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Abstract We give counterexamples to a version of the simple loop conjecture in which the
target group is PSL(2, C). These examples answer a question of Minsky in the negative.
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1 Introduction

The original simple loop conjecture, proved by Gabai in [6], implies that the kernel of any
non-injective homomorphism between the fundamental groups of closed orientable surfaces
contains an element represented by an essential simple closed curve. It has been conjectured
(see Problem3.96 inKirby’s problem list [16]) that if the target is replaced by the fundamental
group of a closed orientable 3-manifold M the same result holds:

Simple Loop Conjecture Let M be an orientable 3–manifold, and let � be a closed ori-
entable surface. The kernel of every non-injective homomorphism from π1� to π1M contains
an element represented by an essential simple closed curve on �.

(There are versions of Gabai’s theorem and the above conjecture in which � and M are
allowed to be non-orientable, and an additional two-sidedness hypothesis is added. We focus
on the orientable case in this paper). Hass proved the simple loop conjecture in case M is
Seifert fibered in [9]. Rubinstein and Wang extended Hass’s theorem to the case in which M
is a graph manifold in [18]. The important case of M hyperbolic is open.

D. Cooper
University of California at Santa Barbara, Santa Barbara, CA, USA
e-mail: cooper@math.ucsb.edu

J. F. Manning (B)
University at Buffalo, SUNY, Buffalo, NY, USA
e-mail: j399m@buffalo.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-014-9984-0&domain=pdf


166 Geom Dedicata (2015) 177:165–187

Minsky further asked [14, Question 5.3] if the same result holds if the target group is
PSL(2, C). An affirmative answer would have implied the Simple Loop Conjecture for M
hyperbolic. In Proposition 3.4 we give a negative answer to Minsky’s question, by finding
representations with non-trivial kernel which kill no simple curve. By construction, these
counterexamples lift to SL(2, C) (as must any discrete faithful representation of a hyperbolic
3–manifold group, by [3, 3.11], cf. [4]). For these counterexamples, we require genus at
least 3.

If the genus is at least 4, we can find such representations with no nontrivial elliptics in
their image, so no power of a simple loop is in the kernel.

Theorem 1.1 Let � be a closed orientable surface of genus greater than or equal to 4. There
is a homomorphism θ : π1� → SL(2, C) such that

(1) θ is not injective.
(2) If θ(α) = ±I then α is not represented by an essential simple closed curve.
(3) If θ(α) has finite order then θ(α) = I .

We prove this by a dimension count in the character variety, showing at the same time
there are uncountably many conjugacy classes of such homomorphisms. For a group G let
R(G) be the set of representations of G into SL(2, C) and X (G) is the set of characters of
these homomorphisms. (Both R(G) and X (G) are algebraic sets [3, 1.4.5]. Although R(G)

and X (G) need not be irreducible algebraic sets, we follow common usage in referring to
them as the representation variety and character variety, respectively.)

Let� be a closed orientable surface of negative Euler characteristic, and let C be a simple
closed curve on � such that one component of � \ C is a punctured torus. In the remainder
of the paper we shall frequently abuse notation by ignoring basepoints and treating C as if it
is an element of π1�. Define subsets of X (π1�) as follows.

Z = { x ∈ X (π1�) | x(C) = 2 }.
Y = { x ∈ X (π1�) | ρ(C ′) = I for some s.c.c. C ′ and some ρ with character x}
E = { x ∈ Z | ∃ α ∈ π1� x(α) ∈ R \ {2} }

In the definition of Y , “s.c.c.” stands for “essential simple closed curve in �”. Thus the set Y
is the set of characters of representations which kill some essential simple closed curve; the
set E contains all characters in Z which are also characters of a representation with elliptics
in its image.

We will show:

Theorem 1.2 If ρ is a representation with character in Z then ρ is not injective. If the genus
of � is at least 3 then Y is a countable union of algebraic sets of complex dimension at most
dimC Z − 1. If the genus of � is at least 4, then E is a countable union of real algebraic sets
of real dimension at most dimR Z − 1.

Theorem 1.2 implies Theorem 1.1 as follows: Suppose the genus of � is at least 4.
Theorem 1.2 implies that there is some (necessarily non-injective) representation θ of π1�

whose character x lies in Z \ (Y ∪ E). Since θ is non-injective, it satisfies condition (1) of
Theorem 1.1. Let α ∈ π1�. Suppose first that α is represented by a simple closed curve.
Since x /∈ Y , we have θ(α) �= I . Since x /∈ E , we have θ(α) �= −I , so condition (2)
of Theorem 1.1 holds for θ . Now let α ∈ π1� be arbitrary. If θ(α) has finite order, then
x(α) ∈ [−2, 2]. But since x /∈ E , we must have x(α) = 2, and so θ(α) = I . Condition (3)
therefore holds for θ , and Theorem (1.1) is established.
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Theorem 6.1 is of independent interest and states that Z is irreducible and thus an affine
variety. This suggests a more general study of irreducibility of interesting algebraic subsets
of the character variety. The tool used to show Theorem 6.1 is a standard fact from algebraic
geometry: a complex affine algebraic set is irreducible if and only if the smooth part is
connected, open, and dense, Theorem 8.4. In fact we have been unable to locate this statement
we need in the literature which mostly deals with irreducible algebraic sets. Therefore we
have included a brief appendix, Sect. 8, about algebraic subsets of C

n which contains the
statements we need.

We also provide (Theorem 4.7) a new proof of a theorem of Goldman [7] that the sub-
space of the character variety of a closed surface consisting of characters of irreducible
representations is a manifold.

We have heard from Lars Louder that he also can answer Minsky’s question in the neg-
ative, using entirely different methods. His examples at the same time show that there are
two-dimensional hyperbolic limit groups which are not surface groups, but are homomorphic
images of surface groups under maps which kill no simple closed curve. Whereas the repre-
sentations used in our paper always have nontrivial parabolics in their image, it is possible to
find faithful representations of Louder’s groups with all-loxodromic (but indiscrete) image.1

1.1 Conventions and outline

The algebraic geometry needed for this paper is discussed in the appendix Sect. 8. By defin-
ition SL(2, C) ⊂ C

4 is an affine algebraic subset and the group operations are regular maps.
Suppose G is a group generated by the finite subset S ⊂ G. For simplicity we assume S is
not empty and closed under taking inverses. Then R(G;S) is the affine algebraic subset of∏

S SL(2, C) that satisfies the relations in G and is called a representation variety for G. If
S ′ is another finite generating set then there is a regular isomorphism R(G;S) → R(G;S ′).
We will be sloppy and refer to the representation variety R(G) for some choice R(G;S),
even though it is not well defined and might be reducible. Observe there is a natural bijection
R(G) −→ Hom(G, SL(2, C)).

The character of ρ ∈ Hom(G, SL(2, C)) is χρ = tr ◦ρ : G −→ C. Let S+ denote the set
of words of length at most s = |S| in the elements of S. Then X (G;S) ⊂ C

S+
is the set of

all χρ |S+. It is an affine algebraic set [3]. The character variety X (G) means some choice
of X (G;S) and might be reducible. Using the trace relation trAB + trA−1B = trA · trB for
A, B ∈ SL(2, C) it follows that the trace of every element of G is a polynomial in the traces
of elements of S+ thus X (G) is well defined up to regular isomorphism.

The commutator [α, β] denotes always αβα−1β−1, whether α and β are group elements
or matrices. Unless explicitly noted otherwise, topological statements about varieties are
with respect to the classical (not Zariski) topology.

Here is an outline of the paper. In Sect. 2 we study the character variety of a free product
of surface groups. This is used (Lemma 2.6) to show that if � has genus at least 3, then the
set of characters of representations which kill a given simple closed curve has codimension
at least 2 in the character variety of �. The set Z has codimension 1 (see Lemma 3.3), so
Z \ Y is nonempty.

In Sect. 3 we recall (Lemma 3.1) that a representation into SL(2, C) of the free group of
rank two generated by α and β which sends [α, β] to an element of trace +2 is reducible,
thus has solvable image, and is therefore not injective. This result is well known [3] and is

1 Since this paper was submitted, Louder’s preprint [11] has appeared, as has Calegari’s preprint [2] applying
stable commutator length to Minsky’s question. Even more recent work can be found in [1,12].
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in contrast to the fact there are injective homomorphisms for which the trace is −2. It it is
deduced that Z is composed entirely of characters of non-injective representations. Since
Z \ Y is nonempty, the answer to Minsky’s question is no (Proposition 3.4). In this section,
the genus of � is assumed to be at least 3.

In Sect. 4, we show (Lemma 4.6) that a representation of a surface is irreducible if and
only if it contains a punctured torus such that the restriction of the representation to this
punctured torus is irreducible. Then we use this Lemma to give a new proof of Goldman’s
theorem that the characters of irreducible representations are smooth points of the character
variety of a surface.

In Sect. 5, we prove several results about lifting deformations of characters to deforma-
tions of representations of surface groups, and extending such deformations from proper
subsurfaces. These results are mostly used for the main technical result in Sect. 6.

In Sect. 6, we show that Z is irreducible (Theorem 6.1). This is the most technical part
of the paper.

Finally in Sect. 7 we show how the irreducibility of Z implies that E is a countable union
of positive codimension subsets of Z , and complete the proof of Theorem 1.2.

2 Free products

If G and H are groups and G ∗ H their free product, the representation variety R(G ∗ H)

can be canonically identified with R(G) × R(H). We recall the following standard fact.

Lemma 2.1 Let A, B be affine algebraic sets, and let X = A×B. The irreducible components
of X are the products of irreducible components of A and B.

Proof Suppose that A = ⋃
i Ai and B = ⋃

j B j are the canonical decompositions of A and
B into irreducibles. For each i, j , the set Ai × B j ⊂ X is a variety [19, p. 35]. So we can
write X as a union of irreducibles

X =
⋃

i, j

Ai × B j . (1)

One checks easily that Ai × B j ⊆ Ai ′ × B j ′ implies that i = i ′ and j = j ′ so the expression
(1) is irredundant. Such an irredundant expression is unique [19, p. 34], so every irreducible
component of X appears. �


The irreducible components of R(G∗H) are therefore products of irreducible components
of R(G) with irreducible components of R(H).

Definition 2.2 We say a representation ρ : G → SL (2, C) is noncentral if its image does
not lie in the center {±I }. A representation is reducible if there is a proper invariant subspace
for the action on C

2. It is irreducible if it is not reducible.

Lemma 2.3 Let C be a component of X (G∗H), so that C is the image of A×B ⊆ R(G∗H),
where A is an irreducible component of R(G) and B is an irreducible component of R(H).
Suppose that A and B each contain a noncentral representation. Then

dimC(C) = dimC(A) + dimC(B) − 3.

Proof We first show that C is not composed entirely of characters of reducible representa-
tions.
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Claim 2.3.1 A × B contains some irreducible representation of G ∗ H.

Proof Indeed, let ρA : A → SL(2, C) and ρB : B → SL(2, C) be the noncentral represen-
tations in A and B. If either representation is irreducible or if ρA and ρB have disjoint fixed
point sets at infinity, then ρ = (ρA, ρB) is irreducible. If ρA and ρB have the same fixed
point sets, we may conjugate ρB so its fixed point set is disjoint from that of ρA. �


Given the claim, the lemma follows immediately from [3, 1.5.3]. �

The following result follows from a more general result of Rapinchuk–Benyash-Krivetz–

Chernousov [17, Theorem 3].

Proposition 2.4 If � is a surface of genus g ≥ 2 then R(π1�) is an irreducible variety of
complex dimension 6g−3. Moreover X (π1�) is an irreducible variety of complex dimension
6g − 6.

Remark 2.5 It should be possible prove Proposition 2.4 with the method we use below to
show Z is irreducible.

Lemma 2.6 If � is a closed orientable surface of genus g ≥ 3, and α ∈ π1(�) is repre-
sented by a simple closed curve, then the complex codimension of X (π1�/〈〈α〉〉)in X (π1�)

is at least 2. In other words

dimC(X (π1�/〈〈α〉〉)) ≤ dimC(X (π1�)) − 2.

Proof Let Xα be the character variety of π1(�)/〈〈α〉〉.
There are three cases to consider. Suppose first that α is represented by a non-separating

curve. It follows that Xα is the character variety of Z∗ S, where S is the fundamental group of
the closed orientable surface of genus g−1. The representation variety ofZ is 3–dimensional,
and the representation variety of S is (6g − 9)–dimensional, by Proposition 2.4. Lemma 2.3
then implies that

dimC Xα = 6g − 9 + 3 − 3 = 6g − 9 = dimC(X (π1(�))) − 3.

We next suppose that α separates � into a surface of genus 1 and one of genus g − 1.
Then Xα is the representation variety of (Z ⊕ Z) ∗ S, where S is again the fundamental
group of the closed orientable surface of genus g − 1. The representation variety of Z ⊕ Z is
4–dimensional, so Lemma 2.3 implies

dimC Xα = 6g − 9 + 4 − 3 = 6g − 8 = dimC(X (π1(�))) − 2.

Finally, we suppose that α separates� into two surfaces of genus g1 and g2, both of which
are at least 2. Again applying Proposition 2.4 and Lemma 2.3 gives

dimC Xα = 6g1 − 3 + 6g2 − 3 − 3 = 6g − 9 = dimC(X (π1(�))) − 3.

�

Corollary 2.7 Let � be a closed orientable surface of genus at least 3. Let Y be the subset of
X (π1�) consisting of characters of representations which kill some essential simple closed
curve in �. Then Y is a countable union of subvarieties of complex codimension at least 2.

3 Non-faithful representations which kill no simple loop

In this section we combine the analysis in the last section with a lemma of Culler–Shalen to
show that the answer to Minsky’s question is “no.”

123



170 Geom Dedicata (2015) 177:165–187

3.1 Trace 2 and reducibility

Recall that a representation ρ : G → SL(2, C) is reducible if there is a proper invariant
subspace for the action on C

2. This is equivalent to there being a common eigenvector, and to
the representation being conjugate to an upper triangular one. The following is well known
(see for example [3, 1.5.5]).

Lemma 3.1 Suppose that ρ is a representation into SL(2, C) of a free group of rank 2
generated by α and β. Then ρ is reducible if and only if trace(ρ[α, β]) = +2.

Proof The only if direction is an easy computation. For the other direction we assume
trace(ρ[α, β]) = +2. Set A = ρ(α), B = ρ(β). The result is clear if A = ±I, so we
assume A �= ±I . First assume that A is not parabolic. Then after a conjugacy we may
assume that A fixes 0 and ∞ so that

A =
(

x 0
0 1/x

)

, and B =
(

a b
c d

)

.

A computation shows that

trace(AB A−1B−1) − 2 = −bc(x − x−1)2.

This must equal 0. Since A �= ±I we get x �= ±1 hence bc = 0. Thus the image of ρ is
either upper or lower triangular; this gives the result in case A is not parabolic. In case A is
parabolic we may conjugate A and B so that

A = ±
(
1 x
0 1

)

B =
(

a b
c d

)

.

A computation shows that

trace(AB A−1B−1) − 2 = c2x2.

If this quantity is 0 then we must have c = 0 since A �= ±I . Thus A and C are both upper
triangular and the result follows. This completes the proof. �

Corollary 3.2 Suppose that ρ is a representation of the fundamental group, G, of a surface
of negative Euler characteristic and that α, β do not generate a cyclic subgroup of G. If
trace(ρ([α, β])) = 2 then ρ is not injective.

Proof The subgroup 〈α, β〉 of G is free of rank two. On the other hand, by Lemma 3.1 the
image is an upper triangular group of 2 × 2 matrices, hence two-step solvable. In particular

(writing x y for y−1xy), the element
[[

α, αβ
]
,
[
αβ2

, αβ3
]]

is in the kernel of ρ. �


3.2 Z \ Y is nonempty

In this subsection, as in the introduction, we fix a closed orientable surface� of genus g ≥ 3.
We moreover fix choices of α, β in π1� that are represented by two simple closed curves
which intersect once transversally, so that their commutator C = [α, β] is also simple. With
this notation, we let Z , Y , and E be the sets defined in the introduction. In particular Z
is the subset of X (π1�) consisting of those characters x such that x([α, β]) = +2, and
Y ⊂ X (π1�) is composed of characters of representations killing at least one simple closed
curve.
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Lemma 3.3 The set Z has complex codimension 1 in X (π1�).

Proof The regular function f (x) = x([α, β]) − 2 on X (π1�) vanishes at the character of
the trivial representation, so Z ⊂ X (π1�) is nonempty. Since f (x) �= 0 when x is the
character of a Fuchsian representation, f is not identically zero on X (π1�). Since X (π1�)

is irreducible (Proposition 2.4), the set Z has complex codimension 1 in X (π1�). �


Corollary 2.7 states that Y has complex codimension at least 2 in X (π1�). Combined
with Lemma 3.3 and Corollary 3.2 we obtain the following, which already gives a negative
answer to Minsky’s question.

Proposition 3.4 The set Z \ Y is not empty. Every representation whose character is in this
set is not faithful and kills no simple closed curve.

In Sect. 7 we show that Z \ Y contains characters of representations without elliptics,
assuming the genus of � is at least 4.

4 Smooth points of character varieties: A theorem of Goldman

In this section we show that the character of an irreducible representation of a (possibly
punctured) surface group into SL(2, C) is a smooth point of the character variety. Although
the character variety is not necessarily an irreducible algebraic set, the natural notions of
smooth point still coincide; see the Appendix, Lemma 8.2. We will use the following lemma
to show that irreducibility of a free group representation is detected by a rank-two free factor
of a particular form.

Lemma 4.1 (detecting irreducibility) Suppose S ⊂ SL(2, C) generates a group 	 which
has no common fixed point in Ĉ. Then there is C ∈ S such that tr([C, D]) �= 2 and either
D ∈ S or there are A �= B ∈ S \ {C} and D = A · B · A.

Proof Without loss we may assume S does not contain ±I , thus every element of S has
at most 2 fixed points. If C ∈ S has a unique fixed point z ∈ Ĉ then since 	 has no
common fixed point there is some D ∈ S such that D does not fix z and C, D have the
required property. So we reduce to the case that every element of S fixes exactly two points
in Ĉ.

We regard two elements of S as equivalent if they have the same fixed points. If there are
two elements in S with no fixed point in common then we are done. Thus we may assume
every pair of equivalence classes has one fixed point in common. Since there is no point fixed
by every element of S the only remaining case is that there are exactly three equivalence
classes from which we choose representatives A, B, C and points a, b, c ∈ Ĉ such that A
fixes b, c and B fixes c, a and C fixes a, b.

We first claim that at least one of AB, BC , or C A does not have order 2 in PSL(2, C).
Note that a matrix in SL(2, C) represents an element of order 2 in PSL(2, C) if and only if
its trace is zero. We conjugate so that a = 1, b = 0 and c = ∞. Then

A =
(

p 0
0 p−1

)

B =
(

q q−1 − q
0 q−1

)

C =
(

r 0
r − r−1 r−1

)
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and p, q, r /∈ {−1, 0, 1}. Assuming that AB, BC , and C A are all order 2 in PSL(2, C), we
discover by computation that

p2 = −1/q2, q2 = −r2, and r2 = −1/p2.

We deduce that p2 = −p2, and so p = 0, a contradiction.
We can cyclically permute A, B, and C , if necessary, so that AB does not have order 2 in

PSL(2, C).
Finally, we argue that if AB does not have order 2 in PSL(2, C), then C and D = AB A

have no fixed point in common and therefore give the required pair of elements. We compute

AB A =
(

p2q q−1 − q
0 p−2q−1

)

.

From this one see that AB A does not fix 0 and that it fixes 1 if and only if

p2q + q−1 − q = p−2q−1

⇐⇒ q(p2 − 1) + q−1(1 − p−2) = 0

⇐⇒ q(p2 − 1)(1 + p−2q−2) = 0.

By assumption q �= 0 and p �= ±1. It follows that AB A and C have a fixed point in
common, namely z = 1, if and only if 1 + p−2q−2 = 0. This is equivalent to the condition
that tr(AB) = 0, which does not hold since AB does not have order 2 in PSL(2, C). This
contradiction implies that 1 is not fixed by AB A. �


Suppose F is a free group of rank k ≥ 2 and S = (α, β, γ3, . . . , γk) is an ordered free
generating set. Given a representation ρ ∈ R(F) define

A = ρ(α), B = ρ(β) and Ci = ρ(γi ).

The representation ρ is called S-good if

A =
(

a 1
−1 0

)

, B =
(

b 0
c 1/b

)

, b �= 0,±1, tr [A, B] �= 2 (2)

and the S-good representation variety RS(F) ⊂ R(F) is the set of all such. Note that
tr[A, B] = abc − ab−1c + c2 + b2 + b−2 so we may identify RS(F) with the smooth
manifold
{

(a, b, c, M3, . . . , Mk) ∈ C
3 × (SL(2, C))k−2

∣
∣
∣

b /∈ {0,±1}
abc − ab−1c + c2 + b2 + b−2 �= 2

}

.

Observe that if (e1, e2) is the standard ordered basis of C
2 and ρ is S–good, then e2 is

an eigenvector of B that is not an eigenvector of A and e1 = Ae2. Conversely, if ρ ∈ R(F)

and tr([A, B]) �= 2 and tr(B) �= ±2 then ρ is irreducible by 3.1 and B has two distinct
eigenvectors. Since ρ is irreducible, each eigenvector e2 of B is not an eigenvector of A. Thus
there are two distinct choices of ordered basis (Ae2, e2) and therefore at least two distinct
conjugates of ρ that are in RS(F).

Lemma 4.2 If F is a finitely generated free group of rank k ≥ 2 and ρ ∈ R(F) is irreducible
then there is an ordered basis (α, β, γ3, . . . , γk) ofF and a conjugate ρ′ of ρ which isS-good.

Proof By 4.1 there is an ordered basisS = (α′, β ′, γ3, . . . , γk) ofF such that tr(ρ[α′, β ′]) �=
2.Thenρ restricted to the subgroupG ⊂ F generated byα′, β ′ is irreducible and it follows that
there is another free basis (α, β) ofG that tr(ρβ) �= ±2. By 3.1 it follows that tr(ρ[α, β]) �= 2
since ρ|G is irreducible. By the above remarks ρ is conjugate to ρ′ ∈ RS(F). �
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The map X : R(F) −→ X (F) which sends a representation to its character is smooth, in
fact regular. The restriction of this map to RS(F) is a smooth map denoted XS : RS(F) −→
X (F). By Lemma 4.2 the image of RS is the open subset XS(F) of X (F) of all characters x
with x(β) �= ±2 and x([α, β]) �= 2. By the remark before 4.2 XS is at least 2 : 1. We show
that RS is a 2–fold cover of XS , using the following lemma about traces of 2 × 2 matrices,
which can be proved by an easy calculation:

Lemma 4.3 Let A, B ∈ SL(2, C). If tr(AB A−1B−1) �= 2, then the linear map
θA,B : M2(C) → C

4 given by

θA,B(M) = (tr(M), tr(AM), tr(B M), tr(AB M))

is an isomorphism of vector spaces. Moreover ψ : [SL(2, C)]2 × C
3 −→ M2(C) given by

ψ(A, B, z) = θ−1
A,B(z) is smooth.

Lemma 4.4 XS : RS(F) −→ XS(F) is 2-fold covering space and a local diffeomorphism.
The image is an open subset of X (F).

Proof Throughout this proof we use the notation as in the discussion before Lemma 4.2, so

tr(A) = a tr(B) = b + b−1 tr(AB) = ab + c (3)

The map

f : C × (C \ {0,±1}) × C −→ C × (C \ {±2}) × C

given by

f (a, b, c) = (a, b + b−1, ab + c)

is a 2–fold covering and a local diffeomorphism.
It follows that for any ρ ∈ RS(F) that XS(ρ) determines a, b, c and hence (A, B) up to

two possibilities. Moreover it follows from Lemma 4.3 that XS(ρ) and a choice for (A, B)

determines each Ci and thus ρ completely. Combining this with the fact XS is at least 2 : 1
shows XS is everywhere 2 : 1 onto its image.

The character variety X (F) is a subset of some affine space C
n but is not in general a

manifold. Recall that a function defined on an subset of affine space is smooth if there is
some extension to a open neighborhood which is smooth. The local inverse of XS is smooth
because f is a local diffeomorphism and the map ψ of 4.3 is smooth. �


The next result is an immediate consequence of Lemma 4.4 and provides a local section
of the character map X : R(F) −→ X (F) defined on a neighborhood of the character
of an irreducible representation. The image of this section is an open set in some S-good
representation variety.

Theorem 4.5 Suppose F is a finitely generated free group of rank at least 2 and x0 ∈ X (F)

is the character of an irreducible representation. Then x0 is a smooth point of the character
variety X (F). Moreover there is a neighborhood U ⊂ X (F) of x0 and free generating set S
of F and an open set V ⊂ RS(F) such that XV : V −→ U is a diffeomorphism.

Lemma 4.6 (irreducibility is detected by punctured tori) Suppose � is an orientable surface
of genus g ≥ 2 and ρ ∈ R(π1�) is irreducible. Then there is a once punctured torus T ⊂ �

such that ρ|π1T is irreducible. The boundary of T is an essential simple closed curve C and
trace(ρ(C)) �= 2.
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Fig. 1 A twice punctured torus

Proof By 3.1 trace(ρ(C)) �= 2 iff ρ|π1T is irreducible. The surface � can be obtained by
suitably identifying opposite sides of a regular polygon, P,with 4g sides. Let p be the center
of P .

Label the sides of ∂ P in cyclic order as a1, . . . , a2g, b1, . . . , b2g so that ai is identified to
bi reversing orientation. Letαi be the loop in� based at p which meets ∂ P once transversally
in the interior of ai and is represented by a straight line segment in P , oriented toward ai . We
also use αi for the corresponding element of π1(�, p). Then S = {α1, . . . , α2g} generates
π1� and every pair of distinct αi intersect once transversally at p.

Apply 4.1 to produce elements γ, δ so that tr(ρ[γ, δ]) �= 2 and either {γ, δ} ⊆ S or
γ ∈ S and δ = αβα for some {α, β} ⊆ S. In the first case we may take T to be a regular
neighborhood of γ ∪ δ. In the second case, a regular neighborhood of α ∪ β ∪ γ is a twice
punctured torus Q, whose fundamental group is free on the generators S ′ = {α, β, γ }. After
permuting these element and replacing some of them by their inverses if necessary, we may
assume there is an order 3 automorphism of Q acting as a 3–cycle on S ′ (see Fig. 1). However
we might no longer have δ = αβα.

So we apply 4.1 again to 	 = π1(Q), with free basis S ′. After another cyclic permutation
we may now assume δ = αβα or βαβ. Figure 1 shows γ and αβα are represented by simple
closed curves also called γ, δwhich intersect once transversely at p. It follows that the interior
of a regular neighborhood of γ ∪ δ is a punctured torus T with the required property. The
same reasoning works when δ = βαβ. �


Theorem 4.7 Suppose � is a closed orientable surface of genus g ≥ 2 and x0 ∈ X (π1�)

is the character of an irreducible representation ρ0. Then x0 is a smooth point of X (π1�).

Proof This is in Goldman [7], but not formally stated there. The idea is to construct a
diffeomorphism from a neighborhood of x0 in the character variety to a smooth submanifold
in the representation variety. This diffeomorphism is a local section of the character map
(which is locally a submersion) as in Lemma 4.4.

By Lemma 4.6, there is an embedded punctured torus T ⊂ � so that ρ0|π1(T ) is irre-
ducible. Thus

x0(∂T ) = tr(ρ0(∂T )) �= 2.
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We can choose free generatorsα1 andβ1 forπ1(T ) so that x0(β1) �= ±2 and so the loop repre-
sented by [α1, β1] � ∂T is simple in�. We can then choose simple loops α2, β2, . . . , αg, βg

in � so that

w =
g∏

i=1

[αi , βi ] = 1

is the defining relation for π1(�). Let F = 〈α1, β1, . . . , αg, βg〉 be the free group on these
generators, so the surjection F → π1� induces an inclusion

R(π1�) ⊂ R(F).

Precisely, if c : R(F) → SL(2, C) is given by c(ρ) = ρ(w), we have R(π1�) = c−1(I ).
Similarly X (π1�) ⊂ X (F) is the set of characters of representations in R(π1�). Using the
ordered basis S = (α1, β1, . . . , αg, βg) of F define

RS(π1�) = R(π1�) ∩ RS(F) and XS(π1�) = X (π1�) ∩ XS(F)

Since XS(F) is open in X (F) it follows that XS(π1�) is open in X (π1�). Now x0(β1) �=
±2 and x0([α1, β1]) �= 2 and it follows that ρ0 can be conjugated into RS(π1�) thus
x0 ∈ XS(π1�). We replace ρ0 by this conjugate so that ρ0 ∈ RS(π1�). The map XS from
Lemma 4.4 restricts to a smooth map

XS,� : RS(π1�) −→ XS(π1�)

This restriction is still a 2 : 1 cover and so has a smooth local inverse near x0. A small open
neighborhood of x0 in X (π1�) is contained in XS(π1�). The proof is completed below by
showing that ρ0 is a manifold point in RS(π1�).

Let cS : RS(F) −→ SL(2, C) be the restriction of c. It suffices to show this is a
submersion, as then c−1

S (I ) is a smooth submanifold of RS . Define

g : C × (C \ {0,±1}) × C −→ SL(2, C)

by

g(a, b, c) =
[(

a 1
−1 0

)

,

(
b 0
c 1/b

)]

=
(

b−2 − ab−1c + abc + c2 a − ab2 − bc
−bc b2

)

=
(

r1 r2
r3 r4

)

.

We show that g is a submersion. It then follows that cS is a submersion.
Away from r1 = 0, the entries (r1, r2, r3) form a system of local coordinates on SL(2, C);

away from r2 = 0, the entries (r1, r2, r4) form a system of local coordinates. Any point in
SL(2, C) is in at least one of these coordinate patches. In the first, we have

det

(
∂(r1, r2, r3)

∂(a, b, c)

)

= 2(b−2 − 1)(1 − abc + ab3c + b2c2) = 2b2(b−2 − 1)r1. (4)

Since b �= 0,±1, the quantity in (4) is nonzero. In the second patch, we have

det

(
∂(r1, r2, r4)

∂(a, b, c)

)

= 2(1 − b2)(−a + ab2 + bc) = −2(1 − b2)r2. (5)

Again, since b �= ±1, the quantity in (5) is nonzero. It follows that dg has rank three
everywhere so g is a submersion. �
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An alternate proof can be based on a result of [10] that the conjugation action ofPSL(2, C)

on the space of irreducible representations is proper and free.

5 Deforming representations of surfaces

Our proof in Sect. 6 that Z is irreducible works by defining an open subset W ⊂ Z of
particularly nice characters, and then showing that W is dense, smooth, and path connected.
The results in this section are used to establish these properties of W .

5.1 Smoothness

The first two statements will be used in showing W is smooth.

Lemma 5.1 [8, 4.4] The commutator map C : SL(2, C) × SL(2, C) → SL(2, C) given by
C(A, B) = [A, B] is a submersion unless A and B commute.

We remark that the commutator map is not open everywhere. Indeed, the pre-image of
the identity under the commutator map has complex dimension 4 but other points have
preimages of dimension 3. (Some 3–dimensional fibers are described explicitly in the proof
of 5.8 below.) However, a holomorphic map φ between complex manifolds is open if and
only if dimC(φ−1(z)) is a constant function of z in the target [5, p. 145]. Alternatively
one may show by direct computation that the commutator of two matrices which are small
deformations of diagonal matrices is either parabolic or has fixed points in Ĉ close to ±z for
some z �= 0. Such elements do not give a neighborhood of the identity.

Corollary 5.2 The map χ : SL(2, C) × SL(2, C) → C given by

χ(A, B) = trace([A, B])
is a submersion unless [A, B] is central.

Proof The trace map from SL(2, C) toC is a submersion except at±I . Since the composition
of submersions is a submersion, Lemma 5.1 implies the corollary. �

5.2 Genericity

The next two statements are used in showing that W is dense in Z . The first lemma should
be contrasted with the genus 1 case, as discussed after Lemma 5.1.

Proposition 5.3 (punctured high genus) Let S be a once punctured surface of genus g ≥ 2.
Then the restriction map

f : R(π1S) −→ R(π1∂S)

is open.

Proof Consider ρ ∈ R(π1S). Suppose first that S contains a punctured torus T such that the
restriction ρ|π1T is nonabelian. Let β be the boundary of T , and let α denote ∂S. There is
another subsurface T ′ of genus g−1 with boundary γ so that (connecting loops to basepoints
correctly), we have α = β · γ . Notice that π1S = π1T ∗π1T ′, so the restrictions of ρ to π1T
andπ1T ′ can be varied independently. Precisely, if RT is the algebraic subset of R(π1S)which
agrees with ρ on π1T ′, then RT can be naturally identified with R(π1T ) ∼= (SL(2, C))2. The
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map f |RT then factors f |RT = Lγ ◦ C, where C is the submersion from Lemma 5.1, and
Lγ is right multiplication by ρ(γ ). In particular, f |RT is a submersion, and so f is also a
submersion, and therefore open.

It remains to prove the result when the restriction of ρ to every punctured torus is abelian.
This implies the image of ρ is abelian. First we consider the case that tr(ρ(α)) �= ±2 for
some α, so the image of ρ is conjugate to a group of diagonal matrices. We can choose
α1, β1, . . . , αg, βg so that ∂S = ∏g

i=1[αi , βi ] and none of {α1, β1, α2, β2} is mapped by ρ

to ±I . This is easy to ensure because the representation is abelian. The result now follows
from two calculations. First we show that if A = diag(p, 1/p) and B = diag(q, 1/q) are
diagonal matrices with p, q �= ±1 there are nearby matrices whose commutator is

[A′, B ′] =
(
1 u
v 1 + uv

)

u, v sufficiently small

in fact, we can take:

A′ =
(

p pu
0 1

p

)

B ′ =
⎛

⎝
q u(1− p2 + p2q2 − p2uv)

(p2 − 1)q
p2qv

1− p2 − p2uv
1
q − p2uv(1− p2 + p2q2 − p2uv)

(p2 − 1)q(−1+ p2 + p2uv)

⎞

⎠ .

The computation below shows that every matrix close to the identity is a product of two
of these commutators close to the identity (x, y, z are small)

C =
(

1
√

x
z−√

x
1+x

1+z
√

x
1+x

)

D =
(

1 y−√
x

1+x√
x 1+y

√
x

1+x

)

C D =
(
1 + x y

z 1+yz
1+x

)

.

Since we can obtain any matrix sufficiently close to I in this way, the map ρ is open in this
case.

The next case is when ρ(α) = ±I for every α. The proof is the same, except that for the
first calculation we use

A′ = ±
(
1 + a u + ua
0 1

1+a

)

B ′ = ±
(

1 u(1− (1+ a)2uv)
a(2+ a)

− (1+ a)2v

uv + 2a(1+ uv)+ a2(1+ uv)
1 + (1+ a)2uv(−1+ (1+ a)2uv)

a(2+ a)(uv + 2a(1+ uv)+ a2(1+ uv)

)

We choose |u|, |v| << |a| << 1.
The last case is when some element is sent to a nontrivial parabolic. In this case the

representation can be conjugated to be upper triangular. We can change generating set so
that every generator is sent to a nontrivial parabolic. Suppose

A = ±
(
1 q
0 1

)

B = ±
(
1 p
0 1

)

are parabolic matrices with p, q �= 0. We can change A slightly to

A′ = ±
(√

1 + u + (v/p) q
−u/p√

1+u+(v/p)

−qu+p
√
1+u+(v/p)

p+pu+v

)

u, v are small.
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so that the commutator is

Mp(u, v) := [A′, B] =
(

1 + u v

− u2
p+pu+v

p+v−uv
p+pu+v

)

.

In this commutator we regard u and v as varying and p as fixed. Finally we show every matrix
close to the identity is the product of two of these matrices close to the identity, C = Mp(., .)

and D = Mq(., .), provided p + q �= 0. We may always arrange p + q �= 0 by choice of
generating set.

C = Mp((a − w + bw2/q)/(1 + w), b + bw) a, b, w small.

D = Mq(w, 0)

C D =
(

1 + a b
−a2q − (b + p + q)w2 + aw(2q − bw)

(1+ a)pq + b(pw2 + q(1+w)2))

pq − b2w2 + bq(1− a + 2w)

(1+ a)pq + b(pw2 + q(1+ w)2)

)

It is easy to check that if c is small and p + q �= 0, there is w = O(
√|c| + |a|) small so that

C D =
(
1 + a b

c (1 + bc)/(1 + a)

)

a, b, c small.

�

Lemma 5.4 (Extension Lemma) Suppose that � is a closed surface of genus g ≥ 3 and
S ⊂ � is the complement of a once-punctured incompressible subsurface of genus at least
2. If ρ : π1� −→ SL(2, C) is given then any sufficiently small deformation of ρ|π1S can be
extended to a small deformation over π1�.

Proof This follows from 5.3. �

5.3 Paths of representations

The remaining statements in this section will be used to show that W is path-connected.

Definition 5.5 A map p : X −→ Y has path-lifting with fixed endpoints if for every con-
tinuous map γ : [0, 1] −→ Y and x0, x1 ∈ X with p(xi ) = γ (i) there is a continuous lift
γ̃ : [0, 1] −→ X with p ◦ γ̃ = γ and γ̃ (i) = xi for i = 0, 1.

Proposition 5.6 If p : X −→ Y is a surjective submersion of smooth manifolds and every
fiber of p is path-connected then p has path-lifting with fixed endpoints.

Proof Since p is a submersion there is a local product structure near each point in X so that
p is given by coordinate projection U × V −→ V . Since p is also surjective, we may lift
paths locally. This means that given a path γ : [0, 1] −→ Y there is a finite open cover of
[0, 1] by intervals I1, . . . Ik so that for each n ∈ {1, . . . , k}:
(1) 0 = inf I1 < inf I2 < · · · inf Ik and sup I1 < · · · sup Ik−1 < sup Ik = 1;
(2) For each m ∈ {1, . . . , k}, Im ∩ In �= ∅ if and only if |m − n| ≤ 1; and
(3) γ |In lifts to γ̃n with image in a local product neighborhood.

Moreover, we may choose the first and last lifts so that γ̃1(0) = x0 and γ̃k(1) = x1, for the
specified x0 ∈ p−1(γ (0)) and x1 ∈ p−1(γ (1)).

It suffices to change each γ̃n near the right-hand end of In so that it agrees with γn+1 on
In ∩ In+1 without changing it at the left-hand end.
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Fix n and suppose that γ̃n(s) �= γ̃n+1(s) for all s ∈ In ∩ In+1. Choose s0 ∈ In ∩ In+1

and a smooth embedded path δ in p−1(γ (s0)) connecting γ̃n(s0) to γ̃n+1(s0). There is a local
product structure near each point on δ, so by compactness there exists 0 = t0 < t1 < · · · <

tk = 1 so that δ maps [ti−1, ti ] into a local product structure Ui × Vi . We can use the product
structure U1 × V1 to modify γ̃n near s0 to produce a new lift of γ̃n that takes s0 to δ(t1).
Repeating we get the required lift. �


In proving Theorem 5.8 we will make use of the following well known fact:

Lemma 5.7 The set of points in C
n where finitely many polynomials are all nonzero is path

connected.

Proof By taking the product of the polynomials we may assume there is a single polynomial.
Let U ⊂ C

n be the set where the given polynomial p is not zero. Given two distinct points
x, y ∈ U there is an affine line L ∼= C containing them. The restriction p|L is a polynomial
in one variable which is nonzero at x and y therefore it has finitely many zeroes. There is a
path in L from x to y that avoids these zeroes. �

Theorem 5.8 (commutator path lifting) The restriction of the commutator map C to
C−1 ({M ∈ SL(2, C) : trace(M) �= ±2}) has path lifting with fixed endpoints.

Proof By 5.1 C is a submersion on the given domain, so by 5.6 it suffices to show that for
M ∈ SL(2, C) with trace(M) �= ±2 that C−1(M) is path connected. The number of path
components is not changed by conjugating M . Thus we may assume M is in Jordan normal
form. For such an M we describe the set of all pairs (A, B) ∈ SL(2, C)2 so that [A, B] = M .

We have

M =
(

m 0
0 1/m

)

m /∈ {0,±1}.

Fix a square root m1/2 of m. Computation shows that C−1(M) contains

(A0, B0) =
((

m1/2 m − 1
0 m−1/2

)

,

(
m−1/2 0

1 m1/2

))

.

We will show that C−1(M) is covered by two path-connected sets S1 and S2 so that
(A0, B0) ∈ S1 ∩ S2. Namely, let

S1 =
{

(A, B)

∣
∣
∣
∣ [A, B] = M , and B =

(
a b
c d

)

with c �= 0

}

,

and let

S2 =
{

(A, B)

∣
∣
∣
∣ [A, B] = M , and B =

(
a b
c d

)

with a �= 0

}

,

We will reduce the proof of this to the following claim, and then prove the claim. �

Claim 5.8.1 The intersection S1 ∩ S2 contains paths connecting (A0, B0) to (εA A0, εB B0)

for any εA, εB in {±I }.

For fixed B =
(

a b
c d

)

, the equation [A, B] = M implies AB = M B A, which is linear

in A.Basic linear algebra shows that the solution set to this equation is dimension either 0 or
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2, with dimension 2 if and only if d = am(equivalently tr(B) = tr(M B)). In case c �= 0 the
general solution is:

A =
(

cmt bms + am(m − 1)t
cs ct

)

B =
(

a b
c am

)

, (6)

where s and t vary arbitrarily in C. Two points p1 and p2 in S1 thus can be described by two
quintuples (a, b, c, s, t) ∈ C

5 subject to the conditions c �= 0, det A = c2mt2 − bcms2 −
acm(m − 1)st = 1, and det B = a2m − bc = 1. The set of points T1 in C

5 where the
polynomials {c, det A, det B} are all nonzero is path-connected, by Lemma 5.7. The set
T1 embeds into GL(2, C)2 via Eq. (6), and the path connectedness of T1 gives a path in
GL(2, C)2.

To obtain a path in SL(2, C)2 we multiply the above matrices by the reciprocal of a square
root of their determinants. A continuous choice of square root can be made along the path.
At the end of the path our choices result in matrices which are the required matrices up to
multiplication by −1. Rescaling matrices does not change their commutator, and so gives a
path in C−1(M). It follows that S1 has at most 4 path components, and we can connect any
point in S1 by a path in C−1(M) to one of the four points (εA A0, εB B0) for εA, εB in {±I }.
Claim 5.8.1 then implies that S1 is connected.

The proof that S2 is connected is similar. The general solution to AB = M B A can now
be described by

A =
(

cs + bmt a(m − 1)s
a(m − 1)t c

m s − bt

)

B =
(

a b
c am

)

, (7)

where s and t vary arbitrarily in C. Two points in S2 can thus be described by quintuples
(a, b, c, s, t) ∈ C

5 subject to the conditions a �= 0, det A = 1, and det B = 1. We argue as
before that Claim 5.8.1 implies S2 is path connected.

Proof (Claim 5.8.1) The path

(Aθ , Bθ ) =
((

m1/2 (m − 1)
0 m−1/2

)

,

(
eiθ m−1/2 eiθ − e−iθ

eiθ eiθ m1/2

))

, θ ∈ [0, π]

connects (A0, B0) to (A0,−B0). To connect (A0,−B0) to (−A0,−B0) use

(Aθ , Bθ ) =
((

eiθ m1/2 eiθ (m − 1)
eiθ−e−iθ

m−1 eiθ m−1/2

)

,

(−m−1/2 0
−1 −m1/2

))

, θ ∈ [0, π].

Finally, the path

(Aθ , Bθ ) =
((

eiθ m1/2 eiθ (m − 1)
eiθ−e−iθ

m−1 eiθ m−1/2

)

,

(
m−1/2 0

1 m1/2

))

, θ ∈ [0, π]

connects (A0, B0) to (−A0, B0). One can verify by computation or by examining (6) and (7)
that these paths lie in S1 ∩ S2. �

Lemma 5.9 Let ρ0 and ρ1 be representations of F2 = 〈α, β〉 into the solvable group

S =
{(

z w

0 z−1

)

| z ∈ C
∗, w ∈ C

}

.

There is then a path ρt of reducible representations of F2 into S joining ρ0 to ρ1, and
satisfying, for all t ∈ (0, 1):

123



Geom Dedicata (2015) 177:165–187 181

(1) ρt has nonabelian image, and
(2) neither ρt (α) or ρt (β) has trace ±2.

Proof For each i ∈ {0, 1}, define λi , μi , di and ci by

ρi (α) =
(

λi di

0 λ−1
i

)

, ρi (β) =
(

μi ei

0 μ−1
i

)

First we choose paths λt from λ0 to λ1 in C
∗ and μt from μ0 to μ1 in C so that λt and μt do

not intersect {−1, 0, 1} at any point in their interiors. Now choose a path dt from d0 to d1 so
that dt �= 0 for 0 ∈ (0, 1). We need to choose a path et from e0 to e1 so that the commutator
of

ρt (α) =
(

λt dt

0 λ−1
t

)

with

ρt (β) =
(

μt et

0 μ−1
t

)

is nontrivial for all t ∈ (0, 1). A quick computation shows that the commutator is nontrivial
if and only if

etμt (λ
2
t − 1) − dtλt (μ

2
t − 1) �= 0;

in other words, for t ∈ (0, 1) we need

et �= g(t) = dtλt (μ
2
t − 1)

μt (λ
2
t − 1)

.

Now g(t) is some path in C, and it is easy to see that a path et can be found from e0 to e1 so
that et and g(t) are distinct for all t ∈ (0, 1). �


6 Irreducibility

The next theorem is the chief technical result we need.

Theorem 6.1 Suppose � is a closed orientable surface of genus g ≥ 4 and C is a simple
closed curve in � which bounds a punctured torus in �. Let Z denote the set of characters of
representations ρ : π1� → SL(2, C) for which trace(ρ(C)) = 2. Then Z is an irreducible
affine variety.

Proof Clearly Z is an affine algebraic subset of X = X (π1�). We will construct a path-
connected, dense, open subset, W, of the smooth part of Z . Theorem 8.4 then implies that Z
is irreducible.

We choose a simple closed curve C ′ disjoint from C so that C ∪ C ′ separates � into three
connected components whose closures are F1, F2, F3 as shown in the diagram as shown in
Fig. 2. They are labelled so that F1 ∩ F2 = C and F2 ∩ F3 = C ′ and F1 is disjoint from F3.
The surfaces F1 and F3 are genus 1 and k = genus(F2) = genus(�) − 2 ≥ 2 .

We choose standard generators for π1� given by loops that can be freely homotoped
to be disjoint from C and C ′. We will not be careful with basepoints; the diligent reader
may fill in the details. We choose loops α1, β1 ⊂ F1 and α2, β2, . . . , αk+1, βk+1 ⊂ F2

123



182 Geom Dedicata (2015) 177:165–187

Fig. 2 The surface �, cut into pieces

Fig. 3 Subsurfaces used in Claim 6.1.1

and αk+2, βk+2 ⊂ F3 which gives a generating set for π1�. This is done so that C =
[α1, β1], α2, β2, . . . , αk+1, βk+1 ⊂ F2 is a basis for the free group π1F2. We also arrange
that C ′ = [αk+2, βk+2].

Define W to be the subset of X (π1�) consisting of all characters x satisfying the following
conditions:

(W-1) x(C) = 2
(W-2) x(β1) �= ±2
(W-3) x([α2, β2]) �= ±2
(W-4) x([C, α2]) �= 2
(W-5) x(C ′) �= ±2

Condition (W-1) is equivalent to the statement W ⊂ Z . Conditions (W-2) and [(W-3) with
Lemma 5.1 imply certain transversality results. Condition (W-4) implies ρC �= ±I .

It is clear that W is an open subset of Z in both the classical and Zariski topologies. We
will show that W is a path connected, dense subset of the smooth part of Z . This will prove
the theorem. �

Claim 6.1.1 W is dense in Z.

Proof of Claim. Suppose ρ is a representation whose character x is in Z . Condition (W-1)
and Lemma 3.1 imply the restriction of ρ to the free group generated by α1, β1 is reducible.
Thuswemay assumeρ|〈α1, β1〉 is upper triangular.Wecan changeρ|〈α1, β1〉 a small amount,
keeping it upper triangular, so that condition (W-2) holds and ρC is a nontrivial parabolic
with fixed point at ∞. We now use the Extension Lemma 5.4 to extend this change of ρ to a
small change over the rest of the surface.

Now we make further small changes to ensure conditions (W-3) to (W-5) hold. There is a
genus 2 surface �2 ⊂ � containing α1, β1, α2, and β2 (bounded by the diagonally oriented
curve in Fig. 3).
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The fundamental group of �2 is freely generated by {α1, β1, α2, β2}, so we can deform
the representation on this free subgroup holding ρ|〈α1, β1〉 fixed, but changing ρ|〈α2, β2〉 by
an arbitrarily small amount, and ensuring that conditions (W-3) and (W-4) hold. Achieving
(W-4) is possible sincewe have already ensuredρC �= ±I.TheExtensionLemma5.4 applied
to this deformation tells us we can extend this deformation to all of π1�. Since ρ|〈α1, β1〉 is
fixed during this deformation, conditions (W-1) and (W-2) are preserved.

Next we perform a small deformation to ensure condition (W-5) holds. There is another
embedded genus 2 surface with one boundary component�3 ⊂ � whose fundamental group
is freely generated by {α1, β1, αk+2, βk+2}. (See Fig. 3.) We can make an arbitrarily small
deformation of ρ|π1�3 holding ρ|π1F1 fixed, and so that trace(ρC ′) �= ±2. Applying the
Extension Lemma 5.4, this deformation again extends to all of π1�. Since ρ|π1F1 is fixed,
conditions (W-1) and (W-2) are undisturbed; since conditions (W-3) and (W-4) are open,
they will still hold for sufficiently small deformations which ensure (W-5). �

Claim 6.1.2 W is path connected.

Proof of Claim Choose representations ρ0, ρ1 with characters x0 and x1.By Condition
(W-1) and Lemma 3.1, we may assume ρ0 and ρ1 restrict to upper triangular representa-
tions of 〈α1, β1〉. We will construct a path ρt of representations in W with these endpoints.
We construct the path ρt by successively extending the definition of ρt over π1F1 then π1F2

and finally π1F3.
First we define ρt |π1F1 using Lemma 5.9 so that ρt |π1F1 is reducible but nonabelian for

every t .
Next we need to extend ρt over π1F2. This must be done in such a way that conditions

(W-3) , (W-4) and (W-5) hold on the interior of the path. We have a path of representations
defined on

π1(�) × {0, 1} ∪ π1F1 × (0, 1)

and wish to extend over π1(F1 ∪ F2) × [0, 1]. That this can be done follows by noticing
that C, α2, β2 is part of a basis of the free group π1F2, and C = F1 ∩ F2. For each element
γ of the basis of π1F2 we can choose any path in SL(2, C) from ρ0(γ ) to ρ1(γ ) to get
a representation. We first make sure to choose ρt (α2) so that condition (W-4) holds for
t ∈ (0, 1). Geometrically, we do this by making sure that ρt (α2) always moves the fixed
point, ∞, of the parabolic ρt ([α1, β1]). Algebraically, this amounts to choosing a path

ρt (α2) =
(

a11,t a12,t
a21,t a22,t

)

from ρ0(α2) to ρ1(α2) so that a21,t �= 0 for t ∈ (0, 1). Having done so, we can then choose a
path ρt (β2) from ρ0(β2) to ρ1(β2) so that ρt ([α2, β2]) �= ±2 when 0 < t < 1. This ensures
condition (W-3) holds on the interior of the path. We can extend the representation over the
rest of π1F2 so condition (W-5) holds. This is easy to do because we are free to deform α3, β3

in any way.
Condition (W-5) and Theorem 5.8 allow us to extend ρt over π1F3 compatible with

ρt (C ′). We have defined ρt on all of π1� and the character of ρt satisfies condition (W-1) ,
(W-3) and (W-3) on the interior of the path. This proves Claim 6.1.2. �


It only remains to show that W is contained in the smooth part of Z . By Theorem 4.7 the
smooth part Xs(π1�) of X (π1�) contains the set of characters of irreducible representations.
Condition (W-3) implies W ⊂ Xs(π1�). We show that W is a codimension-1 smooth
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submanifold of Xs(π1�) by showing the map P : X (π1�) → C given by P(x) = x(C) is
a submersion along W .

Fix x0 ∈ W andρ0 ∈ R(π1�) so that [ρ0] = x0. Let G denote the subgroup of π1�

generated by {α3, β3 · · · , αk+2, βk+2}. Let RG ⊂ R(π1�) denote those representations σ

such that σ |G = ρ0|G.
Let C ′′ = [α1, β1][α2, β2]. The map

res : σ �→ (σ (α1), σ (β1), σ (α2), σ (β2))

sends RG homeomorphically to a subset L of (SL(2, C))4:

L = {
(A1, B1, A2, B2) ∈ (SL(2, C))4 | [A1, B1][A2, B2] = ρ0(C

′′)
}
.

Claim 6.1.3 The restriction map φ : RG → R(〈α1, β1〉) is a submersion atρ0.

Proof Using condition (W-3) and Lemma 5.1 it follows that the map ψ : (SL(2, C))4 →
(SL(2, C))3 given by

ψ(A1, B1, A2, B2) = (A1, B1, [A1, B1][A2, B2])
is a submersion at ρ0. Hence φ, which may be regarded as the restriction of ψ to L =
ψ−1((SL(2, C))2 × ρ0 (C ′′)), is a submersion at ρ0.

By condition (W-4) the commutator of the matrices A1 = ρ0(α1) and B1 = ρ0(β1)

is not central. By Corollary 5.2, the map χ : R(〈α1, β1〉) −→ C given by χ(A1, B1) =
trace([A1, B1]) is a submersion at φ(ρ0). Since φ is also a submersion, so is the composition
χ ◦ φ. This map factors through the restriction of P . Therefore P is a submersion at x(ρ0).
This completes the proof that W is smooth. �


7 Avoiding real traces

In this section, we assume the genus of � is at least 4.

Lemma 7.1 Suppose α ∈ π1� then

(1) If x(α) is constant on Z then x(α) = 2.
(2) If x(α) is not constant on Z then the subset of Z on which it is real has real codimension 1.

Proof The trivial representation gives a point in Z and at this point x(α) = 2. By 6.1 Z
is irreducible, hence it is connected. Thus if x(α) is constant on Z then it equals 2. If x(α)

is not constant then at every point in the smooth part of Z it is a non-constant polynomial.
Therefore the subset of the smooth part of Z on which it is real has real codimension 1. The
singular part of Z has complex codimension 1 and the result follows. �


We now can prove Theorem 1.2, which implies Theorem 1.1 as explained in the intro-
duction. Recall that � is a closed orientable surface of genus g; the subsets Z , Y , and E of
the character variety are described in the introduction.

Proof of Theorem 1.2 The fact that representations whose character lies in Z are non-
injective follows from Corollary 3.2.

The statement about Y is Corollary 2.7.
Finally, we suppose that the genus of � is at least 4, and describe E . For γ ∈ π1�, let

Eγ = {x ∈ Z | x(γ ) ∈ R \ {2}}. Lemma 7.1 implies that Eγ is either empty or has real
codimension 1, so E = ⋃

γ∈π1�
Eγ is a countable union of subsets of Z of real codimension

at least one. The theorem is proved. �


123



Geom Dedicata (2015) 177:165–187 185

Acknowledgments Cooper was partially supported by NSF grant DMS-0706887. Manning was visiting the
Caltech mathematics department while part of this work was done, and thanks Caltech for their hospitality.
Manning was partly supported by the National Science Foundation, grants DMS-0804369 and DMS-1104703.
Some calculations were performed with the help of Mathematica [20], though all are verifiable by hand. We
thank the referee for useful comments, and in particular pointing out a reference that simplified the appendix
and for simplifying the proof of 5.8.

8 Appendix: Algebraic geometry in C
n

General references for this section are chapter 1 of [15] and chapter 2 of [19]. A nonempty
subset V = V (S) ⊂ C

n is an (affine) algebraic set if it is the set of common zeroes of a
collection S ⊂ C[Cn] of polynomial functions on C

n . This set is reducible if V = A ∪ B
with A and B nonempty algebraic sets and A �= V �= B. Otherwise V is irreducible and
called an (affine algebraic) variety. A regular map between algebraic sets is the restriction
of a rational map defined on a subset of affine space that contains the domain. A regular
isomorphism is bijective regular map.

In this appendix we state two results we need which relate the smooth topology and the
algebraic properties of algebraic sets. Although these follow easily from well-known results,
we have not been able to locate these exact statements in the literature. In what follows we
use the classical (Euclidean) topology.

Every algebraic set V has a decomposition into varieties: V = V1 ∪ · · · ∪ Vk with each
Vi a variety and Vi � Vj whenever i �= j . Moreover this decomposition is unique up to
re-ordering.

The set of all polynomials which vanish on V is an ideal I = I (V ) in C[Cn] and V is
irreducible iff I is prime. More generally I (V ) = ∏

I (Vi ) where the product is over the
decomposition of V into varieties. If V is irreducible and f ∈ C[Cn] is a polynomial which
is zero on an open set in V then f ∈ I (V ). Thus if W is algebraic and contains an open
subset of the variety V then W contains V .

The Zariski tangent space of V at p is T Z
p V = ∩ ker f ∈I dp f ⊂ C

n with complex
dimension d(p). It is easy to see that the subset of V with d(p) ≥ r is algebraic. If V is
irreducible the (topological) dimension, dim V , of V is twice the minimum of this function
and in general dim(V1 ∪ · · · ∪ Vk) = max dim(Vi ).

Definition 8.1 Let V ⊂ C
n be an algebraic set. The point p ∈ V is a smooth point of V

if there is a neighborhood U of p in V such that U is a smooth submanifold of C
n with

dimension dim V . Following Shafarevich (section 1.4) it is a nonsingular point if the real
dimension of the complex vector space T Z

p V is dim V and otherwise is singular.

It is easy to check that a nonsingular point is a smooth point. The set �(V ) ⊂ V of
singular points is an algebraic set of smaller dimension than V . The nonsingular part of
V is V s = V \ �(V ) and is a smooth manifold of dimension dim V with finitely many
components, and is open in V . It follows that an algebraic set is the disjoint union of finitely
many smooth connected submanifolds of even dimensions.

The next result says the notions of nonsingular and smooth points coincide. This is well
known for varieties. However we will use it to prove certain algebraic subsets are varieties.

Lemma 8.2 Let V ⊂ C
n. Let V = V1 ∪ · · · ∪ Vk be the decomposition into varieties. For

p ∈ V the following are equivalent

(1) p is a smooth point of V .
(2) p is nonsingular point of V .
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(3) (∃! i with p ∈ Vi ), and pi is nonsingular point of Vi , and dim Vi = dim V .

Proof (3) ⇒ (2) ⇒ (1) is clear. For (1) ⇒ (3), without loss of generality, we may assume
p ∈ Vi for all i .Milnor shows [13, p. 13] that if p is a smooth point of a variety V then p is
a nonsingular point of V . It only remains to show k = 1.

Let U ⊂ V be a connected open smooth manifold of dimension dim V that contains p.
Since �(V ) is codimension 2 in V it follows that W = U \ �(V ) is connected. Define
Wi = Vi ∩ W . If dim Vi < dim V then Vi ⊂ �(V ) and Wi = φ. Otherwise Wi �= φ

implies dim Wi = dim Vi = dim V . Then �(Vi ) ⊂ Vi ∩ �(V ) and Wi is open in W . But
W = ∪Wi is connected so if more than one of these sets in not empty then for some j �= k
then W j ∩ Wk �= φ. This implies Vj ∩ Vk is a nonempty algebraic subset of codimension-
0 in both Vj and Vk . Irreducibility implies Vj = Vk a contradiction. Thus W = W1 and
dim Vj < dim V for all j ≥ 2. Since W ⊂ V1 is dense in U and V1 is closed it follows that
U ⊂ V1. By Milnor p is a nonsingular point of V1. But Vi ∩ V1 contains a neighborhood of
p in Vi . Since Vi is irreducible this implies Vi ⊂ V1 a contradiction unless k = 1. �

Proposition 8.3 If V ⊂ C

n is a variety and W ⊂ V is an algebraic set then V \ W is
connected in the classical topology.

Proof By homogenization of polynomials we obtain a projective variety X = V ⊂ CPn

such that V = X \ CPn−1. Then Y = W ∪ CPn−1 is an algebraic set and V \ W = X \ Y .
Corollary (4.16) on page 68of [15] states that if X ⊂ CPn is a projective variety and Y � X
is a (closed) algebraic subset then X \ Y is connected in the classical topology, thus so is
V \ W . �

Theorem 8.4 Suppose V ⊂ C

n is an algebraic subset. Then V is a variety if and only if V
contains a connected, dense, open, subset of smooth points.

Proof First assume that V is a variety. Then V s = V \ �(V ) is connected by 8.3. Now V s

is open in V , and since V is a variety, this implies it is dense in V .
For the converse, suppose U ⊂ V is a connected, dense, open subset of smooth points.

Then U is a smooth submanifold of C
n . Let V = V1 ∪ · · · ∪ Vk be the decomposition into

varieties. Since U ⊂ V is dense Ui = U ∩ Vi �= φ. By 8.2 Ui ⊂ V s
i . Since U is open in

V it follows that Ui is open in V s
i . But V s

i is a manifold so Ui ismanifold. By invariance of
domain Ui is also open in U . By 8.2 the Ui are pairwise disjoint. Since U is the disjoint
union of the open nonempty sets Ui , and U is connected, it follows that k = 1 and V is a
variety. �
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