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DARYL COOPER & MARC LACKENBY 

1. In t roduc t ion 

Dehn surgery is perhaps the most common way of constructing 3-
manifolds, and yet there remain some profound mysteries about its be
haviour. For example, it is still not known whether there exists a 3-
manifold which can be obtained from 5 3 by surgery along an infinite 
number of distinct knots.1 (See Problem 3.6 (D) of Kirby's list [9]). 
In this paper, we offer a partial solution to this problem, and exhibit 
many new results about Dehn surgery. The methods we employ make 
use of well-known constructions of negatively curved metrics on certain 
3-manifolds. 

We use the following standard terminology. A slope on a torus is the 
isotopy class of an unoriented essential simple closed curve. If s is a slope 
on a torus boundary component of a 3-manifold X, then X(s) is defined 
to be the 3-manifold obtained by Dehn filling along s. More generally, 
if s i , . . . , sn is a collection of slopes on distinct toral components of dX, 
then we write X(si,... ,sn) for the manifold obtained by Dehn filling 
along each of these slopes. 

We also abuse terminology in the standard way by saying that a 
compact orientable 3-manifold X, with dX a (possibly empty) union of 
tori, is hyperbolic if its interior has a complete finite volume hyperbolic 
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1 Since this paper was written, John Osoinach has constructed a family of 3-
manifolds, each with infinitely many knot surgery descriptions [Ph.D. Thesis, Uni
versity of Texas at Austin]. 
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structure. If X is hyperbolic, we also say that the core of the filled-in 
solid torus in X(s) is a hyperbolic knot. 

Let X be a hyperbolic 3-manifold, and let T\,..., Tn be a collection 
of components of dX. Now, associated with each torus Tj, there is a 
cusp in int(X) homeomorphic to T2 x [1, oo). We may arrange that the 
n cusps are all disjoint. They lift to an infinite set of disjoint horoballs 
in H3. Expand these horoballs equivariantly until each horoball just 
touches some other. Then, the image under the projection map H3 —> 
int(X) of these horoballs is a maximal horoball neighbourhood of the 
cusps at Ti , . . . ,T n . When n = 1, this maximal horoball neighbourhood 
is unique. Let K? be the boundary in H3 of one of these horoballs 
associated with T{. Then K? inherits a Euclidean metric from H3. A 
slope S{ on Tj determines a primitive element [SÌ] € 7TI(TJ), which is 
defined up to sign. This corresponds to a covering translation of ]R?, 
which is just a Euclidean translation. We say that S{ has length l(si) 
given by the length of the associated translation vector. When n > 1, 
this may depend upon the choice of a maximal horoball neighbourhood 
of T\ U • • • U Tn, but for n = 1, the length of si is a topological invariant 
of the manifold X and the slope «i, by Mostow Rigidity [3, Theorem 
C.5.4]. The concept of slope length is very relevant to Dehn surgery 
along hyperbolic knots, and plays a crucial rôle in this paper. Note 
that slope length is measured in the metric on X, not in any metric 
that X(si,... ,sn) may happen to have. This notion of slope length 
arises in the following well-known theorem of Gromov and Thurston, 
the so-called '27r' theorem. 

Theorem (Gromov, Thurston [4, Theorem 9]). Let X be a com
pact orientable hyperbolic 3-manifold. Let si,...,sn be a collection of 
slopes on distinct components 2 \ , . . . ,Tn of dX. Suppose that there is a 
horoball neighbourhood ofT\\J- • -UTn on which each S{ has length greater 
than 2TT. Then X(si,..., sn) has a complete finite volume Riemannian 
metric with all sectional curvatures negative. 

The following theorem, which is the main result of this paper, asserts 
that (roughly speaking) any given 3-manifold M can be constructed in 
this fashion in at most a finite number of ways. 

Theorem 4.1. Let M be a compact orientable 3-manifold, with dM 
a (possibly empty) union of tori. Let X be a hyperbolic manifold and 
let s i , . . . ,sn be a collection of slopes on n distinct tori T i , . . . ,T„ in 
dX, such that X(s\,..., sn) is homeomorphic to M. Suppose that there 
exists in int(X) a maximal horoball neighbourhood of T\ U • • • U Tn on 
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which each slope Si has length at least 2-K + e, for some e > 0. Then, for 
any given M and e, there is only a finite number of possibilities (up to 
isometry) for X, n and si,..., sn. 

This is significant because 'almost all' closed orientable 3-manifolds 
are obtained by such a Dehn surgery. More precisely, any closed ori
entable 3-manifold is obtained by Dehn filling some hyperbolic 3-mani-
fold X ([13] and [12]). After excluding at most 48 slopes from each com
ponent of dX, all remaining slopes have length more than 2n 
[4, Theorem 11]. 

Theorem 4.1 has the following corollary, which is a partial solution 
to Kirby's Problem 3.6 (D). 

Corollary 4.5. For a given closed orientable 3-manifold M, there 
is at most a finite number of hyperbolic knots K in S3 and fractions p/q 
(in their lowest terms) such that M is obtained by p/q-Dehn surgery 
along K and \q\ > 22. 

Dehn filling also arises naturally in the study of branched covers. 
Recall [15] that a branched cover of a 3-manifold Y over a link L is 
determined by a transitive representation p: ni(Y — L) —> Sr, where Sr 

is the symmetric group on r elements. The stabiliser of one of these 
elements is a subgroup of ni(Y — L) which determines a cover X of 
Y — int(Af(L)). The branched cover is then obtained by Dehn filling 
each component P of dX that is a lift of some component of dAf(L). 
The Dehn filling slope on P is the slope which the covering map sends 
to a multiple of a meridian slope on dM(L). This multiple is known 
as the branching index of P. Branched covers are a surprisingly gen
eral construction. For example, any closed orientable 3-manifold is a 
branched cover of S3 over the figure-of-eight knot [7]. Thus, the follow
ing corollary to Theorem 4.1 is useful. 

Corollary 4.8. Let M be a compact orientable 3-manifold with 
dM a (possibly empty) union of tori, which is obtained as a branched 
cover of a compact orientable 3-manifold Y over a hyperbolic link L, via 
representation p: ni(Y — L) —> Sr. Suppose that the branching index of 
every lift of every component of dM{L) is at least 7. Then, for a given 
M, there are only finitely many possibilities for Y, L, r and p. 

This paper is organised as follows. In Section 2, we establish lower 
bounds on slope length from topological information. In Section 3, we 
review the proof of the '27r' theorem and establish a 'controlled' version 
of the theorem, which involves estimates of volume and curvature. In 
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Section 4, the main results about Dehn surgery are deduced from the 
work in Sections 2 and 3. In Section 5, we obtain restrictions on the 
genus of surfaces in the complement of a hyperbolic knot in terms of 
their boundary slopes. In Section 6, we examine 3-manifolds which 
are 'almost hyperbolic', in the sense that for any 6 > 0, they have a 
complete finite volume Riemannian metric with all sectional curvatures 
between —1 — 6 and —1 + 6. We show that such 3-manifolds must have 
a complete finite volume hyperbolic structure. The proof of this result 
uses Dehn surgery in a crucial way. 

2. When is a slope long? 

Since the majority of theorems in this paper are stated in terms of 
slope length, we will now establish some conditions which imply that a 
slope is long. Throughout this section, we will examine slopes lying on 
a single torus T in dX. There may be boundary components of X other 
than T, but nevertheless the length of a slope on T is a well-defined 
topological invariant. 

Recall that the distance A(si, s2) between two slopes s\ and s2 on a 
torus is defined to be the minimum number of intersection points of two 
representative simple closed curves. The following lemma implies that 
if the distance between two slopes is large, then at least one of them 
must be long. 

Lemma 2.1. Let X be a hyperbolic 3-manifold with a torus T in 
its boundary. Let «i and S2 be slopes on T. Then 

l(si)l(s2) >V3A{sus2). 

Moreover, if all slopes on T have length at least L, say, then 

l(si)l(s2)>V3L2A(sl,s2). 

Proof. It is a well-known observation of Thurston that the length 
of each slope on T is at least 1. (See [4, Theorem 11] for example.) 
Hence, the first inequality of the lemma follows from the second. We 
pick a generating set for H\{T) as follows. We first assign arbitrary 
orientations to s\ and s2. We let [s\] G H\{T) be one generator, and 
extend this to a generating set by picking one further element [S3]. Then, 

[s2] = ±A(si , s2)[s3] + n[si], 
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for some integer n. Let N be the maximal horoball neighbourhood of 
the cusp at T. Let R2 be the boundary in H3 of an associated horoball. 
Let P (respectively, P') be a fundamental domain in R2 for the group 
of covering translations generated by [s\] and [s2] (respectively, by [s\] 
and [S3]). Note that 

l(si)l{s2) > Area(P) = A(s1,s2)Area(P'). 

This formula is clear from Figure 1. 

FIGURE 1 

It is well known that the area of P' is at least \/3 (see [1, Theorem 
2]). However, the argument there readily implies that 

Area(P') > \ /3L 2 . 

Hence, we deduce that 

l(s1)l(s2)>V3L2A(sl,s2). 

q.e.d. 

Now, there are various topological circumstances when a slope e is 
known to be 'short'. These are summarised in the following proposition. 
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Proposition 2.2. Let X be a compact orientable hyperbolic 3-
manifold and let T be a toral boundary component of X. Then a slope 
e on T has length no more than 2n if either of the following hold: 

1. int(X(e)) does not admit a complete finite volume negatively curved 
Riemannian metric (for example, X(e) may be reducible, toroidal 
or Seifert fibred), or 

2. the core of the filled-in solid torus in X(e) has finite order in 

Proof. Part (1) above is a mere restatement of the '27r' theorem, 
with the added assertion that if the interior of a compact orientable 3-
manifold M admits a complete finite volume negatively curved metric, 
then M cannot be reducible, toroidal or Seifert fibred. This is well-
known, but we sketch a proof. By the Hadamard-Cartan theorem [2], 
the universal cover of int(M) is homeomorphic to R3, and so M is irre
ducible. By [2], any Z © Z subgroup of ni(M) is peripheral. Hence, M 
is atoroidal. Since int(M) is covered by R3, ix\(M) is infinite. The fun
damental group of any orientable Seifert fibre space either has a cyclic 
normal subgroup or is trivial [16]. However, the fundamental group of a 
complete negatively curved finite volume Riemannian manifold cannot 
have a cyclic normal subgroup [2]. Hence, M is not Seifert fibred. 

To prove Part (2), we recall from the proof of the '27r' theorem [4] 
that if /(e) > 2TT, then int(X(e)) has a complete finite volume nega
tively curved metric, in which the core of the filled-in solid torus is a 
geodesic. But, in such a manifold, closed geodesies have infinite order 
in the fundamental group [2]. q.e.d. 

We therefore make the following definition. 

Definition 2.3. Let X be a hyperbolic 3-manifold and let e be 
a slope on a toral boundary component T of X. Then e is short if 
/(e) < 2n. We say that e is minimal if l(s) > 1(e) for all slopes s on T. 

Note that there is always at least one minimal slope on T, but that 
it need not be short. The importance of the above definition is that 
if some slope s has large intersection number with a slope e which is 
either short or minimal, then we can deduce that the length of s is large. 
Moreover the bounds we construct are independent of the manifold X. 

Corollary 2.4. Let X be a compact hyperbolic 3-manifold, and let 
s be a slope on a torus component T of dX. If e is a short slope on T, 
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then 
l(s) > VSA{s,e)/2 It. 

If e is a minimal slope on T, then 

l(s) > \ /3A(s,e) . 

Proof. The first inequality is an immediate consequence of Lemma 
2.1 and the definition of 'short'. If e is a minimal slope on T, then all 
slopes on T have length at least /(e), and hence by Lemma 2.1, 

l(s)l(e) >V3[Z(e)]2A(«,e). 

Thus, we get that 

l(s) > \/3/(e)A(s,e) > y/3A(s,e), 

since /(e) > 1 by [4, Theorem 11]. q.e.d. 

3. Estimates of curvature, volume and Gromov norm 

In this section, we compare the Gromov norm [17, Chapter 6] of 
a hyperbolic 3-manifold X with the Gromov norm of a 3-manifold ob
tained by Dehn filling tori T i , . . . ,T„ in dX. 

In [17, Section 6.5], Thurston gave various definitions of the Gromov 
norm of a compact orientable 3-manifold X, with dX a (possibly empty) 
union of tori. We shall use the terminology \X\ for the quantity which 
Thurston calls \\[X, dX]\\o- This is defined as follows. Consider the fun
damental class [X, dX] in the singular homology group H$(X, dX;R). 
If z — Y^ai°~i 1S a representative of [X, dX], where Oj G M. and each ai 
is a singular 3-simplex, then we consider the real number ||z|| = ^ |aj|. 
In the case where dX — 0, the Gromov norm is defined to be 

\X\= inf{||^|| : z represents [X,dX]}. 

In the case where dX ^ 0, a representative z of [X, dX] determines a 
representative dz of [dX] 6 H2(dX;R). Thurston defines 

\X\ = liminf{||z|| : z represents \X,dX] and ||dz|| < \a\} 
a-yO 

and shows that this limit exists. Crucially, the Gromov norm of X is a 
topological invariant. 
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We compare the Gromov norms of X and X(s\,... ,sn) (where 
si,... ,sn are slopes on dX) by returning to the proof of the '27r' the
orem. The idea behind this proof is simple. One first removes from 
X the interior of an almost maximal horoball neighbourhood N of the 
cusps at T\ U • • • U Tn. Then one glues back in solid tori Vi which have 
negatively curved Riemannian metrics agreeing near dVi with that near 
dN. The following proposition deals with the sectional curvatures and 
the volume of the metric on each solid torus. 

If M is a manifold with interior having a Riemannian metric k, let 
Vol(M, k) denote its volume and let Km{(M, k) (respectively, Ksup(M, k)) 
denote the infimum (respectively, the supremum) of its sectional curva
tures. 

Proposition 3.1. For any two real numbers t\ > 2-K and £2 > 0, 
we may construct a Riemannian metric k on the solid torus V, with 
the following properties. In a collar neighbourhood of dV, the metric 
is hyperbolic. The boundary dV inherits a Euclidean metric k\gv The 
length in this metric of a shortest meridian curve C on dV is £\. The 
length of a (Euclidean) geodesic running perpendicularly from C to C 
is £2- Also, Voi(V, k)/Vo\(dV, k\gv), «inf(Vr, k) and KSup(V,k) are all 
independent of £2- But, there is a non-decreasing function a: (2-ir, 00) —> 
(0,1) such that 

- M ^ ) ) - 1 < Kin{(V,k) < Ksup(V,k) < - a (£ i ) , 

Vol(ôV,A|av)/2 - v ; ' 

Proof. In Bleiler and Hodgson's proof of the '27r' theorem [4], a 
Riemannian metric k is constructed on V which has most of these prop
erties. They assign cylindrical co-ordinates (r, /i, A) to V, where r < 0 
is the radial distance measured outward from dV, 0 < JJL < 1 is measured 
in the meridional direction and 0 < A < 1 is measured in a direction 
perpendicular to // and r. The distance from the core of V to the bound
ary is —ro, for some negative constant r^. The Riemannian metric is 
denoted 

ds2 = dr2 + [f(r)]2dß
2 + [g(r)]2d\2, 

where / : [ro,0] —> E and g: [ro,0] -> R are functions. Graphs of / and 
g are given in Bleiler and Hodgson's paper [4], and are reproduced in 
Figure 2. 
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g = b cosh (r - rj 
here 

/ = 2K sinh (r - rA 
here 

\ 

/ g smooth, convex 

FIGURE 2 

Making the substitutions x\ = r, X2 = /i and x$ 
the sectional curvatures as 

A, they calculate 

«12 = 

«13 = 

«23 = 

/ 
9" 
9 

f 9' 
f - 9 

They observe that, since / , / ' , / " , g, g' and g" are all positive in the 
range TQ < r < 0, the sectional curvatures are all negative. To ensure 
that the cone angle at the core of V is 2n, it is enough to ensure that 
the gradient of / at r = ro is 2n. Also, near r = 0, / and g are both 
exponential, which guarantees that the sectional curvatures are all — 1 
near dV. 

Bleiler and Hodgson argue that, providing £\ > 2ir and £2 > 0, we 
may find a metric k satisfying the above properties. We can therefore 
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pick a (which is a real-valued function of £\ and £2) as follows. Given 
£\ and £2, there is a Riemannian metric k on V satisfying all of the 
above properties, and a real number a (with 0 < a < 1) for which the 
following inequalities hold: 

-a^K Kinf{V,h) < Ksup(V,k) < -a, 

Vol(V,k) 
> a. Vol(dV,k\dv)/2 

We define a(£\,£2) to be half the supremum of a, where a satisfies the 
above inequalities, and k satisfies the above conditions. There is a good 
deal of freedom over the choice of a. We picked half the supremum 
simply because it is less than the supremum, and hence there is some 
metric A; for which 

-(<*(ti,Ì2))~1 < Kinf{V,k) < Ksup(V,k) < -a(li,£2), 

Vol(öV;A;|av)/2 

At this stage, a depends on both l\ and £2. But we shall show that 
a is independent of £2 and is a non-decreasing function of £\. 

Given a metric k on V 

ds2 = dr2 + [f(r))2dß
2 + [g{r)}2d\2, 

we can define another metric 

dal = dr2 + [/(r)]2dM
2 + c2[g(r)]2d\2, 

for any positive real constant c. Using the formulae for the sectional 
curvatures, we see that this alteration leaves the sectional curvatures 
unchanged. It does not alter the ratio of Vol(V, k) and Vol(dV, k\gv)• 
It leaves £\ unchanged, but scales £2 by a factor of c. Hence, a is 
independent of £2, and we therefore refer to a as a function of the single 
variable £\. Note that we could not have made a similar argument with 
£1, since it is vital that the cone angle at the core of V is 2ir. 

It remains to show that a is a non-decreasing function of £\. Suppose 
V has a metric k as above. Then we can enlarge V (creating a bigger 
solid torus V with metric k') by letting r vary in the range ro < r < c, 
for any positive real constant c, and defining f(r) = £\er and g(r) = ^ e r 

for r > 0. In other words, we attach a collar to dV, with the metric 
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being hyperbolic in the collar. The length of the shortest meridian curve 
on the boundary of the new solid torus V is i\ec. If the metric fconF 
satisfies 

-a~l < Kjnf(V, k) < Ksup(V,k) < -a, 

Vol(y, k) 
Vol(^V,k\^v)/2

>a, 

(with 0 < a < 1), then the metric on the enlarged solid torus satisfies 
the same inequalities. The inequality regarding volumes requires some 
explanation: 

Vo\(V',k') = Vol(V,fc) + / f(r)g(r)dr 
Jo 

= Vol(V,k)+£1£2(e
2c-l)/2 

> aVol(dV, k\dv)/2 + W2{e2c - l ) /2 

> a[Vol(dV, k\dv) + W e 2 c - l)]/2 

= aVol(dV',k'\dV/)/2. 

Therefore, for any c > 0, a{(.\ec) > a(^i), and hence a is a non-
decreasing function. q.e.d. 

It is actually possible to define a function a satisfying the conditions 
of Proposition 3.1 for which a{&\) —> 1 as i\ —> oo. In other words, if 
t\ is sufficiently large, then we can construct a metric A; on F for which 
the sectional curvatures approach —1 and the volume approaches that 
of a cusp. This is intuitively plausible from the graphs of / and g. 
However, a rigorous proof of this result is slightly technical and long-
winded. Since we will not actually need this result, we offer only a brief 
summary of the proof. 

The idea is to construct, for any t with 0 < t < 1, the functions / 
and g in terms of a certain differential equation, which we omit here. 
This differential equation in fact guarantees that 

- 1 - * < «inf (V, k) < Ksup(V, k) < - 1 + *. 

The constant ro is defined to be the value of r for which f(r) = 0. The 
condition that / '(ro) = 2ir determines /(0), which is i\. Hence, we 
obtain l\ as a function of t. One shows that l\ lies in the range (27T, OO), 
and that there exists an inverse function t: (2TC, OO) —¥ (0,1). One also 
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shows that as l\ tends to oo, the associated t tends to zero. In addition, 
the definition of the metric k ensures that as l\ —> oo, the ratio 

Vol(y, k) 
Yol(dV,k\dV)/2 

tends to 1. Hence, it is straightforward to construct the function a 
satisfying the conditions of Proposition 3.1 and also ct(£\) —> 1 as t\ -> 
oo. 

We now apply Proposition 3.1 to X(s\,..., sn), where X is a hyper
bolic 3-manifold and s i , . . . , sn are slopes on distinct components of dX. 
The following proposition analyses the volume and sectional curvatures 
of X{si,...,sn). 

Proposition 3.2. Let a: (2TT, OO) —>• (0,1) be the function in Propo
sition 3.1. Let X be a compact 3-manifold with interior having a com
plete finite volume hyperbolic metric h, and let si,...,sn be slopes on 
distinct tori T\,... ,Tn in dX. Suppose that there is a maximal horoball 
neighbourhood of T\ U • • • U Tn on which l(si) > 2n for each i. Let 
t = mini<i<„ l(s{). Then X(s\,... ,s„) has a complete finite volume 
negatively curved Riemannian metric g for which the following formu
lae hold: 

-{ail))'1 < Kin{(X(si,...,sn),g), 

K8up(X(si,...,sn),g) < -ct(£), 

m Vol(X(s1,...,5„),ff) 
[) Vol(X,h) 

Proof. We follow the proof of the '27r' theorem. Let U£=i -^t be a 
union of horoballs in H3, which projects to a maximal horoball neigh
bourhood N of Ti U • • • UT„. Suppose that B{ projects to the cusp at T^ 
Let T( be the quotient of dBi by the subgroup of parabolic isometries in 
7Ti(X) which preserve Bi. Now construct as in Proposition 3.1 a metric 
ki on the solid torus Vi which agrees on dVi with the Euclidean metric 
on T '̂, and which has meridian length l{si). The Riemannian metric 
g on X(si,... ,sn) is just that obtained by attaching UiLiW'^i) t o 

(int(X)-mt(N),h). 
The first formula of Proposition 3.1 immediately implies the first 

two formulae of the proposition. To obtain the third formula, first note 
that it is an elementary calculation that 

n 

Vol(A^) = £VoU%' , / i | T / ) /2 . 
»=i 



DEHN SURGERY 603 

Also, the metrics on T- and dVi agree: 

Vol(Tl,h\T,) =Yol(dVi,ki\dVi). 

Proposition 3.1 gives that 

Vol(Vi,ki) > a(l(si))Yoi(aVi,ki\dVi)/2 

>a(e)Vol(dVi,ki\avi)fi, 

since a is a non-decreasing function. Hence, 

n n 

^ V o l O ^ f c i ) > a{e)Y,^o\{dViMavi)l2. 
i-l i=l 

So, 

n 

Vol(X(S l ) . . .,an),g) = Vol(X - N,h) + £ Vol(^, l*) 
i=l 

n 

> Vol(X -N,h)+ ot(e) J2V°KdVi,ki\dVi)/2 
1=1 

n 

> a(£)[Yo\(X - N,h) + Y,Vol(dVi,ki\dVi)/2] 
»=i 

= a(i)\Wol(X -N,h)+ Vol(N, h)] 

= a(t)\yol(X,h)], 

which establishes the final formula of the proposition. q.e.d. 

The aim now is to use the comparison of volumes and sectional 
curvatures of {X,h) and (X(si,... ,sn),g) to make a comparison of 
their Gromov norms. 

Proposition 3.3. There is a non-increasing function ß: (27T,OO) —> 
(l,oo), which has the following property. Let X be a compact hyperbolic 
3-manifold and let s\,... ,sn be slopes on distinct components T\,..., Tn 

of dX. Suppose that there is a maximal horoball neighbourhood ofT\ U 
• • • U Tn on which l(si) > 2n for each i. Then 

\X{si, ...,sn)\<\X\< \X(si,..., sn)\ß(mm l(8i)). 
Ki<n 
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Proof. It is a corollary of [17, 6.5.2] that \X{su ..., sn)\ < \X\. To 
prove the second half of the inequality of the proposition, we need to 
compare the volume of a negatively curved Riemannian manifold with 
its Gromov norm. For a manifold X with interior having a complete 
finite volume hyperbolic metric h, it is proved in [17, 6.5.4] that 

Vol(X,h)=v3\X\, 

where V3 is the volume of a regular ideal 3-simplex in H3. Here, by the 
'27T' theorem X(s\,... ,sn) can be given a negatively curved metric g, 
and so we need a version of Gromov's result which applies in this case. 
It is possible to show [3, C.5.8] that if M is a 3-manifold with a complete 
finite volume Riemannian metric g which has « s u p (M, g) < — 1, then 

| M | T T / 2 > Vol{M,g). 

Now, if the metric g on X(s\,..., sn) is scaled by a positive constant A to 
give a metric Xg, then it is an elementary consequence of the definition 
of sectional curvature that 

Kaup(X(si,... ,sn),\g) = X~2Ksup(X(si,... ,sn),g). 

Hence, by letting A = ^—nsnp(X(si,... ,sn),g), we obtain that 

\X(su ..., s„)|7r/2 > Vol(X(si , . . . , sn), Xg) 

= X3Vol(X(su...,sn),g) 

= ( - « s u p p l ì , • • • ,sn),g))3/2Vo\(X(Sl,.. .,sn),g). 

We can now use Proposition 3.2 to deduce that 

Ksup(X(si,...,sn),g) < -a(£), 

Vol(X(s1,...,8n),g)>a{e)\yol(X,h)], 

where a is the function given in Proposition 3.1 and £ = mini<i<n l(si). 
So, 

\X(Sl,..., sn)\n/2 > [a(£)f2Vol(X, h) 

= [a(£)f2v3 \X\. 

The proposition is now proved by letting ß(x) = [a(x)]~5/2n/2v3. q.e.d 

It should be possible to find a function ß satisfying the requirements 
of Proposition 3.3 and for which ß{£\) -> 1 as £\ —> 00. To find such 
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a ß, one examines the volume of a straight 3-simplex A in a simply-
connected 3-manifold with sectional curvatures between — 1 — Ô and 
—1 + 6 for sufficiently small 6 > 0. If one shows that as Ô —>• 0, the 
maximal volume of A tends to U3, then one can find a ß satisfying the 
conditions of Proposition 3.3, for which ß{ii) —>• 1 as l\ —> 00. 

4. Applications to Dehn surgery 

We now use the estimates of the previous section to deduce some 
new results about Dehn surgery. The most far-reaching of these is the 
following theorem. 

Theorem 4.1. Let M be a compact orientable 3-manifold, with dM 
a (possibly empty) union of tori. Let X be a hyperbolic manifold and 
let s\,... ,sn be a collection of slopes on n distinct tori T\,... ,Tn in 
dX, such that X(s\,..., sn) is homeomorphic to M. Suppose that there 
exists in int(X) a maximal horoball neighbourhood of T\ U • • • U Tn on 
which each slope Sj has length at least 2ir + e, for some e > 0. Then, for 
any given M and e, there is only a finite number of possibilities (up to 
isometry) for X, n and S\,..., sn. 

To prove this, we shall need two well-known lemmas. 

Lemma 4.2. Let X be a compact orientable hyperbolic 3-manifold, 
and letTi,...,Tp, be a collection of tori in dX. For each i G N and j E 
{ 1 , . . . ,n}, let s? be a slope on Tj. Assume that, for every j , sj ^ sJ

k if 
i ^ k. Then any given 3-manifold M is homeomorphic to X(s],..., s") 
for at most finitely many i. 

Proof. By the hyperbolic Dehn surgery theorem of Thurston [3, The
orem E.5.1], X(sj,..., s") is hyperbolic for i sufficiently large. Thus, if 
the theorem were not true, then M would have to be hyperbolic. More
over, from the proof of Thurston's hyperbolic Dehn surgery theorem, for 
i sufficiently large, the cores of the filled-in solid tori in X(sj,..., sf) 
are geodesies, whose lengths each tend to zero, as i -» 00. In partic
ular, for i sufficiently large, X(s\,... ,sf) has a geodesic shorter than 
the shortest geodesic in M. This is impossible by Mostow rigidity [3, 
Theorem C.5.4]. q.e.d. 

Lemma 4.3. Let X be a compact orientable hyperbolic 3-manifold, 
and let Ti,... ,Tn be a collection of tori in dX. Let 
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be a sequence of distinct n-tuples, where each s\ is a slope on Tj. Sup
pose that, for each i, we can find a maximal horoball neighbourhood of 
the cusps at T\ U • • • U Tn on which each s\ has length more than 2n. 
Then any given 3-manifold M is homeomorphic to X(sj,..., s") for at 
most finitely many i. 

Proof. If the lemma were not true, we could pass to a subsequence, 
such that M is homeomorphic to X(sj,... ,s") for each i. There are 
two possibilities for each j G { 1 , . . . , n} : 

(i) the sequence {s? : i G N} contains a subsequence in which the 
slopes sj are all distinct, or 

(ii) the sequence {s\ : i G N} runs through only finitely many slopes. 

Since the n-tuples ( s ] , . . . , s " ) are distinct, at least one j satisfies 
(i). After re-ordering, we may assume this value of j is n. Pass to this 
subsequence, where the slopes s" are all distinct. In this new sequence, 
the integers j G { 1 , . . . ,n— 1} either satisfy (i) or (ii). If some j satisfies 
(i), say j = n — 1, pass to this subsequence. Continuing in this fashion, 
we obtain a sequence and an integer m > 1 such that 

(i) s? ^ Sfc for i ^ k and j > m, and 

(ii) {sj : i G N} runs through only finitely many slopes, for each 
j < m. 

By passing to a subsequence, we may assume that s? is the same 
slope sJ for all i, when j < m. If m > 1, let Y = X(s1,..., s m _ 1 ) . 
Otherwise, let Y = X. Now, we may find a maximal horoball neigh
bourhood of the cusps at 7\ U • • • U Tn on which each sJ has length 
more than 27r. Hence, Y admits a negatively curved metric, by the 
'27r' theorem. Hence, it cannot be reducible, toroidal or Seifert fibred. 
(See the proof of Proposition 2.2.) Its boundary contains Tm U • • • U Tn 

and so is non-empty. Hence, by Thurston's theorem on the géométri
sation of Haken 3-manifolds [12, Chapter V], Y is hyperbolic. But, M 
is homeomorphic to Y (s™,..., s") for each i. Lemma 4.2 gives us a 
contradiction. q.e.d. 

Proof of Theorem 4-1- Suppose that, on the contrary, there ex
ists a sequence of 3-manifolds X{ with complete finite volume hyper
bolic metrics h\ on their interiors, and slopes sj,..., s™ on dXi with 
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l(sJi) > 27T + 6, such that Xi(s},..., s^') is homeomorphic to M. Then, 
by Proposition 3.3, 

\Xi\<\M\ß( min l(s{)). 
l<]<n(i) 

Since ß is a non-increasing function, 

|X;|<|M|/3(27T + e). 

Thus, the sequence \Xi\ is bounded, and so the sequence Vol(Xi,hi) 
is also bounded, since the Gromov norm and the volume of a hyper
bolic 3-manifold are proportional [17, 6.5.4]. But for any real num
ber c, the collection of complete orientable hyperbolic 3-manifolds with 
volume at most c is a compact topological space when endowed with 
the geometric topology [3, Theorem E.1.10]. Hence, we may pass to 
a subsequence (also denoted {Xi}), such that int(Xj) converges in the 
geometric topology to a complete finite volume hyperbolic 3-manifold 
int(X0O), say, where XQQ is compact and orientable. This implies (see 
[3, Theorem E.2.4]) that, for i sufficiently large, the following is true. In 
each 3-manifold 'mt(Xi), there is a (possibly empty) union Li of disjoint 
closed geodesies, such that int(Xj) — Lj is diffeomorphic to int(Xoo). 
This diffeomorphism is a fcj-bi-Lipschitz map except in a small neigh
bourhood of Li, for real numbers fcj > 1 which tend to 1, as i —> oo. 
This diffeomorphism also takes a maximal horoball neighbourhood Ni of 
cusps of int(Xj) to a neighbourhood of cusps of int(-Xoo) which closely 
approximates a maximal horoball neighbourhood AT'. We extend A7,' 
to a maximal horoball neighbourhood N" of all the cusps of int(Xoo). 
The slopes s],..., s " w correspond to slopes a\,..., a™ on toral com
ponents of dXoo, and the ratios l(sl)/l(aj) —>• 1 as i —> oo, where the 
lengths /(s^) and l(crj) are measured on Ni and N" respectively. Hence, 
as l(sl) > 2ir+e,l(a3

i) > 2ir for i sufficiently large. Since Xoo has a finite 
number of cusps, the sequences n(i) and |Lj| are bounded. Hence, by 
passing to a subsequence, we may assume that n(i) is some fixed positive 
integer n and that |Lj| is some fixed non-negative integer p, for all i. We 
may pass to a further subsequence where for any j , aj lies on the same 
torus for all i. Now, p > 0, for otherwise, XQO = Xi for all i and then M 
is homeomorphic to X^a},... ,af) for each i. This is a contradiction 
by Lemma 4.3. Thus there are slopes (t],...,1%) on d.Xoo such that 
Xoo(t],... ,t?) is homeomorphic to Xi. We may assume that, for any 
j , the slopes £? lie on the same torus P J for all i. Since the manifolds 

! 
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'mt(Xi) converge in the geometric topology to in t^oo) , we may assume 
that the slopes t\ are all distinct. We shall now show that, for each j , 
l(tl) -± oo, as i —• oo, where the slope lengths are measured on N". For 
each torus Tk in dXoo, let Nk be the maximal horoball neighbourhood 
ofT fc. Then, we may find a horoball neighbourhood H3 of P3 which 
misses all Nk other than the horoball N3 corresponding to P3. Thus, 
H3 lies inside N" for each i. Now, the lengths of t?i tend to oo as i —> oo, 
where the length is measured on H3, since the slopes t\ are all distinct. 
Hence, the lengths l{t\) —» oo, as i —> oo, where the slope lengths are 
measured on N". So, M is homeomorphic to X^tj,..., if, aj,..., af) 
for each i, and for sufficiently large i, /(£•) > 2n and Z(cr|) > 27r for each 
j , where the slope lengths are measured on N". This is a contradiction, 
by Lemma 4.3. q.e.d. 

Theorem 4.1 has the following corollary. 

Theorem 4.4. Let M be a compact orientable 3-manifold with dM 
a (possibly empty) union of tori. Suppose that M is homeomorphic to 
X(s), where X is a hyperbolic 3-manifold and s is a slope on a toral 
boundary component T of X. Suppose also that e is a short slope on T 
such that A(s,e) > 22, or that e is a minimal slope with A(s,e) > 3. 
Then, for a given M, there is only a finite number of possibilities (up 
to isometry) for X, s and e. 

Proof. Suppose that e is a short slope with A(s,e) > 22. The proof 
when e is minimal is entirely analagous. Fix e as (23^/2?!-) - 2?r, which 
is greater than zero. By Theorem 4.1, there is only a finite number of 
hyperbolic 3-manifolds X and slopes s on a torus component of dX, 
such that X(s) is homeomorphic to M and such that l(s) > 2ir + c. But 
if e is a short slope on T with A(s, e) > 23, then, by Corollary 2.4, 

V3A(s,e) 23v/3 

Thus, there is only a finite number of possibilities for X and s. Also 
there is only a finite number of short slopes e on T. Hence, the theorem 
is proved. q.e.d. 

Corollary 4.5. For a given closed orientable 3-manifold M, there 
is at most a finite number of hyperbolic knots K in S3 and fractions p/q 
(in their lowest terms) such that M is obtained by p/q-Dehn surgery 
along K and \q\ > 22. 
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Proof. The meridian slope e on dfif(K) is a short slope, and A(e,p/q) 
= \q\. Now apply Theorem 4.4. q.e.d. 

Theorem 4.6. Let M\ and M2 be compact orientable 3-manifolds 
with dMi a (possibly empty) union of tori. Let X be a hyperbolic 3-
manifold and let T be a toral boundary component of X. Suppose that 
there are slopes si and S2 on T, with A(si,S2) > 22, such that X(si) is 
homeomorphic to Mi for i = 1 and 2. Then, for any given M\ and Mi, 
there is only a finite number of possibilities (up to isometry) for X, s\ 
and S2-

Proof. Suppose that there is an infinite number of triples (X, s\, s2), 
for which X(si) is homeomorphic to Mi (for i — 1 and 2) and which 
have A(si,a2) > 23. Let e = (v^V^ä) - 2TT. If l(si) < 2vr + e and 
l(s2) <2n + e, then 

l(si) l(s2) < (2TT + e)2 = 2 3 ^ < A(ax, s2)y/Z, 

but this cannot occur, by Lemma 2.1. Hence, an infinite number of 
the slopes «i or S2 must have length at least 2-K + e. For the sake of 
definiteness, assume Z(si) > 2n + e, for an infinite number of slopes 
s\. By Theorem 4.1, there is only a finite number of possibilities for 
X and s\. Hence, by passing to an infinite subcollection, we can find 
a fixed hyperbolic manifold X and an infinite number of distinct slopes 
S2 such that X(s2) is homeomorphic to M2. This contradicts Lemma 
4.2. q.e.d. 

The next result is a 'uniqueness' theorem for Dehn surgery. It should 
be compared with [11, Theorem 4.1]. 

Theorem 4.7. For i = 1 and 2, let Xi be a hyperbolic 3-manifold 
and let Si be a slope on dXi. Then, there is a real number C{X\) 
depending only on X\, such that if l{s2) > C(X{), then 

{Xi(ai) ^ X2(s2)} 4=^ {(XliSl) S (X2,s2)} , 

where = denotes a homeomorphism. 

Proof. Suppose that there is no such real number C(X\). Then, 
there is a sequence of hyperbolic 3-manifolds X\ and slopes s2 on dX\ 
such that l(s2) —> 00, together with slopes s\ on dXi, with the property 

that x^si) = x\(s2), but (*!,*») ? (jq,4). 
Note first that the sequence s\ can have no constant subsequence. 

For, if there were such a subsequence, say with slope s\, then X\{s\) = 
X2(s2) for infinitely many i. This contradicts Theorem 4.1. 
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Case 1. X2 runs through only finitely many hyperbolic 3-manifolds 
(up to isometry). 

Then, by passing to a subsequence, we may assume that X2 is some 
fixed hyperbolic manifold X2. Since s\ cannot run through only finitely 
many slopes, we may pass to a subsequence where s\ 7̂  s{ if i ^ j . 
By Thurston's hyperbolic Dehn surgery theorem, for i sufficiently large, 
X\(s\) is hyperbolic, with the core of the surgery solid torus being the 
unique shortest geodesic. Similarly, for i sufficiently large, -X"2(s2) is 
hyperbolic, with the core of the surgery solid torus being the unique 
shortest geodesic. But, then by Mostow Rigidity, there is a homeomor-
phism from X\{s\) to X2(s2) which takes one geodesic to the other. 
Hence, (X\, s\) = {X2, s2), which is contrary to assumption. Hence, the 
following case must hold. 

Case 2. There is a subsequence in which X2 and X2 are not isometric 
if i T£ j . 

Now, by Proposition 3.3, 

(/3(/(4)))_1 \XÌ\ < 1*5(4)1 = \Xi(s[)\ < |Xi|. 

Since ß is a non-increasing function, the sequence \X2\ is bounded, and 
so, by passing to a subsequence, we may assume that the 3-manifolds 
ini{X2) converge in the geometric topology to a hyperbolic 3-manifold 
int(X|°), where X^ is compact and orientable. For i sufficiently large, 
there is a union Li of n > 0 disjoint closed geodesies in intpQ), such 
that int(^2) — Li is difFeomorphic to intpff0)- In the complement of 
a small neighbourhood of L{, this map is fcj-Lipschitz for real numbers 
ki > 1 which tend to 1. Let (t\,..., fn) be the slopes on dX™ such that 
J^2°(*l>... ,fn) is homeomorphic to X\- By passing to a subsequence, 
we may ensure that the slopes i* are all distinct. Now, the slopes s2 

correspond to slopes a2, say on dX^. Since the lengths l(sl
2) —> 00, 

so also the lengths l(cr2) —>• 00. Hence, by Thurston's hyperbolic Dehn 
surgery theorem, for any e > 0, X2°(a2, t\,..., tfn) is hyperbolic and the 
cores of the (n + 1) filled-in solid tori are geodesies of length less than 
e, if i is sufficiently large. However, X2

x(a2,t\,... ,fn) is homeomorphic 
to Xi(s\). Since s\ has no constant subsequence, Thurston's hyperbolic 
Dehn surgery theorem gives that there is an integer N and an e > 0 
such that, for all i > N, Xi(s\) is hyperbolic and the core of the filled-
in solid torus is the unique geodesic with length less than e. This is a 
contradiction. q.e.d. 

1 



DEHN SURGERY 611 

Theorem 4.1 also has the following corollary regarding branched 
covers. 

Corollary 4.8. Let M be a compact orientable 3-manifold with dM 
a (possibly empty) union of tori, which is obtained as a branched cover 
of a compact orientable 3-manifold Y over a hyperbolic link L, via a 
representation p : Tt\ (Y — L) —> Sr. Suppose that the branching index of 
every lift of every component of dAf(L) is at least 7. Then, for a given 
M, there are only finitely many possibilities for Y, L, r and p. 

Proof. The representation p: iri(Y — L) —> Sr determines a cover 
X of Y — int(Af(L)), and M is obtained from X by Dehn filling along 
slopes s\,..., sn in dX. The hyperbolic structure on Y — iïit(ftf(L)) lifts 
to a hyperbolic structure on X, and a maximal horoball neighbourhood 
of dJ\f(L) lifts to a horoball neighbourhood of cusps of X. Since the 
length of each slope on dJ\f(L) in Y — mt(M(L)) is at least 1 [4], the 
length of each Si on N is at least 7. Thus Theorem 4.1 implies that 
there are only finitely many possibilities for X and s\,... sn. Now, 

Vol(X) = rVol(y - int(^(L))) , 

where r is the index of the cover X —• Y — int(Af(L)). There is a 
lower bound on Vol(y — int(Af(L))), since the volume of a maximal 
horoball neighbourhood of dN{L) is at least \/3 [1]. Hence, for a given 
X, there is an upper bound on r. Once r and X are fixed, so is Vol(y — 
int(jV(-L))). There are only finitely many hyperbolic manifolds of a 
given volume [3], and so there are only finitely many possibilities for Y — 
int(J\f(L)). The lengths of the meridian slopes on dN(L) are bounded 
above by the lengths of the slopes Sj on N. Hence, there are only finitely 
many possibilities for Y and L. A representation p: TTI(Y — L) —> Sr 

is determined by the image of a generating set of TT\(Y — L). Hence, 
once y , L and r are fixed, there are only finitely many possibilities for 
p. q.e.d. 

5. The length of boundary slopes 

The results about Dehn surgery in Section 4 bear a strong resem
blance to the work in [11]. In that paper, the main theorem (1.4) of [10] 
was crucial in establishing strong restrictions on the number of inter
section points between embedded surfaces in a 3-manifold and certain 
surgery curves. In this section, we use hyperbolic techniques to prove 
similar results. The main theorem of this section is the following. 
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Theorem 5.1. Let X be a hyperbolic 3-manifold and let T be a 
toral component of dX. Let f: F —» X be a map of a compact con
nected surface F into X, such that f(F) fl dX = f(dF). Suppose that 
/* : ni (F) —¥ 7Ti (X) is injective, and that every essential arc in F maps 
to an arc in X which cannot be homotoped (rei its endpoints) into dX. 
Suppose also that f(F) C\T is a non-empty collection of disjoint simple 
closed curves, each with slope s. Then 

l(s)\f(F)nT\<-2nX(F). 

This result has a number of corollaries, which include the following. 

Corollary 5.2. Let p/q be the boundary slope of an incompress
ible boundary-incompressible non-planar orientable surface F properly 
embedded in the exterior of a hyperbolic knot in S3. Then 

4n2 genus(F) 

Proof. By Theorem 5.1, 

OP 11) \dF\ < -2irX{F) = 27r(2genus(JP) - 2 + \dF\), 

and so 
(l(p/q) - 2n)\dF\ < 4ir(geims(F) - 1). 

Now, the inequality of the corollary is automatically satisfied when \q\ = 
1, since genus(F) > 0. Hence we may assume that \dF\ > 2. Moreover, 
if l(p/q) > 2TT, then 

2l(p/q) - 4TT < (l(p/q) - 2ir)\dF\ < 47r(genus(F) - 1). 

Hl(p/q) < 2n, then 

2l(p/q) - 4TT < 0 < 4vr(genus(F) - 1). 

So, in either case, 
1{PI<Ì) < 2yrgenus(F). 

By Proposition 2.2, the meridian slope on dAf(K) is short. By Corollary 
2.4, 

i(p/q) > W\ V/3/2TT. 

I 
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Hence, we obtain the inequality of the corollary. q.e.d. 

Let F be as in Theorem 5.1. Then F is neither a disc, nor a Möbius 
band, nor an annulus. Since [s] £ ^i{X) is non-trivial, F cannot be a 
disc. If F were a Möbius band or an annulus, then the map / could 
be homotoped (rei OF) to a map into dX, as X is hyperbolic. Since F 
contains an essential arc, this is contrary to assumption. 

We may therefore pick an ideal triangulation of int(F). In other 
words, we may express int(F) as a union of 2-simplices glued along 
their edges, with the O-simplices then removed. We may also ensure 
that each 1-cell in F is an essential arc. To see that such an ideal trian
gulation exists, fill in the boundary components of F with discs, forming 
a closed surface F+. If F+ has non-positive Euler characteristic, then it 
admits a one-vertex triangulation, in which each 1-cell is essential. (By 
a 'triangulation' here, all we mean is an expression of F+ as union of 
2-simplices with their edges identified in pairs.) If F+ is a projective 
plane, then it admits a two-vertex triangulation. If F+ is a sphere, then 
it admits a triangulation with three vertices. After subdividing, if nec
essary, each of these triangulations to increase the number of vertices, 
we obtain an ideal triangulation of F of the required form. 

The following result is due to Thurston [17, Section 8]. 

Proposi t ion 5.3. There is a homotopy of f : F —>• X to a map 
which sends each ideal triangle of'mt(F) to a totally geodesic ideal tri
angle in int(X). 

Proof. We construct the homotopy on the 1-cells first. First pick a 
horoball neighbourhood N of the cusps of int(X) which is a union of 
disjoint copies of S1 x Sl x [1, oo). N lifts to a disjoint union of horoballs 
in H3. We may homotope / so that, after the homotopy, f(F) n N is 
a union of vertical half-open annuii. Hence, for each (open) 1-cell a in 
the ideal triangulation, a — f~l(int(N)) is a single interval. We may 
homotope this interval, keeping its endpoints fixed, to a geodesic in 
int(X). By assumption, this geodesic does not wholly lie in N. Hence, 
in the universal cover, this geodesic runs between distinct horoball lifts 
of N. We can then perform a further homotopy so that the whole of a 
is sent to a geodesic. 

The boundary of each 2-cell of F+ is a union of three 1-cells. The 
interior of each 1-cell is sent to a geodesic in int(X). By examining the 
universal cover of int(X), it is clear that we may map this 2-cell to an 
ideal triangle. Furthermore, the map of this 2-cell is homotopic to the 
original map, since the universal cover of int(X) is aspherical. q.e.d. 
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When F is in this form, it is an example of a 'pleated surface'. It 
inherits a metric, by pulling back the metric on int(X). This in fact 
gives int(F) a hyperbolic structure, since the metric arises from glueing 
a union of hyperbolic ideal triangles along their geodesic boundaries. 
Furthermore, this structure is complete, since the metric on int(X) is 
complete. 

Proof of Theorem 5.1. We may use Proposition 5.3 to homotope / 
to a map g such that ^(int(F)) is a union of ideal triangles. Let N be 
the maximal horoball neighbourhood of T. Let N- be a slightly smaller 
horoball neighbourhood of T, such that g~1(dN~) is a disjoint union of 
simple closed curves, and so that g(F) intersects dN- transversely. We 
may find a sequence of such iV_ whose union is the interior of N. We 
may also find a horoball neighbourhood N' of T, strictly contained in 
iV_, such that g(F) ON' is a. union of vertical half-open annuii. We will 
examine the intersection of g(F) with the region iV_ — int(iV'), which 
is a copy of T 2 x / . Consider a component Y of g~1(N- — 'mt(N')) for 
which g(Y) n dN' is non-empty. 

Claim 1. dY contains no curve which bounds a disc in JP. 
Let C be such a curve, bounding a disc D in F. Then dD cannot 

map to dN', since [s] € n\{X) is non-trivial. Thus, the interior of D 
is disjoint from Y. If C intersected no 1-cells of F, then D would map 
into X in a totally geodesic fashion. Hence, g(D) would lie in iV_, and 
so D would be Y. This is impossible, and so C must intersect some 
1-cells of F. Hence, there is an arc in a 1-cell of F which is embedded 
D. But this 1-cell of F maps to a geodesic in X. This geodesic lifts to a 
geodesic in H3 which leaves and re-enters the same horoball lift of iV_. 
This cannot happen. 

Claim 2. #»: 7Ti(Y) -> 7Ti(iV_ - int(iV')) is injective. 
Suppose that a; is a non-zero element of ni(Y) which maps to 0 G 

7Ti(JV - int(JV')). Then g, : m(Y) -> iri(X) sends x to 0. But 7TI(F) -> 
n\(X) factors as TTI(Y) —y TTI(F) —>• TTI(X). The second of these maps 
is assumed to be injective. Therefore ni(Y) —> ni(F) sends x to 0. This 
contradicts Claim 1. 

Claim 3. Y is an annulus with one boundary component mapping 
to dN' and the other mapping to dN-, 

Now, 7Ti(iV_ - int(iV')) = Z © Z. Hence, by Claim 2, Y must be 
a disc, a Möbius band or an annulus. However, if Y is not an annulus 
with one boundary component mapping to dN' and the other mapping 

i 
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to dN-, then F is a disc, a Möbius band or an annulus, which is a 
contradiction. 

Claim 4- Each component of <7_1(int(./V)) which touches / - 1 ( T ) is 
an open annulus in int(F). 

There is a sequence of horoball neighbourhoods iV_ whose union is 
the interior of N. For each such JV_ we showed in Claim 3 that each 
component Y of g~l(N_) which touches / _ 1 ( T ) is a half-open annulus 
in int(F). The union of these half-open annuii is the required collection 
of open annuii in int(.F). 

There is a standard homeomorphism which identifies N with S1 x 
Sl x [1, oo). We may pick such an identification so that Sl x {*} x {1} 
has slope s, where {*} is some point in S1. Consider now the covering 

S1 x R x (1, oo) ->• S1 x S1 x (1, oo) ^ int(JV) 

which is determined by the subgroup generated by [s] G 7i"i(T). Each 
open annulus from Claim 4 lifts to an open annulus in S1 x R x (1, oo). 
Now, S1 x {0} x (l,oo) inherits a hyperbolic structure from int(iV), 
which makes it isometric to a 2-dimensional horocusp. Let the map 
p: S1 x R x (l,oo) —>• S1 x {0} x (l,oo) be orthogonal projection onto 
this submanifold. Note that p need not respect the product structure of 
S1 x R x (1, oo). Each open annulus of Claim 4 is mapped surjectively 
onto S1 x {0} x (1, oo). Also, sincep does not increase distances, the area 
A' that each open annulus inherits from S1 x {0} x (1, oo) is no more 
than the area which it inherits from int(JV). However, A' is at least l(s), 
since this is the area of the 2-dimensional horocusp 5 1 x {0} x (l,oo). 
Thus, the hyperbolic area of F is more than l(s) \f(F) D T\. But the 
Gauss-Bonnet formula [3, Proposition B.3.3] states that its total area is 
—2nx{F). We therefore deduce that 

Z ( a ) | / ( F ) n T | < - 2 7 T x ( F ) . q.e.d. 

6. 'Almost hyperbolic' 3-manifolds are hyperbolic 

Throughout this paper, we have studied 3-manifolds which have a 
complete finite volume negatively curved Riemannian metric. It is a 
major conjecture whether the existence of such a metric on a 3-manifold 
implies the existence of a complete finite volume hyperbolic structure. 
In this section, we provide evidence for this conjecture by considering 
3-manifolds which are 'almost hyperbolic' in the following sense. 
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Definition 6.1. Let S be a positive real number. Let M be a 
compact orientable 3-manifold with dM a (possibly empty) collection 
of tori. Let g be a Riemannian metric on int(M). Then (M,g) is 6-
pinched if 

-1-6 <Kmf(M,g) <Ksup{M,g) < -1 + S. 

We say that M is almost hyperbolic if, for all Ö > 0, there a <5-pinched 
complete finite volume Riemannian metric on its interior. 

The main theorem of this section is the following result. 

Theorem 6.2. Let M be a compact orientable 3-manifold with dM 
a (possibly empty) union of tori. If M is almost hyperbolic, then it has 
a complete finite volume hyperbolic structure. 

We proved this theorem in the course of proving several other results 
in this paper. We recently discovered that it has also been proved by 
Zhou [18] using methods similar to our own (but not identical). It was 
also known to Petersen [14]. However, since the journal [18] is relatively 
poorly circulated in the West, it seems worthwhile to include a summary 
of our proof of this result here. 

The idea behind our proof of this theorem is as follows. Since M 
is almost hyperbolic, there is a sequence of positive real numbers 6i 
tending to zero, and complete finite volume Riemannian metrics gi on 
int(M) such that (M,gi) is «5,-pinched. We show that some subsequence 
'converges' to a 'limit' manifold (Moo, #00) which is a 3-manifold Moo 
with a complete finite volume hyperbolic hyperbolic metric goo. Hence, 
Moo is the interior of some compact orientable 3-manifold Moo with 
dMoo a (possibly empty) union of tori. If Moo is homeomorphic to M, 
then we have found a complete finite volume hyperbolic structure on M. 
There is no immediate reason why Moo should be homeomorphic to M, 
but we will show that, if it is not, then there exist slopes (sj,..., s" ) on 

dMoo such that Moo(s},..., s" ) is homeomorphic to M. The length 
of each of these slopes tends to infinity as i —> 00. Lemma 4.2 then gives 
us a contradiction. 

In Section 4, we exploited the well-known theory of convergent se
quences of hyperbolic manifolds, and in that case, non-trivial conver
gence corresponds to hyperbolic Dehn surgery [3]. In the case here, 
the infinite sequence of manifolds are not hyperbolic, merely negatively 
curved, but a similar theory applies. We recall the following definition 
[8], due to Gromov (see also [6]). 

1 
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Definition 6.3. Let Mi and Mi be two metric spaces, with metrics 
di and di respectively, and basepoints xi and X2- If e is a positive real 
number, then an e-approximation between (Mi,di,xi) and {M.2,d2,X2) 
is a relation R C Mi x M2 such that 

(i) the projections pi : R —» Mi and p2 : R -> M2 are both surjections, 

(ii) if xRy and x'Ry', then \di(x,x') — d2(y,y')\ < e, and 

(iii) xiRx2-

If x is a point in a metric space (M, d) and r is a positive real number, we 
denote the ball of radius r about x by BM(X, r). If we wish to emphasise 
the metric on M, we may also write B(M^(x,r). If (Moojdooj^oo) 
and {(Mi,di,Xi) : i G N} are metric spaces with basepoints, then we 
say that the sequence (Mi,di,Xi) converges to (¥00,^00,^00) if, for all 
r > 0, there is a sequence of positive real numbers Cj —> 0 and ej-
approximations between B M ( (^j, r) and S M ^ (#00 > f) • In this case, we 
write (Mi,di,Xi) -)• (Moo,doo,a;oo)-

The following example will be useful. Its proof (which is omitted) is 
a straightforward application of Jacobi fields. 

Lemma 6.4. Let Mi be a sequence of simply-connected n-manifolds 
with complete Riemannian metrics gi such that Ksup(Mi,gi) —> —1 and 
Kmt{Mi,gi) —» — 1. Let Xi be a basepoint in Mi, and let xœ be any point 
in hyperbolic n-space HP. Let r be any positive real number. Then for i 
sufficiently large, there is a sequence of real numbers k{ > 1 tending to 
1, and a sequence of ki-bi-Lipschitz homeomorphisms hi: BMi{xi,r) —» 
-BiHin (^oo,0- In particular, (Mi,gi,Xi) converges to HP with basepoint 

The following theorem of Gromov is a uniqueness result for conver
gent sequences. A simple proof of this result can be found in [8]. 

Theorem 6.5. [8] Let (Mi,di,Xi) be a sequence of complete met
ric spaces with basepoints, such that every closed ball in Mi is com
pact. Suppose that there are complete pointed metric spaces (M, d, x) 
and (M1, d',x') such that 

(Mi,di,Xi) -> (M,d,x) 

(Mi,di,Xi) -> (M',d',x'). 

Then (M,d,x) and (M',d',x') are isometric pointed metric spaces. 
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Vital in our construction of a hyperbolic metric on int(M) will be 
the following theorem. 

Theorem 6.6. [8] Let (Mi,di,Xi) be a sequence of complete metric 
spaces (with basepoints) in which bounded balls are compact. Then the 
following are equivalent. 

(1) There is a subsequence {(Mj,dj,Xj): j e J C N} converging to a 
complete metric space (M,d,x). 

(2) There is a subsequence {(Mk,dk,Xk) : k € K C N} such that for 
all e > 0 and r > 0, there is a natural number K(r, e) with the 
property that the number of e-balls required to cover BMk(xk,r) îS 

less than K(r,e). 

Gromov also proved that, under certain circumstances, convergence 
in the above sense implies bi-Lipschitz convergence. The proof of this 
result [5] readily gives the following theorem. 

Theorem 6.7. Let (Mi,gi,Xi) be a sequence of Riemannian man
ifolds converging to some space (Moodoc^oo). Let r be a positive real 
number. Suppose that Kaup(BMi(xi.,r),gi) and Kinf(BMi(xi,r),gi) are 
bounded above and below by constants independent of i. Suppose also 
that the injectivity radius of BMi(^i,r) is bounded below by a constant 
independent of i. Then for sufficiently large i, there is a sequence of 
real numbers ki > 1 tending to 1, a sequence of positive real numbers 
€j tending to zero and a sequence of ki-bi-Lipschitz homeomorphisms 
hi : BMoo(xooi r) ->• Ui, where BMi(XJ, r - e*) C Ui C BMi (%i, r + ei). 

The following lemma follows immediately from Theorem 6.6. 

Lemma 6.8. Let (Mi,gi,Xi) be a sequence of Si-pinched complete 
Riemannian n-manifolds with Si —> 0. Then some subsequence converges 
to a pointed metric space (Moo,doo,a;oo). 

Proof. Let (Mi,gi) be the universal cover of (Mj,gi) and let Xi € Mi 
be a lift of the basepoint a;;. Then Lemma 6.4 states that (Mi,g~i,Xi) con
verges. Hence, Theorem 6.6 states that we may pass to a subsequence 
(Mkig~k,Xk) s o that f° r a n y e > 0 and r > 0, there is a natural number 
K(r,e) such that the number of e-balls required to cover B^ (xk,r) is 
less than K(r,e). Such a covering projects to a covering of BMk{xk,r) 
by e-balls. Hence, some subsequence (Mj,gj,Xj) converges. q.e.d. 

So, in our case where Mi is a fixed manifold M, some subsequence 
(M,gi,Xi) converges to a limit (MocdocZoo). In general, we lose a 



DEHN SURGERY 619 

great deal of information when passing from (M,gi) to (Moo,doo)- In 
particular, (Moo,rfoo) need not be a hyperbolic 3-manifold. However, if 
we pick the basepoints Xi judiciously, then M ^ will be hyperbolic. We 
shall pick Xi in the 'thick' part of (M, gi). If e is a positive real number, 
then we denote the e-thick part of (M, gi) by (M, ffi)[É)00) and e-thin part 
of (M,S i) by (M,0i)(o,£]. 

The Margulis lemma [3] describes the e-thin part of hyperbolic man
ifolds for e sufficiently small. There is an extension of this result to 
negatively curved Riemannian manifolds [2]. This implies that there is 
a positive real number /i (called a Margulis constant) with the following 
property. If M is an orientable 3-manifold and g is a 5-pinched Rieman
nian metric on M with S < 1, then each component X of (M, g)(o,t] f° r 

e < /i is diffeomorphic to one of the following possibilities. 

(i) X = D2 x S1. In this case, X is known as a 'tube'. It is a 
neighbourhood of a closed geodesic in M with length less than e. 

(ii) X = Sl. Then X is a closed geodesic with length precisely e. 
By perturbing our choice of e a little, we can ensure that this 
possibility never arises. 

(iii) X *< S1 x S1 x [0,oo). Then X is a 'cusp'. 

In fact, a closer examination of the metric on the /i-thin part of 
(M, g) readily yields the following two results. 

Proposition 6.9. There is a function D: (0,/i/2) —• R+ with 
D(e) —> ex» as e -*• 0, and having the following property. Pick real num
bers Ô and e with 0 < S < 1 and 0 < e < min{l, /JL/2}. If M is a compact 
orientable 3-manifold with a complete finite volume 6-pinched Rieman
nian metric g on its interior, then the distance between (M,g)iQt2e2] and 
(M, g)[2c,oo) is at least D(e). 

Proposition 6.10. There is a function H : (0,/i) -4 K+ withH(e) —» 
oo as e —» 0 and having the following property. Pick ô G (0,1). Let M be 
a compact orientable 3-manifold with a complete finite volume 6-pinched 
Riemannian metric g on its interior. If X is a component of (M,g)(o,ß] 
which is a neighbourhood of a geodesic of length at most e, then the 
length of a meridian curve on dX is at least H(e). 

We are now ready to prove Theorem 6.2. 

Proof of Theorem 6.2. Since M is almost hyperbolic, there is a 
sequence of positive real numbers S{ tending to zero, and complete fi-
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nite volume Riemannian metrics gi on in t (M) , such that (M,gi) is 5i-
pinched. We may assume that , for all i, 8i < 1. For each i, pick a 
basepoint Xi in (M, <7i)[ î0o)) where fj, is the constant mentioned above. 

Claim 1. Some subsequence (M,gj,Xj) converges to (Moo,goo,^oo), 
which is a 3-manifold Mœ with a complete hyperbolic Riemannian met
ric 3oo. 

Some subsequence converges to a complete metric space 
(MoojdocXoo) by Lemma 6.8. Pass to this subsequence. Let y be any 
point in MQO. We wish to examine a neighbourhood of y. 

Let r be dMooixooiV) + A4- By definition, there is a sequence 
€i —> 0 and ej-approximations between (B(Mg.)(xi,r),gi,Xi) and 
[BMOO {XOOI

 r),doo,Xoo)- From this, we get a sequence of e^-approximations 
between(B(Migi)(xi,r),gi,yi)a.nd(BMoo(xoo,r),d0o,y)îorsomeyi G M . 
For any real number z with ei < z < fi, each e^-approximation restricts 
to an ei-approximation between (Ui, gi,yi) and (BM^ (y, z),doo,y), where 
B(M,gi)(yiiZ-£i) C Ui C .B(M)ffi)(yj,z + ei). We can extend this to a 2ci-
approximationbetween (B(M )S i)(yi,z),9i,yi) a n d ( % „ ( y > z ) , r f o o , y ) - So, 

(B{M,9i)(yi,z),gi,yi) -> C B M « ^ « ) . « ! « » ! / ) . 

If we insist tha t ê  < e < /x/2, then 

a;, G (M,5i) [M>oo) C (Af,0i)[2£iOo). 

By construction, j/j € ß(^ ) 9 i ) (a ; t , r ) . For e sufficiently small, the dis
tance between (M, #i)(o,2e2] a n ( i (-̂ ><7i)[2<:,oo) i s more than r, by Propo
sition 6.9. Hence, yi € (M,gi)\2t

2,oo)- Thus, B^Mg.^(yi,e2) is isometric 
to a ball of radius e2 in the universal cover (M,gi) of (M,gi). But 
(M,<?i) is a complete simply-connected Riemannian 3-manifold, and 
both nSUp(M,gi) and nmf(M,gi) tend to —1 as i —> oo. Thus, Lemma 
6.4 states that -S(M,gi)(yi> e2) converges to a ball of radius e2 in H 3 , with 
basepoint at the centre p of the ball. Theorem 6.5 implies that this 
ball is isometric to BM00(y,^2), via an isometry taking p to y. Thus, 
(MQO, doo) is a 3-manifold with a complete hyperbolic Riemannian met
ric goo. This proves the claim. 

Claim 2. Let r be any positive real number. For i sufficiently large, 
there is a sequence of real numbers ki > 1 tending to 1, a sequence of 
positive real numbers e* tending to zero and a sequence of fcj-bi-Lipschitz 
homeomorphisms 

hi: BMoo(xoo,r) -> Ui, 

i 
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where 
B(M,gt)(xi,r - ei) CUiC B(Mtg.){xi,r + ei). 

We just need to check that the conditions of Theorem 6.7 are satis
fied. The restrictions on Ksup{B(Mtg.){xi,r),gi) a n d Kint(B(M,gi)(xùr),9i) 
hold automatically since (M,gi) is ^-pinched with Si —> 0. Since 
Xi € (M,gi)[ßtOQ)i Proposition 6.9 implies that there is some e < fi/2 
such that (M, gj)[2e2!0o) ^ B(M,gi)(xiir) f° r all * sufficiently large. Thus 
Theorem 6.7 proves the claim. 

Claim 3. (MQO, goo) has finite volume. 
In the proof of Proposition 3.3, we established that 

|M|TT/2 > (-Ksup(M, f f i))3/2Vol(M,5i)-

Since Ksup(M,gi) —> —1, we deduce that the sequence Vol(M,gi) is 
bounded above. Now, 

Vol(Moo,0oo) = lim Vol(JBMoo(a;oo,',),ffoo), 
r—>oo 

and, using the notation in Claim 2, 

Vol(BAfoo(a:c»,r))5oo) < (fci)3Vol(5(M)9i)(a;i,r + e*), ft) 

<(fci)3Vol(M,ft). 

Thus, Vo^Mocffoo) is finite. 
This implies that Mx, = int(Moo) for some compact orientable 3-

manifold MQO, with dM^ a (possibly empty) union of tori. 

Claim 4- Let e be a positive real number less than n such that 
(M00,300)(o)£] is either empty or consists only of horoball neighbour
hoods of cusps. Then, for i sufficiently large, there is a sequence of 
real numbers k^ > 1 tending to 1, and fc~bi-Lipschitz homeomorphisms 
K- (Moo,ffoo)[e,oo) -»• ( M , f t ) [ £ ) 0 o ) . 

We pick r > 0 so that BMoo(xoo,r) D ( M » , ^ ) ^ ) . Let T be 
the boundary of (Mx,, g<x>)[e,oo) which is a collection of tori. Using the 
notation in Claim 2, the homeomorphism hi : -BMOO^OOO

 —• Ui is al
most an isometry for i large. Therefore for large z, there is a sequence 
of positive real numbers 7J tending to zero, such that hi(T) separates 
(M,gi)(o,e-yi] from (M, <7i)[<;+7i,oo)- But, using the Margulis Lemma for 
negatively curved 3-manifolds, (M, ft)[€_7i)e+7i] is homeomorphic to a 
collection of copies of T2 x / . Hence, hi (T) is isotopie to the boundary 
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of (M, <7i)[e>00), since any torus in T2 x I which separates the boundary 
components is isotopie to either boundary component. We may there
fore modify hi to h\: (Moo,5oo)[6,oo) ~> (M>9i)[e,oo), ensuring that the 
h[ are bi-Lipschtiz homeomorphisms as claimed. 

Claim 5. Let e be a positive real number less than fi such that 
(M», <7oo)(o,e] is either empty or consists only of horoball neighbour
hoods of cusps. Then the length of the core geodesic of each tube 
component of (M, ffi)(o,£] tends to zero, as i —> oo. 

If not, we may find a positive real number a < e and a subsequence 
in which (M, gi)(o,e] contains a geodesic of length at least a. Applying 
Claim 4, we find that, for i sufficiently large, there is a sequence of 
real numbers k" > 1 tending to 1, and A;"-bi-Lipschitz homeomorphisms 
h": (MQO, ̂ 00)^00) —» (-W)5Ì)[Q,OO)- I n particular, there is a geodesic in 
(MQO, goo) of length at most ak". But a < e, which is less than the 
length of the shortest geodesic in MQO. This is a contradiction, which 
proves the claim. 

Fix e < /j, such that (Moo,<7oo)(o,el is either empty or consists only 
of horoball neighbourhoods of cusps. Now, ( M , ^ ) ^ ] is a (possibly 
empty) collection of tubes and a (possibly empty) collection of cusps. 
If, for infinitely many i, (M,gj)(0,e] contains no tubes, then Claim 4 
implies that M is homeomorphic to Moo- By Claims 1 and 3, Moo has 
a complete finite volume hyperbolic structure, which proves the theorem 
in this case. 

Consider now the case where (M, gi)(o,e] is> f° r infinitely many i, a 
collection of tubes Xl,...X^' and possibly also some cusps. Claim 
4 implies that, for each i sufficiently large, the meridian slope on X\ 
corresponds to a slope s\ on 9Moo, and that M is homeomorphic to 
Moo(sl,.. . , s " ). By passing to a subsequence, we may ensure that 
n(i) is some fixed integer n, and that, for each j , the slopes sj all lie a 
fixed torus Tj. Claim 5 states that the core geodesic of X\ tends to zero 
as i —> 00. Hence, Proposition 6.10 states that the length of the meridian 
slope on Xj tends to infinity. The length of s? on (Moo,goo)[6,00) differs 
from length of the corresponding meridian slope on Xj by a factor of 
at most k[, which converges to 1, as in Claim 4. Thus, l(s\) —>• 00 as 
i —> 00. Therefore, by passing to a subsequence, we may assume that 
the slopes s\ ^ s3

k if i ^ k. Lemma 4.2 gives us a contradiction. q.e.d. 

Remark. The proof of Theorem 6.2 actually gives something a little 
stronger. It shows that if (M,gj) is a sequence of ^-pinched Rieman-
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nian manifolds with öi —» 0, then int(M) has a complete finite volume 
hyperbolic metric h, and (for all i sufficiently large) there is a sequence 
of real number ki > 1, tending to 1, and a sequence of fcj-bi-Lipschitz 
homeomorphisms between (M, gi) and (M,h). 
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