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"T'his text approximates a transcript of a talk presented to the 505 an-
nual meeting of the South African Mathematical Society on 1'st Novem-
ber, 2007. The talk was a survey, for a wide mathematical audience, of
some of the mathematics inspired by the generalized Poincaré coniecture.
None of the results are due to the author, and many key ideas have been
left out. There is no attempt to mention all those who made significant
contributions. In places we have over-simplified and omitted important
ideas. The style of the talk was rather informal. I thank the organizers
of the SAMSB, in particular David Gay, for the opportunity to speak, and
the mathematics department of the University of Cape Town for their
hospitality during my visit, during which time this report was prepared

An n-dimensional manifold is & topological space thas is locally like
Euclidean n-space (second countable, Hausdorff, and every point has a
neighborhood homeomorphic to an open set in B"). A 2-manifold is
called a surface. These are classified. The compact orientable ones are
completely determined by the an integer called the Euler charecteristic,
and are the sphere, torus, 2-holed torus, 3-holed torus,...

An important n-manifold is the n-sphere
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R #

Roughly speaking, the Generalized Poincaré conjecture (GPC) is:
A compact manifold is eguivalent to S™ < it has the same algebraic
topology invariants as S™.

To make this precise we need to discuss the italicized terms. A key
concept of algebraic topology is the fundamental group of a topological
space. Given a topological space X we would like to assign a group,
m1(X), called the fundamental group of X based at p to X. An irritating
fact for the beginner is that in order to define the group operation we need
to choose a point p in X called the base point. However the isomorphism
type of the fundamental group only depends on the path component of
X that contains the basepoint. Tn particular, for a connected manifold
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this group is well defined up to isomorphism. This is why we avoid the
traditional notation m; (X, p) here. A loop in X based at p is & continnos
map v : [0,1] — X with {0) = (1} = p. Elements of 71 {X') are homotopy
classes (defined below) of loop starting and ending at p. For example a
torus, 1, is the product of two circles 5 x 5! and

(1) 2T x 7.

The fundamental group of the torus is generated by the two loops a(t) =
(exp(2mit), 1) and B(t) = (1, exp(Zmit)} using the basepoint p = {1,1} &
St % 8t

If @, 3 are two loops based at p, the group operation is given by [o] -
[3] = [v] ie the homotopy class of the loop v which first goes round «
then goes round 7 :

a(2t) 0<t<1/2
i&n ﬁ ,%Tciwmwme

It is at this juncture that one needs the loop ¢ to end where loop 5
starts, and this why we need a base point. This product is usually not
commutative, although it is for the torus. A space is simply connected
if it is path connected and the fundamental group is érivial i.e. contains
only one element. Another way to say this is that every loop in M can
be continuously shrunk in M to a point. The original Poincaré conjec-
ture (although agked rather than conjectured by Peincaré) is: II M is a
compact, simply connected 3-manifold without boundary then M is the
3-gphere.

The idea of homotopy is o key idea in many parts of mathematics.
It is a formalization of the idea on confinuously changing one thing into
another. Formally a homotopy is just a continuous map

H:X x[0,1] =Y.

For t € [0,1] the time t map is Hy : X — Y defined by Hy(x) = H{l, x).
One says that the l-parameter family of maps Hy : X — Y waries con-
finuwously and describes the map Hy as a continuous deformation of the
map Hg. Another viewpoint is that the map ¢ = H; 1s a continuous map
of the interval into Maps|X,Y suitably topologized.

Two maps f,g : X — V are homotopic written f ~ g if there is a
homotopy H as above with f = Hy and g = H;. It is easy to check that
~ ig an equivalence relation.
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Example 1. Every map f: X — R" is homotopic to a constant map
using H(z,t) = - f(x).

Example 2. The unit circle is §* C C. For each integer n define a map
Jo o 8t~ 8Y by fu(2) = 2™ Then f, ~ fm < m = n. The integer n is
called the degree of the map and is a homotopy invariant.

We now come to the key idea of komotopy equivalence; algebraic topol-
ogy is the study of spaces up to this equivalence relation. A homotopy
tnverse of amap f: X — Y isamap ¢g: Y — X such that fogo 1y
and go f ~ lx. Incidentally in topology maep means continuous. If one
replaces o by = then this is the definition of homeomorphism. A map
with a homotopy inverse is called a fiomatopy equivalence. One says that
X and Y are homotopy eguivalent spaces, or they have the same homo-
topy type, if there is a homotopy equivalence f : X — ¥. This gives an
equivalence relation between topological spaces™ It turns out that many
important properties of manifolds only depend on their homotopy type.
The distinction between geometric and algebraic topology is the distine-
tion between equivalence up to homeomorphism versus up to homotopy
equivalence.

Example 1. R" ~ {one peint }
Example 2. S x [0,1} = S

Example 3. GL(n,R) ~ O(n). The homotopy is given by the Gram-
Schmidt orthonormalization process. Here O(n) is the orthogonal group
of nn %X 7 matrices A with 4A-1 = A%,

A space X is called contractible if the identity map id + X — X is
homotopic to a constant map. Another way to say this is to say X is
confractible if it is homotopy equivalent to a point. Example (1) implies
Eueclidean space is contractible. It is interesting that Poincaré did not
ask whether every contractible 3-manifold is R?, since this is perhaps
the simplest 3-manifold. We will discuss the surprising answer to this
question below.

The definition of fundamental group involves the notion of homotopy
classes of loop. T'we loops «, J base at p are homotopic rel endpoints and
are in the same homotopy class if there is a homotopy H from « to 3 such
that cach time-f-map [y 1s a loop starting and ending at p. In symbols
this means V¢ H{0,t)= H{l,t) = p, also o = Hg and 3 = H..
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‘When n > 4 every finitely presented group is the fundamental group
of some manifold of dimension n. The isomorphism problem for groups is
logically undecidable, hence there is no algorithm to decide, in general,
whether two compact 4-manifolds are homeomeorphic or not. The same
holds true in each dimension 7 > 4. In fact there is no algorithm to decide
whether or not a group, given in terms of generators and relations between
those generators, is the trivial group (contains exactly one element} or not.
Thus one can not in general decide if a compact n-manifold with n > 4 is
simply connected or not. However a consequence of Perelman’s proof of
Thurston’s Geometrization conjecture is that there is a {non-conceptual)
classification of compact orientable 3-manifolds, and an algorithm for
deciding whether two 3-manifolds are homeomorphic or not.

Up to now we have avoided the issue of what it means to say two
n-manifolds are eguivalent. There are various answers, and one of the
major triumphs of twentieth century topology was the understanding the
‘differences between the various notions. Two manifolds XY equivalent
if:

Answer 1. (algebraic topology answer) They are homotopy equivalent.

Answer 2. (point-set topology answer) They are homeomorphic ie.
there is a continuous bijection % : X — ¥ such that A™' is also con-
hinucus.

Answer 3. (differentiable-topology answer) They are diffeomorphic i.e.
the homeomorphisms & and ™! are differentiable (or smooth).

Clearly 3= 2= 1.

Generalized Poincaré Conjecture (GPC)
If a compact manifold is homotopy equivalent to §™ then M is eguivalent
to ST,

The term “equivalent” might be taken to mean homeomorphic or dif-
feomorphic. A big surprise was that the answer to these questions turned
out to be different, depending on the dimension n. As we shall see, in some
sense the right question for GPC is (2), the point-set topology question.

An equivalent formulation of the GPC involves the higher homotopy
groups. Given a space X and bagepoint p € X the »n th hometopy group of
X based at pis 7, (X). An element is a homotopy classof map f : 8% - X
(sending the basepoint of &% to p). For m > 2 this group is abelian.
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Intuitively m,(X) = 0 iff every 5™ in X can be shrunk in X to a point. If
k < n one may assume f(S*} misses the point co € " = R* U {co} and
so f(5%) C R™ and can therefore be shrunk there; hence TRp(S™) = 0. It
can be shown that m, (5™) = Z. The issue of whether or not a given map
is a homotopy equivalence is reduced to algebra using:

Theorem 1 mér?@w@mm,m theorem). If X and ¥ are connected manifolds
then f 1 X — Y is a homolopy eguivalence & Vn >0 £, : (X)) —
T (Y} is an isomorphism of groups. (Here f,, is the homomeorphism of
groups induced by f)

In particular, using a bit more algebraic topology, one can reformulate
the hypothesis of the GPC in various ways:

Theorem 2. The following are equivalent for a compact, connected n-
manifold M without boundary

(1) M is homotopy equivalent to o S™

(2) Every map of S* into M with k < n can be shrunk to a point in M.
(VY 1<i<n m(M)y=0

(4) M is simply connected and the homology groups Hy(M) = 0 vanish
for 2 <4 <n.

Unfortunately, in dimension n > 4 it is not logically possible to always
decide if a given n-manifold is simply connected. However Perelman’s
proof of the Geometrization Conjecture in dimension 3 implies that for
3-manifolds this is decidable.

In each odd dimension n > 3 there are n-manifolds called Lens spaces
which are homotopy equivalent but not homeomarphic, thus the algebraic
topology classification is different to the point-set topology classification.
‘Ihese manifolds are the quotient of the n-sphere, §™, by & finite cyclic
subgroup of O(n+ 1) thought of as the group of isometries of $™ with its
standard round metric. The following result was a big surprise. It gives
a counterexample to the differentiable version of GPC.

Theorem 3 (Milnor). There is a T-dimensional manifold which is home-
omorphic but not diffeomorphic to S7.

There is a beautiful theory of the possible exotic smooth structures
on a given manifold, except in dimension 4 where there are still mys-
teries. Brieskhorn showed that the 28 differentiable structures on the
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7-sphere are the intersection with the unit sphere in C? of the algebraic
hypersurfaces

Nm+mw+ww+mm+mmeHo 1<k <28

Thus there is a link between the topology of singular points on alge-
braic varieties and topology. The only dimension in which it is unknown
whether or not there is more than one smooth structure on 5™ is n = 4
and this is the only unsolved case of the differentiable version of the GPC.
In dimension n < 7 if n # 4 then a manifold is diffeomorphic tc 5™ iff it
is homeomorphic to S™. However the topological version of GPC is true
in all dimensions (though the three proofs differ dramatically):

Theorem 4 (Smale {1960) for n > 5, Freedman (1982) for n = 4, and
Perelman (2003) for n = 3). If a smooth n-mandfold is homotopy equiva-
lent to S™ then it is homeomorphic to 57,

In dimension 3 two manifolds are homeomorphic iff they are diffeo-
morphic. As mentioned, the theory of non-compact 3-manifolds holds
more surprises.

Theorem 5 (Whitehead). There is a non-compact 3-manifold W (the
Whitehead manifold) such that W # R® and W x R = R*, Hence
W~ R

The Whitehead manifold {actually there are uncountable many differ-
ent ones) is constructed as an increasing union

w o= W claCVa--.

n=1
Here each V; = S x R? = V is a open solid torus. Any finite union

is homeomorphic to V, it is just an open solid torus and is not simply
connected. However the infinite union is magical. Tt is reminiscent of the

fact that
=
°=U ?vN

n=1

exhibits the rationals (), +) as an additive abelian group which is an
increasing union of infinife cyclic subgroups. Indeed there is a variant
of Whitehead’s construciion which gives a 3-manifold whose fundamental
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Figure 1. Constructing the Whitehead Manifold.

group is isomorphic to {€}, +-) and which has universal cover B2, ‘L'he key
point in the construction of W is the way 1} sits inside Viy;. This is
“always the same” in the sense that each one is given by an injective map
{topological embedding)

Fivi—= ¥

which has image f(V}1) contained in a small neighborhood of a circle
in V5 that is knotted.

The key point is that € can be shrunk to a point within V5 but not
without crossing détself. This is what is meant by saying that € is knotted
in V5. This ensures every loop in V; can be shrunk to a point in Vi,
implying W is simply connected. The proof that W #£ R® involves a
bit of topology. But the proof that W x R = R* is just based on the
ohservation that in 4 dimensions one has enough room to be able to undo
knots. The extra dimension allows one to move €' without crossing itself
to ' where (' is a small unknotted circle in V. Tt is then easy to see
from this that W x R = R*.

The remainder of the talk is an attempt to give some idea of the
proof of the GPC for high dimensions n > 5. In particular we wish fo
give some idea of how the hypothesis is used, and why the conclusion is a
homeomorphism not a diffeomorphism. This entails a brief discussion of a
handle decomposition of a manifold. The relation of handles to homology
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groups. The idea of cancelling pairs of complimentary handles and the
fact that the hypothesis implies the homology groups vanish which allows
one to cancel all the handles except for just two. We do not have time to
indicate how the dimension hypothesis n > 5 is needed to do moves which
enable cancellation. However the discussion of the Whitehead manifold
illustrates that extra dimensions sometimes allow geometric moves which
give simplifications that are not possible in lower dimensions. First we
discuss the Alezander trick that shows why a manifold which has a handle
decomposition with only two handles is homeomorphic {(but perhaps not
diffeornorphic) to a sphere.

The ri-bell is
D" = {ceR" : |zl <1}

Tt is a compact n-msanitold with boundary an (n — 1)-sphere:

i

A" = {zeR® : |jz||=1} = "L

Observation. S* = D% UD" is the union of two manifolds with
boundary, each diffeomorphic to n-balls: the upper hemisphere, L} and
the lower hemisphere, D™. They intersect along the equatorial (n — 1)-
sphere

Dt DM =8DY = gD* =87

Thus S™ is the result of gluing two n-balls, A = D% and B = D” together
using a particuler homeomorphism b : @4 — AB to identify 84 with 9B.
A key point is that ewery choice of homeomorphism h gives a manifold
that is homeomorphic, to (but perhaps not diffeornorphic to) a sphere.
This follows from

Theorem 6 (Alexander trick). Bvery homeomorphism b : D™ — 9D"
extends to a homeomorphism H : D™ — D™ with H|@D™ = h.

Proof.

_J] o if =0
m@v‘ﬁ:ifpgzgc aaﬂg

Observe that F ig usually not differentiable at 0.

The strategy to prove GPC in dimensions n > 5 ig the following.
Given M™ =~ S" decompose M = AU B. Show A and B are n-balls with

3%

AN B = dA = 8B. The result follows from the above. In a bit more
detail:

e Every manifold has a handle decomposition. Fach handle is topologi-
cally an n-ball, and they are assembled in a gpecial way.

o Use algebraic topology (homology theory)} to cancel handles two-at-a-
time until only two remain.

Smale’s proof of the GPC used a Morse function. This is a differen-
tiable function f : M — R with the property that every critical point
is non-degenerate, in the sense that the Hessian matrix is non-singular,
The finitely many critical points give rise to a handle decomposition of M.
The signature of the Hessian at the critical point is the indez of the han-
dle. However, one can work directly with handle decompositions without
mentioning Morse functions, which is what we describe next.

We will now work with n-dimensional manifolds. Given 0 <k <n a
k-handle or handle of index k is h* = D* x D" % gnd D* % 0 is called
the core of the handle and ™% is called the co-core. One thinks of
a k-handle as a k-cell, namely it’s core, but it has heen fattened up to
be an n-dimensional manifold by taking the product with the co-core.
Usually in manifold topology the superseript indicates the dimension of
the manifold. But for a handle it indicates the index.

Suppose M is a manifold with houndary and N = M U h* where
h¥ = DF % D* % ig a k-handle and

M Nh* = (D% x D™ ¢ M.

We say that N is obtained from M by altaching a k-handle. The subset
of (AD*) x D" % M is called the aftaching region of the handle h¥.
From the point of view of homotopy theory the fattening of D* by taking
the product with D™ *, has no effect, so that the homotopy type of N
is the same as if only the core D% x 0 C k* is added onto M. Tn this
sense adding a k-handle to A is like adding a k-dimensicnal ball to M
by attaching it along its boundery.

A handle decomposition of a compact manifold M is a sequence of
submanifolds
MycCc M C Mg CM,=M
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core

1-handle co-core

2-handle /.

N e e

1
attaching region x D

O-handle

Figure 2. A handle decomposition A k-handle h* = DFx Dk,
of the torus.

with My an n-ball and M;,; is obtained from M, by attaching a handle.

The left side of figure 2 shows a decomposition of a torus intc 4 han-
dles: one O-handle, two 1-handles, and one 2-handie. It is easy fo show
that every compact differentiable manifold has a finite handle decompo-
sition. Furthermore, one can easily arrange that the handles are attached
in order of increasing index, and that there is only one O-handle only one
n-handle. Thus

No CNi CNyg-- - T Ny=M

with Ny an n-ball thoughs of as one 0-handle. Furthermore
g )
closure(N; Y\ N;—1) = C ﬂ.
=1

is the disjoint union of all the handles, mb_@.,u of index ¢.

A cancelling pair of handles consists of two handles: 2 attached to M,
and h*! attached to M U R*, so that the attaching sphere, (9DFT1) x
DD of BEHD intersects the belt sphere DF x D™ % transversally
in exactly one point. It is then easy to see that (M U A®) U RMHT is
homeomorphic to M.

We now describe the process of sliding one handle over another handle.
If 1 and hy are disjeint handles of the same index % attached to M then
M U hy U hy is diffeomorphic to M U Ay U by where hs is a k-handle with
attaching sphere $¥ 1 which is obtained by tubing the attaching spheres
_m%.lﬂ of hy and S57* of hy together using a thin tube (homeomorphic
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1 handle

Figure 3. A 2-handle that cancels a 1-handle.

to [0, 1] x §%7%) in a small neighborhood of some chosen arc a € dM
connecting MMS to .meH. We shall see helow that the algebraic process of
doing row operations on a matrix can be translated into a sequence of
handle slides. The end result of these slides is that pairs of handles can
be cancelled.

Given a manifold M and an integer 7 > 0 the i'th homology group
H;(M) is an abelian group which depends only on the homotopy type of
M. The definition of homology for arbitrary topological spaces is more
complicated than the definition of the homotopy groups, but it turng out
to be casier to calculate. For a manifold, this group has one gererator
for each handle of index 4. It has one relation between these generators
for each handle of index ¢ + 1. Of course it ig far from clear with this
description why the homology groups of M are independent of the handle
decomposition of M that is used. It follows from this description, and the
fact that 8™ has a handle decomposition with just one handle of index 0
and one of index », that when n > 2 that H;{(5") is 0 unless ¢ € {0,n}
in which case it is Z. Since the homology groups only depend on the
homotopy type it follows that M ~ 5" then M and 5" have isomorphic
homology.
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Figure 4. Sliding the attaching sphere of one handle over another handle
correspends to adding one row of the matrix A to another.

Given a finitely generated abelian group, 7., (written additively) choose
elements g1, - - - gn, which generate G. Suppose that these elements satisfy
the m relations

T
> Ag =0 1<i<m
je=1 .

where A; ; are certain integers. Furthermore suppose that every relation
among these generators is a Z-linear combination of these. Then A is
calied a presentation matriz for G. Each row of A corresponds to a re-
lation between the generators. Column operations on A correspond to
changing the generating set, and row operations correspond o changing
the relations, but all thesc operations preserve the isomorphism type of
. Conversely an integral matrix determines a finitely generated abelian
group up to isomorphism.

A handle presentation of M determines a presentation matrix (Agy),
of H,{M) as follows. The j'th coinmn of the matrix A corresponds to the
generator corresponding to a handle rw of index p in N,. The ©'th row oﬁ
the matrix A corresponds to the relation corresponding to a handle i} T
of index (p+ 1) in Npi1. Then A, ; is the number of fimes the attaching
sphere SP x DP~1 < kY 1 rung across xw algebraically. More formally,

the #'th row of A is given by the kernel of the map induced by inclusion
Hp(Np) — Hp(Vp U _{Miv.
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The hypothesis of the GPC that M ~ 8™ implies H;(M} = H,(S™) =
0 for 0 < ¢ < n. The fact that H;(M) = 0 means that the presentation
matrix, A, for H;(M) can be transformed by row operations (each of
which adds or subtracts one row to/from another row) into the obvicus
presentation matrix, B, for the trivial group: the one which in which the
4'th relation sets the ¢’th generator equal to zero, possibly followed by
some redundant relations saying 0 = 0.

10 0
01 0
0 0
3 —2
14
4= 10 0 1 | =8
0 0 0

erations correspond to handle slides. The + sign in the row operation
corresponds to orientations of the two handles involved in the slide. The
end result is a new handle presentation given by the simplified matrix
E. From this one sees that each handle of index ¢ is cancelled by the
corresponding handle of index (¢ + 1). Thus we can cancel all the handles
of index ¢. Continuing in this fashion one cancels all the handles except
for two handles, one of index 0 and the other of index n. From this one
deduces that M s homeomorphic to 5™, .

This sketch has omitted much, including how Poincaré duality is used
in combination with turning the manifeld upside down (replace Morse
function f by —f)}, fo convert handles of index ¢ into handles of index
{(n — i), so that one only ever needs to deal! with handles of index 7 <
{n+1)/2. This is a crucial point in order to have enough extra dimensions
when it comes to sliding handles around.

Provided there are enough dimensions (1.e. n > 5) these row op-
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