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A Kieinian group with contractible quotient not simply connected at 
infinity 

DARYL COOPER* AND DARREN LONG** 

Abstract. We give an example of a co-compact Kleinian group F which contains a subgroup F 0 having 
the property that E~/Fo is contractible but not simply connected at infinity. 

1. Introduction 

The purpose  o f  this article is to prove the following theorem: 

T H E O R E M  1.1. There is a hyperbolic 3-orbifold X homeomorphic to a con- 

tractible 3-manifoM without boundary that is not simply connected at infinity. The 
singular locus o f  the orbi[old .~ is a circle at which the cone angle is ~. Furthermore 

is an orbifoM covering o f  a closed hyperbolic orbifold X which is homeomorphic to 
S 3 and the singular locus o f  X is a link o f  two components at which the cone angle is 

We recall that  a hyperbol ic  3-orbifold is the quot ient  of  [HI 3 by a discrete group o f  

hyperbolic  isometries.  The theorem may thus be reformula ted  as: 

R E F O R M U L A T I O N .  There is a co-compact Klein&n group F which contains 

an infinitely generated subgroup F o having the property that H3/Fo is contractible but 
not simply connected at infinity. There are two conjugacy classes o f  torsion element in 
F and each has order two. 

This result is perhaps  somewhat  surprising. O f  course Thurs ton  [Th2] has 

shown that  many closed 3-manifolds have hyperbol ic  structures. Fur the rmore ,  the 

fact that  there is a universal hyerbolic  link [Th3, H L M ]  implies that  every closed 

orientable 3-manifold has a hyperbol ic  orbifold structure.  However  such general  
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42 DARYL COOPER AND DARREN LONG 

results do not seem to predict the existence of an example of  this type. The orbifold 
)~ is an irregular orbifold covering of a closed hyperbolic orbifold X which is S 3 
with a singular locus the link of two components shown in Fig. 1. The cone angle 
around each component  is n. It  is an unresolved question whether a closed 
3-manifold can be covered by a contractible manifold other than Euclidean space. 
However, it has been shown that many contractible manifolds cannot do this [My, 
Wr]. Our examples shows that this can almost happen in the sense that the closed 
orbifold X has such an orbifold cover. Perhaps the most surprising feature of our 
example is that we could prove that is exists at all. It will be seen in the construction 
that several fortuitous accidents combine to enable the construction to succeed. For 
a more general definition of orbifold, see [Mo]. The authors thank the referee for 
finding errors in the original proof  of  1.2(2) and for other helpful comments. 

Figure 1 
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Figure 2 

I t2 

Let FL and F 2 be the pair of graphs embedded in S 3 shown in Fig. 2. Each graph 
is homeomorphic to the graph shown in Fig. 3, which we call a theta-curve. We will 
denote by M the compact 3-manifold S 3 -  int(N~ u N2) where N~ is a regular 
neighborhood of Fi. Thus ~M consists of two genus 2 surfaces t~iM = t?Ni, for i = 1, 
2. The proof of the theorem depends on the following technical result the proof of  
which is deferred to section 2. 

PROPOSITION 1.2. 
(1) M has incompressible boundary. 
(2) zh (M) contains no 7] • 7/subgroup. 
(3) Every properly embedded annulus A in M is isotopic rel OA into OM. 
(4) M contains no essential 2-sphere. 

There is an involution z of S a given by rotation around the circle C shown in 
Fig. 4 which exchanges F~ and F2. The restriction of this to M gives an involution, 
also called z, of M which exchanges the boundary components of  M. 

Let ~: ~lM-~t~lM be a diffeomorphism with ~2 the central element in the 
mapping class group of ~1M and such that ~b exchanges the un-oriented meridians 
of F z with the un-oriented longitudes. To be precise we require that q~(l)) = m) and 
~(m)) = l) -~ for i = 1, 2, where ml~, m~ are the meridians of F1 and li, l~ are the 
longitudes of F~ shown in Fig. 5. Similarly we define meridians ml, m 2 2  2 and the 
longitudes l 2, 12 2 of F 2 t o  be the images under z of  the corresponding loops for F~. 

Figure 3 
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E 

Figure 4 

To see that such ~b exists, consider the genus 2 surface d ,M as the union of two 
punctured tori. A punctured torus is a punctured square with opposite sides 
identified. A quarter rotation of the square gives an order 4 symmetry of the 
punctured torus, see Fig. 6. Then q~ is the map of 81M which restricts to the above 
map on each punctured torus. 

Take 2 copies of M which are denoted by M and h(M) where h: M --, h(M) is 
a diffeomorphism. Define an involution ~ on the disjoint union of M and h(M) by 
f ] M = z and ~ I h(M) = hzh-l. Now construct a closed 3-manifold N by identify- 
ing the boundary of M with the boundary of h(M) as follows. Identify 8t M with 
h(8l M) via ~b~ = h~b. Identify t32M with h(~2M) via ~b2 = "?h~b?. Then the involution 
f passes to the quotient to give a well defined involution, also denoted ?, of N. See 
Fig. 7. 

Then proposition 1.2 implies that N is Haken. Suppose that 7~ 1N contains a 
• 2e subgroup. The Torus theorem implies that N contains an essential torus T, 

(- 

Ti 

Figure 5 
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by 1.2(2) T cannot be isotoped into either copy of M. Thus T r i M  contains an 
essential non-boundary parallel annulus which is impossible by 1.2(3). Thus N 
contains no ~ • Z subgroup. Thus Thurston's uniformization theorem implies that 
N has a hyperbolic structure. It follows from Mostow rigidity that ~ is homotopic 
to an isometry of N. A complete proof of Thurston's Uniformization theorem has 
been published by McMullen [McMI,  McM2]. In fact it can can be shown that N 
does not fiber over the circle, and so the particular case of the uniformization 
theorem which we appeal to is Haken manifolds that don't  fiber. 

If we knew that f was conjugate to an isometry by a diffeomorphism isotopic to 
the identity then we could conclude that N/~ was a hyperbolic orbifold. Instead we 
argue as follows. The involution, ~ of N has 1 dimensional fixed locus C u h(C), and 

J 
~M 

01 = hO 

h( O.~M ) 

> 

h(~ lM)  

Y 

Figure 7 
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so by Thurston's Orbifold Theorem [Th, Ho], the quotient has a geometric 
decomposition. However since the 2-fold orbifold (branched) cover gives N back, 
the quotient N/f  must in fact be a hyperbolic orbifold. Set X = N/f, a closed, 
orientable, hyperbolic orbifold. 

The referee has pointed out that we may avoid appealing to the Orbifold 
Theorem as follows. By a result of Tollefson [To] two involutions of a Haken 
3-manifold that are homotopic are in fact conjugate by a diffeomorphism isotopic 
to the identity provided that the manifold is not a Seifert fiber space and H1 (M) is 
infinite. We may apply this to the manifold N and to f and the isometry provided 
by Mostow rigidity. 

Now X = (M/z)U~, h(M/T) identified along O(M/z) by the map 

~,: ~(MI~)--,O(h(MIT)) 

which is covered by ~b~. Let n: N ~ N / z  be the projection; we will also use n for the 
restriction n: M ~ M/z. Now N/T is S 3, and Fig. 8 shows n(F~ ) = n(F2) and n(C). 
The graph n(F~) is easily seen to be isotopic in S 3 to an un-knotted theta curve, 
thus n(M)=S3-N(nF~)  is a genus 2 handlebody H. The branch locus n(C) is 
shown in a standard handlebody in Fig. 9. The following result is crucial to our 
construction, and appears to be a fortuitous accident: 

LEMMA 1.3. n(ll) and n(l~) bound discs in H. 

Proof We sketch two proofs. First the curves n(ll) and n(l~) are shown in 
H=S3--N(nFj)  in Fig. 10. A little manipulation shows that these curves are 
unlinked from n(F~) and are unknotted. The second proof is to calculate the (free) 
homotopy classes of II, l~. One then adds the relations which identify an element of 

v , 

g(C) = Cone locus 

J I 
Figure 8 
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Figure 9 

z4(M) with its image under T, and checks that l i , l  I are killed by this. This 
calculation is shown in Fig. 11 where we have made the identifications induced by 
z ,  writing down the Wirtinger presentation o f / t l ( M  ). Thus rc(ll), rc(l~) are simple 
closed curves in the boundary of the handlebody H which are inessential in H and 
thus bound discs in H. [] 

Figure 10 
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11 = y(yxy~y-)y(x~)~ = 1 

17= yxx~(y~y-)  = 1 

F i g u r e  11 

The curves n(ml), n(m~) are longitudes of H, and it follows from (1.3) that X is 
topologically S 3 since the handlebodies M/z and h(M/z) are glued together by 
identifying meridians to longitudes via ok1. As a hyperbolic orbifold, H contains a 
singular locus, a topological circle, with cone angle n, shown in Fig. 8 and also in 
Fig. 9. Thus X has singular locus a link of 2 components C1 u C2 each with a cone 
angle of  n, this link is shown in Fig. 1. The linking number of C1 with C2 is zero, 
in fact since C1 bounds a Seifert surface in H, we see that C1 u C2 is a boundary link 
in S 3. Thus there is a homomorphism from nl (S 3 -  (Cl u Cz)) onto the free group 
of  rank 2. This in turn maps onto 72 �9 Z2 where the meridians of C~ and 6'2 map 
to the generators of order 2 in Z2,2v 2. This determines a homomorphism 
G --* Z2 * 7/2 where G is the orbifold fundamental group of X. Now let )~ be the 
irregular orbifold covering space of X corresponding to the subgroup ( ~ )  of order 
2 in Z2 * Z2 generated by the meridian ~ of C1. Thus )~ is a hyperbolic orbifold. 

LEMMA 1.4. Denoting the normal closure by ( . ) N  we have: 
(1) l~-and 1~ are trivial in nlM/(m~, m~)N. 
(2) l 3 and l 2 are trivial in nlM/(m[,  m~)N. 

Proof Referring to Figs. 2 and 5, the manifold obtained from M by filling in 
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Figure 12 

N(/'2) is seen to be a handlebody in which li, ll bound discs. From this it follows 
that after attaching 2-handles to d1M along meridians m 2, rn~ that 1 11,12 bound 
discs, this proves (1). Applying the involution z of M proves (2). [] 

Proof of Theorem. The orbifold X is obtained by glueing copies of M to a single 
copy of H using ~b~ and ~b 2 to do the glueing, as shown in Fig. 12. We calculate the 
topological (not orbifold) fundamental group rq(,Y) by applying Van Kampen's 
theorem to this decomposition to show that X is simply connected. For each 
positive integer n let Mn be a copy of M and let Hn denote the union of H and the 
first n copies of M with boundaries identified appropriately. Then .Y is the union of 
the increasing family of submanifolds Hn. The boundary 0Hn is a component of 
M n, a genus two surface with copies 17, l~ of ll, 12 marked on it. 

Note that H is attached to M~ by the map ~b~ which identifies the longitudes 
rcl 2, zrl~ in H with m11, m~ in M, but rd 2, nl 2 are trivial in rh(H) by the lemma 1.3, 
and so ml,m~ are trivial in nl(Hw~,M).  By lemma 1.4, 12, l~ are trivial in 
zl(H w~l M), and these are identified by ~ to ml,  m~ in the second copy of M 
in .Y. Thus these loops are trivial in 7z~(H w~,Mu~_, M). Continuing in this way, 
we see that 7q (X) is trivial. A detaded argument wdl now be given. 

We claim that H~ is a handlebody and that l~', l~ bound discs in Hn. Indeed 
Lemma (1.3) implies this for the case that n = 0. Suppose inductively this is true for 
Hn then since 17, l~ bound discs in Hn it follows that Hn + 1 is obtained from Mn + 1 
by attaching 2-handles to Mn+~ along the curves m7 § ~, m~ +1 in OMn+~ to which 
17, lg are identified. One then caps off the resulting two-sphere boundary component 
with a 3-handle to obtain Hn +1. This proves the claim. 

Thus there is a homeomorphism O: Hn + ~ ~ S 3 -int[N(F~)] taking H. to N(F2) 
and taking Mn+~ onto S 3- in t [N(F1)  wN(F2)]. We show below that the map 
induced by inclusion 

(in), :'rq (Hn) --, z ,(Hn+,)  

has infinite cyclic image contained in the commutator subgroup of nl(Hn+~). It 
follows from this that (i,§ o in). = 0 and thus that )? is simply connected. 

Since Hn is a handlebody in which l~', l~ bound discs it follows that n~(Hn) is 
freely generated by the copies m~', m~ of m~, m2 on 0Hn. These are identified to 
copies of ll, 12 on 0Mn§ Now O(mT), O(m~) are 12, l] (recall the identification of 
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3Hn with a component of aMn+~ swaps meridians and longitudes.) Referring to 
Figs. 2 and 5 (with z applied which relabels F1 as F2), one sees that the loops l~, l~ 
in S 3 - N ( F 1 )  are both homotopic rel basepoint to the loop E shown in Fig. 4. One 
also sees that E is homologically unlinked from F~ and thus lies in the commutator 
subgroup of n~ (S 3 -  N(F~ )): This proves the claim and completes the proof that .~ 
is simply connected. 

We next show that n~ (X - int(H)) is not finitely generated. Now .Y - int(H) is 
obtained by glueing copies of M together using the maps ~b~, ~b 2. M has incompress- 
ible boundary, and it is clear that incl,: ~ (~ M) ---, 7q (M) is not surjective, other- 
wise it would be an isomorphism. This proves the claim. If .Y is simply connected 
at infinity then there is an open set U disjoint from the compact set H and which 
has compact complement and such that rq(U) maps to zero in n~(.Y- H). Thus 
nl (,~ - H) is the image of nl of some compact submanifold of .Y - int(H), and is 
thus finitely generated, a contradiction. • 

2. Proof of 1.2 

We now turn to proving proposition 1.2 We will consider a particular 2-fold 
branched convering p: S 3--, S 3 branched over the circle E contained in F2 shown in 
Fig. 4. The restriction of p to M = p - l ( M )  gives an unbranched 2-fold cover 
p: h~r --,M. Set Fi =P- I (F i )  and .~i =p-l(Ng) then N~ is a regular neighborhood of 
F~ and the graphs ~'~ embedded in S 3 are shown in Fig. 13. Now N2 is a genus-3 
handlebody and .~  is the disjoint union of genus-2 handlebodies. The two 

X J 

Figure 13 
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Figure 14 

components of 0~ )kr will be denoted by G~ and G2, each of which is a closed genus-2 
surface. Note that ffl = S 3 - int(Nl w N2). 

LEMMA 2.1. ~r u ]V2 is diffeomorphic to Gi x L 

Proof. Slide T'~ around to obtain the configuration in Fig. 14, which clearly 
gives G1 • L [] 

From the lemma we see that z~(G1) injects into rq(Mw572) under the map 
induced by inclusion, and therefore also injects into n~ (M). Since 01M lifts to G1 in 
h4, it follows that g~ (G M) injects into hi(M). Thus &l M is incompressible, and by 
using the involution z of M, one sees that O2M is also incompressible, proving 
1.2(1). 

If M contains an essential 2-sphere S then S must separate FI f rom/ '2  otherwise 
by the Sch6nflies theorem S would bound a ball. Now S lifts to a 2-sphere S in ~r 
which separates F1 from F2. However inspection of Fig. 13 reveals that each 
component of I'~ and F2 are algebraically linked in S 3 thus S cannot separate them. 
This proves S cannot exist, establishing 1.2(4). 

Consider the sphere S in S 3 shown in Fig. 20, which meets (/'1 u / '2 )  in 4 points. 
Then S separates S 3 into two closed balls B 1 and B2 and S may be chosen so that 

exchanges these balls. We may arrange that S meets N(/'I  u F2) standardly in 4 
discs, each of which contains one pont of (/'1 w/'2). Set S_ = M n S, a 4-punctured 
sphere, Qi = M n B ~  for i = 1, 2. Then S = ~3Q1 c~0Q2. 

LEMMA 2.2. S_ is incompressible in both Q1 and Q2. 

Proo f  Suppose D is a properly embedded disc in Q1 with O D c  S_ .  Then D 
separates B~ into two balls and if D compresses S_ then FI must lie on one side of 
D and/ '2  on the other side of D. Thus n~(Ql) splits as a free product. Now there 
is a loop 7 in a neighborhood of C 2 which is a commutator of meridians in F1 and 
F2. Thus ? lies on the same side of  D as F2 but such a commutator cannot be disjoint 
from D. Thus there is no compressing disc for S_. Since S_ is incompressible in QI, 
applying the involution T we see that S_ is also incompressible in Q2. [] 
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LEMMA 2.3. O.l is a genus-3 handlebody. 

Proof. QI is the complement in S 3 of an open regular neighborhood of the 
graph in S 3 shown in Fig. 21. By sliding this graph, one obtains the graph in Fig. 
22, the complement of which is clearly a genus-3 handlebody. [] 

Now suppose that M contains an essential torus T. Then we may assume T is 
transverse to S_ and has the least possible number of  circles of intersection with 

I '1 
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Figure 15(a)-(c) 
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Figure 15(g) 

S_. Since S_ is incompressible it follows that every circle of  intersection is essential 
in T. Since a handlebody contains no essential torus, by (2.3) T must have 
non-empty intersection with S_. Thus S_ separates T into components each of 
which is an annulus and none of  these annuli can be isotoped rel boundary into S_. 
Let A be such an annulus properly embedded in Q~ with boundary ~A = ~ w a2 two 
disjoint circles in the four punctured sphere S_. These circles are essential in S_. 
They cannot be isotopic in S_ because this would give a torus K consisting of the 
union of  A and an annulus in S_. But Q~ is a handlebody so K compresses and thus 
A can be isotoped into S_ a contradiction. 
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Figure 17 

N o w  51 is a simple closed curve on the 4 punctured sphere S_ and if 51 has 2 

punctures on either side then since 5~ = 52 in H1 (Ql) one sees that 52 must  also have 
2 punctures on either side. But since 51 and 52 are disjoint this means that they are 
isotopic, a contradiction. It follows that 51 has one puncture on one side and 3 
punctures on the other side. Again considering H 1 (Q~) one sees that 52 must  also 

have one punctured on one side and that there are only two possibilities for 51, 52 
up to isotopy. Either they are the two meridians o f  F1 on S_ or they are the two 
meridians of  F2 on S .  Referring to Fig. 20 we see that the first case is possible, 
there is an annulus in a neighborhood of  F1 in QI. However  the second ease is 
impossible. One way to see this is to observe that the annulus provides a free 
homotopy  in QI between the two meridians o f  F 2 on S .  One calculates these two 

Component of ~1 (15) 

Figure 18 
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Figure 19 

meridians using the Wirtinger presentation and since x~ Q~ is a free group the fact 
that these two elements are not conjugate is visible. 

It follows that every component of T c~ S_ is a meridian of F~ but using the 
involution z the above analysis applied to Q2 implies that these curves must also be 
meridians of F2 and so Tc~S_ is empty, a contradiction. This proves 1.2(2) 

Suppose now that M contains a properly embedded non-boundary parallel 
annulus A. Using the involution ~ we may assume that A meets t3~ M. Then p- l (A)  
consists of  either one or two components each of which is a non-boundary parallel 
annulus properly embedded in M. Choose a component .~ ofp-~(A),  and note that 

Figure 20 
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Figure 21 

meets t3~M. The covering p : / Q - - . M  is regular and so there is a covering 
transformation exchanging G~ and G2. Thus we may assume that a boundary 
component of .4 lies in G~. The boundary of .4 consists of 2 disjoint essential simple 
closed curves, V, fi in 3M and we label them so that 7 lies in Gt. We will now 
distinguish 3 cases, according to whether the second boundary component fi of 
lies in g~, G2 or ~2M. 

First suppose that 6 is contained in G2. By lemma 2.1, )Q ~ N2 = G1 x I and we 
may do an ambient isotopy of G1 • I so that .4 = V x I is vertical in GI • L where 

is some essential simple closed curve in GI. The image of F2 under this isotopy 
must be disjoint from ~ x L Let Y be the graph in G, x I shown in Fig. 15(g), and 
Pl: G, x 1 - ,  GI be projection onto the first factor. 

LEMMA 2.4. Pl.IIl(Y) is conjugae to PI.I-II(F2) in HI(G1). 

Proof This is done in the sequence of figures 15(a) to 15(g). First, I'2 is 
homotoped from the position in Fig. 13 to that in Fig. 15(a), Now observe that 
there are 2 distinct loops in/~2 which are homotopic to each other in G~ • I. Let Y' 
be the graph in G1 x I shown in Fig. 15(b). Then pl,rcl(Y') =Pl ,n l (F: ) ,  Perform 

Figure 22 
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the sequence of homotopies of Y' in G~ x I shown in Figs. 15(c) to 15(g) to 
transform Y' into Y. [] 

The graph Y shown in Fig. 15(g) lies in a regular neighborhood of a component 
of F~. The image of Y and G~ under the projection Pl is shown in Fig. 16. 
Topologically Y is a wedge of two circles, the projection of which are the two loops 
ct, fl in G1 shown in Fig. 16. The vertex of Y projects to the point v in Fig. 16 on 
the intersection of ct and ft. Thus pl (F2) contains 2 loops which are homotopic to 
the 2 loops ct and fl in G~ shown in Fig. 16. The loops ~t and fl fill G~ and so cannot 
be homotoped to be disjoint from any essential closed curve such as 7. This 
contradicts the disjointness of ,4 and/72, proving that no annulus A can exist in this 

case. 
The next case that we consider is that 6 is contained in G~. Since 

~r w iV2 = GI • L there is an annulus A' in G~ with the same boundary as ,4. It 
follows that the torus ,4 w A' bounds a solid torus T in G~ • I on one side. We may 
perform an isotopy of G~ x I so that T = A' • [0, 1/2]. If T contains -~2 then 7 • I 
is an essential annulus disjoint from /7 which cannot exist by the previous case. 
Otherwise if T does not contain F2 then T is a solid torus in ~r and so ,4 is 
boundary parallel in /~t. But this implies that A is boundary parallel in M, a 

contradiction. 
The last case is that & is contained in c32~t. 

LEMMA 2.5. 7 is isotopic in G~ to the curve labelled ~t in Fig. 16. 

Proof. We first observe that 6 is an essential G~ • I and that c5 can be 
homotoped in G~ • I into ~'2, and thus homotoped into an essential loop in Y. It 
follows that p~ 6 is freely homotopic into p~ (Y). Let v be the point in G1, shown in 
Fig. 16, which is the image under p~ of the vertex in the graph Y. We claim that the 
only non-trivial element of p~.n~(Y) which is homotopic to an essential simple 
closed curve is ~t • i. To see this, let n: G~ --* G~ be the covering of G~ corresponding 
to the subgroup p~. n~ (Y) of n~ (G~). Then tT~ is a punctured torus, on which there 
are unique lifts ~, fi of  ct, ft. Now ~, /1 intersect in a single point lying over v as 
shown in Fig. 18. Also ~ is homotopic to p~fi and therefore lifts to a loop ~ on t~. 
If ~ cannot be homotoped in 6~ into ~, then ff runs around fi and intersects other 
components of n-~(fl) because fl has an essential self-intersection on G~, and 
therefore ~ intersects other components of  7t -~(~,). But this contradicts the simplicity 

of  ~ and proves the lemma. [] 

We have shown that 7 is isotopic in G~ to ct and thus the boundary component 
of A on 8~M is isotopic to e =p(ct). By tracing the loop ct back through the Figs. 
15(g) to 15(a), we see that ~t is homotopic in G1 x I to the loop p-~(E) shown in 
Fig. 17. Thus ct is homotopic in G~ to the loop labelled ~t in Fig. 17. Hence e =p(ct) 
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is homotop ic  in OM1 to the loop labelled e in Fig. 19. App ly ing  the involut ion z 

we see that  the other  b o u n d a r y  componen t  of  A must  be isotopic  in 82M to re. 

F r o m  Fig. 19 one sees that  e is contract ible  in M u N  I and hence that  ze is 

contract ible  in M u N2. The annulus  A provides  a free h o m o t o p y  from e to ze, and  

thus e is contract ib le  in M u N 2  also. We compute  the h o m o t o p y  class 

[e] ~ r q ( M w N 2 )  f rom Fig. 19, and  see that  it is non-tr ivial .  This contradic ts  the 

existence of  the annulus  A in this last case, and  proves 1.2(3), complet ing  the p r o o f  

of  the propos i t ion .  [] 
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