_{AC \mathcal{G}_k(M)}$$

Def. Given M a H^k-measurable set, $0 > 0$ locally H^m-integrable function on M.

Say P, k-dim space linear subspace, is an "approximate tangent plane" for M at x w.r.t. θ if

$$\lim_{\lambda \to 0} \int_{x + \lambda P} f(y) \theta(x + \lambda y) \, d\lambda = \theta(x) \int_{P} f(y) \, dy \quad \forall f \in C_c^\infty(\mathbb{R}^m)$$

where $\pi, \lambda : \mathbb{R}^n \to \mathbb{R}^m$, $\pi(x, y) = \frac{y - x}{\lambda} x.$

Thm. "M is H^k-measurable. M is countably-k-rectifiable if and only if $\exists \theta$ locally H^m integrable on M and $\int_{T_xM} \text{app tangent plane } H^m$-a.e. M.

"Go back to (lemma) to define. Varifold"

Question: When is a general $V \in V(M)$ rectifiable?
3. \textbf{First variation of varifolds.}

- \textbf{Push-forward:} \(\Psi : U \rightarrow U' \subset \mathbb{R}^n \) diffeomorphism.

 \(\Psi^* V \in \mathcal{V}_k(U') \) is defined by:

 \[
 (\Psi^* V)(B) = \int_{\Psi^{-1}(B)} J \Psi(x,s) \, dV(x,s).
 \]

 \(\theta \in \mathcal{G}_k(U) \). \(\Psi : \mathcal{G}_k(U) \rightarrow \mathcal{G}_k(U') \)

 \[
 J\Psi(x,s) = \text{volume Jacobian of } d\Psi_x|_s.
 \]

 \[
 = \det [(d\Psi_x|_s)^* \circ d\Psi_x|_s]^{\frac{1}{2}}.
 \]

- \textbf{First variation:} \(x \in X(U) \) vector field supported in \(U \).

 \(\Psi_t = \text{flow of } X \).

 i.e., \(\frac{d}{dt} \Psi_t(x) = X(\Psi_t(x)) \).

 then:

 \[
 \partial_t V(x) := \frac{d}{dt} \Psi_t^* (\Psi_t^* V).
 \]

 \[
 = \frac{d}{dt} \int_{\mathcal{G}_k(U)} J \Psi_t(x,s) \, dV(x,s).
 \]

\textbf{Prop.:}

\[
\partial_t V(x) = \sum_{\omega \in \mathcal{G}_k(U)} \text{div}_S X \, dV(x,s)
\]

where \(\text{div}_S X = \sum_{i=1}^k \langle D_{e_i} X, e_i \rangle \) in basis of \(S \).
\[y_t(x) = x + t X(x) + o(t). \]

\[D_t y_t = 2_t x + D_t X + o(t). \]

\[(D_t y_t)_t^n = 2_t x^n + D_t x^n + o(t). \]

\[(\text{det} \{ \partial y_t / \partial s \} \cdot (\partial y_t / \partial s) \}) = (\text{det} \{ \partial y / \partial s \} \cdot (\partial y / \partial s) \}). \]

\[= \left(\frac{\partial_i + t D_{ii} X + o(t)}{n} \right) \left(\frac{\partial_i + t D_{ii} X + o(t)}{n} \right) \]

\[= \delta_{ij} + t \left(2_i \cdot D_{ij} X + 2_j \cdot D_{ii} X \right) + o(t). \]

\[\text{det} \left[(\partial y_t / \partial s) \cdot (\partial y_t / \partial s) \right] \]

\[= 1 + t Tr \left(2_i \cdot D_{ij} X + 2_j \cdot D_{ii} X \right) + o(t) \]

\[= 1 + 2t \left(\text{det} \{ y_t / \partial s \} \cdot (\partial y_t / \partial s) \right) \]

\[= \text{det} \{ y_t / \partial s \} \cdot (\partial y_t / \partial s) \]
Monotonicity Formula:

Thus, \(V - (k - \text{vanfled}) = V_k(u) \) stationary.

Then \(B_0 \sim (0) = B_0(0) \sim U \).

Then \(\frac{1}{Dr} \mu(B_0) = \frac{1}{Dr} \mu(B_0) - \int_{B_0} \frac{1}{Dr} |Dr \text{v}| \text{v} \text{d}u \).

\(= D_r^+\text{v} = (Dr)^+ \text{v} \text{w.r.t.} S \).

Take \(\text{v} = u(r) \text{v} \text{, } u(0) = 0 \).

\(\text{div}_S \text{v} = u'(r) \sum_{i=1}^{k} \text{v}.e_i + u(r) \sum_{i=1}^{k} \sqrt{g} \text{v}.e_i \).

\(= u'(r) \frac{k}{r} \text{v}.e_i + k u(r) \).

\(\text{div}_S \text{v} = u(r)(|Dr| + k u(r)). \)

Stationary:

\(0 = \delta V(\text{v}) = \int_{S} \text{div}_S \text{v} \text{v} \text{d}u \text{v} \text{S} \).

\(= \int_{S} (u(r)|Dr| + k u(r)) \text{d}V \text{v} \text{S} \).

Trick:

\(u(r) = \phi \left(\frac{r}{p} \right) . \)

\(\phi = \int_{0}^{1} m B_{\text{v}} \phi \text{c} \text{o} \)
\[
\begin{align*}
\mu(r) &= \phi \left(\frac{r}{p} \right) - \frac{1}{p} \cdot \frac{d}{dp} \left(\phi \left(\frac{r}{p} \right) \right) - \frac{r}{p^2} \\
\Rightarrow \quad r \cdot \mu(r) &= -p \cdot \frac{d}{dp} \left(\phi \left(\frac{r}{p} \right) \right) \\
\Rightarrow \quad 0 &= \int_{\Omega_n \cup \Omega} \left(-p \cdot \frac{2}{\sigma_p} \left[\phi \left(\frac{r}{p} \right) \right] |D_s r|^2 + k \phi \left(\frac{r}{p} \right) \right) dV_{RIS} \\
\quad \text{Write } |D_s r|^2 &= 1 - |D^r_s r|^2 \\
\Rightarrow \quad k \int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) dV_{RIS} - p^2 \frac{d}{dp} \left(\int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) dV_{RIS} \right) \\
\quad &= -p \cdot \frac{d}{dp} \int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) |D^r_s r|^2 dV_{RIS} \\
\left(\phi \right)_{p \rightarrow p+1} \\
\frac{k}{p^{k+1}} \int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) dV_{RIS} - \frac{1}{p^k} \frac{d}{dp} \int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) dV_{RIS} \\
\quad &= -\frac{1}{p^k} \frac{d}{dp} \int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) |D^r_s r|^2 dV_{RIS} \\
\Rightarrow \quad \frac{d}{dp} \left[\frac{1}{p^k} \int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) dV_{RIS} \right] \\
\quad &= -\frac{1}{p^k} \frac{d}{dp} \int_{\Omega_n \cup \Omega} \phi \left(\frac{r}{p} \right) |D^r_s r|^2 dV_{RIS} \\
\text{Let } \phi \rightarrow \chi_{[0,1]} \\
\Rightarrow \quad \frac{1}{p^k} \text{AV}(B_0) - \frac{1}{p^k} \text{AV}(B_5) &= \int_{B_0 \setminus B_5} \frac{1}{p^k} |D^r_s r|^2 dV_{RIS}
\end{align*}
\]
Let \(\gamma : \mathbb{R} \to \mathbb{R} \) be \(\gamma(t) = \frac{y - x}{\lambda} \).

Definition: Manifold tangent. Let \(\mathbf{V}_x \) be the set of all \(c = \lim_{t \to 0} \gamma(t) \). Assume \(x \in \mathcal{U} \). It follows that \(\mathbf{V}_x \) is the tangent space of \(\mathcal{U} \) at \(x \).

Claim: \(\frac{\Delta c(x_p)}{w_k \rho_k} = \vartheta_0 \) (for a.e. \(\rho \))

\[
\Delta c(x_p) = \lim_{\lambda \to 0} \frac{\lambda}{w_k \rho_k} \Rightarrow \frac{\Delta c(x_p)}{w_k \rho_k} = \vartheta_0
\]

By monotonicity formula,

\[
\vartheta_0 = \mathbf{Q}(\vartheta_0) = \frac{\Delta c(x_p)}{w_k \rho_k} - \int_{w_k \rho_k}^{1} \frac{D_p r^2}{G_k(r)} \, dr
\]

\(\Rightarrow |D_p r| > 2 \) for all \(r > 0 \).
\[\begin{align*}
\text{i.e., } & \exists \alpha > 5 \text{ for } C \text{-a.e. } (x_0, s) \in G_2(B) \\
\text{"Lemma" : } & \frac{1}{\lambda^k} \mathcal{L}(\mathcal{V}_0 \times A) = \mathcal{L}(A).
\end{align*} \]

Rectifiability Thm: \(V \in V_{\text{loc}}(U) \text{ stationary.} \)

if \(\Theta(J, u(x)) > 0 \) for \(u \) a.e. \(x \in U \) then \(U \) is rectifiable, i.e. \(V = V(M, 0) \)

\[\begin{align*}
& \quad \text{\(M \text{-}\mathcal{H}^k \text{-measurable, countably-}\mathcal{H}^k \text{-rectifiable} \)} \\
& \quad \text{\(\Theta \text{-locally } \mathcal{H}^k \text{ integrable} \)}
\end{align*} \]

\[\begin{align*}
\text{If, } \Theta \text{ satisfies, } & \Theta(J, u(x)) \geq 1 \text{ for } u \text{-a.e. } x \in \mathbb{R}^n, \\
\text{then } C \text{ is a "cone,"} & \text{ i.e. } \eta \circ \xi C = C.
\end{align*} \]

\[\begin{align*}
\text{\(V \in V_{\text{loc}}(U) \text{ stationary.} \)
\end{align*} \]

\[\text{\(\text{supp}(V) \subset M^k \subset U \text{ smooth. } \Rightarrow V = \mathcal{F}_0 \circ V_{\text{lim}} \)} \]

Compactness Thm:

\[\begin{align*}
& \{ V_i \subset V_{\text{loc}}(U) \text{ stationary.} \} \\
& \text{sup} \{ \Theta(J, u(w) : i \} < \infty \text{ a.e. } w \in U \} \\
\Rightarrow & \ V_i \rightarrow V \rightarrow \text{rectifiable.}
\end{align*} \]
1. **Remarks** (for the case $U \in M^n$).

Can embed $M^n \rightarrow \mathbb{R}^{n+k}$ then $V \in \text{Val}(U)$

\mathcal{B} stationary \iff

$$
\delta V(x) = \int_{\partial V(x)} \nu(x) \text{d}V(x)
$$

$$
= -\int_{\partial V(x)} \left(\text{Tr}_x A^m(x) \right) \text{d}V(x).
$$

- A^m and ff. of $M \rightarrow \mathbb{R}^{n+k}$

$$
\text{Tr}_x A^m = \frac{1}{k} \left(A^m(\epsilon_i, \epsilon_i) \right)
$$

- $\{ \epsilon_1, \ldots, \epsilon_k \}$ orthonormal basis for x.

- Can redo Monotonicity

- Variance (defined on \mathbb{R}^{n+k})

- All others works.
8° Maximum Principal

Lemma (Thm). \(V \in V_{2}(U) \). \(U \subset \mathbb{R}^{n} \). starting.

\(0 < t < s \). \(B_{t}(0) \subseteq B_{s}(0) \subseteq U \).

\(\text{II}V_{I} (A_{0}(t,s)) \neq 0 \). \((A_{0}(t,s) = B_{s} \setminus B_{t}) \).

then \(\forall x \in \text{spt II}V_{I} \land \exists B_{+} \)

\[(B(x, r) \setminus B_{+}) \land \text{spt II}V_{I} \neq \emptyset \]

\(r > 0 \)

\(\quad \exists \varepsilon > 0 \). set.

\[(B(x, \varepsilon) \setminus B_{+}) \land \text{spt II}V_{I} = \emptyset \]

Want to construct a variational v.f. \(\overline{X} \) to get contradiction.

Take \(\frac{1}{2} < r < h + r + \varepsilon \).

\(P = -\overline{X} \)

\(K = B_{+}(0) \setminus B_{r}(x) \)

\(\subseteq B(x, \varepsilon) \)

\(\& B_{r}(x) \setminus B(x, \varepsilon) \subseteq B(r, \varepsilon) \).
Would like to take \(X = \bar{x} - \bar{p} \).

Cutoff function:

\[0 \leq f \leq 1, \quad \text{supp} f \subset B(\bar{x}, r), \quad f = 0 \text{ on } \kappa \]

\[0 \leq g_{18}(s) \leq 1, \quad g_{18}(s) = 0 \quad \text{if} \quad s \geq t + \delta t \]
\[g_{18}(s) = 0 \quad \text{if} \quad s < 0 \]

\[\text{let} \quad \bar{x}_{(s)} = g_{18}(\bar{x} - \bar{p}_1) \cdot f_{18} \cdot (\bar{x} - \bar{p}) \]
\[\in \mathcal{A}(\kappa) \]

\[0 = \text{div} (\bar{X}) = \int_{\partial \kappa (\kappa)} \text{div}_s (\bar{X}) \cdot d\nu (x, s) \]

\[\text{div}_s (\bar{X}) = g_{18}(\bar{x} - \bar{p}_1) \cdot P_s (x - \bar{p}) + g_{18}(\bar{x} - \bar{p}_1) \cdot P_s (x - \bar{p}) \cdot k \]
\[+ g_{18}(\bar{x} - \bar{p}_1) \cdot f_{18} \cdot k \]
\[I = 0 \]

Claim: \(I = 0 \) on \(\text{supp} \nu \).

\[g = 0 \quad \text{if} \quad |\bar{x} - \bar{p}_1| > r, \quad \Rightarrow 0 \text{ on } \kappa \]

\(\text{supp} \nu \subset B_{18}(\bar{x}) \cap B_{10}(\kappa) \)
\[1P = 0 \text{ on } \kappa \]
\[
\begin{align*}
\text{only } k \text{ left.} \\
\Rightarrow f &= 1.
\end{align*}
\]

\[
\begin{align*}
0 &= \int_{B_2(0,1)} g(x-\bar{x}_1, f(x)) \, dV(x, y) \\
&\quad + \int_{B_2(0,2)} g(x-\bar{x}_2) \, dV(x, y) \\
&\quad + \int_{B_2(0,3)} g(x-\bar{x}_3, f(x)) \, dV(x, y) \\
&\quad + \int_{B_2(0,4)} g(x-\bar{x}_4) \, dV(x, y) \\
&\quad + \int_{B_2(0,5)} g(x-\bar{x}_5) \, dV(x, y) \\
&\quad + \int_{B_2(0,6)} g(x-\bar{x}_6) \, dV(x, y) \\
&\quad + \int_{B_2(0,7)} g(x-\bar{x}_7) \, dV(x, y) \\
&\quad + \int_{B_2(0,8)} g(x-\bar{x}_8) \, dV(x, y) \\
&\quad + \int_{B_2(0,9)} g(x-\bar{x}_9) \, dV(x, y) \\
&\quad + \int_{B_2(0,10)} g(x-\bar{x}_{10}) \, dV(x, y).
\end{align*}
\]

\[
\begin{align*}
k \ll 1(k) &> 0. \\
\Rightarrow 0 &\in E.
\end{align*}
\]

Rk: Also works for \(U \subset M \subset \mathbb{R}^{n+k} \) if restrict to "\(U \)" small.
Sand type. Then for stationary varifold.

\(\text{Lemma.} \quad V \in \mathcal{V}_k(W) \) stationary, integer rectifiable.

(i.e. \(V = V(M, \theta) \), \(\theta : M \to \mathbb{Z}^+ \).

1. \(\forall x \in U, \quad B_\rho(x) \subset U \).

2. \(\mathcal{T} = \{ y \in \text{spf}(W) : \mathcal{T} \text{ transversal to } \partial B_{\rho(x)} \} \).

Then \(\mathcal{T} \) is dense in \(\text{spf}(W) \cap B_\rho(x) \).

\[\begin{array}{c}
\text{If false, then } \exists y \in B_\rho(x) \cap \text{spf}(W) \quad \text{and } y \ll 1.
\end{array} \]

\(\Gamma = \{ \bar{z} \in M : \partial \Lambda_{B_{\rho(x)}}(x) \} \).

Assume \(B_{\rho(x)} \subset B_{\rho(x)} \). Let \((x, \gamma, \rho) \) -plan curve on \(B_{\rho(x)} \).

Take \(f \) cutoff function on \(B_{\rho(x)} \).

\[\begin{array}{c}
\text{Let } \chi = \frac{f}{f} \geq \frac{1}{\rho}.
\end{array} \]
\[\delta V(X) = \int_{\mathfrak{m}(B^+_\mathfrak{y})} \text{d} \nu_{\text{tan}} X \mathfrak{y} \otimes \text{d}(\nu^2 \Omega) \]

\[\text{d} \nu_{\text{tan}} X \mathfrak{y} = \frac{1}{2} \left< \text{Rei}(X \mathfrak{y}) , e_i \right> \text{ for } \mathfrak{y} \in \mathfrak{m} \]

\[= \frac{1}{2} \left< \text{Rei}(\frac{\partial \mathfrak{y}}{\partial y}), e_i \right> \]

\[\Rightarrow \delta V(X) = \int_{\mathfrak{m}(B^+_\mathfrak{y})} \frac{\frac{\partial \mathfrak{y}}{\partial y}}{r} \text{d}(\nu^2 \Omega) \]

\[\Rightarrow c \| \nabla (B_{x^2 y^2}) \| > 0. \]

Set-up & main result.

- \(M \) = closed 3-mfld.
- \(\text{Diff}_0 (M) = \text{diffeomorphisms} \)
 of \(M \) = id.

\(\mathcal{K} = \text{the set of isotopies} \)

\[
\forall \tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)),
\]

\[
\begin{array}{c}
\forall \tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)), \\
4 \in \mathcal{C}^0 ([0,1] \times \mathcal{K}, \mathcal{K}), \\
4(0 \cdot \tau) = \text{id} \\
4(\tau \cdot \omega) \in \text{Diff}_0 (M)
\end{array}
\]

- A smooth family of surfaces in \(\mathcal{K} \) of \(\mathcal{K} \):

\[
\forall \tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)),
\]

\[
\begin{array}{c}
\forall \tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)), \\
\forall \tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)), \\
\exists \tau, \omega \in \mathcal{C}^0 ([0,1] \times \mathcal{K}, \text{Diff}_0 (M)), \\
\tau(0 \cdot \tau) = \text{id} \\
\omega(\tau \cdot \omega) \in \text{Diff}_0 (M)
\end{array}
\]

A smooth family of surfaces in \(\mathcal{K} \):

\[
\forall \tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)),
\]

\[
\begin{array}{c}
\forall \tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)), \\
\tau \in \mathcal{K}, \quad \forall \omega \in \mathcal{C}^0 (\tau \times \mathcal{K}, \text{Diff}_0 (M)), \\
\exists \tau, \omega \in \mathcal{C}^0 ([0,1] \times \mathcal{K}, \text{Diff}_0 (M)), \\
\tau(0 \cdot \tau) = \text{id} \\
\omega(\tau \cdot \omega) \in \text{Diff}_0 (M)
\end{array}
\]

Def 1.1: A family \(\{ \Sigma_t \}_{t \in [0,1]} \) is continuous if:

- (c1) \(\Sigma_t \) cont. w.r.t. \(t \),
- (c2) \(\Sigma_t \rightarrow \Sigma_{t_0} \) in Hausdorff when \(t \rightarrow t_0 \).

Def 1.2: A family \(\{ \Sigma_t \}_{t \in [0,1]} \) of \(\mathcal{K} \)-measurable subsets of \(M \) is a generalized (smooth) family (of surfaces) if there exists a finite set \(T \subset [0,1] \),

\[
\begin{array}{c}
\exists \text{finite set } P \subset M, \\
\exists \text{finite set } P \subset M, \\
\exists \text{finite set } P \subset M, \\
\exists \text{finite set } P \subset M,
\end{array}
\]

\[
\begin{array}{c}
\forall \epsilon > 0, \quad \exists \delta > 0, \\
\forall \epsilon > 0, \quad \exists \delta > 0, \\
\forall \epsilon > 0, \quad \exists \delta > 0, \\
\forall \epsilon > 0, \quad \exists \delta > 0,
\end{array}
\]

\[
\begin{array}{c}
\forall \epsilon > 0, \quad \exists \delta > 0, \\
\forall \epsilon > 0, \quad \exists \delta > 0, \\
\forall \epsilon > 0, \quad \exists \delta > 0, \\
\forall \epsilon > 0, \quad \exists \delta > 0,
\end{array}
\]
Given a generalized family \(\{ \Sigma_t \} \), one can generate a new generalized family as follows:

\[\forall t \in \mathbb{R} \quad (i.e. \, t \in \mathbb{R}) \Rightarrow \quad \Sigma_t = \Sigma_t(\Sigma_t^+). \]

\(\Sigma_t^+ \) is the family generated by isotopies.

Def. A set \(\Lambda \) of generalized family is said to be **saturated** if it is closed under isotopies.

\(R_k \). Require \(\forall \Lambda. \quad k \in \mathbb{N} \cup \{ 0 \} \quad \text{integer.} \quad \forall t \in \text{set P of bad pts. for any } \Sigma_t \in \Lambda.

\[\text{has } \# \leq N(\Lambda). \]

Def. Given \(\{ \Sigma_t \} \subset \Lambda \)

\[\mathcal{F}(\{ \Sigma_t \}) := \max_{t \in \{0,1\}} H^2(\Sigma_t). \]

\(m(\Lambda) := \inf_{\Sigma_t \in \Lambda} \mathcal{F}(\{ \Sigma_t \}) = m(\Lambda) \max_{t \in \{0,1\}} H^2(\Sigma_t) \).

\[\text{maximal slice. (not min.)} \]

\[\text{min.} \]

- If \(\lim_{t \to 0} \mathcal{F}(\{ \Sigma_t \}) = m(\Lambda) \quad \{ \{ \Sigma_t \} \} \quad \text{minimizing seq.} \subset \Lambda \).

- If \(\forall t \quad \{ \Sigma_t \} \subset \Lambda \quad \text{all } \{ \Sigma_t \} \quad \text{min-max seq.} \subset \Lambda \).
Question: When is \(m_0(A) > 0 \).

Prop.: \(M \) - closed, \((3, \text{ inf})\). \(f \) is Morse function, \(f: M \to \mathbb{R} \).

then the level sets \(\{ I_t = \{ f = t \} \} \) is a generalized family.

Moreover, let \(A = \) the smallest saturated set containing \(\{ I_t \} \), then \(m_0(A) > 0 \).

Proof:

\[A = \{ \{ I_t \} + \varepsilon \mid \varepsilon \geq 0 \} \]

\[T_t = (t + I_t), \; t \in C([0,1] \times M, M) \]

\[\text{let} \; U_t = f^{-1}(I_t, I_t) = \{ x \mid f(x) < t \} \]

then \(V_t = 4(t + U_t) \quad \Rightarrow AV_t = T_t \)

\[U_0 = \phi, \; U_1 = M \quad \Rightarrow V_0 = \phi, \; V_1 = M \]

\[\exists S_0 \in C(0, 1) \quad \Rightarrow \quad \text{vol} (V_{S_0}) = \frac{\text{vol}(M)}{2} \]

Isoperimetric inequality: \(\Rightarrow \)

\[\frac{\text{vol}(M)}{2} = \text{vol} (V_{S_0}) \leq C(M) \left(H^2(T_{S_0}) \right)^{\frac{3}{2}} \]

\[\Rightarrow \quad \frac{f(t S_0)}{3} = \max_{t \in [0,1]} H^2(T_t) \geq H^2(T_{S_0}) \geq \left(\frac{\text{vol}(M)}{2C(M)} \right)^{\frac{2}{3}} \]

Thus, \(M \) - closed, \((3, \text{ inf})\). A saturated set (of generalized family) \(m_0(A) > 0 \). Then \(\exists \min_{\text{max}} \exists \sigma \{ x \in \mathbb{R} \mid \text{vol} \} \) now.
\[
\max_{\Sigma_t} H^2(\Sigma_t) \leq \max_{\Sigma_t} H^2(\Sigma_t') \quad \text{s.t.} \quad \Sigma_t' \to \Sigma_t
\]

\[
\Sigma^n_{\Sigma_t} : H^2(\Sigma^n_{\Sigma_t}) \to \text{varifold}
\]

\[
\forall \xi, \Sigma^n_{\Sigma_t} = \frac{1}{\sum_i n_i \Sigma_i}
\]

2. Sketch of proof.

Step 1. Take \(\{\Sigma^n_t\} \) minimizing sequence.

\[
\max_{\Sigma_t} H^2(\Sigma_t) \leq \max_{\Sigma_t} H^2(\Sigma_t') \quad \text{s.t.} \quad \Sigma_t' \to \Sigma_t
\]

- Easy to show that \(\Sigma_t^k \to \Sigma_0 \) stationary for some \(\{\Sigma^k_t\} \).
- May still exists \(\Sigma_t^k \to \) stationary.

\[
\Sigma_0 \to \text{varifold}
\]

\[
\Sigma_0 \text{ has the same area as } \Sigma_0
\]

- Tightening to get rid of bad slices.

Prop 1: A minimizing sequence \(\{\Sigma^n_t\} \subset \text{varifold} \)

\[
\text{s.t. evey min-max seg } \{\Sigma^n_t\} \text{ subconcave to stationary varifold}
\]

- Idea: functional analysis type argument in the setting of varifolds.
Step 2: “Almost minimizing”.

- Regularity theory for (stationary) hypersurfaces.
 \[\Sigma^{n+1} \subset M^n, \quad n \in \mathbb{N}, \quad \Sigma^{n+1} \text{ volume minimizing} \]
 \[\implies \Sigma \text{ smooth} \]
- Need some kind of minimizing.

Def. Given \(\varepsilon > 0 \), \(U \) open \(\subset M \), \(\Sigma^2 \) is \(2 \)-a.m. in \(U \)

\[f \not\in A^2(U), \quad \forall t \]
\[H^2(f(t, \Sigma)) \leq H^2(\Sigma) + \varepsilon/8 \]
\[H^2(f(1, \Sigma)) \leq H^2(\Sigma) - \varepsilon \]

A seq \(\{\Sigma^n\} \) is \(2 \)-a.m. in \(U \) if each \(\Sigma^n \) is \(3^n \)-a.m. in \(U \) for some \(\varepsilon_n \to 0 \)

Prop. \(\exists \rho \subset M \to \mathbb{R}^+ \) and a min-max seq \(\{\Sigma^i\} \)

s.t.
- \(\{\Sigma^i\} \) a.m. in every \(B_n \) centered at \(x \) & \(\rho \)
- \(\Sigma^i \) smooth in \(B_n \) for \(j \) large
- \(\Sigma^i \to \Sigma \) stable in \(M \)

Step 3. If \(\{\Sigma^i\} \) is a.m. in \(\Delta_n \), \(\Delta \) \(\nu \)-stable manifold.

\[\|\nu\|_n = 1/2^i \|\nu\|_M, \quad \nu = \nu^i \text{ on } M \setminus \Delta_n \]
\[\nu^i \text{ stable minimal surf in } \Delta_n \]
Step 4: Construct V'.

1. Take V' where $\Sigma^m \subset V$.

2. Fix n-large $\Sigma^m \subset \mathbb{R}^n$ at:

$$L_\omega \cdot H(\Sigma \times \mathbb{R}^n) = \inf_{\varphi \in \mathcal{G}} H(\varphi(\Sigma, \mathbb{R}^n)) \left\{ \begin{array}{l}
T(\mathbb{R}^n) = \{ \varphi \in \mathcal{G}(\mathbb{R}^n) : H(\varphi(\Sigma, \mathbb{R}^n)) \\ H(\varphi(\Sigma, \mathbb{R}^n)) \leq H(\Sigma \times \mathbb{R}^n) + \frac{1}{\alpha n} \}
\end{array} \right.

3. Claim: $\Sigma^m \rightarrow W^d$ smooth, stable, min in Λ.

4. Hence $\Sigma^m \rightarrow V'$.

Proof of Claim: Take $B_{\alpha n} \subset \Sigma^m$.

Show that minimal isotopy problem in $B_{\alpha n}$ w.r.t. Σ^m:

$$\leq T(\mathbb{R}^n) - \text{problem}.$$
3. Tightening.

\[X = \{ V \in V_2(M) : A^i(V) \leq 4m_0 \} \quad \text{— weak topo} \]

\[V_\infty = \text{stationary varifold in } X. \]

Prop.: \(\exists \{ T_\infty^n \} \subset A \). \(f : \{ T_\infty^n \} \) is min-max, then \(\exists (T_\infty^n, V_\infty) \).

Proof. Want: \(f : X \rightarrow T_\infty^n \quad V \text{ starting} \quad \gamma(V) = V \quad \text{not-stable} \quad \gamma \text{ clears mass} \).

\[\{ \{ T_\infty^n \} \} \xrightarrow{\gamma} \{ \{ T_\infty^n \} \}. \]

\(\forall \epsilon > 0, \exists \delta > 0, N > 0 \) s.t.

\[\text{if } \quad \gamma^n(T_\infty^n) > m_0 - \delta \quad \Rightarrow \quad \gamma^n(T_\infty^n, V_\infty^0) < \epsilon. \]

Step 1. A map \(X \rightarrow \mathcal{A}(M) \).

\(+ \nu \) — generated from \(X \in \mathcal{A}(M) \) as 1-parameter family of diffeos.

\[V \mapsto \mathcal{N}_\nu \]

\(\forall k \in \mathbb{Z} \quad \mathcal{N}_\nu = \{ V \in X : \frac{1}{2^k+1} \leq \gamma(V, V_\infty) \leq \frac{1}{2^k} \} \)

Claim: \(\forall V \in X \quad \exists c(k) > 0 \quad \forall V \in \mathcal{N}_\nu \quad \exists X \nu \neq X \nu (m) \)

\[\| X \nu \|_{L^p} \leq 1, \quad \delta^V(X \nu) \leq -c(k). \]

(i.e. by contradiction argument.)

Want: \(V \mapsto \mathcal{N}_\nu \) continuous.

\(\forall V \in \mathcal{N}_\nu \quad \exists r = r(V) > 0, \quad \text{s.t. if } \mathcal{W} = U(V) \)

\[\delta^W(X \nu) \leq -c(k/2) \quad \delta^V(X) = \int_{\partial_{\nu \in X}} c(k/2) \chi \text{ div} \nu \text{ div}(X) \]
\(k \). Find \(\{ U_i^k \}_{i=1}^{\infty} \) (finite union) \& \(\{ X_i^k \}_{i=0}^{\infty} \) such that:

- Each \(U_i^k \) concentric ball to \(U_i^k \) of half radius cover \(V_0 \).
- \(\partial U_i^k \cap U_j^k = \emptyset \) if \(|i-j| = 2 \).
- \(\{ U_i^k \} \) locally finite covering of \(X \setminus D_0 \).
- \(\forall \theta \in H^0 \rightarrow \sum_i \psi_i^k (v) (X_i^k) \), \(x \rightarrow \theta (m) \) const \(||H_0||_{L^\infty} < 1 \).

Step 2. \(X \rightarrow \text{Homotopy} \:

\(V \in U_k, \ r(V) = \text{smallest radius of } U_i^k, \ r(V) > |k| \),

\(\forall W \subset U(V), \ \partial W (H(V)) < -\frac{1}{2} \min \{ c(k+1), c(k), c(k+1) \} \).

\(\exists g : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \), \(r \rightarrow \mathcal{R}^+ \).

\(T : \mathbb{R}^+ \rightarrow \mathcal{R}^+ \), \(g \rightarrow \mathcal{R}^+ \).

\(\exists G(x, t) \) \(m \rightarrow m \) \(\frac{G(x, t)}{g} = T(v) \).

Claim

- \(T : \mathbb{R}^+ \rightarrow \mathcal{R}^+ \), \(G : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \).
- \(T(v) = \partial (V \cup D_0) > 0 \), \(\forall V \rightarrow V' = \partial (T(v) \cdot V) \).

\(||v'||(m) \leq ||v||(m) - G(v) \).

- \(G(s) \rightarrow 0 \) as \(s \rightarrow 0 \).

In fact: \(\forall V, \ r(V) = r (\partial (V \cup D_0)), \ \forall T = T (\partial (V \cup D_0)) \)

- \(v^T (x) \rightarrow v^T (x) \neq V, \ t \in [0, T] \).

then

\(H(v) \rightarrow \vec{v}^T (t) \neq V, \ t \in [0, T] \).
\(\|\Phi(T)\#V\|_W(M) - \|V\|_W(M) \leq \int_0^T (\partial V_+ (t)) (H_V) \)
\(\leq -T \int G (\partial (V_+ W_0)) \leq G (\partial (V_+ W_0)) \)

Step 3: Construct \(\{T^n_+\} \)

- Let \(V(t, \cdot) = \mathbb{E}_V (T(\partial (V_+ W_0) t, \cdot)) \)
- \(\mathbb{E}_V: \mathbb{R}^+ \to \mathbb{R}^+ \), const \(\mathbb{E}(0) = 0 \)
- \(V = \mathbb{E}_V (1, \cdot) \# V \), \(\|V\|_W(M) \leq \|V\|_W(M) - L (\partial (V_+ W_0)) \)

\[\{\Sigma^n_+\} \to \{T^n_+\}, \quad T^n_+ = \mathbb{E}_{\Sigma^n_+} (1, \cdot) \Sigma^n_+ \]

\(H^2 (T^n_+) \leq H^2 (\Sigma^n_+) - L (\partial (\Sigma^n_+ W_0)) \]

- \(\mathbb{E}_+ \Sigma^n_+ \) generated by \(H_+ = T (\partial (\Sigma^n_+ W_0)) H_+ \)

\[\tilde{h}_+ = \mathbb{E}_+ T \to \mathbb{A}(M, \text{smooth}) \]

- \(\mathbb{A}_+ \) flow generated by \(\tilde{h}_+ \)

\[T^n_+ = \mathbb{A}_+ (1, \cdot) \Sigma^n_+ \]

\[H^2 (\mathbb{A}_+ T^n_+) \leq H^2 (\Sigma^n_+) - \frac{1}{2} L [\partial (\Sigma^n_+ W_0)] \]

Thus

\[m_0 - \delta \leq H^2 (T^n_+) \leq H^2 (\Sigma^n_+) - \frac{1}{2} L [\partial (\Sigma^n_+ W_0)] \]

\[\leq m_0 + \frac{\delta}{2} - \frac{1}{2} L [\partial (\Sigma^n_+ W_0)] \]

\[\Rightarrow L [\partial (\Sigma^n_+ W_0)] \leq 2 (\delta + \frac{\delta}{2}) \]

\[\Rightarrow \partial (\Sigma^n_+ W_0) \leq \delta \]

\(\Rightarrow \)
Almost minimizing.

$\{x^n\}$ - minimizing seq from 3°.

Prop1: $x: M \rightarrow \mathbb{R}^\mathbb{N}$ & min-max seq $\{x^j\}$ at

- $\{x^j\}$ a.m. in every $\mathbb{A} = \mathbb{A}_{(x^n, x^j)}$, $\forall x \in M$;
- x^j is C^0 in \mathbb{A} for j large;
- $x^j \rightarrow V$ stating varifold \checkmark by 3°.

Def: x is ε-a.m. in (U_1, U_2) if $x: M \rightarrow \mathbb{R}^\mathbb{N}$
in one of (U_1, U_2).

$\mathcal{E}_0 = \{ (U_1, U_2) : U_1 \subset M$ domain, $d(U_1, U_2) > 2 \max \{ \text{diam}(U_1) \} \}^{\mathbb{N}}_\leq 1.2$

Prop2: $\exists \text{ min-max seq } \{x^L\} = \{x^{n(1)}\}$

- $x^L \rightarrow$ stating varifold
- x^L is α-a.m. in every $(U_1, U_2) \in \mathcal{E}_0$.

Prop2 \Rightarrow Prop1: If Prop1 is false, then $x \cdot \forall r > 0$, $\exists \text{ } r_1 < r_2 < r$.

St. $\{x^j\}$ is not a.m. in B_{r_1, r_2}.

Fix r_1, r_2. Choose $x_r \in (r_1, r_2)$, $\forall x_r \in \mathbb{A}_{(x^n, x^j)}$ & $\Rightarrow x^j \text{ is not a.m. in } B_{r_1, r_2}$.

\[\Rightarrow x^L \text{ not a.m. in } (B_{r_1, r_2}, B_{r_1, r_2}') \Rightarrow \checkmark \]

2. $x \in P$ singular at for $\{x^n\} \rightarrow P$.

- If $x \in P$, In Λ, B_n is C^0 for $n \gg 1$.
- If $x \notin P$, In Λ, B_n is C^0 for small radii.

Proof of Prop2: Take $\{x^n\}$, $d(\mathbb{A}^n) < \delta + \frac{1}{n}$.

Claim. $\forall \zeta > 0$. $\exists n > \zeta$, $\forall n > \zeta$, $x^n = x^m$ is $\frac{1}{\zeta}$-a.m.

in any $(U_1, U_2) \in \mathcal{E}_0$. $\Rightarrow H^1(x^n) \approx \text{mo} - \frac{1}{\zeta}$.
If not, \(k_n = \{ t \in [0, 1], H^2(\Sigma^+ t) > k_n - \frac{\epsilon}{n} \} \).

Then \(A = n > L, A \in k_n, \exists (U_1, U_2) \text{ s.t. } \Sigma^+ \text{ is not a } X-\text{ann in } (U_1, U_2) \).

\[\exists \, \psi_+^2 \in \mathcal{M}(U_2) \text{ s.t. } \]
\[H^2(4_i^2 (1, \Sigma^+)) \leq H^2(\Sigma^+) - \frac{1}{2L} \]
\[H^2(4_i^1 (2, \Sigma^+)) \leq H^2(\Sigma^+) + \frac{1}{4L} \quad \text{for all j}. \]

\(k_n, t \in k_n \), as \(\{ \Sigma^+ \} \) is count. w.r.t. "+", \(\aleph \) is increasing s.t.
\[H^2(4_i^1 (1, \Sigma^+)) \leq H^2(\Sigma^+) - \frac{1}{2L} \]
\[H^2(4_i^2 (1, \Sigma^+)) \leq H^2(\Sigma^+) + \frac{1}{4L} \quad \text{for all j}. \]

So can find a cover of \(k_n \). \[I_1, \ldots, I_r \]
\[(U_1, U_2) \ldots (U_r, U_2) \in \mathcal{C}_0 \]
\[(4_i^1, 4_i^2) \ldots (4_i^1, 4_i^2) \]

\[I_k \text{ covers } k_n, \exists \lambda I_k = \emptyset \quad 1 \not\subset \not\subset k \]
\[4_i^2 \in \mathcal{M}(U_2) \]
\[H^2(4_i^2 (1, \Sigma^+)) \leq H^2(\Sigma^+) - \frac{1}{2L} \quad \text{for all j}. \]
\[H^2(4_i^2 (2, \Sigma^+)) \leq H^2(\Sigma^+) + \frac{1}{4L} \quad \text{for all j}. \]

Step 1: Define \(\{ I_k \} \).

\[\rightarrow \]
\[I_1, \ldots, I_r \text{ intervals in } [0, 1] \]
\[V_1, \ldots, V_r \in \mathcal{M}(U_1) \]
\[\psi_1, \ldots, \psi_r \in \mathcal{M}(U_2) \]

Want \(I_1, \ldots, I_r \) intersect only nearby intervals.

\[v_i \not\subset \not\subset v_{i+1} = \emptyset \text{ if } I_i \cap I_{i+1} = \emptyset \]
\[H^2(\psi_i (1, \Sigma^+)) \leq H^2(\Sigma^+) - \frac{1}{2L} \quad \text{for all j}. \]
\[H^2(\psi_i (2, \Sigma^+)) \leq H^2(\Sigma^+) + \frac{1}{4L} \quad \text{for all j}. \]

Lemma: If \((U_i, U_i^1) (V_i, V_i^1) \in \mathcal{C}_0 \), then \(i \not\subset \not\subset j \in [1, 2] \).
\[\langle u_i, v_i \rangle > 0 \]
If \(\lambda_1 \lambda_2 = \emptyset \), \(J_1 = \emptyset \), \(V_1 = U_1 \).

If \(\lambda_1 \lambda_2 \neq \emptyset \), take \(U_1, U_2 \) at \(d(U_1, U_2) > 0 \).
\(J_1 = I_1 \), \(V_1 = U_1 \).

If \(\lambda_2 \lambda_3 = \emptyset \), \(J_2 = I_2 \), \(V_2 = U_2 \).

If \(\lambda_1 \lambda_3 \neq \emptyset \), if \(d(U_2, U_3) > 0 \), \(J_3 = I_3 \), \(V_3 = U_3 \).
\(J_3 = \emptyset \), \(V_3 = U_3 \),

Need to separate \(I_2 \) to \(J_2 \) \(V \) \(J_3 \).

\(V_2 = U_2 \), \(U_3 = \text{the other} \).

And so on.

\[\text{Step 2.} \quad \text{Take} \quad \psi_i : \mathfrak{M}_1 \rightarrow \{0, 1\}. \quad \text{Supported in} \quad J_i. \]

If \(s \in K \), at least one \(\psi_i(s) = 1 \).

\(\forall t \in \{0, 1\}. \quad \text{Inel}^+ = \{ i \in \{1, \ldots, K \} : \psi_i(t) \neq 0 \}. \quad \text{rel} J_i \).

\(\mathcal{T}_+ \) \{ \psi_i(y_i(t), \Sigma^+_t) \} \quad \text{in} \quad V_i, \quad i \in \text{Inel}^+ \)

at least two \(\psi_i(t) \neq 0 \).

The inequality \(\lambda_i \wedge \lambda_j = \emptyset \).

\[\text{Step 3.} \quad \text{If} \quad t \notin K. \quad h^2(\mathcal{T}_+) \leq h^2(\Sigma^+_t) + \frac{1}{2L} \leq m_0 - \frac{1}{2L} \]

If \(t \in K. \quad h^2(\mathcal{T}_+) \leq h^2(\Sigma^+_t) + \frac{1}{4L} - \frac{1}{2L} \leq m_0 - \frac{1}{4L} \)

\(\Rightarrow \text{in contradiction!} \)
5° Regularity

Def. \(U \in U_2(M) \) stating. \(U \subset M \) open. \(V' \in U_2(M) \) is a "replacement" of \(V \) in \(U \) if:

1. \(V' \) stating
2. \(\|V'\|_m = \|V\|_m \) \(V'_x = V_x \) \(\forall x \in U \)
3. \(V' \perp U \) - stable minimal surface. I.e., \((\exists \omega < \varepsilon) \)

Def. "\(V \) has "good replacement property" in \(U \) if:

a) \(\exists \ v : U \rightarrow \mathbb{R}^+ \). \(V \) has a "replacement" \(V' \) in any \(\mathbb{R}^n \setminus \{x\} \)

b) \(V' \) has a "replacement" \(V'' \) in \(\mathbb{R}^n \setminus \{x\} \)

Prop. 3. If "\(V' \in U_2(M) \) stating has "good replacement property" in \(U \subset M \), then \(V \) is a \(C^\infty \) min surface in \(U \).

Prop. 4. "\(V \) as above. If \(\exists \ v_1 : M \rightarrow \mathbb{R}^+ \) s.t. \(V \) has a replacement.

in any \(\mathbb{R}^n \setminus \{x\} \), then:

1. \(V \) is integer rectifiable in \(U \).
2. \(\Theta(V, x) \geq 1 \) \(\forall x \in \text{Int} \setminus U \).
3. \(T(V, x) \cdot e \text{ Tang}(V, x) \) is a multiple of a plane.

Proof. \(\forall x \in \text{Int} \setminus U \) \(\Rightarrow \Theta(V, x) > 0 \).

\(\forall \ v > 0 \) small. \(\mathbb{R}^n \) \(\setminus \{x \} \in \text{Int} \setminus U \), \(V_\leq \) replacement of \(V \) at \(\mathcal{M} \).

Claim: \(\text{pt} \setminus U \cap \mathbb{R}^n \setminus \{x \} \neq \emptyset \).

or can shrink the inner radius to touch \(V' \) from outside.
Show integer - multiplicity.

Take $C \in \text{VarTan}(V, x)$. $C = \lim_{r \to 0} V_{x, y}$. V_{r} = replacement of V in $\Delta n(x, r, 2r)$.

$C' = \lim_{r \to 0} V_{r}^{'}$ - starting

- smooth stable in $\Delta n(0, 1.2)$

Thus $C = C'$ on $B(0) \cup B(1.2)$. $V_{r}^{'}$ - smooth in $\Delta n(0, 1.2)$

$\Rightarrow C = C'$ on $B(0) \cup B(1.2)$.

Now $\frac{1}{\sigma^2} = \frac{1}{\sigma^2} = \text{const}$ for $\sigma \in (0, 1) \cup (2, \infty)$

$\Rightarrow C = \text{n. plane}$.

Proof of Prop 6.3.

$V_{r}^{'}$ = replacement of V in $\Delta n(x, r, 2r)$ + $\Delta n(x, 1)$

$v_{r}^{'} \Delta n(x, r, 2r) = \Sigma '$ C^2-surface (maybe disconnected)

$V_{r}^{''}$ = replacement of $V_{r}^{'}$ in $\Delta n(x, r, 2r)$

Take $\gamma \in (r, 2r)$ s.t. $\Sigma ^{'} \cap B(x)$ transversely.
$V'' = \text{replacement of } V' \text{ in } \mathbb{R}^n (x, y, z)$ \hspace{2cm} 0 < \delta < r$

$V'' \setminus B_n(x; \delta + t) = \Sigma'' \text{ \hspace{2cm} c^r \text{-surface}}$

\textbf{Step 1:} \hspace{2cm} \text{Want to show} \hspace{2cm} $\Sigma' = \Sigma'' \text{ in } \mathbb{R}^n (x, y, t)$

0. \hspace{2cm} \text{Take} \hspace{2cm} $y \in \Sigma' \setminus B_n(x; \delta)$, \hspace{2cm} & \hspace{2cm} $B_n(y) \cap \Sigma' = \emptyset$.

2. \hspace{2cm} \text{Fix} \hspace{2cm} $\bar{z} \in V = \Sigma' \setminus B_n(x; \delta)$.

\hspace{2cm} \textbf{Claim:} \hspace{2cm} $\text{TV} (\bar{z}, V'') = \{ \bar{z} \in \Sigma' \}$.

\hspace{2cm} V'' \hspace{2cm} \text{contains} \hspace{2cm} \bar{z} \hspace{2cm} \text{and} \hspace{2cm} Σ'' \hspace{2cm} \text{in} \hspace{2cm} $B_n(y) \setminus \{ \bar{z} \}$.

\hspace{2cm} $\text{TV} (\bar{z}, V'') = \{ \text{planes} \}$.

\hspace{2cm} $\tau (\bar{z}) = \text{unit normal of } \Sigma'$ \hspace{2cm} \text{at} \hspace{2cm} \bar{z}.

\hspace{2cm} $\text{Claim:} \hspace{2cm} \lim_{\bar{z} \rightarrow \Sigma''} \frac{(\bar{z} - \bar{z}) \cdot \tau (\bar{z})}{|\bar{z} - \bar{z}|} = 0$.

\hspace{2cm} \text{If not, } \exists \, B(r, r, \Sigma'') \neq \emptyset.

\hspace{2cm} \text{short} \hspace{2cm} $(\Sigma' \setminus B(r, r, \Sigma'')) \geq C \cdot r^2 > 0$.

\hspace{2cm} \text{Monotonicity} \hspace{2cm} $\| \Sigma' \setminus B(r, r, \Sigma'') \| \geq C \cdot r^2$.

\hspace{2cm} $\Rightarrow \hspace{2cm} \int_{r} (\Sigma' \setminus B(r, r, \Sigma'')) \hspace{2cm} \text{in HP}$.

\hspace{2cm} \text{\textbullet \Rightarrow}.

3. \hspace{2cm} \text{let} \hspace{2cm} $\nu_B = \text{unit normal of } \Sigma''$, \hspace{2cm} $\nu \in \Sigma''$.

Claim. \(\lim_{r \to \frac{\pi}{2}} v(2z) = 2(\bar{z}) \) \\
if not \n\exists B(r, x) \\
\n\Sigma'' \cap B(r, x) \neq \emptyset \\
\n\vdash \exists r \in \mathbb{R} \quad (\Sigma'' \cap B(r, x)) = \text{Hyp} \cap B(0,1) \quad \text{by} \quad g \\
\quad \q
Step 3: Removable of Singularity

$x \in \text{sp}(W)$

\[\Sigma \Lambda \Phi_n(x, k, \rho) = \left(\sum \limits_{i=1}^{m_i} \rho_{i}(\rho) \right) \Sigma_p \]

extend \(\rho \to 0 \)

\[\Sigma \Lambda \Phi_p(x) \{ \gamma \} = \left(\sum \limits_{i=1}^{m_i} \gamma_{i} \right) \Sigma_i \]

\(\Sigma_i \text{ start in } \Phi_p(x), \quad TV(x, \Sigma_i) \text{ planes of } m_i \geq 1 \)

\(\Rightarrow \Sigma_i \text{ graph near } x \)

\(\Rightarrow x \text{ removable} \)
6. Construction of Comparison Surfaces

Thm. \(\{ \Sigma^j \} \): \(\Sigma^j \rightarrow \) starting manifold \(V \)

1. \(\forall r \geq m \rightarrow R^+ \): set \(\Sigma^j \) \(\neq \) -a.m. in \(C^{\infty} \text{ for } \theta_0 \in B(0,1) \).

2. \(\Sigma^j \cap \Omega \) smooth for \(j \) large.

\(\Rightarrow V \) smooth.

Prop. Such \(\text{"} V \text{"} \) has \text{"} good replacement property \text{"}.

Meek-Simon-Yau: \(\Sigma \subset M \): generalized surface. \(U \subset M \) open.

\(U \cap \Omega \). \(C^\infty \).

Problem. \((\Sigma, T_\Sigma(\Omega)) \):

\[\text{Prove } \text{H}^2(4(1,2)) \]

\(\forall \{ \Sigma^k \} = \{ T^{(1,2)} \} \) \(k \in B(0,1) \) - minimizing seq. for \((\Sigma, T_\Sigma(\Omega)) \)

Then \(\Sigma^k \rightarrow V \) strongly \& \(\forall M \subset \subset \Omega \) stable min.

Problem. \((\Sigma^i, T_{\Sigma^j}(\Omega^i)) \):

\[m_j = \text{min } \text{H}^2(4(1, \Sigma^j)) \]

\(T_{\Sigma^j} \in \Omega^i \cap \Omega_{\text{NN}, x} \).

\[T_{\Sigma^j}(\Omega^i) = \{ 4 \in T_{\Sigma^j}(\Omega^i), \text{H}^2(4(1, \Sigma^j)) \leq \text{H}^2(\Sigma^j) + \frac{1}{s^j} \} \]

Lemma. \(\{ \Sigma^j, k \} \) \(k \in \Omega \) minimizing seq. for \(T_{\Sigma^j}(\Omega^i)) \) \(\Rightarrow \Sigma^j \rightarrow V \) strongly

\& \(V^j \cap \Omega \) is stable min.

Prop. \(V^j \) as above. \(V^j \leftarrow \lim_{j \rightarrow \infty} V^j \). Then \(V^j \) is a replacement of \(V \) in \(\Omega \).
\[V^* = V \text{ on } \delta \Omega^c \]
\[\Rightarrow \quad V^* = V \text{ on } \delta \Omega^c \]

2. By construction,
\[H^2(\Omega) - \frac{1}{2} \leq H^2(\Sigma^j, k) \leq H^2(\Omega) \]
\[\Rightarrow \quad H^2(\Omega) - \frac{1}{2} \leq H^2(T^j, k) \leq H^2(\Omega) \]
\[\Rightarrow \quad H^2(\Omega) - \frac{1}{2} \leq \| V^* \|_{H^1(\Omega)} = \| V \|_{H^1(\Omega)} \]

3. \(V^* \) stationary, \(V^* \) stationary in \(\Omega \setminus \delta \Omega^c \)

Only need to show \(V^* \) starting in \(\delta \Omega^c \) at \(\delta \Omega^c \leq C \Omega \) for some \(C > 0 \).

If not, \(\exists X \in A(\delta \Omega^c) \) \(\delta V^*(X) \leq -c < 0 \).

\[\Rightarrow \quad \delta V^*(X) \leq -c \quad \text{for } j \gg 1 \]
\[\Rightarrow \quad \delta \Sigma^j, k(X) \leq -c \quad \text{for } j \gg 1, k \gg 1 \]

Can deform the mass \(\| \Sigma^j, k \| \) down a fixed amount
\[\Rightarrow \quad \exists \varepsilon^*, \quad \Sigma^j, k = \varphi^j(\cdot, \varepsilon^*) \]

\[\Sigma^j, k(\varepsilon) = \varphi^j(\varepsilon \Sigma^j, k) \quad \text{for } \varepsilon \leq \varepsilon^* \]

\[\| \Sigma^j, k(\varepsilon) \| = \| \Sigma^j, k \| - \frac{c}{j} \]

Question. Show \(V^* = \text{min} \text{ soln of } (\Sigma^j, T^j_0(\Omega)) \).

3. \(V^* \) in \(\delta \Omega^c \)

\[\Sigma = \Sigma^j, \quad \Sigma^2 = \Sigma^j, k. \quad (\Sigma^2(\varepsilon^k) = mL(\Omega^c)) \quad V^* = V^j \]

\(V^j \) starting in \(\delta \Omega^c \).

Lemma 2. Fix \(\{ \Sigma^k \} \). \(\forall X \in \Omega \). \(\exists \varepsilon > 0 \). \(\forall k \gg 1 \)

\[\text{C1. Any } \varphi \in T^j_0(\Omega^c) \text{ with } H^2(\varphi(1, \varepsilon^k)) \leq H^2(\varepsilon^k) \]
\[\exists \varphi \in T^j_0(\Omega^c) \text{ with } \| \Sigma^j, k(\varepsilon^k) \| = \| \Sigma^j, k \| - c \quad \frac{1}{j} \]

'\(\varepsilon \) uniform for \(\Sigma^k \)' with \(\frac{1}{j} \frac{\varepsilon^k}{(\varepsilon^k)^2} \quad \frac{1}{(\varepsilon^k)^2} \)

\[H^2(\Omega^c, \Sigma^k) \leq H^2(\Sigma^k) + \frac{1}{j} \]
Lemma 2 ⇒ Lemma 1

1. Will show that V^* has "good replacement property" in A_{v}.

\[A_{v} \in A_{v} \text{ with } \forall x \in A_{v}, \exists y \text{ such that } \overline{A_{v}} = A_{v} \cup \{x, y, z, w\} \subseteq B_{v}(x) \]

\[\{ \Sigma^{k, l} \} \text{ is minimizing seq for } (\Sigma^{k, l}; \beta_{n}(A_{v})) \]

\[\Sigma^{k, l} \rightarrow W^{k}, \quad W^{k} \in B_{v}(x) \text{ stable min} \]

\[W^{k} \rightarrow W \quad W \in B_{v}(x) \text{ stable ...} \]

Want W is a replacement of V^* in A_{v}.

Clearly, $W = \beta_{v}(A_{v}; V^*) = V'$ by $\beta_{v}(\overline{A_{v}})$

\[W = \beta_{v}(\Sigma^{k, l}; V^*) \text{ minimizing seq for } (\Sigma^{k, l}; \beta_{v}(A_{v})) \]

\[\Sigma^{k, l} \text{ connected to } \Sigma_{k} \text{ by } \Sigma_{k}^{k, l} \in \beta_{v}(B_{v}(x)) \]

\[\Rightarrow \quad \|V^1\|_{M} \leq H^2(\Sigma^{k, l}) \leq H^2(\Sigma_{k}) \]

\[\Rightarrow \quad \|W\|_{M} = \|V^1\|_{M} \]

Want: W has further replacement property

\[W = \beta_{v}(\Sigma^{k, l}; V^*) \text{ minimizing seq for } (\Sigma^{k, l}; \beta_{v}(A_{v})) \]

\[\Rightarrow \quad W \text{ has replacement in } A_{v} \in A_{v} \text{ uniformly by } (\Sigma^{k, l}) \]

in $A_{v} \in A_{v} \cap B_{v}(x)$. The same as Σ uniform for $[\Sigma^{k, l}]$

\[\text{with } \Sigma^{k, l} \in \Sigma \text{ and } B_{v}(x) \]

Proof of Lemma 2

Rough ideas: \(\{\Sigma^{k}\} \) minimizing seq for \((\Sigma, \beta_{n}(A_{v}))\).

\[x \in A_{v}, \quad \text{find } \varepsilon \text{ such that every } y \in \beta_{n}(B_{v}) \]

\[\rightarrow y \in \beta_{n}(B_{v}) \]
\[\Rightarrow H(4(t + \Sigma)) \leq H(1 + \Sigma) + o(\varepsilon) + o\left(\left(1 - t^2/k\right)\right) \]

\text{can be made small}
§5. Index bound & Application

Theorem (M^3, g). closed, orientable, $R_g > 0$. Assume M has no non-orientable closed surfaces ($\tau_1(M) = 0$).

Then a minimal Σ^2 of index 1 achieving the connected.

Lemma. Σ^1, Σ^2, closed minimal in (M, g), $R_g > 0$.

$\Rightarrow \Sigma^1 \cap \Sigma^2 \neq \emptyset$.

Proof. If not, there is a minimizing geodesic ν connecting $\Sigma^1 \to \Sigma^2$, meeting Σ^1, Σ^2 orthogonally.

--- by 1st variation.

- Given $X \in T_p\Sigma^1 \times T_q\nu$. parallel transport X to $X(t)$ along ν. to get $X(t)$. Then $X(t) \in T_{\nu(t)}\Sigma^2$.

- Let $\nu = \text{flow of } N(t)$ by $X(t)$.

- \[\frac{d}{ds} \| N(t) \|^2 = \frac{d}{ds} \int_0^1 \left< N(t) \dot{N}(t) \right> dt \]

- $= -2 \frac{d}{ds} \int_0^1 \left< \frac{\partial}{\partial s} \nu(t) \nu(t) \left| \dot{N}(t) \right> dt \]

- $= 2 \int_0^1 \left< \frac{\partial}{\partial s} \nu(t) \frac{\partial}{\partial s} \nu(t) \right> dt$
\[= 2 \int_0^1 \left< \frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial \xi} \right> \left< \frac{\partial R}{\partial \xi}, \frac{\partial R}{\partial t} \right> dt + R\int_0^1 R^\prime (K, \phi) \frac{\partial R}{\partial t} dt \]

\[= 2 \int_0^1 \frac{\partial}{\partial \xi} \left< \frac{\partial \phi}{\partial \xi}, \frac{\partial \phi}{\partial t} \right> - R^\prime (K, \phi) \frac{\partial R}{\partial t} dt \]

\[\geq 0 \]

Let \(X = e^1 \ldots e^m \) o.n. basis for \(\Sigma \) and sum

\[2 \left(H^2 - 4^2 - \int_0^1 R^\prime (R, R) \frac{\partial R}{\partial t} dt \right) \geq 0 \]

\[\text{in } (M^3, g) \text{ Rbg} \geq 0. \]

\[\text{Lemma}^2: \text{ } \Sigma^2 \text{ closed (orientable)} \Rightarrow \Sigma \text{ separable} \]

i.e. \(M|\Sigma = \text{two connected component} \)

\[\text{Proof}: \text{ If not, } [\Sigma^2] \text{ non-trivial} \]

\[\Rightarrow \text{ can minimize area in } [\Sigma^2], \Rightarrow \text{ stable min } \Sigma_0 \]

\[\text{as above.} \]

\[\text{Prop: } \exists \Sigma^2 \text{ minimal, } \exists \{\Sigma_t\}_{t \in [0, \infty]} \text{ generalized family} \]

\[\text{s.t. } 0 \Rightarrow (\Sigma_t = \{ f = t \}, \text{ for some Morse function } f: M \to \mathbb{R}) \]

\[\Rightarrow \Sigma_0 = \Sigma \]

\[\{\Sigma_t\}_{t \in (-\infty, \infty)} \text{ is a smooth foliation} \]

\[\text{i.e. } \Sigma_t = \{ \exp_x \left(u(t, \nu(x)) \right), x \in \Sigma \} \]

\[\nu \text{ unit normal of } \Sigma. \]

\[\text{s. only if } t > 0. \]
\[M | \Sigma = M_1 \cup M_2. \]
Points to \(M_1 \).

\[R_{ij} > 0. \] \(\Sigma \) unstable.

\[L_1 U_i = \partial \Sigma U_i + (R_{ij} + \Lambda l^2) U_i. \]

\[\lambda_1 \text{ first eigenvalue, } \quad L_1 U_i = -\lambda_1 U_i, \quad \lambda_1 > 0. \]

\[\Sigma_+ = \{ \exp_x \left(t U_{1(x)} \nu_{1(x)} \right), \quad x \in \Sigma \} \quad t \in (-\varepsilon, \varepsilon). \]

- smooth foliation for \(\varepsilon \ll 1 \).

\[\frac{\partial}{\partial t} ||\Sigma_+|| = - \int u_{1(x)} \nu (x) \cdot \nu = 0. \]

\[\frac{\partial^2}{\partial t^2} ||\Sigma_+|| = - \int u_{1(x)} L_1 u_{1(x)} = \lambda_1 \int u_i^2 < 0. \]

\[\Rightarrow \quad ||\Sigma_+|| < ||\Sigma||. \]

Claim. Can extend \(\{ \Sigma_+ \}_{t \in \varepsilon (-\varepsilon, \varepsilon)} \) to \(t \in [-1,1] \), satisfying above.

* Min-max Problem for nef-lc with \(\Delta. \quad (M, \omega_M) \)

Def. \((M, \omega_M), \{ \Sigma_+ \}_{t \in \varepsilon (-\varepsilon, \varepsilon)} \) is called a "generalized family" if "as before" & 18: \(\Sigma_0 = \omega_M \).

\[\Sigma_+ = \left\{ \exp_x \left\{ t U_{1(x)} \nu_{1(x)} \right\}, \quad x \in \Sigma \right\} \quad t \in (-\varepsilon, \varepsilon) \]

for \(t \in [0, \varepsilon) \).

Def. \(\mathcal{J}_S (M, \omega_M) = \} \psi \in C^\infty_{\omega_M} (G_{\omega_M} \times M \rightarrow M), \quad \psi_0 = \text{id}. \)

\[\psi(t \cdot) |_{\omega_M} = \text{id}. \quad \psi(t \cdot) \in \text{Diff}. \]

\[\text{Let } \Lambda = \text{saturated family under, } \mathcal{J}_S (M, \omega_M) \]

\[\mathcal{W}(\Lambda) = \inf \left\{ \max_{\psi \in \mathcal{J}_S (M, \omega_M)} H^2 (\psi(t \Sigma_+)) \right\}. \]
Theorem. If $W > \lambda \Delta (M)$ and $\lambda > 0$, then \overline{Z} minimize Σ_{∞} and \overline{Z} converges to Σ_{∞} as $\lambda \to \infty$.

Lemma 3. A minimizing seq $\{\Sigma_t\} \ni \exists \delta > 0 \text{ s.t. } ||\Sigma_t|| > W - \delta.$

Claim. All is the same as before then!

Lemma 4: Fix $\{\Sigma_t\} \in \Sigma_{\infty}$ generalized family. For all t.

Then, $\exists t_0 \ni ||\Sigma_{t_0}|| = W - \delta.$

Proof of Lemma 4: $F_t = \text{flow of } \frac{\partial}{\partial t} \Sigma_t \text{ near } \Sigma_{t_0}.$
Let $M_0 = \{ x \in M : \text{dist}(x, x_0) > a \}$.

For $a > 0$. Let $M \setminus M_0 \approx (\sigma_{0.2a}) \times \Sigma$, $dr^2 + g_r$.

$$c = \text{sup} \left\{ \| \nabla_x \Sigma | x \Sigma | + t \in (0, 2a) \right\}, \quad H_{am_x} > 0 \quad \text{for } (2a, a).$$

$$x = k(r) \phi(r) \frac{2}{2r},$$

$$k(r) = \begin{cases} 0 & r < \frac{a}{2} \\ 1 & r < a \\ \phi(r) \leq -c \phi(r) & r > a, \end{cases}$$

$$\nu = \text{flow of } x.$$

$\Rightarrow \nu$ is C^1 on M_{am_x}.

$$\frac{\partial}{\partial t} | T \Sigma | = \int \Sigma \nabla_x (\phi(r) \frac{2}{2r}),$$

$$= \int \Sigma \phi(r) \frac{2}{2r} \frac{\partial}{\partial t} \left(\phi(r) \frac{2}{2r} \right),$$

$$= \int \left(\phi'(r) (1 - \| x e_i \|^2) \phi(r) \frac{2}{2r} \right).$$

$$\leq \int \left(\phi'(r) + c \phi \right) (1 - \| x e_i \|^2) \phi(r) \frac{2}{2r} H_{am_x},$$

$$\leq 0.$$
To be continued...

1°. Can find Morse function \(f : [-1, 1] \rightarrow \mathbb{R} \). \[\Sigma_t = \{ f = \alpha \} \quad \alpha \epsilon \{(\frac{\varepsilon}{2}, \frac{\varepsilon}{2}) \} \]

- by perturb dist \(f \) (\(\Sigma \))

2°. Consider \((M_{\frac{\varepsilon}{2}}, \Sigma_{\frac{\varepsilon}{2}}) \)

\[\exists \phi \in \Sigma_{\frac{\varepsilon}{2}} (M_{\frac{\varepsilon}{2}}, \Sigma_{\frac{\varepsilon}{2}}) \quad \Sigma_t \]

\[\{ \Sigma_t' = \phi (\Sigma_t) \} \quad \text{satisfies} \quad \| \Sigma_t' \| \leq \| \Sigma_{\frac{\varepsilon}{2}} \| + \delta \quad \delta \ll 1 \]

if not. As \(H \Sigma_{\frac{\varepsilon}{2}} > 0 \). run min-max.

\[\Rightarrow \Sigma_0 \quad \text{minimal} \quad \subset M_{\frac{\varepsilon}{2}} \quad \land \quad \Sigma = \phi \]

\[\Rightarrow \text{let} \quad \Sigma_0' = \begin{cases} \Sigma_0' & t \epsilon \left(\frac{\varepsilon}{2}, 1 \right) \\ \Sigma_t & t \epsilon \left(-\frac{\varepsilon}{2}, 0 \frac{\varepsilon}{2} \right) \\ \Sigma_t' & t \epsilon \left(1, -\frac{\varepsilon}{2} \right) \end{cases} \]

\[\Rightarrow \{ \Sigma_t' \} \quad \text{satisfies Prop 1} \]

Proof of Thm:

\(\Sigma \) co minimal \(\Rightarrow \{ \Sigma_t \} \quad \text{satisfying Prop 1} \)

smallest

\(\Lambda = \text{saturated family containing all} \{ \{ \Sigma_t \} \} \)

Run-min-max in \(\Lambda \) \(\Rightarrow V = \text{Im} \Sigma_t \)
\[\mathcal{M}(\nu) = \frac{1}{2} \sum_{i=1}^{n} m_i \| z_i \| \leq \sup_{\| z \|} \inf_{2 \min} \| z \| \]

\[\| z \| \leq \inf_{2 \min} \| z \| \]

Claim: \(\Sigma_i \) is Brelux 1.

If not. \(\forall u(x) \perp \Sigma_i u(x) \)

\[\Sigma_{s+t} = \text{Deformation of } \Sigma_t \]

uncenter \(\overline{X} = \overline{X(t), \overline{X(s)}} \)

(extend to nbhd of \(\Sigma \))

\[\frac{d}{ds} |\Sigma_{s+t}| = 0 \]

\[\frac{d^2}{ds^2} |\Sigma_{s+t}| = -\int \nabla \mathcal{L} \cdot \nabla \mathcal{L} < 0. \]

\[\| \Sigma_{s+t} \| < \| \Sigma_t \| \]

\[\exists \varepsilon \to 0 \left\{ \Sigma_{s+t} \right\} \in \mathcal{A} \]
6. \((M^3,g) \), Ricz > 0. No non-orientable surface. \((S^3,g) \).

\(Bg \geq 6 \) then the min-max surface has area \(\leq 4 \).

\(= \) only if \((M^3,g) = (S^3,g_0) \).

Recall: Given \(\Sigma \) min \(\rightarrow \{ \Sigma + \epsilon E_{11} \} \), \(\Sigma_0 = \Sigma \).

\(\Lambda = \) smallest saturated set of \(\{ \Sigma' \} \).

\(W(M, \Lambda, g) = ||\Sigma_0||, \quad \Sigma_0 = \min \) of index = 1.

- If \(\Lambda^h = \) smallest saturated set of \(\{ \Sigma' \} \) with genus \(h \)

\(\Rightarrow W(M, \Lambda^h, g) = ||\Sigma_0||, \quad \Sigma_0 = \text{genus } = h. \)

Lemma (Estimate of index one surface)

\((M^3,g) \), 3-mfld. \(Bg \geq k_0 > 0 \). \(\Sigma^2 \rightarrow (M^3,g) \).

Then \(\int_S (Ric_{(S^3)} + 1) \, du \leq 8 \pi \left(\left\lfloor \frac{g(1)}{2} \right\rfloor + 1 \right) \).

and \(k_0 \leq 24 \pi + 16 \pi \left(\frac{g(2)}{2} - \left\lfloor \frac{g(2)}{2} \right\rfloor \right) \).

Proof: By complex analysis. 7 branch covering \(\Phi : \mathbb{C} \rightarrow S^2 \) conformal.

- Let \(u_1 > 0 \). - first eigenfunction of \(L_2 \). \& \(\int_S u_1 \, du = 1 \).

- Let \(u = \Phi^* (u_1 \text{Ricz} \, du) \). - probability measure

- \(\exists \Phi \in S^2 \rightarrow S^2 \) conformal. st.

\(\int_{S^2} \Phi \, du = 0 \).

- Let \(\Phi = \Phi \circ \Phi \).
\[\int_{\Sigma} \phi \cdot (\Omega_{1}, \text{dr}) \, d\mu_{\Sigma} = 0. \]

\[\frac{3}{2} \Rightarrow \int_{\Sigma} (\text{Ric}(\nabla \phi) + 11\phi) \, d\mu \leq \int_{\Sigma} 10\phi \, d\mu = 2 \text{area}(\phi(\Sigma)) \]

\[= 8\pi \, \text{deg}(\phi) \]

\[\text{deg}(\phi) \leq \left(\frac{g_{12}}{2} + 1 \right) + 1 \]

\[k_{0} |\Sigma| \leq \int_{\Sigma} R_{g} \, d\mu = \int_{\Sigma} 2R_{2} (\nabla \phi) + 11\phi \, d\mu + 2k. \]

\[R_{g} = 2R_{11,12} + 2R_{11,13} + 2 \sqrt{R_{23}}, \quad = 2 \text{Ric}(\nabla \phi) + 2 \left(R^{\Sigma} - h_{22} h_{33} + h_{2} h_{3} \right) \]

\[\geq 1 \, \text{area}(\nabla \phi)^{0} \]

\[\leq 2 \int_{\Sigma} (\text{Ric}(\nabla \phi) + 11\phi) \, d\mu + 2 \int_{\Sigma} k \]

\[\leq 2 \cdot 8\pi \left(\frac{g_{12}}{2} + 1 \right) + 4\pi (2 - 2g_{12}) \]

\[= 24\pi + 16\pi \left(\frac{g_{12}}{2} - \frac{g_{12}}{2} \right) \]

Ricci flow:

\[\frac{\partial g_{ij}}{\partial t} = -2 \text{Ric}(g_{ij}), \]

Lemma:

\[+ \rightarrow W(M, \mathcal{L}^{h}, g_{12}), \text{ Lipschitz} \]

Fix $\phi \in [0, T)$. \]

\[C = \sup_{t \in [0, T]} \| \text{Ric}(g_{ij}) \|, \quad t \in [0, t_{0}] \]

\[e^{2c(t_{1} - t_{2})} g(t_{1}) \leq g(t_{2}) \leq e^{2c(t_{2} - t_{1})} g(t_{1}), \quad t_{1}, t_{2} \in [0, t_{0}] \]
\[A \leq 0. \quad \exists \{ \Sigma_t \} \subset \{ \Sigma \} \quad \forall t \in [0, T]. \]

\[\sup_{\sigma \in \mathcal{H}^{1,1} \setminus \mathcal{H}^1} H^2(\Sigma_t) \leq W(M, \Lambda^h g(t)) + \delta. \]

\[W(M, \Lambda^h g(t)) \leq \sup_{\sigma \in \mathcal{H}^{1,1} \setminus \mathcal{H}^1} H^2(\Sigma_t) \leq e^{\chi(t-t_0)} \sup_{\sigma \in \mathcal{H}^{1,1} \setminus \mathcal{H}^1} H^2(\Sigma_t). \]

\[\lim_{t \to 0} \]

No: non-orientable surfaces.

Prop: \[M^3 \text{, } h - \text{Heegaard genus. } (M, g(t)) \quad \text{Reg.} \geq 0. \]

Then, \[W(M, \Lambda^h g(t)) \leq W(M, \Lambda^h g_0) - (16t - 8\pi \frac{h}{2})^2. \]

\[\text{If not, } \exists \tau \in (0, T). \]

\[W(M, \Lambda^h g(t)) < W(M, \Lambda^h g_0) - (16\tau - 8\tau \frac{h}{2})^2. \]

\[\exists \tau > 0. \quad W(M, \Lambda^h g(t)) < W(M, \Lambda^h g_0) - (16\tau - 8\tau \frac{h}{2})^2. \]

Let \[t' = \inf \{ t \in (0, T) : W(M, \Lambda^h g(t)) < W(M, \Lambda^h g_0) - (16\tau - 8\tau \frac{h}{2})^2 \} \]

\[t' \in [0, 2). \quad \& \]

\[W(M, \Lambda^h g(t')) - W(M, \Lambda^h g(t)) \leq -(16\tau - 8\tau \frac{h}{2})^2 (t' - t) + \epsilon. \]

Calculate \[\lim_{t \to 0} W(M, \Lambda^h g(t)). \]

Let \[\{ \Sigma_t \} \subset \{ \Sigma \} \text{ be the optimal family w.r.t. } (\Lambda^h g(t)). \]
\[\| \Sigma_{0} \|_{d_4} = \mathcal{W}(\mathcal{M}, \mathcal{L}^h, \mathcal{G}(\mathbf{u})^3). \]

\[\int_{\mathcal{Q}} \frac{\partial}{\partial t} \left(\| \Sigma_{0} \|_{d_4} \right) = \int_{\mathcal{Q}} \frac{\partial}{\partial t} \sqrt{\det \left(\mathcal{G}(\mathbf{u})^3 \right)} \, d\mathbf{x}. \]

\[= \int_{\mathcal{Q}} \mathcal{G}(\mathbf{u})^3 \frac{\partial}{\partial t} \sqrt{\det \left(\mathcal{G}(\mathbf{u})^3 \right)} \, d\mathbf{x}. \]

\[= -\int_{\mathcal{Q}} \mathcal{G}(\mathbf{u})^3 \frac{\partial}{\partial t} \mathcal{R} \, d\mathbf{x}. \]

\[= -\int_{\mathcal{Q}} \mathcal{G}(\mathbf{u})^3 \frac{\partial}{\partial t} \left(R - \mathcal{R} \mathcal{U}^3 \mathcal{U}^3 \right) \, d\mathbf{x}. \]

\[= \int_{\mathcal{Q}} \left(\mathcal{R} \frac{\partial}{\partial t} \mathcal{U}^3 \mathcal{U}^3 \right) \, d\mathbf{x}. \]

\[= -\int_{\mathcal{Q}} \left(\mathcal{R} \frac{\partial}{\partial t} \mathcal{U}^3 \mathcal{U}^3 \right) \, d\mathbf{x}. \]

\[\geq -8\pi \left(\left(\frac{h+1}{2} \right) + \frac{1}{2} \right) \]

\[= -16\pi - 8\pi \left(\left[\frac{h+1}{2} \right] - h \right). \]

\[= -16\pi + 8\pi \left[\frac{h}{2} \right]. \]

\[\Rightarrow \| \Sigma_{0} \|_{d_4} \leq \mathcal{W}(\mathcal{M}, \mathcal{L}^h, \mathcal{G}(\mathbf{u})^3) \cdot (t' - t). \]

\[\mathcal{W}(\mathcal{M}, \mathcal{L}^h, \mathcal{G}(\mathbf{u})^3) \cdot (t' - t). \]
Theorem. \((M^3, g), \ Rg > 0 \). No non-orientable surfaces.

- Heegaard genus. \(\chi \geq 6 \).

\[
\Rightarrow \quad W(M, \Lambda^1 g) \leq 4\chi - 2\chi \left[\frac{h}{2} \right] \leq 4\chi.
\]

\(h = 1 \) only if \((M^3, g) = S^3 \).

Proof. Let \((g(t)) \in \{a, T\} \) be the maximal soln of Ricci flow.

\[
W(M, \Lambda^1 g(t)) = W(M, \Lambda^1 g) - (16\chi - 8\chi \left[\frac{h}{2} \right]) t.
\]

\(\lim_{t \to T} W(M, \Lambda^1 g(t)) = 0. \)

By Lemma, \(\min_M R_{g(t)}, W(M, \Lambda^1 g(t)) \leq 24\chi + 16\chi \left| \frac{\chi}{2} - \frac{\chi}{2} \right| \)

As \(\lim_{t \to T} \min_M R_{g(t)} = 0. \)

\[
\Rightarrow \quad 0.
\]

\(\Rightarrow \quad W(M, \Lambda^1 g) \leq (16\chi - 8\chi \left[\frac{h}{2} \right]) T. \)

2. \(\frac{2}{3} R_{g(t)} = \Delta R_{g(t)} + \frac{2}{3} R_{g(t)}^2 + \| R_{g(t)} \|^2. \)

Maximum Principle \(\Rightarrow \min_M R_{g(t)} = \frac{3 \min_M R_{g(t)}}{3 - 2 \min_M R_{g(t)} (t - t_i)} \)

\(t \in (0, T), \quad t \in (t_i, T) \)

\(t_i = 0, \quad Rg \geq 6. \)

\(\Rightarrow \quad \min_M R_{g(t)} \geq \frac{18}{3 - 12t} = \frac{6}{1 - 4t} \). \(\Rightarrow T \leq \frac{1}{4}. \)
\[\Rightarrow \quad \omega(M, \Lambda_{\frac{h}{2}}, g) \leq 4\pi - 2\pi \left[\frac{h}{2} \right]. \]

\[\Rightarrow \quad r = \frac{h}{4} \quad \Rightarrow \quad R_{g_{1/4}} \equiv 0 \quad \Rightarrow \quad \text{Einstein} \quad & h > 0, \quad \text{w} \quad (3 - 2 \min_{M} \kappa_{2}(t-t_1)) > 0, \quad \text{for} \quad t_1 < t < \frac{h}{4} \]

\[\Rightarrow \quad \min_{M} \kappa_{2}(t) \leq \frac{3}{2(\frac{h}{4} - t_1)} = \frac{6}{1 - 4t_1} \]

To show \(M = S^3 \), only need to show \(h > 0 \).

(Frankel: \(R_{g} > 0 \), \(\pi_{1}(S^3) \rightarrow \pi_{1}(M) \) surjective).

If \(h = 1 \), \(M \) hence sphere or \(S^3 \times S^1 \).

\[\Rightarrow \quad \text{at minimal } T^2 \text{ of area } \frac{4\pi}{\rho} < 4\pi. \]

\[\Rightarrow \quad \text{minimal } T^2 \text{ has area } = 4\pi. \]
1. Introduction to the Almgren-Pitts theory.

Currents.

$U \subseteq \mathbb{R}^n$ open, $\mathcal{D}^k(U)$ = \mathcal{C}_0-supported k-forms in U.

Definition 1: A k-current T in U is a linear functional on $\mathcal{D}^k(U)$.

Definition 2: $\mathcal{D}^k(U)$ = $(\mathcal{D}^k(U))^\ast$ = space of k-currents in U.

$\mathcal{D}^k(U)$ = weak-topology.

$T \in \mathcal{D}^k(U), \quad \sigma T \in \mathcal{D}^{k-1}(U)$

$\sigma T(w) = T(\delta w), \quad w \in \mathcal{D}^{k-1}(U)$.

$\forall \omega \in \mathcal{D}^k(U)$

$\overline{M}w(T) = \sup_{|\omega| \leq 1, \sup\{m(w) \leq u\}} T(w)$.

$S \subseteq U$ countably k-rectifiable set in U. $\partial_\sigma S$ \mathcal{H}^k-measurable.

e_1, \ldots, e_n an. basis for $T \times S$. $\delta(x) = e_1 \ldots e_n$.

k-current $T = T(S, \theta, \delta)$

$T(S, \theta, \delta)(w) = \int_S \langle w, \delta \delta \rangle \Theta(x, dx)^k$.

rectifiable k-current.

$\mathcal{I}^k(U) = \text{space of rectifiable } k\text{-currents}$

$\mathcal{Z}^k(U) = \{ T \in \mathcal{I}^k(U), \delta T = 0 \}$

k-cycles

$M \subseteq \mathbb{R}^n$.

$\mathcal{I}^k(M), \mathcal{Z}^k(M)$ = k-currents or k-cycles supported on M.
Mass-norm:
\[M_{w}(T_1, T_2) = \inf_{W \subset U} \left\{ M_{w}(T_1 - T_2) : T_1, T_2 \in I_{d}(U) \right\} \]

Flat-norm:
\[f_{w}(T_1, T_2) = \inf_{R \in I_{d}(U), \, \lambda \in I_{b}(U)} \left\{ M_{w}(R) + M_{w}(\lambda) : T_1 - T_2 = R + \lambda \right\} \]

2. Blungsness's Setting:

Definition: Cell complex of \(I = (0, 1) \)

1. \(I = (0, 1) \)
 \[J_0 = \{ [0, 1] \} \]

2. \(I(1. j) = \{ \left\{ \frac{j}{3^n}, \frac{j+1}{3^n} \right\}, \left\{ \frac{1}{3^n} \right\} \} \)
 \[I(1. j)_{p} = p \text{- cells}, \quad p = 0 \text{ or } 1 \]
 \[I_0(1. j) = \{ [0, 1], \{ 1/3 \} \} \]

3. \(\alpha \): 1-cell of \(I(1. j) \)
 \[\alpha(1) = \text{crb complex of } I(1. j) \]
 \[\alpha_{0} = 2 \text{- 0-cells} \]

4. \(\alpha : I(1. j) \to I(1. j) \)
 \[\alpha(b) = \{ b \} \to \{ b \} \]

5. \(d : I(1. j) \times I(1. j) \to \mathbb{Z}^+ \)
 \[d(x, y) = 3^j | x - y | \]

6. \(n_{1}(1. j) : I(1. i) \to I(1. j) \)
 \[d(1, 2, n_{1})(x, y) = \inf \left\{ d(x, y) : y \in I(1. j) \right\} \]

Given: \(\phi : I(1. j) \to \mathbb{Z}_{n}(M^{2n+1}) \)

\[f(\phi) = \sup \left\{ \lim \frac{\phi(x) - \phi(y)}{d(x, y)} : x, y \in I(1. j) \right\} \]

finess:
\[\phi : \mathbb{I} \to (\mathbb{Z}, (M^n)^+) \]

1. \(\phi(0) = \phi(1) = 0 \)

\[\phi : \mathbb{I} \to (\mathbb{Z}, (M^n)^+) \]

for \(i = 1 \) or \(2 \).

\(\phi \) is \(1 \)-homotopic to \(\phi' \) with fineness \(\delta \).

\[f : k_3 \in \mathbb{N} \quad \phi' = \mathbb{I} (1, k_3) \quad \phi : \mathbb{I} (1, k_3) \times \mathbb{I} (1, k_3) \to \mathbb{Z}, (M^n)^+ \]

\[f(4) \leq \delta \]

\[4 (i-1, x) = \phi' \cap (h_3, k_i) = x \]

\[4 (\mathbb{I} (1, k_3) \times \mathbb{I} (1, k_3)) = 0 \]

Def. (1, \(M \)) homotopy seq. \(\{ \phi_i \} \)

\[\phi_i : \mathbb{I} (1, k_i) \to (\mathbb{Z}, (M^n)^+, \{ \delta \}) \]

\(\phi_i \sim \phi_{i+1} \) with fineness \(\delta_i \to 0 \)

\[\sup \{ \delta_i \} < \infty \]

Def. \(S_i = \{ \phi_i \} \quad S_2 = \{ \phi_2 \} \) is homotopic.

\[f : \quad \phi_2 \sim \phi_1 \] with fineness \(\delta_i \to 0 \)

Def. \(\pi_1 (\mathbb{Z}, (M^n)^+, \{ \phi \}) = \{ [S] : S \) (1-M) homotopy seq) \)

Thm. (extension). \(H_{+1} (M^n) \cong \pi_1 (\mathbb{Z}, (M^n)^+, \{ \phi \}) \)

Def. Given \(T \in \pi_1 (\mathbb{Z}, (M^n)^+, \{ \phi \}) \)

\[L(T) = \sup \left\{ \liminf_{x \to \infty} \max_{x \in \text{Dom}(\phi)} \right\} \]
Then, given \(\Pi \sim [W] \)

\(\exists \) closed mind hypersurf \(\Sigma^n \)

\[|\Sigma^n| = L(\Pi) \]

\[\Sigma = \lim_{j \to \infty} \| P_j \cdot \phi_j \| \]