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An Undetected Slope in a Knot Manifold

Darryl Cooper and Darren Long

0. Introduction

The work of Caller and Shalen [CS] using representation vasieties to construct incom-
pressible surfaces via degeneration has been seminal; it is still the only general technique
available. However, it raises a natural question: Which surfaces are so obtained?

In order to formalize this question, we proceed as follows. Suppose that M is a knot
complement, that is to say, a compact 3-manifold with a single torus boundary component.
Choose coordinates «, 8 for w1 (0M); an embedded incompressible, J-incompressible
surface {F, OF) gives rise to a collection of parallel simple closed loops in d3{. Choose
one such and write the homology class it represents as o®3%; then to (F,8F) we
associate the rational number o/b (possibly oo = 1/0) which we call the boundary
slope of (F,8F). A theorem of Hatcher [H] implies that A4 has only a finite number of
boundary stopes. '

There are several natural notions in this context, which we now define. We will say
that a surface (F,F) is detected if there is a sequence {p, } of representations of the
fundamental group of M into SL(2, T}, which lies on a curve inside the character variety
of w1 (M) and converges to an ideal point, so that if one looks at the action of 1 (M} on
the tree coming from this sequence the group 7 (F) is conjugate into an edge stabiliser.

A boundary slope a/b is defected if there is a sequence of representations {pn} as
above with:

(a) The traces tr{p,(@®A%)) remain bounded as n — co.
(b) There is some homology class « in m; (8M) for which tr(p. (7)) does not remain
bounded as n - oo, :

The results of [CS] imply that many slopes are detected, However, as an example,
a fibre of a fibration over S cannot be detected by irreducible representations, but the
slope of a fibre may be detected because of the presence of another, non-fibre surface
which also has this slope. This happens with the knot 83;. A fibre can be detected if we
allow abelian representations.

In this note we give an example which shows that for knots in rational homology
spheres it is possible for rather complicated surfaces to be undetected:

Theorem 1.5, There is a knot complement in a rational homology sphere containing a
boundary slope of 1/6 which is not detected. .

Our example is also surprising in the sense that although this slope is not detected by
representations into SL(2, C), it is detected by representations into PSL(2,C), if one
uses some appropriate notions of degeneration; for example that of [B].
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Before describing the example, we make some remarks of a general nature. Suppose
that a 3-manifold M has two boundary components each of which is a torus. Then there
are maps between character varieties

ZJX(M)—)X(TJ), j11,2

iriduced by restriction to the boundary. There are now two phenomena we wish to
understand. Firstly, the image of one or both of the ¢; s may not have complex dimension
2. It seems to be a hard and interesting problem to say when this does or does not happen,
but we shall not explore this question here. The second problem is that even if the image
is two dimensional, there may be curves which are missed out of the image. Accordingly,
if dim(i;(X(M))) = dim(X(7;)) = 2, any component of 4;(X(M)})\ X(T}) of
cormplex dimension 1 we call a forbidden curve.

We observe for example that for a Brunnian link it is always the case that there are
two forbidden curves given by tr{u) = £2. The special property of the Whitehead link
which we exploit is that it has a third forbidden curve coming from the presence of an
immersed punctured Klein bottle.

Here is an informal description of the example. Let W be the complement in 5% of
the Whitchead link. By consideration of the representations of the fundamental group
m{W) into SL{2,C) we find that the simple closed curve (' of slope 2 on one of the
boundary tori has the property that there is a curve of representations of 1 (W) which
send C to + Id but only finitely many which send € to — Id; thatis to say, tr(C) = —2
gives a forbidden curve.

The loop D of slope 6 on the trefoil has the property that every irreducible represen-
tation of its fundamental group must send D to — Id; so that if we glue these manifolds
together in a way which sends ' to D), then the possibilities for representations of the
resulting manifold are severely limited.

The authors thank the referee for many comments which helped to improve the clarity
of this paper.

1. The example

In this section we outline the construction. Of necessity, this involves some calculations;
some of these are relegated to an appendix.

Our example is built from the complement of the Whitehead link in S%; we denote
this manifold by W. Tt has two torus boundary components which can be exchanged
by a symmetry. Fix some labelling once and for all of these tori as Ty (i.e. “outer™)
and T; (“inner”), The (meridian, longitude) pairs we denote by (g, Ao) and (s, As)
respectively.

Following [CCGLS], one can compute the SL{2, C) “eigenvalue variety” of m (W)
(see the appendix), we denote this by E{x;(W)). This is defined quite generally (see the
appendix), but one can give an especially clear heuristic description for the Whitehead
link, since it is a two bridge link. For one sees easily that 7; (W) is generated by o and
. Then given an irreducible representation p, we may conjugate so that the generators
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map

] g 1 and — My 0
=0 1m; fio t 1/mg )

The group relation now imposes on mg, m; and ¢ a single polynomial constraint
F(m;,mg,t) = 0 which describes an affine algebraic set. (Of course this description is a
mild simplification since there is more than one way of doing the preliminary conjugation.)

Thére are two projection mappings io: E(m1 (W) — E(m(Tp)) and i;: B (W)
— E{m (T})) which come from restricting a representation to the boundary. The image
of these maps describes which eigenvalue pairs are possible on the boundary tori. We use
{mag, £y) etc. as notation for the eigenvalue pairs.

Note that the image of either mapping cannot possibly fill up all of F(rm((Ty)) = C2,
since the Whitehead link is a pure link so that restricting mg = £1 forces £y = =1.
Thus the image io( £{m (W))) misses out most of the curves mg = *1. Since we are
dealing with eigenvalues, the image must also avoid the curves mg = 0 and £, = 0. We
shall show explicitly in this example that there is another carve which is (largely)} missed
out; caleulation of this curve is our next task.

In order to find what eigenvalues are possible on the boundary tori, we use elimination
theory [M1; details are deferred to the appendix. The result is that we form polynomials
in the eigenvalue triples (m,, mg, £;) and (m;, mo, £n). We call these the outer and inner
polynomials denoting them O{m;, mo, £;) and I(my,mo, £;} respectively.

As explained in the appendix, the crucial property of these polynomials is that given
any triple of nonzero complex numbers (m;,mo, fo) With O(m;,mo, o) =0 (ora
triple (my,mo,£;) with I(mq,mg,£;) = 0 ), there is an irreducible representation of
m1{W) whose restriction to the inner boundary torus has eigenvalue m; for the meridian,
and on the outer boundary torus has eigenvalues (mg, €5} for the meridian-longitude pair.

Lemma 1.1. If a representation of the Whitehead link complement has mi.fy = —1,
then mg Is =1 or 4.

Proof. The loop €' = uZX, can be expressed in terms of the generators p;, o of the
fundamental group of the Whitehead link as a conjugate of

polpipy  sdpo(pany ) ™

Putting 1 = (g1 114;), we recognise this as the relator in the Klein botte group. (It
follows that there is an immersion of a punctured Klein bottle into the Whitehead link
with boundary pAg.) o

Now suppose that we have a representation p of the Whitehead link for which
tr{p(piAg)) = —2. If p(udXg) is parabolic, then it follows that p is parabolic on all
of Ty. Alternatively if uiXo = —I, then p{ruor™') = —plpg ™), and it follows that
tr{p(po)) = 0. We have shown that if tr{p{pdAg)) = —2 then tr(p(po)) = 0, =2, but
tio, (43 Ao is a basis of ;(7h), from which it follows that there are only finitely many
possibilities for the character of p restricted to Tp. 1

Remark. An alternative proof comes from the fact that if one puts £y = -1/ mj in
O{my, mg, £y) then the resulting polynomial has only the given roots together with the
root m,; = 0, which is forbidden for a representation.
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This is the special feature of the Whitehead link complement which we are about
to exploit; a representation of m (W) having m3f;, = —1 has only finitely many
possibilities for my. (Remarkably, this fails to be true for the curve mify = +1. ) It
would be interesting to have other hyperbolic examples, -

‘We now return to the matter in hand:

Lemma 1.2, Let F denote anincompressible, -incompressible surface inthe Whitehead
manifold which is detected in SL(2,C). If the slope of I on the inner torus is 1/6, the
only slopes possible on the outer torus are 2, —-24, 26. All these slopes occur.

Proof. We recall from [CCGLS] that information concerning boundary slopes may be
obtained from the Newton polygon. We briefly sketch the salient details. Given a
polynomial f(x,y) we define its Newton polygor to be the convex hull of the set in the
plane defined by: {(r, s)|z"y*® has nonzero coefficient in f(x, y)}.

Roughly, the edges of the Newton polygon describe ways of going to infinity in the
affine variety f(x,y)=0 which keep some ratio z%y” bounded. Let us briefly recall how
this works. For notational simplicity, suppose that the Newton polygon has a slope
of zero and that all coefficients lie below this slope. Then we may write f(z,y) =

y° Pa{z) + Ef;i y" P, {(x) where the P;(z) are polynomials in . Factoring out y°
we see that for very large y the term which dominates the behaviour of the equation
flz,y) = 0 is Pg(z) and it follows that we may obtain points on the curve f(z,y) =0
provided we choose z to be very close to a root of Pa{z). In other words, there is a way
of going to infinity along the curve defined by f(z, %) which keeps x bounded, ie., a
slope of zero.

The precise result is the following:

Theorem [CCGLS|. Suppose that a knot has eigenvalue variety defined by the poly-
nomial f{A, ). Form a convex body in the Au-plane by taking the convex hull of the
points {{\, )| A" u® has non zero coefficient in f(X, 1) }. Then the slopes of faces of this
convex body are boundary slopes of the knot.

The above theorem has a natural interpretation for any curve of representations, even
in the context of links; namely it describes what happens when one restricts a curve of
representations to a boundary component. The reason for this is the following: If one
projects such a-curve into the €2 of possible eigenvalues associated with a boundary
component, the complex dimension of the image can be at most one. If this image is
a point, then the sequence is constant on the boundary component. If not, then (after
possibly taking Zariski closure) we see a complex curve in C?. It is a general fact
[Ha, Proposition 1.13] that a curve in €2 is the zero set of a single polynomial in two
variables and therefore has associated to it a Newton polygon. Ideal points on this curve
give rise to splittings of the group of the link and the boundary slopes on the given
component give slopes of surfaces which can arise.

To prove 1.2, we seek to understand degenerations with the property that the class
pi- A hasbounded trace. If we have any curve of degenerations then the behaviour for the

“eigenvalues of the inner boundary component is coded by the polyonomial I(m;,mg, ¢;).
The possibilities for the eigenvalues can be understood by replacing m; by C/#5,
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where ¢ is any function bounded away from ¢ and co. Making this substitution in
I(m;, mg, £;); this yields a polynomial which has Newton polygon given in Figure fa.

Figure 1a

A nonzero term m{#; in the polynomial is indicated by a black rectangle in the s,

entry. Notice that coefficients of the extremal vertices are as indicated in Figure 1b.

& 1
Lo _ nln
¢t 1

(-
Figure 1b

The slopes in this picture are +2 and 0. The O slope corresponds to the case when
£; 1s bounded away from oo, that is to say, the slope on the inner torus is 0 which we
have excluded in our hypothesis.

Analysis of the slopes of 2 now follows along exactly the lines of the first paragraph
of this proof. Consider the slope of 2 coming from the top left of the Newton polygon.
Since C' is bounded away from co, two terms which dominate are —C*mZ2(1 — maé;)
so that we may go to infinity on the curve in a way which has m3{; converging to 1.
Similarly for the other slopes and we see that in alf cases we have mZ converges to ffl.

There are two cases, and making the substitutions m; = —1/¢% and £; = mojE2 in
O{my,mo, fo) we see that in either case, we obtain a polynomial which has Newton
polygon indicated in Figure 2.

It follows we obtain the candidate slopes of 2, 26 and —24. Further, from the
remarks made above all these boundary slopes do arise in W, completing the proof. [

Lemma 1.3. Suppose that (F;, 0F;) is anincompressible, 9-incompressible surface in a
manifold (M, 0M;) for j = 1,2. Then gluing a component of M to a component of
OMz so that OFy is glued to OFy yields an incompressible, 8-incompressible surface.
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Figure 2

Proof. This follows from standard 3-manifold techniques. a

To fix our ideas, suppose that we have glued the outer torus of the ‘Whitehead manifold
to the exterior of the trefoil so that g is glued to the meridian of the trefoil pr and Ag
to phAp. The resuléing manifold X then has H; (X) = Z & 7. We continue to refer
to the boundary torus of X as the inner torus, etc.

In this gluing we see that the loop of slope 2 on the outer torus is glued to the loop
of slope 6 in the trefoil. The incompressible annulus of the trefoil has slope 6, and it
follows that:

Corollary 1.4. The manifold X contains an incompressible, 0-incompressible surface.
U7, of slope 1/6. O

Our main claim is:

Theorem 1.5. The slope 1/6 is not detected by degeneration of representations into
SL(2,C).

Proof. The crucial subclaim here is:

Subclaim. The only degenerations of the Whitehead link group which are bounded on
the outer torus produce slopes 0 or 4 on the inner torus.

Proof of subclaim. Since the representation is bounded on the outer torus, g is bounded

away from 0 and co. We can therefore plot a Newton polygon for I(m;, mo, £); see

Figure 3.
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Figure 3

As above, since my is bounded away from O and oo the only slopes possible on the
inner torus are 0 and 4. This proves the subclaim. |

Suppose that this slope 1s detected, that is to say, there is a degeneration p, of
71(X), so that the representations are blowing up on the boundary torus of X. There are
two possibilities:

Case A. The representations p, restrict to abelian representations of the trefoil
complement. For such representations, the longitude of the trefoil has eigenvalue 1. We
claim that this cannot be the only loop on the splitting torus with bounded trace, since the
longitude of the trefoil is glued to the loop on the outer torus g, *Xo, and —4 was not in
the kist of possibilities of Lemma 1.2. Therefore the degeneration is bounded on the outer
torus, But the subclaim implies that this produces slopes of 0 or 4 on the inner torus, a
contradiction,

Case B. The representations are nonabelian on the trefoil. Then a calculation shows

th.at the curve of slope 6 on the trefoil is mapped to Id by every such representation.
.-_S_.mce this curve is glued to the curve of slope 2 on the outer torus, we see via Lemma

L.1 that only finitely many representations are possible on the splitting torus; whence the
sare !Jounded and we again obtain a slope of O or 4 con the outer torus.
.In either case, we obtain a contradication, completing the proof. O
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Remark. Using the techniques of [CCGLS], one can compute the A -polynomial for this
knot; its Newton polygon has stopes 0, 4 and £1; these latter arising from representations
which are abelian on the trefoil, and blow up on the splitting torus.

‘What has happened here is that most representations of the Whitehead link comple-
ment which carry a certain loop on a boundary torus to = Id, must in fact carry it to
+1Id. Further, there is a loop on the boundary of the trefoil complement which has
to go to —Id for every ireducible representation. Gluing these curves together gives
representations which cannot be reconciled in SL(2, C); however it shows that (with ap-
propriate definitions) the surface U7 can be obtained via degenerations of representations
into PSIA2,C).

We have already observed that H?(X;Z3) is nonzero and these representations do
not lift. We outline the reason for this — the following elegant argument was shown to
us by Andrew Casson. Let p: G — PSL{2,C) be any representation. Then the natural
projection SL{2, C) — PSL{2,C) can be pulled back to give a commutative diagram of
groups and homomorphisms, where the vertical maps are central extensions:

T Zg
Lo
G 2 SL2,C)

! |

G -5 PSL(2,0) .

Now the action of ¢ on Zy is trivial, and so the possibilities for groups &' correspond
to elements of H2{(G;%s). If ( is the fundamental group of a Haken 3-manifold M,
then H?(M;Zy) & H*(G; Z2). By Poincaré duality one sees that if the boundary of A
is atorus and [y (M; Zs) = Ty then H*{M; %) 2 0. Thus &' 2 Zs, and so o'|G is
alift of p to SL(2, ).

In particular, this shows that for knot complements in S° representations into
PSL{2,T) always lift (compare [C]}. Thus an incompressible surface in a knot comple-
mentt is detected by SL{2,C) if and only if it is detected by PSL(2, C).

Concluding Remarks. This paper grew out of an attempt to show that every knot has
an irreducible representation into SL(2, C), the idea being that one would (ry to patch
together representations across incompressible tori. In the notation established above,
this means that one needs to understand the image ¢o(F{m; (W))). This involves two
parts; one first needs to show that i(E{m; (1W))) has complex dimension two, then to
understand the forbidden curves. Both of these problems appear to be hard. One means
of attack is given by:

Conjecture. Suppose that M is a compact hyperbolic 3-manifold with boundary a forus
and that the inierior of M admits a complete hyperbolic structure p. Suppose that o
is any non-trivial element of the fundamental group of M. Is it true that tr(pa) is not
constant on the component of the representation space containing p?

iR
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An affirmative answer to this conjecture would mean that the projection of the character
variety of a 2-component hyperbolic link N to the character variety of one of its boundary
components T say always has complex dimension 2. The reason is that by [T] the
component of the character variety of N containing the complete representation has
complex dimension 2. Suppose that the restriction of this character variety to T' has
dimension 1, then there is & hyperbolic Dehn filling of 7' using a representation p of V.
This gives a 3-manifold A/ with a single torus boundary component 7 say, and since p
may be varied keeping p|T fixed. it follows that the trace of the core of the Dehn filling
does not vary as p is varied near the complete representation of N.

Finally, we mention that although the most useful notion for a slope is that it be
detected, there is a weaker notion: One may say that a slope is weakly detected if it is
the boundary of some detected surface. The result of [CS] show that detected slopes are
weakly detected, however the annulus in a connected sum shows that the converse may
be false.

2. Appendix: Some calculations

With respect to the meridians shown below (Fig. 4), the fundamental group of the com-
plement of the Whitehead link is presented as

_ — — —_ — —1 -1 -1
< iy i | oy oy Mo g = pig g posy iy ko > -

- (

Figure 4

We are interested in representations up to conjugacy, so one easily finds that it is
sufficient to consider representations

R 1 and . Mo 0
i 0 1/my Ho t 1/m, )’

Then the condition that we obtain a representation is the single polynomial
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Fmq, mo,t) = —(mymg) + mimg + mymg — mimi+
{m? —mi + md — dmimg + mim2 — my + mimd )+
+{—(mymo) + 2mImg + Immd — mimi* — mimit® = 0.

The theory of [€CS] usually uses traces and the character variety, but this involves a
loss of information in the sign of the slopes when consjdering the Newton polygon.

Briefly, one can form an eigenvalue variety as follows. Let X(m (W)) be acompo-
nent of the affine algebraic set of characters. Then there is a projection map X (m (W) —
X(x1(dW)), coming from the restriction map, the target being some subvariety of
X(mi(To)) x X{m(Ti).

Considering the relevant component of the representation variety R{m (W), wemay
form by projection an eigenvalue variety for the boundary £ (w1 (W), Then thereis a
map E{ry (W) — X{m1(6W)) which is generically two to one. Then the eigenvalue
vartiety E{m (W)} comes from forming the pull back in the diagram

E{m (0W))

|

X(mW)y — X(m{aw)) .

We are interested in finding what eigenvalues are possible on the boundary. To do
this one uses elimination theory [M] for which we briefly recall some details. Given
polynomials

~

f(X17 . "aXnJY) - anfz'(Xlg e 1X'n)1fi
=0
and
g(X0, o, X, Y) = ) g (X, XY
i=0

we can form their resultant R{X1, ..., X, ), a polynomial having the following property.
If ai, ...,y are complex numbers which satisfy R{os, ..., ay,) = 0, then either:
(i) the polynomials f(au, ...,an,Y) and glar, ..., o, Y') have a common root, or
(i) polon, - yom) = golay, - 0n) =0

Tn our context we use this in the following way. One computes that the longitude on
the outside torus is the word

-1, -1 —1
g g oy pipioly
and one computes using the above generators a rational function (g, m;,t) which is
the (1,1) entry of this matrix; that is to say, if we set £y to be the eigenvalue of the
longitude on the outer torus, we have £, = Q(mq, m;,t), which may be re-written as

a polynomial function g{mg,m.,%, fo) = 0. We then eliminate the variable ¢ between
this polynomial and F{m;,me,t}.
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This yields:
Olm;, mo, £o) = Lo(=1 -+ mg)(1 + mo)(1 + fomi )+
Jr’.’?’bfﬁo(-—l + mo}(l -+ mo)(l -+ €0m§)+
+m3 (1 + & + 200mE — 202mi — boml — Emg).

In general, elimination theory involves loss of information in the affine context because

of possibility (ii). However, in our case the highest power of ¢ occurring in F' is a cube
and its coefficient is m?mi so that we see that given any triple of nonzero complex
numbers mi;, mq, £y which satisfy O(m;, mg,£€) = 0, (i} applies and we may find a

representation of 71 (W) which gives this eigenvalue triple on the boundary.
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