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1 Introduction 

Let Bn denote the n-strand braid group. We recall that this admits a represen- 
tation 

fin : Bn ---+ GLn- l (Z[ t , t - l ] )  

the (reduced) Burau representation [1]. Although open for a long time, it 
is now known that this representation is not faithful for n > 6, (See [8, 5]) 
and it is an old result that it is faithful for n = 3. (See [7]) Despite these 
counterexamples, there is no understanding of  the nature o f  the image groups 
in the nonfaithful cases nor any kind of  intrinsic characterisation o f  braids 
which lie in the kernel. The two cases n = 4, 5 remain open. Resolution o f  the 
case n = 4 is an important open problem, firstly for the implications for the 
automorphism group of  a free group of  rank 2 and secondly as a test case 
for the faithfulness of  the Jones representation, [4]. In the case n = 4 the only 
summand which could be faithful is the Burau summand. There is a map c~ : 
GLn_l (Z[ t , t - t ] )  ~ GL,_I(Z2[t , t -~])  given by reducing coefficients modulo 
two and thus a simplified representation fin | Z2. Using the ideas contained 
in [8] or [5], it is not difficult to show that this representation continues to 
be faithful in the case n = 3, and it was observed in [5] that it is not faithful 
for n = 5. The main result of  this paper is that we shall give a complete 
description o f  the image group in the case n = 4; this appears to be the first 
explicit description of  the image group for any infinite linear representation o f  
a braid group with n > 4. 

An especially intriguing aspect is the picture which emerges o f  the com- 
plex which carries the group which contains something rather analogous to an 
"geometrically infinite" end in the language of  hyperbolic geometry [9]. It is 
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the nature of  this end which seems to be what foils all attempts to prove any 
kinds of  faithfulness results by multiplying matrices. 

We now give an outline of the proof, deferring careful definitions. The 
representation above can be considered to have its image in the general linear 
group of the quotient field; this is a field with a discrete rank one valuation, 
and standard methods [2] give an action on a Euclidean building which we 
denote A. By restriction, we obtain a representation 

p : B4 ~ Aut(A) 

It was first observed by Squier [10], that suitably interpreted, the Burau repre- 
sentation can be regarded as sesquilinear for a certain form J. This turns out to 
have the powerful consequence in this context that we can identify precisely 
the stabiliser of  the trivial lattice and consequently that all vertex stabilisers 
for this action are finite. It 's worth noting that the restriction to a field of  
characteristic two has not yet been used, any field of nonzero characteristic 
suffices up to this point. I f  however, we now assume that the field is Z2(t) 
we can use this information to compute exactly the stabiliser of  every vertex 
in the building and from this it turns out that we can construct explicitly a 
certain complex B and show: 

Theorem 1.1 A/im(p) ~- B ai~d B is contractible. 

In particular, the building is contractible, so that in the language of  com- 
plexes of  groups (see Appendix) we will have: 

Theorem 1.2 im(p) ~ (B, G~, ~ka, g~.b) 

We will see that the subgroup of im(p) stabilizing a vertex is finite, al- 
though arbitrarily large, and so it follows from arguments using group coho- 
mology that: 

Corollary 1.3 The reduced homology H.(im(p) ;  ~ )  = 0. 

Many approaches to the faithfulness question of the Burau representation 
involve a reduction to consideration of certain subgroup; these approaches usu- 
ally involve showing that a certain pair of  matrices generate a free group. An 
especially interesting feature of  our method is the nature of  the complex B, 
which highlights perhaps why such methods always seem to fail. The com- 
plex is the union of two pieces, one of which is a tube which metrically has 
bounded diameter out towards the end and as such seems to resemble a geo- 
metrically infinite end in the language of hyperbolic geometry. Most of  the 
methods currently available for showing that matrix groups are free, amount to 
finding a quasi-isometry of the graph of an abstract free group with the group 
graph of the matrix group and this is exactly what is forbidden in a geomet- 
rically infinite end. A sharper version of this statement is that as a result of  
its Euclidean structure, the building carries a canonical metric which makes it 
into a CAT(O) space, and we have shown that the convex hull of  the orbit of  
any point is the whole building. Although the clearest picture is provided by 
the complex itself, we can also use the information to give a presentation: 



A presentation for the image of Burau(4) | Zz 537 

Theorem 1.4 The image group f14 | Z2(B4) is presented as: 
Generators: x, y 
Relations: 
1. X4~Z 
2. y a = z  
3. [xZ,yxy] = 1 
4. [x, (yxy)i] 4 = 1 for all i >= 0 
5. The group generated by ((yxy)ix(yxy)- i  l i > O) is nilpotent of  class 3 
Here z denotes a generator of  the centre of  B4. 

An interesting feature here is that all the nonfaithfulness is determined by the 
vertex stabilisers. 

Moreover, it follows from our method o f  proof  that: 

Theorem 1.5 The subgroup of GL3(Z2[t,t-1]) consisting of isometrics of  the 
form J is precisely the image of  f14 | Z2. 

Of  course, it is immediate from 1.4 that the representation f14 | Z2 is not 
faithful; this was already known to the authors previous to this work. Although 
this aspect is not the thrust o f  this paper, we point out some corollaries. The 
first is that there are knots whose Jones polynomials are identically 1 when 
reduced modulo 2. Vaughan Jones was kind enough to furnish us with some 
13-crossing examples in the knot tables. However,  as observed in [4], the 
existence o f  such knots does not suffice to prove that f14 | Z2 is non-faithful. 
Application of  a condition which is equivalent yields: 

Corollary 1.6 There is a four-braid whose Jones polynomial is the same as 
that of  the four component unlink when coefficients are reduced modulo 2. 

The smallest such braid has the order o f  160 crossings. 

2 Preliminaries 

We have an inclusion Z2[t,t  - I ]  ---, Z2(t)  and since the target field admits a 
discrete rank 1 valuation, this gives an action o f  the group Bn on the Euclidean 
building A ( n -  1) associated to the group SL,-I(Z2(t)).  

We recall how this building and action are defined, restricting our attention 
to the case n = 4, since this is the only case in which we shall subsequently 
be interested. This will serve the additional purpose of  establishing notation. 
Denoting the nonzero elements of  Zz(t) by Zz(t)*,  let v : Z2(t)* ~ Z be a 
discrete rank one valuation on Zz( t )  given by t n ~ - n .  Standard properties 
imply that 

C; = {x ~ Zz(t) lv(x) > O) 

is a subring of  Zz(t) ,  the valuation ring associated to v. This is a local ring and 
the unique maximal ideal is easily seen to be J / =  {x 6 Zz(t)[v(x)  > 0}, a 
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principal ideal. Choose some generator n for this ideal. This element is called 
a uniformizing parameter and by construction we have that v ( n ) =  1. Since 
~ '  is maximal, the quotient k = Zz(t)/.//4' is a field, the residue class field. 
One sees easily that in this case, the residue class field is Z2. 

Now let V be the vector space Zz(t) 3. By a lattice in V we shall mean 
an (.O-submodule, L, of the form L = (gxt @ ~x2 �9 (9x3 where {xl,x2,x3} is 
some basis for V. Thus the columns of a non-singular 3 x 3 matrix with en- 
tries in Zz(t)  define a lattice. The standard lattice is the one corresponding 
to the identity matrix. We define two lattices L and U to be equivalent, if  
for some 2 E Zz(t)* we have L = ).U. We denote equivalence class by [L]. 
The building A is defined as a flag complex in the following way. The points 
are equivalence classes of lattices, and [L0] . . . . .  [Lk] span a k-simplex (in our 
situation k = 0, 1, 2 are the only possibilities) if  and only if one can find repre- 
sentatives so that nL0 C L~ C .--  C Lk C Lo. All two-simplices are of  the form 
{[xl,x2,x3], [Xl,X2, nx3], [xi, nx2, n-~c3]}; this is usually referred to as a chamber 
and denoted by C. The set of  chambers defined by all lattices of the form 
[n~xl,nbxz, nCx3] where a,b,c E Z is called the apartment associated to the 
basis {xl,x2,x3}. We shall denote such an apartment by ~[xl,xz,x3] or just by 
S if the context is clear. Clearly the group SL3(Zz(t)) acts on lattices and one 
sees easily that incidence is preserved, so that the group acts simplicially on 
A. It is shown in [2] that this building is a so-called Euclidean building, in 
particular, it is contractible and can be equipped with a metric which makes 
it into a CAT(O) space and for which SL3(Z2(t)) acts as a group of isome- 
tries. The metric is such that each 2 dimensional simplex is isometric to a unit 
Euclidean equilateral triangle. Every triangle lies in infinitely many apartments 
each of which is isometric to the Euclidean plane. 

To each lattice is associated a type (in our case {0, 1,2}), defined as 
follows: I f  we consider the action of the full group GL3(Zz(t)) this acts transi- 
tively on lattices, so given a lattice L, we choose some g E GL3(Zz(t)) throw- 
ing the standard lattice to L. It is easily seen that if  we reduce v(det(g)) modulo 
3, this is well defined on the class of  the lattice L; by definition this is the 
type of [L]. Both GL3(Zz(t)) and SL3(Zz(t)) act on the building, the main 
difference being that the group SL3(Zz(t)) is type-preserving. The stabilizer of  
the standard lattice is GL3(s A fact we shall make use of  several times is: 

Proposition 2.1 GL3(Z2(t)) acts without edge inversions on A. 

Proof We note that an edge cannot be identified with itself with orientation 
reversed; for if  we consider the vertex which lies in the triangle containing the 
edge but not on the edge, this type is preserved by any such map, hence all 
types are preserved and the edge could not have been reversed. [] 

The link of the standard lattice is the flag geometry for V = Zz3:it is 
a bipartite graph whose 14 vertices are the 7 one-dimensional and 7 two- 
dimensional subspaces of V. This graph is shown in Fig. 0 (with certain labels). 
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In our case, the braid group maps 

B4 ~ GL3(Z2(t)) ---* Aut(A) 

We shall denote this composition by p; since central matrices acts trivially on 
the building, this factors through B4 ~ Ba/Z where Z denotes the centre of  
B4, We shall use: 

Lemma 2.2 Denoting the centre of  B4 by Z, we have: 

B4/Z ~ (x, y ] x 4 : y3 = 1 Ix 2, yxy] =- 1) 

where x = 0-10"20-3 and y = 0"10"20"30"1. 

This is somewhat non-standard, albeit elementary, so rather than include it 
at this point in the exposition, we relegate it to an appendix. The matrices for 
these generators are: (0 0!) (0 0 

f l4 (X)  ~--- - - t  0 f l 4 ( y )  = - - t  2 t 

0 - t  0 t 

3 Constructing the complex 

In this section, we construct the complex B which will be the basis for the 
complex of groups description given in Sect. 4. We begin with an informal 
description of the whole construction before dealing with the details. 

The complex B will consist of  two parts. The first, denoted X, will be 
obtained by quotienting out the cone on the link of the identity lattice by im(p). 
The complex X has a single free edge which is a circle. The second part of  the 
complex is topologically a half open annulus S 1 x [0, c~) and it is glued onto 
this circle by a homeomorphism along its boundary component. Both X and this 
tube are constructed by making all obvious identifications forced by the image 
group and then we prove that no further identifications are possible. The main 
theorem of this section is the proof that A/im(p) ~- B. As part of this process, 
we are able to identify all stabilisers exactly and thus form the complex of 
groups. 

Before embarking on the construction of X, we prove a simple lemma 
which plays a central role in all that follows. This lemma depends on the fact 
that the Burau representation can be considered as unitary for a certain form 
(the intersection pairing on the infinite cyclic covering of the punctured disc). 
This is due in essence to Squier. Since our notation is somewhat different from 
his, we establish this first. 

Clearly we have an involution of the ring Z[t,t -l] defined by mapping �9 : 
t ~ t - l  and this gives an involution on GLk(Z[t,t-l]), also denoted. ,  defined 
by applying * to all the entries of  the matrix in question and transposing. Then 
Squier shows: 
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Lemma 3.1 [10] The four strand Burau representation is sesquilinear, i.e. 
A* . J . A = J for  A E im(fl4) for  the form 

J = s - ( s + s  - t )  s 
0 s - ( s + s - l ) /  

where S 2 ~ t. 

We remark that Squier's form appears a little different in [10], but this is 
because in that paper, a preliminary conjugacy is applied to the Burau repre- 
sentation. The form of Lemma 3.1 applies to the most usual description of  the 
Burau representation. 

Lemma 3.2 Suppose that A lies in im(p) and stabil&es the identity vertex o f  
A. Then there is 2 in Z2(t) such that the entries of  2 .A are all constants. 

Proof  I f  an element A of GL3(Z2[t,t-1]) stabilises any vertex of A, then 
it must be type preserving and so it has determinant -4-t 3n for some n. In 
particular it can be adjusted by homothety (i.e. replaced by •  so that 
it lies in SL3(Z2[t,t-~]). Since by hypothesis, A stabilises the identity vertex 
of A, it follows that A lies inside SL3((9), that is to say that all its entries 
value > 0. Notice that if in addition, the original element A lies in the image 
of the Burau representation, then its entries are all Laurent polynomials and 
it follows that the entries of the homothety adjusted matrix continue to be 
Laurent polynomials. 

The fact that A lies in the image of  the Burau representation means that we 
also have A*. J �9 A = J and so A* �9 (J/s) .  A = J/s. One now checks that J/s 
is @-invertible and therefore we see from the description given in Lemma 3.1 
that J/s E GL3((9). (We have temporarily extended the valuation so that it is 
defined on Z[s,s -I  ] by setting v(s) = -1 / 2 ) .  But this implies that A* E SL3((9). 
However, consideration of the action of the involution shows that the only 
matrices with Laurent polynomial entries which have both A and A* lying in 
SL3((_9) are the constant matrices. [] 

Since Lemma 3.2 shows that any matrix in Q E stab(l)M im(p) has no t 
dependence, it is in particular unchanged by the composition map 

= P2 ~ |  :B4 ~ GL3(Z2[t,t-1]) ---+ GL3(Z2) 

where the map pz is given by the specialisation t --- 1. This is a representation 
of S4, the symmetric group on four letters, so that there are twenty four possi- 
bilities for the matrix Q. On the other hand, any such matrix lies in the image 
of/34 | Z2 (i.e. before setting t = 1) so that Q must satisfy Q*. J .  Q = J 
where J continues to involve s. Using this observation a computation shows: 

Lemma 3.3 The only matrices in im(p) which stabilise the identity vertex 
are powers o f  the element p(x). 
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Since much reference will be made to the vertex stabilisers which can arise 
in im(p), we adopt the convention that unless the context makes it clear that 
this is not the case, stab(q) will mean stab(q) n im(p). In passing we note that 
Lemma 3.3 has the following consequence: 

Corollary 3.4 The group p(B4) acts on A with finite vertex stabilisers. 

Proof Pick any vertex v E A and consider stab(v). This acts on Link(v) which 
contains finitely many points, so a subgroup H of finite index in stab(v) acts 
trivially on this link, so that H < stab(w) for any w adjacent to v. There is a 
finite distance from v to I so repeating this process we see there is a subgroup 
of finite index in stab(v) which stabilises I ,  hence by Lemma 3.3 is a finite 

group. [] 

Remark 3.5 In fact, characteristic 2 does not play a role in the argument so 
far: I f  one puts t = 1 in the Burau representation, a computation reveals that 
for any prime it is only the element x which preserves the form J .  Since 
vertex links are finite for any prime, it follows that 3.4 continues to hold for 
the action on any building A(p) coming from reduction modulo a prime. 

3.1 Constructing X 

With the notation established above one finds that the orbit under im(p) of  the 
identity lattice 1 contains (at least) twelve points at distance I and so lying 
as vertices in Link(I). Since this latter complex is the flag manifold coming 
from the subspaces of W ~- Z23 (See [2]) it contains 14 vertices. To establish 
notation, we label twelve of these vertices by elements in the group: 

{y, y2,xy, x y2,x2 y, x2 y2,x3 y, x3 y2, yxy, xyxy, (yxy ) - l ,x (yxy  ) -I }. 

The two remaining vertices we denote simply by 13 and 14; we show below 
that in fact these are not in the orbit of  I .  See Fig. 0. We include representative 
lattices in the Appendix. 

Our first task is to construct the complex X. To this end, we consider 
star(l) and some identifications which are forced by the group. For example, 
since x stabilises I ,  it acts on Link(l)  and we compute from this description 
that it acts as the permutation which is the product of  two four-cycles and two 
transpositions: 

(y, xy, x2 y, x3 y)(y2,xy2,x2 y2,x3 y2)(yxy, xyxy)( (yxy)- I ,x(yxy)  -1 ) 

Referring to Fig. 0, we see that since x exchanges yxy  with xyxy and 13 is 
the unique vertex distance 1 from these two points it follows that x fixes 13 
and similarly 14. In fact x as an element of GL3(Z2) is a rotation of order 4 
and thus preserves a unique line and plane which are 13 and 14 respectively. 
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The element y does not stabilise I ,  but it does give rise to further identi- 
fications, for example the triangle with vert ices/ ,  y, y2 is mapped to itself by 
3-cycle, and the edge (y2,xy) is mapped to the edge (I, yxy). 

The last and most interesting identification arises as follows. The vertex 
yxy is distance 1 from 13. Thus if we apply (yxy) -1 to the edge (yxy, 13) we 
obtain an edge (I,(yxy)-l(13)), so that ( y x y ) - l ( 1 3 ) E  Link(l). The element 
yxy acts on the building as an element of  infinite order, so that Lemma 3.4 
prohibits 13 being fixed and one finds that yxy(14) = 13. Taking account of  all 
such identifications, we obtain the complex X shown in Fig. l(a). This consists 
of  four triangles glued with the identifications shown in that figure, where the 
triangle which is labelled 1 comes from the self identification of the triangle 
/, y, y2 discussed above. 

Of  course a fortiori when the whole group acts there could be further 
identifications. We claim (See Theorem 3.7) that in fact this does not happen. 
The proof of  this requires: 

Theorem 3.6 The vertices 13 and 14 do not lie in the orbit of  the identity 
lattice. 

Proof of  3.6 Since yxy(14)= t3, if one of the vertices lies in the orbit, then 
they both do. Suppose in search of a contradiction, that 13 lies in the orbit of  
the image. From this it follows that every element of the link of I lies in the 
orbit of  I .  Since the building is connected, it follows that every vertex in the 
building lies in the orbit of I .  

We have identified stab(I) as (x) so that vertices 13 and 14 have the 
property that they are fixed by all of  stab(I) and moreover, they are the only 
vertices in the link of I which are fixed by all of stab(I). 

Accordingly, we define a vertex p E Link(q) to be an s-point for q if  every 
element in stab(q) also fixes p. The comments in the above paragraph show 
that every point in the building has exactly two s-points in its link and that if  
~b is an element in im(p) then q~ carries the s-points of  q to the s-points of  

4'(q)- 
We have already observed that yxy(14) = 13 and it follows that xyxy(14) 

= x ( 1 3 )  = 13, so that 13 is an s-point for at least three points, namely /, 
yxy and xyxy. Thus every vertex in A must be an s-point for at least three 
points. Now any of the twelve group vertices is of the form 9(I), so that the 
stabiliser of  such a point is 9" s tab(I) .  9 -1. In particular, Lemma 3.3 makes 
it easy to check if the generator of  stab(9) also stabilises I;  namely we need 
only compute 9 " x .  g - I  and see if it is one of four constant matrices. A 
calculation reveals that this does not happen, so that [ is an s-point for at 
most two vertices, namely 13 and 14, which is the required contradiction. [] 

It follows from the proof that A contains three kinds of  vertex: 
1. Vertices in the p(B4) orbit of  I .  
2. Vertices which do not lie in the p(B4) orbit of I but are distance 1 from 

this orbit. 
3. Vertices which are not of either of  the above types. 
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Clearly, this classification is braid group invariant, and it follows from 
Theorem 3.6 that Type 2 points exist. We refer to the points of  Type 1 as 
9roup points and continue to refer to the points of  Type 2 as s-points. Our 
analysis below will show that there are countably many orbits of points of  the 
third type and we shall exhibit explicitly one vertex in each orbit. 

Theorem 3.7 The complex X has no further identifications in A/im(p). 

Proof First we observe that there can be no more vertex identifications. For 
there are only two vertices in X, one is a group point and one is an s-point. 
Thus it follows from the fact that the group acts simplicially and Theorem 3.6 
that these points cannot be further identified. 

We now deal with the possibility of  further identification amongst the trian- 
gles. Again, the invariance of  s-points immediately implies that both triangles 
3 and 4 have the property that they cannot be identified with any other triangle, 
nor can they admit any further self-identification. 

I f  there is some group element which carries triangle 1 to triangle 2, this in 
particular implies that there is an element 9 in the group which maps triangle 2 
to itself as a three cycle, since such an element exists for triangle 1. We claim 
that this is impossible. 

First note that there is a map B4/Z ~ 23 given by mapping x to the identity. 
The image is generated by y and the kernel is those elements in Ba/Z which 
preserve lattice type. It follows that (inverting 9 if necessary) that we have 
9 - - - w . y  where w is an element which preserves lattice type. We refer the 
reader to Fig. l(a). Our first claim is that the element w . y  cannot now be 
an anti-clockwise rotation of triangle 2. For then the element y . w .  y[1] = 
y[y2] = [I] stabilises the identity lattice and is in particular type preserving, 
which it cannot be. Consider y - l . w . y ;  since w . y  rotates clockwise, this 
is type-preserving and a similar calculation shows that this element stabilises 
the vertex y2. Thus y - I .  w- y E stab(y 2) = y-lstab(1)y and so w E stab(/). 
Now Lemma 3.3 shows that 9 is of  the form p(x k . y) for k = 0 . . . . .  3 which 
is easily checked to be impossible. 

We now deal with the case of  further identifications amongst edges. We 
have already shown that such identifications cannot arise from extra triangle 
identifications, but we have to deal with the possibility of an element of  the 
image which causes an unexpected identification of an edge of a triangle in 
Lk(I)  with a triangle in an adjacent link. 

By virtue of  its s-points, the edge (13, 14) cannot be identified with any 
other edge except itself and since there are no edge inversions, this edge can 
have no further identifications. 

I f  edge (yxy, 13) is to be identified any other edge, it can only be the class 
of (/, 13). However such a group element stabilises 13 since this is the only 
s point, and thus the element is type preserving; a contradiction since the 
other end of the edge forces yxy and I to be identified and these have different 
type. 
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Finally, if  edge ( L y x y )  is identified with edge ( L y  2) this forces an iden- 
tification of triangle 3 with either triangle 1 or 2 which we have already 
excluded. [] 

3.2. The tube 

We now begin to construct the tube which forms the rest of  the quotient 
complex. Again, for clarity, we summarize the procedure which builds up this 
tube, deferring some of the steps in its justification until later. 

We note that the element x stabilises both 13 and 14. Moreover, we have 
already observed that y x y ( 1 4 ) =  13 so that the element a = y x y  . x .  ( y x y )  - t  

also stabilises 13. 
One computes that the elements x and a both act on the link as elements 

of  order 2 and that their product has order 4, so that the image of the map 
i0 : stab(13) ~ Aut(Link(13 )) contains a dihedral group D8 ~ (x,a [x z = a 2 = 

(a .x)  4 = 1). We shall show below that this image is exactly this dihedral 
group. 

We now introduce the following notation. The link of the identity can be 
described by fixing once and for all time, matrices M1 . . . . .  M I4  whose columns 
define the lattices at the relevant point in A. Such a choice is not canonical. 
All our calculations will be done with respect to the set described in the 
appendix to this paper. Then the link of  13 is graph isomorphic to the link of  
the identity and we choose the identification so that our numbering is given 
by premultiplication by the matrix M13 associated to lattice 13; so that for 
example, the vertex we shall identify with 1 in the link of 13 will be the 
equivalence class of  the lattice MI3 �9 MI. For convenience we shall denote this 
lattice class by 13.1 or for brevity 1". A somewhat more general example 
will define the notation completely; i f  we now look in the link of our new 
vertex 13.1 at the vertex labelled 7, this will be described by 13.1.7. Of  course, 
links overlap so a vertex may have many guises; for example, 13.2 = [I] and 
13.1 = [yxy]. 

We now compute that the permutation action of  the generators is given as 
follows: 

x = (I*, 3")(4", 9")(8", 11")(12", 13") 

a = (2",9")(3", 13")(4", 14")(5", 10") 

From this we compute the quotient complex Link(13)/D8 is the shaded 
hexagon in the chain of  hexagons shown in Fig. 2. Notice that consideration 
of the generators shows that the vertices 6* = 13.6 and 7* = 13.7 are fixed for 
the entire action of  i0(stab(13)) (this will be proved in 3.15). One finds that 
the element yxy  acts as follows: 

6* -~ 7* 10" ~ 13 13 --~ 8* 2* --~ l* 

so that when we quotient out by the group im(p) we obtain an annulus, con- 
sisting of four triangles, two of which already appear in the complex X; we 
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5*= 10"= 14 

5**= 1 '= 1(3) 

[ (4) 

Fig. 2 

identify these two triangles onto X. The new complex can be considered to 
have been constructed from X by adding an annulus consisting of  two trian- 
gles. The annulus is added along the edge (13, 14) and this leaves a new free 
edge coming from the edge (6",7"). 

Since x and a both stabilise 6* and 7", we can compute the action of these 
elements on Link(6*) and Link(7*). One finds that a acts trivially on Link(7*) 
and that x acts trivially on Link(6*). However, x continues to be an element of  
order 2 when it acts on stab(7*). Moreover, the above observations show that 
the element at = y x y  . a .  ( yxy )  -1 lies in stab(7*). If, for brevity, we denote 
the vertex 13.7.k by k**, then we may compute that the action of  the elements 
x and al is given by: 

x = (1"*,3"*)(4"*, 9"*)(8"*, 11"*)(12"*, 13"*) 

al = (2"*,9"*)(3"*, 13"*)(4"*, 14"*)(5"*, 10"*) 

It is part of  the power of  our notation that in these coordinates, the permutations 
induced on the link of 7* are the same as those induced on 13. 

Further, it turns out that the element y x y  carries 6** to 7**. Thus we 
obtain another annulus; one boundary component of  this annulus coming from 
the (6",7")  edge of the hexagon, the other from the (6**,7**) edge. It will 
turn out that this picatre repeats itself and we add on a series of  annuli coming 
from the links of  the 13.7.7 . . . . .  7 = 7 (n), giving rise to an infinite tube. The 
chain of  hexagons so generated and a typical such hexagon are illustrated in 
Figs. 2 and 3 respectively. 
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We now give a more complete discussion of  the construction of  the tube. 
As above, we define a sequence o f  points 13.7.7 . . . . .  7.k = k (n). 

Lemma 3.8 For every n, yxy(6 (n)) = 7 (n) 

Proof. Unravelling the definitions, we see that the lemma requires that y - x .  
y "  MI3 �9 M~ -1 �9 M6 = Ml3 �9 M~' �9 y, where y E SL3(O). Equivalently, that M7 -n �9 
M ~ l . y . x . y .  M13.M~-l .M6 lies in SL3((.0). This is a routine cal- 
culation. [] 

We now define a building map ~ = M13 �9 MT- M~1; by construction, ~(k ~n)) 
= k (n+l) for every k E {1 . . . . .  14}. We will see later that these vertices are in 
distinct orbits under im(p) so that the element ~ does not lie in im(p). Using 
the map ~ we can identify the actions o f  elements in successive stab(7Cn)). 
The calculations outlined on Link(13) give a pair o f  elements x and a 
lying in stab(13). For k > 0, we define ak = (yxy) k+l . x . ( y x y )  -k- l ,  with 
the convention that a0 = a. We claim: 

Lemma 3.9 The followin9 diagram commutes: 
r 

Link(7(n)) , Link(7("+l)) 

Ix Ix 
Link(7 (n)) , Link(7(n+l)) 

Lemma 3.10 The followin 9 diagram commutes: 

Link(7(n)) , Link(7(n+l)) 

Link(7(n)) , Link(7(n+1)) 

Lemma 3.11 The map an : Link(7(")) ~ Link(7 ~m)) is the identity map for 
m>n.  

These are all routine calculations in linear algebra, made somewhat simpler 
by the fact that coefficients are in the field Z2. In particular we have as a 
consequence: 

Corollary 3.12 For every n, the image of the map in :stab(7(n)) ---~ 
Aut(Link(7(n))) contains a subgroup isomorphic to D8 ~- (x, an Ix 2 = a~ = 
(an .x) 4~-~- 1). 

Given these ingredients we build up the second part of  our quotient com- 
plex, namely an infinite tube. This is built up from the succession o f  annuli 
which come from quotienting out the hexagon Link(7(n))/D8 by the map yxy. 
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Each such annulus consists of  four triangles, two of which have occurred in the 
previous annulus, and the net effect is gluing on an annulus made of two trian- 
gles, one of whose boundary components comes from the edge (6(n-1),7(n-1)) 
and the other from the edge (6(n),7(n)). We denote this tube by T. We now 
form a complex B by glueing the tube T to the complex X along the circle 
coming from the edge (13, 14). The chain of  hexagons used in this construc- 
tion was already depicted in Fig. 2; for a picture of  a fundamental domain 
of the tube, the reader is referred ahead to Fig. 6. Our main theorem in this 
section is: 

Theorem 3.13 The quotient space A/im(p) is isomorphic to B. 

The proof of  this result takes several steps. The first is to show that 
Lemma 3.12 describes the whole image of the maps in. First we need the 
following (presumably well known) lemma: 

Lemma 3.14 Any subgroup G of  GL3(Zz) of  order 24 is either the stabiliser 
of  a plane or the stabiliser o f  a line. 

I f  it is a line which is stabilized then there are exactly two orbits o f  lines, 
one containing one line and the other containing 6 lines. 

I f  it is a plane which is stabilized then a similar statement holds. 

Proof The vector space W ~ Z23 on which GL3(Z2) acts has seven lines and 
seven planes; since the group acts transitively on lines, it follows that the 
stabiliser of any line has index 7 and therefore order 24. It follows that if  G 
stabilises any line it would be a subgroup of, and hence equal to, some such 
stabiliser. 

We may suppose then, that no orbit for G contains only one element. Thus 
the possibilities for the sizes of  orbits for G are {2,2,3} or {3,4}. 

We claim the first case is impossible; for by passing to a subgroup of index 
at most four, we obtain a subgroup of G which acts trivially on four distinct 
vectors. However any four nonzero vectors in W contain a basis and this is a 
contradiction. 

Thus G must have orbit type {3, 4}. The action of G on the second orbit 
gives a representation of G to the symmetric group on 4 letters which must be 
faithful; since exactly as above the orbit contains a basis, so that any element 
of  G acting trivially fixes a basis and is therefore trivial. Since both groups 
have order 24, G acts as the symmetric group on 4 letters on these four lines. 
Since some triple of these lines contains a basis, it follows that any such 
triple does. Thus after a conjugacy, G is the group of all permutations of  the 
vectors {el,e2,e3,el + e2 + e3}, where {el,e2,e3} is a basis for V. One now 
sees easily that G stabilises the plane coming from the orbit of  size 3; namely 
(e2 + e3, el + e3 ) and acts transitively on all other planes. [] 

Theorem 3.15 For every n, the image o f  the map in :stab(7(n)) ---~ 
Aut(Link(7(n))) is precisely the group D8. The quotient of  Link(7 (n)) is a 
hexagon, see Fig. 3. The points 6(n+1),7 (n+l) are stabilized by this action, 
and are the only points in Link(7 (n)) with this property. 
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2(n+l) = 7(n-l) 

= 6 (n)  10 (n+l) 5(n+l) 

6(n+l) 7 (n+ !) 

l(n+l)= 8(n) 

8 (n+l) 

Fig. 3 

Proof. First note that GL3(Z2) has order 7.24 and D8 has order 8 thus we 
must show that the image is not the entire group and does not have order 24 
or 56. 

Now GL3(Z2)  contains no subgroup of index 3; for the action of the 
group on the left cosets of  such a subgroup gives a nontrivial representation 
GL3(Z2) -'+ ~'3 hence a normal subgroup of index at most 6; contradicting the 
simplicity of  GL3(Z2). 

Thus the only possibilities for groups strictly containing D8 are subgroups 
of order 24 and the whole group. We shall prove the theorem by showing that 
a subgroup of  order 24 cannot stabilise a tube vertex. 

Since yxy(6 (n)) -- (7(n)), if either of these stabilisers has order 24, they 
both do. By the lemma, it follows that in(stab(7tn))) is either the stabiliser of  
a plane or of  a line in V. Without loss we suppose the latter and suppose that 
5 (n+l) corresponds to a line (the argument is the same if 5 (~+1) corresponds to 
a line.) 

We refer the reader to Figs. 2 and 3, recalling that 6 (~) = 5 (~+1). Since 
the orbit of  the vertex 5 (~+~) under the group in(stab(7(~))) already contains 
10 (~+l), neither of  these is stabilised by i~(stab(7(n))). Thus 5 (~+1) is in an orbit 
of  6 lines so we can find g E in(stab(7(~))) throwing this vertex to the vertex 
1 (~+1) = 8 (~). It follows that the element (yxy)-lg(yxy) -l throws the element 
7 (~) to the element 7 (n-l), implying that in_l(stab(7(n-l))) is also a group of  
order at least 24. 

Repeating this argument, we see that it suffices to show that i0(stab(13)) 
cannot contain a subgroup of order 24. However, this also is impossible. For 
this means that either we can find an element of  the image throwing 5*(= 14) 
to yxy; impossible as the former is an s point and the latter is not. Or we can 
find an element throwing 8* to I and this is impossible as 8* =yxy(13) is the 
group image of an s point, hence an s point. [] 

This information will also be used in giving a complete iterative description 
of  the groups stab(7 (~)) which we shall need when computing the complex of  
groups. (See Theorem 4.6 below.) 
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Our next series of  results will be directed towards showing that the tube 
we have just constructed contains no further identifications. 

Lemma 3.16 There are no elements in the group mapping a triangle in the 
tube to itself. 

Proof There are two cases, see Fig. 4. In the first case we see that yxyo~(7 (n)) 
= yxy(6 (~)) = 7 (~), so yxye E stab(7(n)). However,  yxycff6 (~+I)) = 8 ("+~) but 
by Theorem 3.15 the image of  stab(7 (n)) --~ Aut(Link(7(n))) fixes 6 (~+l), a 
contradiction. 

In the second case, we argue similarly, observing that yxyr1-1 E stab(7 (~+1)) 
but throws 7 (n) to 8 (n+2) and an analogous contradiction. [] 

Lemma 3.17 The point 6* is neither a group point nor in the orbit of  an 
s-point. 

Proof The point 6* cannot be a group point as group points have stabitiser 
Z4 and the stabiliser of  6* maps onto Ds. 

I f  it were an s-point, there would be an element ~/ in the group such 
that r/(6*) = 13. We claim this is impossible. By Lemma 3.16, r/ cannot map 
the triangle (13, 6", 7*) to itself. Thus, there are two types of  cases, depending 
on whether ~/(13) is mapped to the orbit o f  14 or to the orbit o f  7* (it cannot 
be a group point). These are exemplified in Fig. 5. In the first case, we have 
one ofyxy~l or (yxy)-lrl lies in stab(13) and yet moves 6* which contradicts 
Theorem 3.15. In the second case, we may choose an element 0 E stab(13) 
which moves r/(7*) and deduce the element t / -10r/E stab(13) moves the point 
7* contradicting Theorem 3.15. [] 

We observe that the second part o f  this argument actually shows a little 
more: 

6(n) 

8(n+2) 

Fig. 4 
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T 
r I (13) Link(13) 

l 
11(7") 

Fig. 5 

-q(7 ~ ) 

~(13) 

Corollary 3.18 For n > 2, the point 6 (n) does not lie in the orbit o f  the point 
6(n-l). 

Remark 3.19 Notice that the Lemma implies that the orbit of  every point in 
Link(13) is now accounted for as either a group point, the orbit of an s-point, 
or the orbit of  6*. 

Lemma 3.20 For n > 2, a point 6 (n) does not lie in the orbit o f  any 6 (") for  
any m < n. 

Proof  We will argue by induction on n. Firstly observe that 6** cannot be in 
the orbit of  an s-point. For if  it were, since the edge (6",7")  lies in Link(6**), 
it would follow that the group element mapping 6** to 13 would map that edge 
into Link(13). We deduce (see the remark above) that one (and hence both) of  
6* or 7* would be a group point or an s-point, contradicting Lemma 3.17 unless 
this edge is actually stabilised. However, since edge inversions are impossible, 
this would mean that the group element actually lay in stab(7*) and we know 
that there are no such elements mapping 6** to 13. 

The proof that 6** cannot lie in the same orbit as 6* is the case n = 2 of  
Corollary 3.18. This completes the first step of the induction. 

Now fix some k > 2 which is chosen as small as possible so that we have a 
counterexample to the Lemma. Suppose that there is a group element carrying 
6 (k) to 6 (m) where m _< k - 2 .  We again consider the edge (6(k-l),7(k-1)); this 
is carried into the link of  6 (") . Since every point in this link is in the orbit 
of  6 (m-l), 6 (m) or 6 ('+1), this is already a contradiction to the minimality of  k 
u n l e s s m = k - 2  o r m = k - 1 .  

I f  m = k -  2, we argue as in the paragraph above: The minimality of  k 
implies the edge must be stabilised, and the absence of inversions means we 
would find a group element in stab(7 (k-l)) mapping 6 (k) to 6 (k-z), a contra- 
diction. 

I f  m = k - 1, this is Corollary 3.18. [] 

Proof  o f  Theorem 3.13 The picture of  the tube is as shown in Fig. 6. We have 
already shown in Theorem 3.7 that the complex X is embedded. 
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14=5" 
13 = 2** 
8*= 1 ** 

We now claim that we may build an equivariant map q : d ~ B. 

For we clearly have a map from the orbit of I under im(p) to X, and 
hence from orbits of the triangles numbered 1 and 2. We then use the orbits 
of  the s-points to map in the triangles 3 and 4, this is well-defined because 
by Theorem 3.6, s-points are not group points. Thus we have defined q on 
a subcomplex Co C A which contains the orbit of the link o f  1. Theorem 3.7 
shows that we have accounted for all possible identifications, so that q maps 
Co onto the complex X. 

We now map in the tube, triangle by triangle. We refer to Fig. 7. 

The next triangles of  the construction are attached to Co along the edge 
coming from (13, 14). Recall that 14 = 5* so there are two triangles to be 
attached at this point, as the orbit of  5* in the action of stab(13) on its link 
contains the two points 5* and 10". So we append triangles (13,5",6")  and 
(13, 10",6") to Co and all triangles in the im(p) orbit of  these. We have shown 
that 6* is neither a group point nor in the orbit of an s-point, so that there is 

14 

Fig. 7 

6" 7* 

A presentation for the image of Burau(4) | Z2 



554 D. Cooper, D.D. Long 

no obstruction to extending the map from the orbit of 6* to the corresponding 
vertex in B and whence from the orbit of these two triangles in A. 

This leaves only one triangle (13,6",7") in Link(13) unaccounted for and 
we attach the orbit of this triangle. This defines the map q on an equivariant 
complex C1 C A which includes the links of I and of 13. 

We can now continue this process. At each stage we seek to extend by 
triangles the complex Ck on which the map is defined. It follows exactly the 
same construction of the above paragraphs. By Lemma 3.20, the vertices of  
the form 6 (k+l) on which we wish to define the map does not appear in the 
complex Ck so that there is no obstruction to extending q over subsequent 
triangles and extending by equivariance. 

Notice that at every stage of this process, if the map is defined on a simplex, 
then it is defined on all simplices its star. In particular, since the building is 
connected the map q is eventually defined on every simplex. The result now 
follows. [] 

This result identifies the quotient complex completely. The building is con- 
tractible, so if we denote the stabiliser of a simplex o" C A by G,, it follows 
from Haefliger's results on complexes of groups (see Theorem 5.1) that we 
have: 

Theorem 3.21 ira(p) ~ (B, G~, ~ka, g.,b) 

Thus to compute the group of ira(p) we need to compute the underlying 
group of this complex of groups. The next section is devoted to this calculation. 

4. The complex of groups 

In this section we compute the underlying group of B. In order to carefully 
define the conventions with which we will work, we have included an appendix 
which contains a brief summary (which follows Haefliger [3]) of complexes 
of groups. 

4.1 The underlying group of X 

The complex X consists of 2 vertices, 6 edges and 4 triangles. We begin by 
taking the subcomplex X0 consisting of  the closure of the first two triangles. 
The underlying group of this subcomplex of  groups is B4/Z: 

Lemma 4.1 The underlying group H of  (Xo, G~, q~a, ga, b ) has the presentation 

(x, y lx4= y3= l [x2,yxy] = 1) 

where x and y are generators of  the two vertex groups. 
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Fig. 8(a) 

Proof The procedure comes from 5.1.3, 5.1.4. For each cell a in Xo we choose 
a cell ~ with p 6  = a. These choices all lie in Link(I)  and are shown as bold 
edges in Fig. 8(a). There are 2 vertices vl, v2, 3 edges el, e2, e3 and 2 triangles 
zl, z2. These choices determine the choice o f  lifts o f  cells in the 1-skeleton in 
the barycentric subdivision o f  X0. A vertex or edge o f  the barycentric subdi- 
vision lies in the interior of  a unique cell a o f  X0 and we choose the lift of  
the vertex or edge to lie in the chosen lift o f  a. 

E3 

v I 

Fig. 8(b) 
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Next we compute the head elements h a for each edge a of X -0) and these 
are shown next to the edge in the barycentric subdivision they correspond to in 
Fig. 9(a). The chosen simplices are again indicated by bold lines and vertices 
in this figure. 

From this we compute for each triangle with sides a, b, ab the monodromy 
element g,~,b. One finds that these elements are nontrivial in only two cases; 
these are the circled elements shown in Fig. 9(a). 

Now we choose the maximal tree in X -(1) which is the projection of the 
corresponding tree upstairs shown as heavy lines in Fig. 8(b), Then Fig. 9(b) 
shows which elements of H each edge represents. 

We will now repeatedly exploit the triangle relations in the underlying 
group of the form: 

(ab)  + = b+ a+ ga, b . 

For example, the shaded triangle in Fig. 9(b) has two sides in the maximal tree 
hence they are both trivial in H and since for this triangle g,~,b = 1 it follows 
that the third edge (labelled E1 in the figure) is also trivial in H. Since edge 
El is identified to the other edge labelled Et in 9(b), it follows that E2 = y - l  
in H. 

In a similar way one now easily fills in the remaining information on 
Fig. 9(b) using the triangle relations, the information in Fig. 8(b), and the 
identifications of the edges. In particular we see that the underlying group 
is generated by x and y. 

~ x y  xy 

ly 1 E 3 ~  
V' I 

I ~ ~ 1  y 

/ 1 

Fig. 9(a) 
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yZ 

Fig. 9(b) 

The only relations we have not yet incorporated are the inclusions of  cell 
groups: 

O,,(g) = a - g a  + 

These relations are non-trivial only when a cell and a face of  the cell both have 
non-trivial groups assigned. This happens only along E4 and E5 (to see this 
recall that the stabilizer of  the identity is (x)). Figure 10 shows the two edges 
E4,Es for which we must add relations. There is only one monomorphism 
Z2 ~ Z4 and so q~e4, ~be5 are equal. Since E4 = 1 in H the relations from E4 
identify Z2 as a subgroup of Z4. The remaining edge E5 = y x y  in H thus 
gives the relations 

w = ( y x y ) - l w ( y x y )  

for every w in Z2. But this is only non-trivial for w = x 2 which then says 

X 2 = ( y x y ) - l x 2 ( y x y ) .  [] 

f 

Fig. 10 

z~ 
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T 
Triangle 3 

" , !  

l 
Triangle 4 

< x , a ' >  

Fig. 11 

Next we consider triangles 3 and 4. These form an annulus A in the quo- 
tient. The computation of the head elements is left to the reader in this case; 
as a result, one checks easily that the monodromy elements ga, b in this annulus 
are all trivial. 

The groups assigned to the cells of A are as shown in Fig. 11. In A the 
edge (/, 14) is identified to the edge ( y x y ,  13). This figure also depicts the 
maximal tree for A by heavy edges. Using this choice of tree and the triangle 
relations, we have labelled the edges with the group elements of H that they 
represent - this is the edge labelling in Fig. 11. 

An edge labelled 1 connecting two vertices creates relations which identify 
the group assigned to the tail of the edge with the obvious subgroup of  the 
group at the head of  the edge. Edges not labelled by 1 are labelled b and it 
remains to examine the relations which result. Those edges labelled b which 
start at a vertex carrying the group (X2), for example E5, identifies X 2 with 
bx2b -1 . This leaves a number of edges labelled b starting at the group (x) and 
ending on (x, al). These give relations which identify b - l x b  with a. 



A presentation for the image of Burau(4) | Z2 559 

Thus the underlying group of A has a presentation with the generators and 
relations for Stab(13) together with an element b and extra relations saying 
b commutes with x 2 and conjugates x into a. The presentation of Stab(13) is 
given in Theorem 4.7 when n = 0. When the annulus is glued onto triangles 1 
and 2, b is identified with yxy;  we refer to Figs. 9(b) and 11. Thus we have: 

Lemma 4.2 The underlying group o f  X is 

(x, y I x4 = y3 = 1 Ix 2, yxy]  = 1 Ix, yxy]  4 = 1 ) .  

4.2 The group o f  the tube 

We will compute the group associated to the complex of groups for a single 
annulus made from a pair of  triangles. This will serve the dual purpose of 
computing the contributions from Link(13) as well as the contributions from 
the successive annuli which build up the tube. 

We refer the reader to Fig. 12(a) which shows the barycentric subdivision 
of the first two triangles in the sequence embedded in the building A; these lie 
in Link(13). The distinguished choices of  edges and vertices are indicated as 
usual by the heavy lines. Each edge is oriented according to the conventions 
described above and labelled with its head element ha. One then sees easily: 

Lemma 4.3 For every composable pair o f  edges a and b, we have 9a, b = 1. 

This means that the presentation for the group in this case is especially 
simple as the relations of  Type (d) (see Sect. 5.1.4) are just those of  the usual 
edge group of algebraic topology. We choose a maximal tree, consistent with 

7* 13 

t- ll\ . 

14. 

6" 

Fig. 12(a) 
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1 

Fig. 12(b) 

113 

14 
�9 W 

and extending the one in Fig. 11, indicated by bold lines as in Fig. 12(b) and 
the labelling of this figure is by the resulting group elements, where unlabelled 
edges correspond to the identity group element. We see that we obtain one 
generator from the edges and all other groups come from vertex, edge and 
2-simplex stabilisers of A. Almost all the relations of Sect. 5.1.4 Type (c) now 
say that the maps ~a are inclusions. Some do not; for example, the inclusion 
of the stabiliser of the edge a = (13, 14) into stab(14) yields that for 9 E 
stab((13, 14)) that 7- 97 + = ~k(g) = (yxy)-lg(yxy).  However the identification 
of the edge (13, 14) in Figs. 11 and 12(b) show that ? = b =yxy.  Thus we 
have shown: 

Lemma 4.4 I f  A denotes the annular 9raph of 9roups shown in Fig. 12(a), 
then 

rq(Al) ~ (yxy, stab(7*)) 

The picture now repeats itself exactly with the groups stab(7 (n)) as we add 
successive annuli. In every case these stabilisers are subgroups of the group 
generated by the elements x and yxy, so that we have shown: 

Theorem 4.5 
~l(A~) ~ (x, yxy) 

4.3 A presentation for im(p) 

We now compute explicitly all the data necessary to find a presentation for 
the fundamental group of the complex of groups associated to the action of  
im(p) on A. To this end we need: 

Theorem 4.6 The 9roups stab(7 (")) are all finite 9roups of order 16.4" which 
are 9enerated by x, ao,..., an. 
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Proof  We have a map io : stab(13) --+ D8 < Aut(Link((13))).  Anything in 
the kernel o f  this map must in particular stabilise I ,  so that by Lemma 3.3, 
ker(io) < (x), whence ker(io) = (x2). Thus there is an exact sequence 

1 --+ (X 2) ~ stab(13) + D8 + 1 

where the dihedral group is generated by x and a. It follows that stab(13) has 
order 16 and is generated by x and a. 

This is the basis for an inductive argument: I f  we consider 
in : stab(7 (")) ~ Ds, we will again have ker(i,) < stab(7 (n-l)) so that stab(7 (n)) 
is described as an extension Kn ~ stab(7 (n)) ~ D8. In sum we have a diagram: 

(x 2) K t K2 

(x)~stab(1) - stab(13) ,, stab 7*) , stab(7**) 

(x,a)-~D 8 (x, al)= D8 (X, az)~D 8 

By Lemma 3.11, the elements a0 . . . . .  an-1 all lie in stab(7(n)), so our in- 
ductive hypothesis shows that stab(7 (n)) is generated by x,a, al . . . . .  an. 

Referring back to Figs. 2 and 3, we recall that x acts as a transposition 
on the vertices 8 (n-l) and 11 (n-l), while the element an-l moves them not at 
all, so that Kn is the kernel o f  the map stab(7 (n-l))  ~ Z2 given by mapping 
every ai to 0 and x to 1. Thus stab(7 (n)) has order 8 �9 16- 4n-1/2 = 1 6 . 4  n as 
required. [] 

Theorem 4.7 The 9roup stab(7 (n)) has presentation: 
Generators: x, ao, a l  ~ �9 �9 � 9  a n  

Relations: 
1. x4=l  

2 2. x 2 = a  2 . . . . .  a n 

3. (xai)4 = l f o r a l l i  > 0 
4. [ai, aj] = [ai+k, aj+~] for  all i,j ,  k 
5. [x, ai] = [ak-l,az+k] for  all i 
6. The 9roup is nilpotent of  class 3. 

Proof  Each of  the groups stab(7 (n/) is a subgroup o f  (x, yxy) .  Setting b = yxy,  
one discovers after defining a change of  basis matrix by: 

P =  1 
0 
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a calculation reveals that: 

(i1+  t) 0) 
P-lfl4 | Z2(b)P = 1 t P-lf l4 | Z2(x)P = 0 1 1 . 

0 t 0 0 1 

This observation makes it easy to check that the group stab(7 (n)) satisfies all the 
stated relations and moreover that the commutator subgroup is the direct sum o f  
n + 1 copies o f  Z2. Define an abstract group T(n) with generators and relations 
as in the statement, so that we have a surjective homomorphism ~ : T(n) --~ 
stab(7(n)). Because relation 6 implies that T(n) is nilpotent o f  class 3, whence 
relations 4 and 5 taken with Theorem 5.4 o f  [6] implies that the commutator 
subgroup of  T(n) is generated by commutators [x, aj]. Further, relation 2 gives 
Ix, a]] = (xaj)2, so that by relation 3 each of  these commutators has order two. 
It follows that the commutator subgroup of  T(n) can be no larger than the 
direct product o f  n + 1 copies o f  Z2. Restriction o f  the map rc to commutator 
subgroups implies that the commutator subgroup of  T(n) is actually isomorphic 
to n + 1 copies o f  Z2. 

Now computing the abelianisation o f  T(n), we see that it is a direct sum 
o f  groups generated by x,x- lao . . . . .  x-la~, where x has order 4 and each of  
the remaining generators has order 2. Thus the abetianisation is a group of  
order 4 . 2  n+l. It follows that T(n) is a group of  order 2 n+l �9 4 . 2  n+l = 1 6 . 4  n 
which is the order o f  stab(7(")). Whence rc is an isomorphism, completing the 
proof. [] 

Theorem 4.8 The group im(p) is presented as: 
Generators: x, y 
Relations: 
1. x 4 =  1 
2. y3 = 1  
3. [x2,yxy] = 1 
4. [x, ( y x y ) i ]  4 = 1 for all i > 0 
5. The 9roup 9enerated by ((yxy)ix(yxy)-i l i  > O) is nilpotent o f  class 3 

Proof  The calculations above make it clear that all relations must lie in the 
group generated by x and yxy. Since yxy  acts on the building as an element o f  
infinite order, it follows that if  one writes the relation in this group in terms of  
these two elements, it must have zero exponent in yxy. The reason is that any 
element u o f  exponent zero can be written as a product o f  conjugates o f  the 
form (yxy)rx(yxy)  -r. It follows that u lies in stab(7(")), for some sufficiently 
large n and in particular it fixes a vertex. 

Now yxy  fixes no vertex, so that writing a purported relation as some 
power o f  the element yxy multiplying an element o f  exponent zero shows that 
the yxy  exponent is forced to be zero. 

Thus any relation can be written as a word in the group ((yxy)ix(yxy)-i[i  
> 0) and hence lies in stab(7 (")) for some n. Now one sees that the relations 
o f  Theorem 4.7 are exactly the relations above restricted to this subgroup. [] 
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Corollary 4.9 The image group f14 @ Z2(B4) is presented as: 
Generators: x, y 
Relations: 
1. X 4 = Z  
2. y3 = z  
3. [x2,yxy] = 1 
4. Ix, (yxy)i] 4 = 1 for all i >= 0 
5. The group generated by ((yxy)ix(yxy)-i[i  > O) is nilpotent o f  class 3 
Here z denotes a generator o f  the centre o f  B4. 

Remarks. An interesting feature of this presentation is that all the extraneous 
relations are contained in vertex stabilisers. 

It is also interesting to observe that the use of the form J bypasses the 
need for calculations involving the matrices x and y; all the proof really uses 
is the fact that these matrices are isometries of the form J.  To underline this 
we observe that our methods show: 

Theorem 4.10 The subgroup of  GL3(Z2[t, t - l ] )  consisting of  isometries o f  the 
form J is precisely the image o f  f14 @ 22- 

Proof In the key Lemma 3.2, we only made use of  the fact that the J isometry 
had Laurent polynomial coefficients to prove that all its entries were constants. 
The paragraph which followed this then used this fact to deduce that only four 
possibilities arose by checking the twenty four elements in the image of  the 
symmetric group after specialising t =  1. However one easily checks that in 
fact one does not obtain any new elements in the entire group GL3(Z2). To 
sum up, we have shown: 

Lemma 4.11 The only matrices in Isom(J)  < GL3(Z2[t,t-1]) which stabilise 
the identity vertex are powers o f  the element p(x). 

We can now follow the computation for the vertex stabilisers through from 
the beginning noting that all that was ever used was the precise description 
of stab(/) and the fact we were dealing with Isom(J). In particular, all ver- 
tex stabilisers have the same size in Isom(J) as they do in im(p) and these 
sizes are all distinct so that Isom(J) does not cause any more vertex identi- 
fications, hence A/im(p) ~- A/Isom(J) and since im(p) =< Isom(J) the groups 
coincide. [] 

5 Appendix 

5.1 Complexes o f  groups 

We recall some of the theory of  complexes of  groups as developed by 
Haefliger. 

5.1.1 Simplicial cell complexes. Let X be a CW complex and a an n-cell of 
X, then an ordering of a is a continuous map of the standard n-simplex A n 
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onto a which is a homeomorphism o f  the interior o f  A onto the interior o f  
a. Two orderings o f  a are consistent if  they differ by an isometry o f  A. A 
simplicial cell complex is a CW complex X together with a maximal set o f  
(n + 1)! consistent orderings on each n-cell of  X such that the restriction o f  
an ordering o f  an n-cell a to a face 4 o f  a is an ordering o f  4. 

A simplicial map between simplicial cell complexes is a continuous map 
f whose restriction to each n-cell cr is a homeomorphism onto an n-cell 4 and 
such that for each ordering ~b of  a the composition f o ~b is an ordering o f  4. 

An inversion is a simplicial map f which maps at least one n-cell a to 
itself with the property that the restriction f l a  is not the identity. We will 
consider a group G acting by simplicial maps on a simplicial cell complex X 
having the property that no element o f  G is an inversion. In this case we say 
that G acts without inversions. 

The Barycentric subdivision of  a simplicial cell complex X is a simplicial 
cell complex X I. It is formed by taking the images under the orderings o f  the 
barycentric subdivisions o f  the simplexes A n. Since orderings are consistent, 
there is a well defined barycenter in each cell a o f  X. Thus the images under 
the orderings o f  the simplices o f  the barycentric subdivision o f  the standard 
simplexes A n provides the structure o f  X 1. The vertices o f  X x correspond to 
the cells o f  X.  An edge a o f  the barycentric subdivision o f X  1 corresponds to 
a face 4 < a o f  a cell a o f  X and is to be thought of  as a directed edge in 
a between the barycenters o f  4 and a directed from the larger cell cr to the 
smaller face 4. The initial vertex of  a is i(a) = a and the terminal vertex of  e 
is t(a) = 4. The edge with this orientation is denoted a + and with the opposite 
orientation by a - .  

Two edges a, b in X 1 are composable i f  there is some cell a o f  X they 
both lie in and if t ( a ) =  i(b). In this case there is an edge c = ab in a with 
i(c) = i(a) and t ( c ) =  t(b) and there is a 2-simplex in X 1 containing the 
3 edges a, b, c. 

5.1.2 Complexes o f  Groups. A Complex o f  Groups is the data (X, Gg,~a, ga, b) 
where X is a simplicial cell complex and for each cell cr o f  X there is a group 
G~ such that 

�9 for each edge a o f  X 1 there is a monomorphism 

t//a: Gi(a) ~ Gtca) 

�9 I f  a,b are composabte edges o f  X 1 there is a given monodromy element 
ga, b E Gt(b) such that 

go, b~b(ga, b) -~ = ~ o ~  

�9 the cocycle condition (which is vacuous in the case of  interest that d im(X) < 
3) whenever a, b, c are composable edges then 

~ba(gb: )ga, b~ = g~,ag~b,c . 
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Fig. 13(b) 

For a 2-dimensional complex of groups, the data needed is indicated in the 
Fig. 13(b). This shows the barycentric subdivision of a single triangle. There 
is a group assigned to each vertex and edge of the triangle, and one for the 
triangle. There are inclusions of the triangle group into each edge group and 
into each vertex group. There are inclusions of the edge groups into adjacent 
vertex groups. Finally there are 6 monodromy elements ga, b corresponding to 
the 6 choices of starting at the barycenter of the triangle and going via the 
barycenter of an edge to a vertex adjacent to that edge. 

5.1.3 The Group complex associated to a 9roup action. Suppose that a group 
G acts simplicially without inversions on a simplicial cell complex k then 
there is an associated complex of groups which is unique up to isomorphism. 
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This is constructed as follows. First the quotient space X = X/G  inherits a 
simplicial cell structure from X due to the hypothesis o f  no inversions. Let 

p : X ~ X  

be the quotient map. Next for each cell a o f  X choose a cell 8 lying over a 
and define 

G~ = Stab(6) .  

For each edge a o f  X 1 with i(a) = a and t(a) = z let 8 and ~ be the choices 
made above. Now it is likely that 6 does not contain ~ therefore we choose a 
different 81 lying over a and containing "~ and choose g E G an element such 
that g8 = 81. Now define 

~ka = incl o cg : Gi(a) "-+ Gt(a) 

where eg(x)= g-Ix9 is conjugation. 
Finally the monodromy elements ga, b arise as follows. I f  a,b are compos- 

able edges with i ( a ) =  a, and t ( a ) =  i ( b ) =  z and t ( z ) =  co let 8, ~',o5 be the 
choices made above of  simplices in X over the simplices a, z, co in X. In defin- 
ing ~ka, ~b, ~ab we chose cells 81,82, ~l in k and head elements ha, h6, hab E G 
with z < ha~ = ~t and co < hab8 = 82 and oJ < 71. Then define the monodromy 
elements by: 

ga, b = hahbh~b 1 �9 

See Fig. 13(a). 

5.1.4 The Underlying Group of  a Complex o f  Groups. Given a complex of  
groups (X,G~,~a, ga, b) we define FG to be the group: 
Generators 
(a) elements o f  G~ for the cells a o f  X.  
(b) directed edges o f  X 1. 

Relations 
(a) relations o f  G,  
(b) when a+a - are opposite orientations on the same edge 

a + = ( a - )  -1 . 

(c) For g E Gi(a) then 
~a(g) = a-ga  + 

(d) I f  a,b are composable then 

(ab) + = b+ a+ ga, o 

Given two vertices a,z of  X l a G(X)  path from a to z is a sequence g0, 
el,91 . . . . .  en, 9, where el,e2 . . . . .  en is an edge path in X I (thus t(e~) = i(ek+l)) 
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with i(el) = 0- and t(en) = z, and where gk is an element of  Gt(ek). The Un- 
derlying group based at x o f  the complex of  groups is the set of  elements in 
FG representable as G(X) paths starting and ending at the basepoint, a vertex 
0- o f X  1. We need the following basic fact from [3], p. 516, Theorem (4.1): 

Theorem 5.1 Suppose that a group G acts simplicially without inversions 
on a simplicial complex X. Let (X,G~,~ka, ga, b) be the complex of groups 
constructed from this data, and let H be the underlying 9roup of  this complex. 
Then there is a natural isomorphism H -~ G. 

It is also shown by Haefliger that one may obtain a presentation o f  the 
underlying group by collapsing a maximal tree and then considering all edge 
paths. This is the presentation we use, the extra relations are: 

(e) Choose a maximal tree T in the barycentric subdivision X (1) and for each 
edge a E T  set 

a = l .  

5.2 Presentation of B4/Z 

Theorem 5.2 The 4-string braid group admits a presentation 

(x,y I x  4 = y3 [x2, yxy] = 1} 

where x=0-10-20-3 and y=0-10-20-30-1. Then f f l = x - ] y ,  f f 2 = y x  -1, 0"3= 
xy-2x 2. Furthermore the center is generated by x 4. 

Proof The 4-string braid group has a presentation: 

B4 = (O'1,0-2,0-3 ] O-10-20-1 = 0"20"10"2 0"20"30"2 = 0"30"20"3 0"10"3 = 0"30"1) 

We obtain another presentation using as generators x = 0"10"20"3, y = 0-10"20"30"1. 
To see these are generators we express 0"1,0-2, 0"3 in terms of  them. 

y = 0"10"20-30-1 

= 0-10"20"I0"3 

= 0"20"10"20"3 

~--- 0"2 x 

Thus 

~ = x-I  y ~2 = Y x - 1  0"3 ~--- (O"10"2) - 1 X  = xY  -2x2 �9 
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The  center  o f  B4 is infinite cyc l ic  gene ra ted  by  X 4 and  we  c o m p u t e  that  X 4 ~ -  y3 
as fo l lows :  

y3 = (o-10"20"30"[ )(0"t 0"20"30"I )(O'l 0"20"3 O-1 ) 

= O-I 0"2(0"36"1 )O-I 0"2(0"30"1 )O-I 0"20"30"I 

= 0"10"2(0"10"3)0"10"2(0"10"3)0"10"20"30"1 

= (O-I 0"20"I )0"3(0"10"20"1 )O-3 o-10"2 0"3 0"1 

= (0"20"1 O-2 )0"3(0"20"10"2 )0"30"1 @630"1 

= 0"20"1(0"20"30"2)0"t0"20"30"10"20"30" 1 

= 0"20"1(0"30"20"3)0"10-20"30"10"20"30"1 

= 0"2(0"10"3)0"20"30"10"20"30"10"20"30"1 

O-2 (if3 O-I )O-2 O-3 ffl 0"20" 317" 10"20"30"1 

= 0"20"3(0"10"20"3 )(O-I 0"20"3 )(ffl 0"20"3 )O-1 

= 0"20"3(0"10"20"3 )4(0"20"3 )--1 

= 0"2 O-3X4 ( O-2 O-3 ) -1  

X 4 . 

Nex t  we  c o m p u t e  the relat ions be tween  x and  y .  The  re la t ion o-lo-2o-i = a2ala: 
gives  

( x - l y ) ( y x  - 1 ) ( x - l y )  = ( y x - l ( x - l y ) ( y x  -1 ) 

x - l ( y y ) x - 2 y  = y x - 2 ( y y ) x  -1 

x - l ( x 4 y - l ) x - 2 y  = yx -E(x4y - l ) x  -1 

x 3 y - l x - 2 y  = y x 2 y - l x  -1 

( x a y - l x - 2 ) y  = y x 2 ( y - l x  -1) 

y ( x y )  = (x2yx-3)yx2 

(x4)yxy = (x4)x2yx-3 yx 2 

x4yxy = x2y(x 4)x-3 yx ~ 

x4yxy = x2y(x)yx  2 

x2(yxy)  = (yxy)x  2 

N e x t  we  c o m p u t e  the relat ion o'2o'3o'2 = o'3o'2o'3 w h i c h  gives  

(yx--1 ) (xy-2x 2 ) ( yx - l  ) .= (xy-2x2)(yX-1 )(xy-2x2 ) 

y - l x2yx -1  = x y - 2 x 2 y - l x  2 

( y - t ) x 2 y x - t  = xy -2x2(y - l x2 )  

x 2 y x - l x - 2 y  = yxy -2x  2 

(x4)xEyx-3y = (x4)yxy-2x  2 

x2yxy --- yx(),-2x4)x 2 

x2yxy = yx (y )x  2 

x2(yxy ) = (.yxy )x 2 
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F ina l ly  we  compute  0"10"3 ~---0"30"1 which  gives:  

(X-1 y ) (xy-2x2  ) = (xy-2x2)(X-1 y )  

x - l y x y - 2 x  2 = x y - 2 x y  

x - l  y x ( y -E )x  2 = x ( y - E ) x y  

x - l  yx(x-4  y)x2 = X(X-4 y ) x y  

x - t  y x (y )x  2 = x ( y ) x y  

yxyx  2 = x2yxy 

(yxy)x  2 = x2(yxy)  [] 

Whence  we  obtain:  

C o r o l l a r y  5.3 Denoting the centre by Z, a presentation o f  B4/Z is given by: 

ix, y l x 4 = y3 = 1 [x2, yxy] = 1) 

where x = o"1o'2o" 3 and y = 0"10"20"30"1. 

5.3 Lattice representatives 

For  the conven ience  o f  the reader  who  wishes  to dupl ica te  some  o f  the ca lcula-  
tions, we indicate  the s imple  representa t ives  o f  the four teen vert ices  in L i n k ( I )  
which  we  have  used. The first e ight  poin ts  are the two  orbits  on which  x acts  
as four  cycle :  

(0 lit i) 
341 = [y]  = 1 M2 = [y2] = 1 0 

1 1 0 

M3 = [xy] = 1 M4 = [xy  2] = l i t  0 

0 0 1 

(toz) (o o 
M5 ---- [x2y] = t 1 M6 = [x2y 2] = 1 0 

t 1 1 1/t 

( 1i) (i lit 1) 
M7 = [xay] = 1 Ms = [x3y  2] = l i t  0 

0 1/t 0 
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There  are then two orbits on which  x acts as a transposit ion: 

M9 = [yxy] = 1/t MI1 = [xyxy] = I/t 

1/t 0 (ool) (t 1 o) 
Mlo = [ ( yxy )  -1] = t 0 0 M12 = [x (yxy )  -1] ~- t 1 1 

t 1 0 0 1 0 

and finally the two lattices which  are not  group points;  these are f ixed by  x: 

(i oo) 
M13 = [13] = 1 M14 = [14] = 1 0 

0 1 1/t 
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