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Abstract. We study a properly convex real projective manifold with (possibly empty) compact,
strictly convex boundary, and which consists of a compact part plus finitely many convex ends.
We extend a theorem of Koszul which asserts that for a compact manifold without boundary the
holonomies of properly convex structures form an open subset of the representation variety. We
also give a relative version for non-compact (G,X)-manifolds of the openess of their holonomies.

Given a subset Ω ⊂ RPn the frontier is Fr(Ω) = cl(Ω)\int(Ω) and the boundary is ∂Ω = Ω∩Fr(Ω).
A properly convex projective manifold is M = Ω/Γ where Ω ⊂ RPn is a convex set with non-empty
interior and cl(Ω) is contained in the complement of some hyperplane H , and Γ ⊂ PGL(n + 1,R)
acts freely and properly discontinuously on Ω. If, in addition, Fr(Ω) contains no line segment then
M and Ω are strictly convex. The boundary of M is strictly-convex if ∂Ω contains no line segment.

If M is a compact (G,X)-manifold then a sufficiently small deformation of the holonomy gives
another (G,X)-structure on M . In [20, 21] Koszul proved a similar result holds for closed, properly
convex, projective manifolds. In particular, nearby holonomies continue to be discrete and faithful
representations of the fundamental group.

Koszul’s theorem cannot be generalised to the case of non-compact manifolds without some
qualification—for example, a sequence of hyperbolic surfaces whose completions have cone singular-
ities can converge to a hyperbolic surface with a cusp. The holonomy of a cone surface in general is
neither discrete nor faithful. Therefore we must impose conditions on the holonomy of each end.

A group Γ ⊂ PGL(n + 1,R) is a virtual flag group if it contains a subgroup of finite index
that is conjugate into the upper-triangular group. The set of virtual flag groups is written VFG.
A generalized cusp is a properly convex manifold C homeomorphic to ∂C × [0,∞) with compact,
strictly-convex boundary and with π1C virtually nilpotent.

For an n–manifold M , possibly with boundary, define Rep(π1M) = Hom(π1M,PGL(n + 1,R))
and Repce(M) to be the subset of Rep(π1M) consisting of holonomies of properly convex structures
on M with ∂M strictly convex and such that each end is a generalized cusp. For instance, all ends
of a properly convex surface with negative Euler characteristic and strictly convex boundary are
generalized cusps.

Theorem 0.1. Suppose N is a compact connected n–manifold and V is the union of some of the
boundary components V1, · · · , Vk ⊂ ∂N. Let M = N \V. Assume π1Vi is virtually nilpotent for each
i. Then Repce(M) is an open subset of {ρ ∈ Rep(π1N) : ∀i ρ(π1Vi) ∈ VFG}.

A similar statement holds for orbifolds since a properly convex orbifold has a finite cover which
is a manifold, and the property of being properly convex is unchanged by coverings. This theorem
is a consequence of our main theorem (6.27) that a certain map is open. By (6.9) ρ(π1Vi) ∈ VFG
iff there is a finite index subgroup Γ < ρ(π1Vi) such that every eigenvalue of Γ is real.
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Every end of a geometrically finite hyperbolic manifold M with a convex core that has compact
boundary is topologically a product and is foliated by strictly convex hypersurfaces. These surfaces
are either convex towards M so that cutting along one gives a manifold with convex boundary and
the holonomy contains only hyperbolics, or else convex away fromM in which case the end is a cusp
and the holonomy contains only parabolics.

For strictly convex geometrically finite projective manifolds this dichotomy holds, but for properly
convex manifolds there are ends that contain both hyperbolic and parabolic elements. We have
chosen to study manifolds whose ends are convex outwards or convex inwards. Generalized cusps
are those that are convex outwards with virtually nilpotent fundamental group.

There is a Margulis lemma for properly convex manifolds that says the local fundamental group is
virtually nilpotent (0.1) in [10], see also [11]. There is a thick-thin decomposition for strictly convex
manifolds (0.2) in [10], but not for properly convex manifolds. Each component of the thin part
of a strictly convex manifold is a Margulis tube or a cusp and has virtually nilpotent fundamental
group consisting of parabolics. This motivates the definition of generalized cusp above. There is a
discussion of cusps in properly convex manifolds in §5 of [10].

Section 1 describes the (G,X)-Extension Theorem (1.7). This generalizes a well-known result
for compact manifolds (the holonomies of (G,X)-structures form an open subset of the represen-
tation variety) by providing a relative version. Section 2 recalls the definition and properties of
the tautological bundle. Section 3 reviews Hessian metrics and gives a characterization of properly
convex manifolds in terms of the existence of a certain kind of Hessian metric on the tautological
line bundle. This material is due to Koszul. Section 4 shows that various functions on properly
convex projective manifolds are uniformly bounded, including a proof of the folklore result that they
admit Riemannian metrics with all sectional curvatures bounded in terms of dimension.

The Convex Extension Theorem (5.7) is a version of (1.7) for properly convex manifolds with
strictly convex boundary. A consequence is (0.2) below. Roughly this says that if you can convexly
deform the ends of a properly convex manifold then you can convexly deform the manifold.

Theorem 0.2. Suppose M = A ∪ B is a properly convex manifold with (possibly empty) compact
strictly convex boundary and A is a compact submanifold of M with ∂A = ∂M ⊔ ∂B and B =
B1 ⊔ · · · ⊔Bk has k ≥ 0 connected components Bi ∼= ∂Bi × [0,∞).

Suppose ρ : (−1, 1) → Rep(π1M) is continuous and ρt := ρ(t) and ρ0 is the holonomy of M . Let
C denote the space of closed subset of RPn with the Hausdorff topology. Suppose for all 1 ≤ i ≤ k
and all t ∈ (−1, 1) that

• there is a properly convex set Ωi(t) ⊂ RP
n, that is preserved by ρt(π1Bi),

• Pi(t) = Ωi(t)/ρt(π1Bi) is a properly convex manifold and ∂Pi(t) is strictly convex,
• there is a projective diffeomorphism from Pi(0) to Bi,
• Pi(t) is diffeomorphic to Bi,
• the two maps t 7→ cl(Ωi(t)) and t 7→ cl(Ωi(t)) \ Ωi(t) into C are continuous.

Then there is ǫ > 0 such that for all t ∈ (−ǫ, ǫ) there is a properly convex projective structure on M
with holonomy ρ(t) such that ∂M is strictly convex and Bi is projectively diffeomorphic to Pi(t).

Section 6 proves that generalized cusps contain homogeneous cusps (6.5):

Theorem 0.3. Suppose C = Ω/Γ is a generalized cusp. Then C contains a generalized cusp
C′ = Ω′/Γ such that PGL(Ω′) acts transitively on ∂Ω′.

Frequent use is made of the fact that C is maximal in the sense that, after taking an orientation
double cover if needed, Hn−1(C) ∼= Z where n = dimC. An algebraic argument shows (6.13) that
if C = Ω/Γ is a generalized cusp then Γ has a finite index subgroup that is a lattice in a connected
Lie group T = T (Γ) that is conjugate into the upper-triangular group.
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Next (6.22) shows that the T -orbit of some point p ∈ Ω is a strictly convex hypersurface S = T ·p.
The convex hull of S is a domain ΩT and which is preserved by all of Γ and we may shrink C to be
ΩT /Γ giving (0.3).

From (0.3) it follows that generalized cusps are stable (6.25): if Γ is deformed to a nearby virtual
flag group Γ′ then T ′ = T (Γ′) is a nearby Lie group so S′ = T (Γ′) · p is a nearby strictly convex
hypersurface which gives a nearby domain ΩT ′ and a nearby generalized cusp C′ = ΩT ′/Γ′.

The convex extension theorem and the stability of generalized cusps implies the main theorem
(0.1). In [2] generalized cusps are classified and their properties are studied. This classification for
3-manifolds is given without proof in section 7.

A function is Hessian-convex if it is smooth and has positive definite Hessian. This property
is preserved by composition with diffeomorphisms that are close to affine. Section 8 contains a
theorem about approximating strictly-convex functions on affine manifolds by Hessian-convex ones.
Section 9 is a short proof of Benzécri’s Theorem. We have put these results at the end of the paper
with the intention of not breaking the narrative.

There is an entirely PL approach to (0.1) which, however, we do not develop in this paper. It is
based on using the convex hull of the orbit of one point instead of a characteristic surface.

Theorem (0.1) does not always remain true if ∂M is convex but not strictly convex. However, in
some cases, the theorem can still be applied. For instance, a hyperbolic manifold M with compact,
totally geodesic boundary is a submanifold of a finite volume hyperbolic manifold with strictly
convex smooth boundary obtained by fattening. In particular, any small deformation in PGL(4,R)
of the holonomy in PO(3, 1) of a compact Fuchsian manifold is the holonomy of a strictly convex
projective structure on (surface)×[0, 1].

The reader only interested in the proof of (0.1) when M is compact need only read section 1 up
to (1.2), and then sections 2 to 4 stopping before (4.3). Those interested only in the proof of (0.2)
can omit section 6.

Most of sections 1-4 is not new and there is considerable overlap in the first 5 sections with the
results and methods of Choi in [5]. Marquis determined the holonomies of properly convex surfaces
with cusps. In [9] a method of constructing fundamental domains for some strictly convex manifolds
with cusps is given. Using the main result of this paper, new properly convex structures have been
found on the figure eight knot obtained by deforming the complete hyperbolic structure [1]. The
type of geometry in a generalized cusp can change during a deformation. For example a generalized
cusp with diagonal holonomy can transition to one with parabolic holonomy. This is related to the
study of geometric transition in [8].

This paper has evolved over several years as the authors gradually discovered the nature of
generalized cusps. The first author has lectured on earlier versions that involved the Radial Flow
Convexity Theorem which was used to show the existence of convex structures on the ends for certain
deformations. Our improved understanding allows us to avoid this by using Hessian metrics. The
first author apologizes for the long delay in completing this paper.

1. (G,X) structures and Extending Deformations

The goal of this section is a relative version of the well-known fact (1.2) that for compact
manifolds the set of holonomies of (G,X)-structures is an open subset of the representation variety.
The Extension Theorem (1.7) implies that if B is a codimension-0 submanifold of M with M \ B
compact then, given a (G,X)-structure onM with holonomy ρ together with a nearby representation
σ, and given a nearby (G,X)-structure on B with holonomy the restriction of σ, there is a nearby
(G,X)-structure on M with holonomy σ that extends the structure on B.

A geometry is a pair (G,X) where G is a Lie group which acts transitively and real-analytically
on a manifold X . A (G,X) structure on a manifold M (possibly with boundary) is a maximal atlas
of charts which takes values in X so that transitions maps are locally the restriction of elements of
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G. A map between (G,X) manifolds is a (G,X) map if locally it is conjugate via (G,X)-charts to
an element of G.

Let π : M̃ → M be (a fixed choice for) the universal cover of M . We regard π1M to be defined

as the group of covering transformations of this covering. A local diffeomorphism f : M̃ → X

determines a (G,X)-structure on M̃ . If covering transformations are (G,X)-maps then there is a
unique (G,X)-structure on M such that the covering space projection is a (G,X)-map. In this
case f is called a developing map for this structure and determines a homomorphism hol = hol(f) :
π1M → G called holonomy.

For smooth manifolds Mm and Nn the set of smooth maps C∞
w (M,N) has the weak topology

[17, page 35]. The space of diffeomorphisms Diff(M) is a subspace of C∞
w (M,M). If N = R then

C∞
w (M) := C∞

w (M,R).
The space of all developing maps is denoted Dev(M, (G,X)) or just Dev(M). The (G,X)-

structure on M given by dev ∈ Dev(M) is written (M, dev). There is a natural embedding of

Dev(M) into C∞
w (int M̃,X) given by restricting the developing map to int M̃ .

Definition 1.1. The geometric topology on Dev(M) is the subspace topology from C∞
w (int M̃,X).

Thus two developing maps are close if they are close on a large compact set in the universal cover
that is disjoint from the boundary. The following is due to Thurston [29], see also Goldman [14]
and Choi [4]. The topology on Hom(π1M,G) is the compact-open topology.

Proposition 1.2 (holonomy is open). Suppose M is a compact connected smooth manifold possibly
with boundary. Then Hol : Dev(M, (G,X)) → Hom(π1M,G) is continuous and open.

Given devM ∈ Dev(M) and devN ∈ Dev(N) a smooth map f :M → N is close to a (G,X) map if

it is covered by F : M̃ → Ñ and there is g ∈ G such that g ◦devN ◦F is close to devM in C∞
w (M̃,X).

This means there is a large compact set K ⊂ int M̃ and some g ∈ G such that for each x ∈ K there

is an open neighborhood U ⊂ M̃ with V = devM (U ∩K) and the map g ◦devN ◦F ◦ (devM |U∩K)−1

is very close to the inclusion map in C∞(V,X). This notion of close depends on devM but not on
the choice of developing map devN for a given (G,X)-structure on N .

There is a nice description of what it means for developing maps in Dev(M) to be close when one

of them is injective. Suppose dev ∈ Dev(M) is injective and Ω = dev(M̃) and ρ = Hol(dev) and
Γ = ρ(π1M). Then N = Ω/Γ is a (G,X) manifold that is (G,X)-diffeomorphic to M . We choose

the universal cover Ñ = Ω then π1N = Γ by our definition as the group of covering transformations.
There is a homeomorphism from Dev(M) to Dev(N).

Definition 1.3. Replacing Dev(M) by Dev(N) is called choosing dev as the basepoint for the space
of developing maps.

The developing map dev∗ ∈ Dev(N) for N is the inclusion map i : Ñ →֒ X and Hol(dev∗) : Γ →֒
G is also the inclusion map. If N has no boundary then Dev(N) is a subspace of C∞

w (Ñ ,X) so

dev′ ∈ Dev(N) is close to dev∗ if dev′ is close to i in C∞
w (Ñ ,X).

Lemma 1.4 (lifting developing maps). In this statement all manifolds and maps are (G,X).
Suppose N and P are connected manifolds and θ : π1N → π1P is a homomorphism such that

holN = holP ◦θ. Suppose πP : P̃ → P and πN : Ñ → N are universal covers and i : Q →֒ Ñ is
the inclusion map of a connected set Q with πN (Q) = N . Suppose devN ◦i : Q → X lifts to a map

j : Q → P̃ such that devP ◦j = devN ◦i. Then there is k : N → P covered by k̃ : Ñ → P̃ that
extends j.
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P̃

Q Ñ X

devP

j

i

∃k̃

devN

Proof. Because the covering translates ofQ cover Ñ and the manifoldsN and P have (via θ) the same

holonomy, j can be extended by analytic continuation to an equivariant (G,X)-map k̃ : Ñ → P̃ .

Equivariance implies k̃ covers a (G,X)-map k : N → P . �

If P is a smooth manifold then Diff(P̃ , π1P ) ⊂ Diff(P̃ ) is the subgroup of diffeomorphisms that
cover an element of Diff(P ). The next result says that if two developing maps are close and have
the same holonomy then, after changing one by a small isotopy, the developing maps are equal on
a compact submanifold in the interior.

Corollary 1.5. Suppose P is a smooth manifold. Let ρ ∈ Hom(π1M,G) be the holonomy of
dev ∈ Dev(P, (G,X)) and Devρ(P ) ⊂ Dev(P ) the subspace of developing maps with holonomy ρ.

Then the map Diff(P̃ , π1P ) → Devρ(P ) given by f 7→ dev ◦f is an open map.
It follows that if N is a compact codimension-0 manifold in the interior of P and dev′ ∈ Devρ(P )

is close enough to dev then there is k ∈ Diff(P ) covered by k̃ ∈ Diff(P̃ , π1P ) such that dev = dev′ ◦k̃
on N and k is isotopic to the identity by a small isotopy supported in a small neighborhood of N .

Proof. Let πP : P̃ → P and πN : Ñ → N be universal covers. Let Q ⊂ Ñ be a compact connected

manifold such that πN (Q) = N . Since dev |Q : Q → X factors through the inclusion j : Q →֒ P̃
and π(Q) ⊂ int(P ) it follows that if dev′ is close enough to dev then dev′ |Q : Q→ X has a nearby

lift j′ : Q → P̃ . By (1.4) there is a (G,X)-map k : (N, dev′ |N) → (P, dev |N) that lifts to a
map that extends j′. If dev′ is sufficiently close to dev the result now follows from the fact that a
diffeomorphism close to an inclusion is ambient isotopic to the inclusion by a small ambient isotopy
[23]. �

Suppose M is a smooth manifold with (possibly empty) boundary and B ⊂M is a codimension-
0 submanifold that is a closed subset such that A = cl(M \ B) is compact manifold. Suppose
B = B1 ⊔ · · ·Bk has k <∞ connected components. Define the relative-holonomy space

RelHol(M,B, (G,X)) ⊂ Hom(π1M,G)×
k∏

i=1

Dev(Bi, (G,X))

to be the subset of all (ρ, dev1, · · · , devk) such that Hol(devi) = ρ|π1Bi. This space has the subspace
topology of the product topology.

Given a connected submanifold B ⊂M we fix a choice of some component B̃ ⊂ M̃ of the preimage

B in the universal cover ofM and define π1Bi to be those covering transformations that preserve B̃.

If devM is a developing map for a (G,X)-structure onM the restriction to B is devM|B := devM |B̃.

Definition 1.6. A developing map for M restricts to give developing maps on each component of
B and this defines the relative holonomy map E : Dev(M, (G,X)) −→ RelHol(M,B, (G,X))

E(devM ) = (Hol(devM ), devM|B1
, · · · , devM|Bk

)

This map depends on a fixed choice of one component B̃i ⊂ M̃ for each i. In the special case
that B is empty then E = Hol. We will apply this when B consists of the ends of M which is why
the symbol E is used. However the result is of interest even when everything is compact.
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Theorem 1.7 (Extension theorem). Suppose M is a smooth manifold with (possibly empty) bound-
ary and B ⊂ M is a codimension-0 submanifold that is a closed subset such that A = cl(M \ B) is
a compact manifold. Then E : Dev(M, (G,X)) −→ RelHol(M,B, (G,X)) is continuous and open.

Proof. Continuity is easy. We prove openess. For simplicity we will assume that B = B is con-
nected; the multi-end case merely requires more notation. Suppose E(devρ,M ) = (ρ, devρ,M|B) and
(σ, devσ,B) is nearby in RelHol(M,B, (G,X)).

Let C be a compact neighborhood of A in M so that E = C ∩B ∼= ∂B × [0, 2]. By (1.2) there is

devσ,C : C̃ → X close to devρ,M|C with holonomy (the restriction of) σ. Using (1.5) after changing
devσ,C by a small isotopy we may assume devσ,C and devσ,B are equal on ∂B × [0, 1]. This gives

a developing map devσ,M : M̃ → X close to devρ,M that is given by devσ,C on Ã and devσ,B on

B̃. �

2. Tautological Bundles

There is a bundle ξM →M over a real projective manifold M called the tautological line bundle.
In the next section we show that M is properly convex iff ξM admits a certain kind of metric.

Radiant affine geometry is L = (GL(n+1,R),Rn+1 \ 0). A manifold with this structure is called
a radiant affine manifold. It ought to be called a linear manifold since transition functions are linear
maps.

Projective geometry over a real vector space V is P = (PGL(V ),P(V )). Positive projective space
is P+(V ) = (V − 0)/R+ and the action of GL(V ) on V induces an effective action of P+GL(V ) =
GL(V )/R+ on P+(V ) which gives positive projective geometry P+ = (P+GL(V ),P+(V )). If X ⊂ V
we write P(X) for its image in P(V ) and similarly P+(X) ⊂ P+(V ).

We identify P+(R
n+1) with the unit sphere Sn ⊂ Rn+1 and radial projection πξ : R

n+1 \ 0 → Sn

is πξ(x) = x/‖x‖. An action of A ∈ SL±(n + 1,R) on Sn is given by A(πx) = π(Ax). Clearly
P+

∼= S := (SL±(n+ 1,R), Sn).
For each of the geometries G above there is a space of developing maps Dev(M,G) with the

geometric topology. By lifting developing maps one obtains:

Proposition 2.1. The natural map Dev(M, S) → Dev(M,P) is 2 : 1. In other words: Every
projective structure on M lifts to a positive projective structure. Thus if M is a real projective
n–manifold, then the holonomy ρ : π1M −→ PGL(n+ 1,R) lifts to ρ̃ : π1M −→ SL±(n+ 1,R) and

dev : Ñ → RP
n lifts to d̃ev : M̃ → Sn.

We will pass back and forth between projective geometry and positive projective geometry without
mention. The tautological bundle over Sn is πξ : Rn+1 \ 0 −→ Sn. The total space is a radiant
affine manifold. There is an action of (R,+) on the total space called the radial flow given by
Φt(x) = exp(−t)x. This group acts simply transitively on the fibers so the bundle is a principal
(R,+)-bundle. All this structure is preserved by the action of GL(n + 1,R) on Rn+1 covering the
action of SL±(n+ 1,R) on Sn

Suppose M is a projective n–manifold defined by a developing map dev
M

: M̃ → Sn with

holonomy ρ : π1M → SL±(n+ 1,R) and with universal cover π
M

: M̃ →M . Then pullback gives a

bundle πξ : ξM̃ → M̃ where

ξM̃ = {(m̃, x) ∈ M̃ × (Rn+1 \ 0) : dev(m̃) = πξ(x)}
Recall that we defined π1M as the group of covering transformations of M̃ . There is an action of

π1M on ξM̃ given by τ · (m̃, x) = (τ(m̃), (ρ(τ))(x)). The quotient is called the tautological bundle
ξM . There is a natural bundle map ξ

M
: ξM → M given by ξ

M
[m̃, x] = π

M
(m̃). There is also a

natural radiant affine manifold structure on ξM with developing map devξ : ξM̃ → Rn+1 \ 0 given
by devξ(m̃, x) = x.
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There is a radial flow on ξM given by Φt[m,x] = [m, exp(−t) · x] so ξM is a principal (R,+)
bundle. Orbits are called flowlines. The tautological circle bundle is ξ1M = ξM/Φ1. It is sometimes
called an affine suspension. Observe that the developing maps of ξM and ξ1M are the same.

Definition 2.2. A flow function is a function c : ξM → R that is flow equivariant, which means
that c(Φt(p)) = t+ c(p) for all p, t.

A flow function determines a section σ : M → ξM of the bundle ξ
M

: ξM → M defined by
c(σ(x)) = 0. Conversely a section σ determines a flow function c via c(x) = t if Φt(x) = σ(πx). So
a flow function gives the amount of time it takes for a point to flow to the zero-section.

We will mostly be concerned with the situation where dev
M

: M̃ → Ω ⊂ RP
n is injective. In

this case devξ is a diffeomorphism onto the cone CΩ ⊂ Rn+1 \ 0. This identifies ξM with CΩ/Γ,
where Γ = hol(π1M). Moroever dev

M
identifies M̃ with a subset of Sn. Using these identifications

ξ
M

: ξM →M is covered by πξ.

3. Hessian Metrics and Convexity

The ideas in this section go back to Koszul [20, 21], and we have followed the exposition in [26].
However our notation and terminology are somewhat different.

Suppose M is a simply connected affine manifold and dev : M → Rn is some developing map.
Given a, b ∈M a segment in M from a to b is a map γ : [u, v] → M such that γ(u) = a and γ(v) = b
and dev ◦γ is affine. We often denote such a map by [a, b]. It is a unit segment if [u, v] is the unit
interval I := [0, 1]. A ray in M is a non-constant affine map γ : [0, s) → M with s ∈ (0,∞] which
does not extend to a segment. A unit triangle in M is a map τ : ∆ → M such that dev ◦τ is affine
where ∆ ⊂ R2 is the triangle with vertices 0, e1, e2. The sides of a triangle are segments.

A C2 function c :M → R is strictly convex if for every (non-degenerate) segment γ : [−1, 1] →M
the function F = c ◦ γ satisfies F ′′ > 0. Then c defines a Riemannian metric on M via ‖γ′(0)‖2 =
F ′′(0) called a Hessian metric. See [25] for a discussion.

An affine manifold M has convex boundary if for each p ∈ ∂M there is an affine coordinate chart
(U, φ) with p ∈ U and a closed halfspace H ⊂ Rn such that φ(U) ⊂ H and φ(p) ∈ ∂H .

Theorem 3.1. Suppose M is a simply-connected affine n–manifold with convex boundary and M
has a Hessian metric that makes M into a complete metric space. Then M is affinely isomorphic
to a convex subset of Rn.

Proof. It suffices to show that for every pair of segments [p, a] and [p, b] inM there is a segment [a, b]
in M . This is because every pair of points in M can be connected by a path composed of finitely
many segments, and it then follows these points are contained in a single segment. This implies the
developing map dev : M → Rn is injective and the image is convex.

Given unit segments α : I → [p, a] and β : I → [p, b] let I ⊂ I be the set of t ∈ I such there is a
unit triangle τ in M with vertices p = τ(0) and α(t) = τ(e1) and β(t) = τ(e2). Then I is connected
and contains 0. It suffices to show I = I since then γ(t) = τ(te1 +(1− t)e2) is a segment containing
a and b.

Since ∂M is convex it easily follows from the standard argument about sets with convex boundary
that I is open. To show I is closed we may assume I = [0, 1) by reparametrizing.

The Hessian metric is given by some function c :M → R. Given any segment γ define ℓ(γ) to be
its length. If γ is a unit segment and F = c ◦ γ then

ℓ(γ) =

∫ 1

0

√
F ′′(t)dt
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By the Cauchy-Schwartz inequality

ℓ(γ) ≤
(∫ 1

0

F ′′(t)dt

)1/2 (∫ 1

0

dt

)1/2

≤
√
|F ′(1)|+ |F ′(0)|

For s ∈ [0, 1) there is a unit segment γs given by γs(t) = τ(s(te1 + (1 − t)e2)) with endpoints α(s)
and β(s). By the triangle inequality

d(p, γs(t)) ≤ d(p, γs(0)) + d(γs(0), γs(t)) ≤ ℓ(α) + ℓ(γs)

The function F (s, t) = c(γs(t)) is smooth. By compactness there is K > 0 such that |∂F/∂t| ≤ K
for all s ∈ [0, 1] and t ∈ {0, 1}. It follows that for all s ∈ [0, 1) and t ∈ [0, 1] we have

d(p, γs(t)) ≤ ℓ(α) +
√
2K =: R.

Since the metric on M is complete the ball P ⊂ M with center p and radius R is compact and
contains all the segments γs. It follows that γs converges to a segment γ1 ⊂ P as s → 1 so
1 ∈ I. �

Definition 3.2. If M is a projective n–manifold a convexity function for M is a Hessian-convex
flow function c : ξM → R. It is complete if the Hessian metric given by c is complete.

The flow-equivariance of c implies the radial flow acts by isometries of the Hessian metric on ξM
given by c. The 1-form dc is preserved by the flow and therefore is the pullback of a 1-form α on
ξ1M . Koszul works with α but we work with c.

Lemma 3.3 (backwards convex implies convex). Suppose M is properly convex and N = ξM .
Suppose c : N → R is a flow function and S = c−1(0). Then at x ∈ N there is a splitting
TxN = V ⊕E which is orthogonal with respect to Q := D2

xc where V = ker dxc ⊂ TxN is the tangent
hyperplane to the hypersurface S and E = 〈e〉 where e = Φ′

0(x) is a tangent vector to the flow.
Moreover Q(e, e) = ‖e‖2 = 1 so if κ ∈ [0, 1] then Q ≥ κ‖ · ‖2 iff Q|V ≥ κ(‖ · ‖ |V )2. Here ‖ · ‖ is

the Hilbert-Finsler norm on TxN .
In particular c is Hessian-convex iff S is a Hessian-convex hypersurface that is convex in the

backwards direction of the radial flow

Proof. This is a local question so it suffices to assume ξM is a properly convex cone C ⊂ Rn+1 \ 0
and S is a hypersurface and the radial flow is Φt(x) = exp(−t) · x. Since c is a flow function
c(Φt(x)) = c(x) + t. This implies c(s · x) = c(x) − log s. From this it follows that D2

xc(e, v) = 0 for
all v ∈ V which proves the Q-orthogonallity of the direct sum.

The Hilbert-Finsler norm on (0,∞) is ds/s. The radial flow on (0,∞) is Φt(s) = exp(−t)s so
e = Φ′

0(s) = s · ∂/∂s and ‖e‖ = 1. Moreover

Q(e, e) = s2Q(∂/∂s, ∂/∂s) = s2d2(− log s)/ds2 = 1. �

Theorem 3.4. Suppose M is a projective manifold with (possibly empty) convex boundary and
c : ξM → R is a complete convexity function. Then M is properly convex.

Proof. By (3.1) dev : ξM̃ → Rn+1 \ 0 is injective and has convex image Ω ⊂ Rn+1. It suffices to

show the image is properly convex. The function f = c ◦ dev−1 : Ω → R is strictly convex and the
hypersurfaces St = f−1(t) are connected and strictly convex and foliate Ω. The radial flow on ξM
is conjugate to the radial flow Φt(x) = exp(−t) · x on Rn+1 so Φs(St) = St+s. Define S := S0.

Let q be a point in the interior of S. We can choose coordinates in Rn+1 so that S is tangent at
q = (1, 0, · · · , 0) = e1 to the hyperplane P given by x1 = 1 and S lies on the opposite side of P to 0.

The sublevel set W = f−1(−∞, 0] = ∪t≤0Φt(S) ⊂ Ω is obtained by flowing S backwards. Let H
be the hyperplane x1 = 1 + ǫ. Refer to Figure 1. We do not know that S is properly embedded in
Rn+1. However if ǫ > 0 is small enough we can work in a chart for a small neighborhood of dev−1(q)

in ξM̃ and see that K = H ∩W is a compact convex set and ∂K = H ∩ S.
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H
K

q
P

1

ǫ

Q
S

τ−1(Q)

0

Figure 1. Flowing S backwards

Let Q be the convex cone consisting of the set of rays starting at q and intersecting K. Since
q ∈ ∂W = S and W is convex it follows that Q contains the subset of W above H . Unit vertical
translation upwards τ : Rn+1 → R

n+1 is given by τ(x) = x + e1. Note that τ(Q) ⊂ Q. Since ǫ < 1
it follows that τ(S) is above H , therefore Q contains τ(S). Hence τ−1(Q) contains S. Since τ−1(Q)
is the cone from 0 of τ−1(K), it is preserved by Φ so it contains the entire orbit Φ ·S = Ω. It follows
that πξ(Ω) ⊂ RP

n is contained in πξ(τ
−1(K)). Since τ−1(K) is a compact convex set in xn = ǫ it

follows that πξ(Ω) is properly convex. �

4. The Characteristic Convexity Function

In this section V = Rn+1 and Ω ⊂ S(V ) = Sn is an open properly convex set. The open convex
cone CΩ ⊂ V consists of all t · v with v ∈ Ω and t > 0. The dual cone CΩ∗ ⊂ V ∗ is the set of all
φ ∈ V ∗ with φ(x) > 0 for all x ∈ CΩ. The dual domain is Ω∗ = P(CΩ∗) ⊂ P(V ∗). The characteristic
function χ = χ

Ω
: CΩ −→ R+ of Koecher [19] and Vinberg [30] is defined by

χ(x) =

∫

CΩ∗

e−ψ(x)dψ

where dψ is a Euclidean volume form on V ∗. This function is real analytic, non-negative, and
χ(tx) = t−(n+1)χ(x) for t > 0. More generally, if A is in the subgroup GL(CΩ) ⊂ GL(V ) that
preserves CΩ, then χ(Ax) = (detA)−1χ(x). The level sets of χ, called characteristic hypersurfaces,
are smooth, convex, and meet each ray in CΩ once transversely. The characteristic section is the
map σ

Ω
: Ω −→ CΩ given by

σ
Ω
(x) = x · (χ(x))1/(n+1)

It has image the characteristic hypersurface SΩ = χ−1(1).
The radial flow Φt(x) = e−t ·x on V preserves CΩ and c = c

Ω
= (n+1)−1 logχ is a flow function

on CΩ. The Hessian D2c is a positive definite quadratic form at each point of CΩ and gives a
complete metric on CΩ. Thus c

Ω
: CΩ → R is a complete convexity function called the characteristic

convexity function. A reference for the above is [13], page 53 (C.8) in the 1988 version and page 68
in the 2009 version.

If Γ ⊂ SL±(CΩ) is the holonomy of a properly convex manifold M = Ω/Γ, then ξM is identified
with CΩ/Γ. Since c

Ω
is preserved by Γ it covers a map c

M
: ξM → R. It is a convexity function for

M called the characteristic convexity function for M .

Definition 4.1. The subspace Devc(M) ≡ Devc(M,P+) ⊂ Dev(M,P+) consists of the developing
maps of properly convex structures for which ∂M is strictly convex.

Proof of (0.1) when M is closed. IfM is properly convex there is a characteristic convexity function
cM : ξM → R. If the holonomy of M is changed slightly then, by (1.2), there is a radiant affine
manifold N1 and a diffeomorphism f : ξ1M → N1 that is everywhere close to an affine map. Taking
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infinite cyclic covers gives a map F : ξM → N that is everywhere close to affine. The compact
Hessian-convex hypersurface S = c−1(0) ⊂ ξM maps to a hypersurface in N that is convex if F is
close enough in C2(ξM,N) to affine. It is also transverse to the radial flow ΦN on N for the same
reason. This section of the radial flow defines a convexity function on N by (3.3). This convexity
function is complete because N1 is compact and every Riemannian metric on a compact manifold
is complete. It follows from (3.4) that N/ΦN is properly convex. �

Let C be the set of closed subsets of Sn equipped with the Hausdorff topology. Let C be the set
of properly convex n–manifolds in Sn with (possibly empty) strictly convex boundary. There is an
injective map ι : C → C ×C defined by f(Ω) = (Ω,Ω \Ω). The Hausdorff boundary topology on C is
the subspace topology given by this embedding. Thus a neighborhood of Ω consists of domains Ω′

which are close to Ω and ∂Ω′ is close to ∂Ω. This topology is given by a metric.

Definition 4.2. The strong geometric topology on Devc(M) is the refinement of the geometric
topology obtained by requiring the map Devc(M) → C given by dev 7→ Im(dev) is continuous.

IfM is closed the strong geometric topology equals the geometric topology. Two developing maps
are close in this topology if they are close in C∞ on a large compact set in the universal cover of
the interior and in addition their images are close in the above sense. This can be expressed more
simply using basepoints in the space of developing maps as in (1.3):

Suppose M has no boundary and devρ ∈ Devc(M) and ρ = Hol(devρ) and Γ = ρ(π1M) ⊂
SL±(n+1,R) and Ωρ = Im(devρ) ⊂ Sn. Choosing devρ as a basepoint means: replace M by Ωρ/Γ.

Thus devρ = i : M̃ →֒ S
n is now the inclusion. Then devσ ∈ Devc(M) is close to devρ in the strong

geometric topology means: devσ is close to i in C∞
w (M̃, Sn) and Ωσ = Im(devσ) is close to Ωρ in C.

There is a radiant affine manifold ξMρ and we have the same notions for Dev(ξMρ,L). The
radiant affine manifold N = CΩρ/Γ is (G,X) equivalent to ξMρ. The developing map for N,

devξρ ∈ Dev(N,L), is the inclusion devξρ : CΩ →֒ Rn+1. A nearby developing map devξσ ∈ Dev(N,L)
in the strong geometric topology means: devξσ is close to the inclusion in C∞

w (CΩρ,Rn+1) and in
addition CΩσ is close to CΩρ in the Hausdorff boundary topology on subsets of Sn+1.

Let C′ ⊂ C be the subspace of open properly convex sets. For K ⊂ V define Ω(K) ⊂ C′ to be
those properly convex domains Ω that contain K. The map C′ → C′ given by Ω 7→ Ω∗ is continuous.

Lemma 4.3. If K ⊂ Rn+1 is compact, then the function χ : Ω(K) → C∞(K) defined by χ(Ω) =
χ

Ω
|K is continuous.

Proof. Since both topologies are metrizable it suffices to show that the image of a convergent se-
quence converges. Suppose the sequence Ωk ∈ Ω(K) converges to Ω∞ ∈ Ω(K), and denote the
respective characteristic functions by χk and χ∞. Define the smooth function h : V × V ∗ −→ R

by h(x, φ) = exp(−φx). Then for x ∈ K, if ∂α is an n’th order mixed partial derivative on V ,
then ∂αh(x, φ) = p(φ)h(x, φ) where p(φ) is a monomial of degree n in the coordinates of φ. Let
U = Ω∗

∞ ∆ Ω∗
k be the symmetric difference then

|∂αχ∞(x) − ∂αχk(x)| ≤
∫

CU

|p(φ)h(x, φ)|dφ.

Since K ⊂ C(Ωk∩Ω∞) it follows that φ(x) > 0 for all x ∈ K and φ ∈ CU . Now p(φ) is polynomial in
φ, and h(x, φ) is exponential in φ, so p(φ)h(x, φ) → 0 exponentially fast as φ→ ∞ in CU . It follows
that if U is small enough, then |∂αχ∞ − ∂αχk| < ǫ on K. See (I.3.1) of [12] for more details. �

The restriction of the Hessian metric D2c to Sχ is Riemannian metric that is preserved by
SL±(CΩ). If M = Ω/Γ is a properly convex manifold, then radial projection gives a natural identi-
fication M ≡ S and this puts a Riemannian metric on M called the induced metric. The following
seems to be folklore:
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Corollary 4.4 (bounded curvature). For each dimension n > 0 there is kn > 0 such that if M is
a properly convex projective manifold of dimension n, then all sectional curvatures κ of the induced
metric on M satisfy |κ| < kn. Moreover the induced metric is kn-bi-Lipschitz equivalent to the
Hilbert metric, and is therefore complete.

Proof. If the result is false there is a sequence Mk = Ωk/Γk and a point xk ∈ Mk and a sectional
curvature κ > k at xk. By Benzécri compactness (9.2) we may assume these domains are in Benzecri
position (9.1) with xk = 0 and Ωk → Ω∞. The sectional curvature is given by formula involving
various partial derivatives of c. By (4.3) these formulae converge to some (finite) sectional curvature
for M∞, a contradiction. This also proves the bi-Lipschitz result. �

We wish to give universal bounds on the derivatives of certain real-valued functions defined on
radiant affine manifolds of the form N = CΩ/Γ. If M is a smooth manifold and f ∈ C∞(M) is a
smooth function, then the k-th derivative Dkfx at x ∈M is a symmetric k-linear map on the vector
space V = TxM . Given a norm on V we get an operator norm ‖Dkfx‖ defined as the infimum of K
for which |Dkfx(v1, · · · , vk)| ≤ K‖v1‖ · · · ‖vk‖. In our case M = CΩ is properly convex, and hence
a Finsler manifold using the Hilbert metric on CΩ, and this gives a norm ‖ · ‖CΩ called the Hilbert-
Finsler norm on the tangent space to CΩ and corresponding operator norm. The group GL(CΩ)
acts by isometries for this norm and so pushes down to a norm on the tangent space N = CΩ/Γ.

Given a point x ∈ CΩ there is a Benzécri chart τ for CΩ (see 9.1) centered on x. This chart
determines a Euclidean metric dE on CΩ, and there is also the Hilbert metric dH = dCΩ. There is
a constant K > 0 depending only on dimension such that in the ball of dH -radius 1 around x we
have K−1 · dE ≤ dH ≤ K · dE .

It follows that universal bounds on operator norms using the Hilbert metric give bounds in the
Euclidean metric for Benzécri coordinates, and vice-versa. Thus we may regard these universal
bounds as bounds on ordinary partial derivatives of functions defined in a small neighborhood of
the origin in Rn by means of Benzécri coordinates. We now use Benzécri’s compactness theorem
(9.2) to provide uniform bounds on various properties of characteristic functions.

Suppose B is a properly convex submanifold of a properly convex manifold M , both without
boundary so that ξB ⊂ ξM . The next result says that far inside B (as measured in M) the
characteristic convexity functions for B and M are almost equal.

Lemma 4.5 (convexity functions on submanifolds). Given ǫ > 0 and a dimension n, there is
R = R(ǫ, n) > 0 with the following property. Suppose B ⊂M are properly convex n–manifolds with
characteristic convexity functions cB and cM . Let U ⊂ B be the subset of all x with dM (x,M\B) > R
and define g = cM − cB : ξU → R. Then ‖Dkg‖ < ǫ for 0 ≤ k ≤ 2.

Proof. Let ΩU ⊂ ΩB ⊂ ΩM ⊂ Sn be images of the developing maps of U ⊂ B ⊂ M respectively.
Since h is constant along rays from the origin in CΩU it suffices to show the bounds hold for
x ∈ ΩU := Sn ∩ CΩU . Choose a Benzécri chart for ΩM centered on x. In this chart the Euclidean
distance between ∂ΩM and ∂ΩB is bounded above by a function f(R) independent of ΩM and ΩB
and f(R) → 0 as R → ∞. The result now follows from (4.3). �

It also follows from (4.3) that nearby properly convex manifolds have nearby characteristic con-
vexity functions; we state this as:

Lemma 4.6. The map Devc(ξMρ) → C∞
w (ξMρ) given by devσ 7→ c

Ω
◦ devσ is continuous, where

Ω ⊂ RP
n+1 is the image of devσ . Here, the strong geometric topology is used on Devc(ξMρ).

Lemma 4.7 (uniform Hessian-convexity). For each dimension n there is 0 ≤ κ = κ(n) ≤ 1 with
the following property. Suppose Ω ⊂ RPn is open and properly convex and c : CΩ −→ R is the
characteristic convexity function. Then D2 c ≥ κ‖ · ‖2CΩ everywhere.
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Proof. Since c is preserved by each element of GL(CΩ) up to adding a constant, it suffices to show
there is κ such that the result holds at the center of every Benzécri domain Ω = Sn ∩CΩ. Since the
set of all such domains is compact, and by (4.3) the characteristic function varies smoothly with the
Benzécri domain, the result follows. �

If f : (−ǫ, ǫ) → CΩ is an arc parameterized by arc length then (c ◦ f)′′ is a second directional
derivative. The conclusion can be rephrased as (c ◦ f)′′ ≥ κ for every second directional derivative.
We will abuse notation and write this as c′′ ≥ κ.

5. Deforming Properly Convex Manifolds rel ends

In this section we prove a version of (1.7) for convex manifolds. We show that the only obstruction
to deforming a properly convex manifold is whether the ends have such a deformation. Suppose
Mρ is a properly convex manifold with holonomy ρ. The main result of this section (5.7) is that
for representations σ sufficiently close to ρ, if the ends of Mρ can be deformed to properly convex
manifolds with holonomy the restriction of σ, then these deformations can be extended to all of Mρ

to give a properly convex structure Mσ.

Definition 5.1. A Finsler manifold M = Ω/Γ has controlled ends if there is a smooth proper
function, called an exhaustion function, f :M → [0,∞) and K > 0 such that ‖Df‖, ‖D2f‖ < K in
the Finsler norm.

For example every finite volume complete hyperbolic manifold has controlled ends. If C ∼=
∂C× [0,∞) is a horocusp in a hyperbolic manifoldM then the horofunction f(x) = dM (x, ∂C) is an
exhaustion function. A similar construction works on a generalized cusp (6.26). There are complete
Riemannian manifolds with no exhaustion function. However:

Proposition 5.2. Every properly convex manifold has controlled ends.

Proof. By (4.4) every properly convex manifold admits a complete Riemannian metric that is bi-
Lipschitz equivalent to the Hilbert metric and which has bounded sectional curvature. It is a result of
Schoen and Yau [24] (see also [28] and Proposition 26.49 in [7]) that a complete Riemannian manifold
of bounded sectional curvature has a proper function with bounded gradient and Hessian. �

Definition 5.3. A localization function on a Finsler manifoldM is a smooth function λ :M → [0, 1]
with compact support and ‖Dλ‖, ‖D2λ‖ ≤ 1.

Corollary 5.4. If M is a properly convex manifold and K ⊂ M is compact, then there is a
localization function λ on M with λ(K) = 1.

Suppose M = A ∪ B is a connected n–manifold and A is a compact submanifold with ∂A =
∂M ⊔ ∂B and B has k components Bi with 1 ≤ i ≤ k such that Bi = ∂Bi × [0,∞). By (1.6) there
is an relative holonomy map

EP : Dev(M,P) → RelHol(M,B,P)
The subspaceDevc(M,P) ⊂ Dev(M,P) consists of the developing maps of properly convex structures
for which ∂M is strictly convex. The subspace RelHole(M,B,P) ⊂ RelHol(M,B,P) consists of the
data for which each Bi is properly convex with strictly convex boundary. Then Deve(M,P) =
E−1
P

RelHol(M,B,P) consists of developing maps for which these ends are properly convex with
strictly convex boundary. Finally Devce(M,P) = Devc(M,P) ∩ Deve(M,P) is the subspace of
developing maps for properly convex structures on M with ∂M strictly convex and for which these
ends are properly convex and have strictly convex boundary.

Theorem 5.5. E
P
: Devce(M,P) → RelHole(M,B,P) is open using the geometric topology on the

domain and the strong geometric topology on the codomain.
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Proof. First assume M has no boundary. By (1.7) E
P
: Dev(M,P) → RelHol(M,B,P) is open

using the geometric topologies in domain and codomain. Hence the restriction E
P
: Deve(M,P) →

RelHole(M,P) is also open with these topologies. Thus it is open using the strong geometric
topology (which is finer than the geometric topology) on the codomain and the geometric topology
on the domain. The end geometric topology onDeve(M,P) is the smallest refinement of the geometric
topology such that E

P
is continuous. Then E

P
is open and continuous with the end geometric topology

on the domain and the strong geometric topology on the codomain.
As usual we will assume that B = B is connected. It suffices to show that Devce(M,P) is open in

Deve(M,P) with respect to the end geometric topology. A neighborhood U ⊂ Deve(M,P) of devρ in

this topology consists of all developing maps devσ that are nearby in C∞
w (M̃,RPn) and in addition

have the property that devσ(B̃) is close in C to devρ(B̃).
Suppose devρ ∈ Devce(M,P) has holonomy ρ and devσ ∈ U has holonomy σ. The corresponding

projective structures (charts) onM are denoted byMρ andMσ. We must show devσ ∈ Devc(M,P).
To do this we construct a complete convexity function on the tautological bundle ξMσ. It then
follows that Mσ is properly convex by (3.4).

We will use Mρ as a basepoint for Devc(M) as in (1.3), see also (4.2). Thus we replace M by

Mρ and will usually omit the subscript ρ. Then M̃ = Ωρ ⊂ Sn and devσ : Ωρ → Sn. Similarly we
use ξM := CΩρ/Γ as a basepoint for Dev(ξMρ,L) and write this as Dev(ξM,L).

We use the Hilbert-Finsler metric on ξM to calculate operator norms. Recall ξ1M = ξM/Φ1 is the
affine suspension and has an infinite cyclic cover ξM . Let κ = κ(dim(M)) > 0 be the lower bound
on the Hessian of characteristic functions given by (4.7) and ǫ = κ/10. Let R = R(ǫ, dim(ξM)) be
the constant given by (4.5) and K ⊂ M a compact connected submanifold such that ξ1K contains
the R-neighborhood of ξ1A in ξ1M . Then M \ K ⊂ B and for x ∈ ξ(M \ K) the characterisic
functions cρ,B and cρ,M are ǫ–close in C2(ξB).

By (5.4) there is a localization function λ : ξ1M → [0, 1] with λ(ξ1K) = 1 that has support inside
a compact connected submanifold ξ1L. Define J = cl(L \K). Then every point in ξ1J is distance

at least R from ∂(ξ1B). All these submanifolds depend on the choice of ǫ. Let λ̃ : ξM → [0, 1]

be the function that covers λ. We will recklessly abuse notation by writing λ̃ as λ. Observe that
λ−1(0, 1) ⊂ ξJ .

Claim 1. There is a convexity function c : ξM → R which equals cρ,M on ξK and equals cρ,B on
ξ(M \ L) and D2c ≥ (κ/2)‖ · ‖2.

Proof of Claim 1. First blend cρ,M and cρ,B inside ξJ using λ to get f : ξM → R given by

f = λ · cρ,M + (1− λ) · cρ,B = cρ,M + (1− λ) · g
where g = cρ,B − cρ,M . The map f is well defined even though cρ,B is only defined on ξB because
(1 − λ) = 0 outside ξB.

Subclaim: D2f ≥ (κ/2)‖ · ‖2. Outside ξJ this follows from (4.7) since f is cρ,M on ξK and cρ,B
on ξ(M \ L). On ξJ we show this using directional derivatives. By the product rule

f ′′ = c′′ρ,M + g′′ − (λ′′g + 2λ′g′ + λg′′).

Since Mρ is properly convex c′′ρ,M ≥ κ by (4.7). Also |λ|, |λ′|, |λ′′| ≤ 1 because λ is a localization

function and |g|, |g′|, |g′′| < ǫ = κ/10 on ξJ by definition of R and K so

| g′′ − (λ′′g + 2λ′g′ + λg′′) | ≤ 5ǫ = κ/2.

Thus f ′′ ≥ κ/2 which proves the subclaim. The level set S = f−1(0) is Hessian-convex in the
backwards direction of the flow and is the 0-set of a unique flow function c which coincides with
cρ,B outside ξL. It follows from (3.3) that c′′ ≥ κ/2 also. This proves claim 1. �
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To avoid a proliferation of notation, and because what we are about to do is similar to what we
just did, we reuse notation as follows. We define the new K to be the old L and the new λ is a
localization function on ξ1M with λ(ξ1K) = 1 and the new L ⊂M is a compact connected manifold
so that ξ1L contains the support of λ. Then redefine J = cl(L \ K). Let E := cl(M \ K) ⊂ B.
Again we write the lift as λ : ξM → R. There are characteristic convexity functions cρ,B : ξBρ → R

and cσ,B : ξBσ → R.
Since ξ1Lρ is compact, if U is small there is a diffeomorphismH : ξ1Mρ → ξ1Mσ such that H |ξ1Lρ

is very close in C∞ to the identity in the following sense. The map H is covered by H̃ : ξM̃ρ → ξM̃σ,

and the restriction of H̃ is very close to the inclusion ξL̃ρ →֒ Rn+1 in C∞
w (ξL̃ρ,R

n+1). The map H
also covers h : ξMρ → ξMσ.

Set g = (cσ,B) ◦h− cρ,B : ξEρ → R then by (4.6) ‖Dkg‖ < ǫ for k ∈ {0, 1, 2} everywhere on ξ1Jρ.
Define f : ξMρ → R by

f = λ · c+ (1− λ) · (cσ,B) ◦ h.
As before this is well defined.

Claim 2. f ′′ ≥ κ/2 on ξLρ.

Proof of Claim 2. When λ = 1 then f ′′ = c′′ ≥ κ/2 by claim 1. The set where λ < 1 is contained
in ξJρ. On ξJρ and c = cρ,B so

f = λ · cρ,B + (1− λ) · (cσ,B) ◦ h = cρ,B + (1− λ) · g
and

f ′′ = c′′ρ,B + g′′ − (λ′′ · g + 2λ′g′ + g′′).

Then c′′ρ,B ≥ κ/2 by (4.7). As before |λ|, |λ′|, |λ′′| ≤ 1 and by the above |g|, |g′|, |g′′| < ǫ. Since

ǫ < κ/10 this proves claim 2. �

Since H is very close to the inclusion in C∞
w (ξL̃ρ,R

n+1) it follows that f ◦ h−1 is Hessian-convex
on ξLσ. Outside this set f ◦ h−1 = cσ,B which is Hessian-convex. This proves f : ξMσ → R is
Hessian-convex everywhere.

Again it follows from (3.3) that there is a Hessian-convex flow function cσ : ξMσ → R defined
by f ◦ h−1. The corresponding Hessian metric on ξ1Mσ is complete because ξ1Lσ is compact so
the metric is complete on ξ1Lσ, and outside ξ1Lσ it is the complete metric given by the properly
convex end ξ1Bσ. It follows that the Hessian metric on ξMσ is also complete. This completes the
proof when M has no boundary.

Now suppose M has (compact) boundary and set P = int(M). Then P is properly convex with
a characteristic convexity function c : ξPρ → R. By (8.3) there is a submanifold N ⊂ M with
Hessian-convex compact boundary such that cl(M \ N) is a collar of ∂M . The restriction of c to
ξN is a complete convexity function. There is a diffeomorphism F : ξM → ξN close to the identity
in C2 that is the identity outside a small collar of ∂M . Then cρ,M := (c|ξN ) ◦ F : ξM → R is
a complete convexity function. The pullback of the restriction to ξN of the Hilbert metric on ξP
is a complete metric on ξM . The proof now proceeds as above to construct a complete convexity
function on ξMσ. �

To apply (5.5) involves finding deformations of the cusps that are nearby in the strong geometric
topology. This involves finding a diffeomorphism from the original cusp to the deformed cusp that
is close to projective. To make this task easier we show such a map exists for a small deformation
of the holonomy if the deformed domain is close to the original domain.

The projective Kleinian group space for a smooth manifold M is

K(M) = {(Ω, ρ) ∈ C × Rep(M) : M diffeomorphic to Ω/ρ(π1M)}
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with topology given by the subspace topology of the product topology on C×Rep(M). This topology
is given by a metric. There is a natural map

K : Devc(M,P) → K(M)

given by K(dev) = (dev(M̃), hol(dev)). With the strong geometric topology on the domain it is
obvious that this map is continuous.

Proposition 5.6. Suppose M ∼= ∂M × [0,∞) is a connected smooth manifold and ∂M is compact.
Then K is an open map.

Proof. Suppose devρ ∈ Devc(M,P) and K(devρ) = (Ωρ, ρ) and that (Ωσ, σ) ∈ K(M) is very close.
Then Q = Ωσ/σ(π1M) is a properly convex manifold. We identify M ≡ Ωρ/ρ(π1M). It suffices to
show there is a diffeomorphism M → Q which is almost a projective map between large compact
sets in the interiors.

Using (8.3) there is a diffeomorphismM ∼= ∂M × [0,∞) so that ∂M × t is devρ,M -Hessian-convex
for all t ≤ 1. For k > 1 define N = ∂M × [1/k, k] and W = ∂M × [0, k+1] and B = ∂M × 1/k. By
(1.2) there is a devσ,W ∈ Dev(W,P) with holonomy σ that is very close to devρ,M|W over a compact

set in W̃ that covers N .
By (1.5) we may change devσ,W by a small isotopy so that there is a projective embedding

f : N → Q. If σ is close enough to ρ then, since B is Hessian-convex for devρ,M it follows that B is
also Hessian-convex for devσ,W . Hence f(B) is Hessian-convex in Q.

Let P be the closure of the component of Q \ f(N) that contains ∂Q. Since ∂M is compact, for
homology reasons f(B) separates ∂Q from the end of Q, thus P is compact and ∂P = ∂Q ⊔ f(B).
We claim P is diffeomorphic to B × I.

Suppose N is a smooth manifold that is homeomorphic to ∂N × I. By [31] smooth manifolds
are PL. The M × I theorem [18] says that if M is a PL manifold, then every smoothing of M × I
is diffeomorphic to a product. Thus N is diffeomorphic to ∂N × I. Hence it suffices to show P is
homeomorphic to B× I. Since B is devσ,N -Hessian-convex there is a nearest point retraction (using
the Hilbert metric on Q) r : P → B with fibers that are lines and this gives a homeomorphism
P → B × I which proves the claim.

It follows that P is a collar of ∂Q so R = P ∪ f(N) ∼= B × [0, k] is also a collar of ∂Q. Thus
Q′ = cl(Q \ R) is diffeomorphic to B × [k,∞). Clearly P lies in a small neighborhood of ∂Q. We
can now extend f to a diffeomorphism f :M → Q by sending ∂M × [0, 1/k] to P and ∂M × [k,∞)

to Q′. This is close to a projective map on N . Define devσ,M : M̃ → RP
n by devσ,M = devσ,Q ◦f̃ .

Since f is close to projective over N it follows that devσ,M is close to devρ,M . �

Suppose M = A ∪ B is a smooth manifold with (possibly empty) boundary and A is a compact
submanifold of M with ∂A = ∂M ⊔ ∂B and B = B1 ⊔ · · ·Bk has k <∞ connected components, and
Bi ∼= ∂Bi × [0,∞). Define the Kleinian relative-holonomy space

RelHol(M,B,K) ⊂ Rep(π1M)×
k∏

i=1

K(Bi)

to be the subset of all (ρ, (Ω1, ρ1), · · · , (Ωk, ρk)) such that ρi = ρ|π1Bi. This space has the subspace
topology of the product topology.

For each Bi ⊂M we fix a choice of some component B̃i ⊂ M̃ of the preimage Bi in the universal

cover of M . Then Ωi = dev(B̃i) and Γi = hol(π1Bi) gives a point in K(Bi). This defines the
Kleinian relative holonomy map

EK : Devce(M,P) −→ RelHol(M,B,K)

Theorem 5.7 (Convex Extension Theorem). EK : Devce(M,P) → RelHol(M,B,K) is open using
the geometric topology on the domain.
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Proof. This follows immediately from (5.5) and (5.6). �

Decoding what this says proves:

Proof of (0.2). There is a continuous map γ : (−1, 1) → RelHol(M,B,K) defined by

γ(t) = (ρt, (Ω1(t), ρt|π1B1
), · · · , (Ωk(t), ρt|π1Bk

)

Since EK is open and γ(0) ∈ Im(EK) it follows that for some ǫ > 0 that g(−ǫ, ǫ) ⊂ Im(EK). So
for |t| < ǫ there is devt ∈ Devce(M,P) with EK(devt) = γ(t). Define Mt to be the projective
structure on M defined by devt. Then Mt is properly convex with strictly convex boundary because
devt ∈ Devce(M). Moreove restricting this structure to Bi gives Pi(t) by definition of EK. �

6. Generalized Cusps

A generalized cusp is a certain kind of properly convex projective manifold. The main result
of this section is that holonomies of generalized cusps with fixed topology form an open subset in
a certain semi-algebraic set (6.25). This follows from the fact that a generalized cusp contains a
homogeneous cusp (6.5). We then prove the main theorem (6.27). To keep this paper from becoming
too long we only consider maximal cusps, i.e. those with boundary a closed manifold.

A cusp in a hyperbolic manifold viewed as a projective manifold is characterized by being projec-
tively equivalent to an affine manifold that has a foliation by strictly convex hypersurfaces that are
images of horospheres, together with a transverse foliation by parallel lines. This characterization
does not work in general. Consider the affine manifold M = U/Γ ∼= T 2 × [0,∞), where

U = {(x1, x2, x3) : x3 ≥ x21 + x22 > 0 }
and Γ is the cyclic group generated by (x1, x2, x3) 7→ (2x1, 2x2, 4x3). It has a foliation by tori that
are the images of the strictly convex hypersurfaces z = K(x2+y2) for K ≥ 1, and it has a transverse
foliation by vertical lines. However M is not convex.

Definition 6.1. A generalized cusp is a properly convex manifold C = Ω/Γ homeomorphic to
∂C × [0,∞) with ∂C a closed manifold and π1C virtually nilpotent such that ∂Ω contains no line
segment, i.e. ∂C is strictly convex. The group Γ is called a generalized cusp group.

A quasi-cusp is a properly convex manifold homeomorphic to Q × R with Q compact and π1Q
virtually nilpotent.

If Γ contains no hyperbolics, then C is called a cusp and Γ is conjugate to a subgroup of PO(n, 1)
by Theorem (0.5) in [10]. An example of a quasi-cusp is ∆/Γ for any discrete subgroup Γ ∼= Z

n−1 of
the diagonal group in SL(n+1,R), where ∆ ⊂ RP

n is the interior of an n-simplex that is preserved
by Γ.

Definition 6.2. A generalized cusp Ω/Γ is homogeneous if PGL(Ω) acts transitively on ∂Ω. The
group PGL(Ω) is called a (generalized) cusp Lie group.

For example a cusp in a hyperbolic manifold is homogeneous if and only if it is the quotient of a
horoball Ω ⊂ Hn. In this case PGL(Ω) is conjugate to the subgroup of PO(n, 1) ∼= Isom(Hn) that
fixes one point at infinity. Cusp Lie groups for 3–manifolds are listed in section 7.

Every finite volume cusp in a complete hyperbolic manifold contains a homogeneous cusp. There
is an equivalence relation on generalized cusps generated by the property that one cusp can be
projectively embedded in another. Equivalent cusps have conjugate holonomy. One can always
shrink a cusp by removing a collar from the boundary. However sometimes one can remove a
submanifold at the other end. For example there might by a totally geodesic codimension–1 compact
submanifold in the interior of the cusp, which one could cut along. It simplifies matters to do this
ahead of time:
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Definition 6.3. A generalized (maximal) cusp C is minimal if, for every cusp C′ ⊂ C, ∂C′ = ∂C
implies C = C′.

Lemma 6.4. Every generalized cusp contains a unique minimal cusp. A finite cover of a minimal
cusp is minimal.

Proof. Suppose C = Ω/Γ is a generalized cusp. Let Ω′ be the convex hull of ∂Ω. Then Ω′ ⊂ Ω is
properly convex and Γ-invariant and ∂Ω′ = ∂Ω. The cusp C′ = Ω′/Γ is the unique minimal cusp
contained in C. If M is a finite cover of C′ then M ′ = CH(∂M) so M is also minimal. �

The subgroup UT(n) < GL(n,R) consists of upper-triangular matrices with positive diagonal
entries. To find a homogeneous cusp in a generalized cusp involves removing a collar so the boundary
is the right shape to be homogeneous.

Theorem 6.5. Every generalized cusp contains a homogeneous generalized cusp.

Proof. Suppose C = Ω/Γ is a generalized cusp. We may assume C is minimal by (6.4). Since Γ is
virtually nilpotent by (6.10) there is a finite index subgroup Γ′ < Γ that is conjugate into UT(n+1)

where n = dimC. We will assume this conjugacy has been done. Then C̃ = Ω/Γ′ is a generalized
cusp that is a finite cover of C and is minimal by (6.4). At this point, results proved later in this
section will be evoked. It follows from (6.13) that Γ′ is a lattice in a connected upper-triangular Lie

group T = T (Γ). By (6.20) it follows that C̃ is a radial flow cusp for a radial flow Φ with stationary
hyperplane H . Let Rn = RP

n \H. By (6.21) Ω ⊂ Rn is a closed strictly convex set bounded by the
strictly convex hypersurface ∂Ω. By (6.22) there is a properly convex ΩT ⊂ Ω that is T -invariant
and thus Γ′-invariant. By (6.23) ΩT is preserved by all of Γ hence ΩT /Γ is a homogeneous cusp in
C and Γ < PGL(ΩT ). �

In view of the fact that the holonomy of a projective structure lifts (2.1) to GL(n+ 1,R) we will
do this in what follows.

A connected nilpotent subgroup Γ of GL(n,C) preserves a complete flag. However if Γ is not
connected this need not be true. For example the quaternionic group of order 8 in GL(2,C) does
not preserve a flag. First we show (6.9) that there is a finite index subgroup of Γ that preserves
a complete flag. The index of a subgroup H < G is written |G : H |. A subgroup H ≤ G is
characteristic if every automorphism of G preserves H .

Lemma 6.6. ∃ h(n, k) such that if the group G is generated by k elements, then there is a char-
acteristic subgroup C ≤ G with |G : C| ≤ h(n, k) such that |G : H | ≤ n implies C ≤ H for all
subgroups H ≤ G.

Proof. We show h(n, k) = (n!)(n!
k). Let S be the group of permutations of n elements so |S| = n!.

If θ : G −→ S is a homomorphism, then |G : ker θ| ≤ |S|. The number of such homomorphisms is
at most p = |S|k. Then C = ∩ ker θ (where the intersection is over all such homomorphisms) is a
characteristic subgroup of G and |G : C| ≤ |S|p. Suppose H ≤ G and m = |G : H | ≤ n. Then G
permutes the m left cosets of H . This gives a homomorphism θ : G→ S and C ≤ ker θ ≤ H . �

‘ Suppose V is a vector space over C. A weight of a subgroup Γ ⊂ GL(V ) is a homomorphism
(character) λ : Γ → C∗ such that the weight space E(λ) and generalized weight space V (λ) are both
non-trivial. Here,

E(λ) =
⋂

γ∈Γ

(ker(γ − λ(γ)) and V (λ) =
⋃

n>0

⋂
γ∈Γ

(ker(γ − λ(γ))n.

A (generalized) weight space is Γ invariant. A one-dimensional weight space is the same thing as a
one-dimensional Γ–invariant subspace. The vector space V has a generalized weight decomposition
if V = ⊕V (λ), where the sum is over all weights.
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The group Γ is polycyclic of (Hirsch) length (at most) k if there is a subbormal series Γ = Γk ⊲

Γk−1 · · · ⊲ Γ1 ⊲ Γ0 = 1 with Γi+1/Γi cyclic. A subgroup of a polycyclic group of length k is
polycyclic of length k. Every finitely generated nilpotent group is polycyclic. The following implies
the Lie-Kolchin theorem.

Lemma 6.7. ∃ c = c(n, k) such that if Γ < GL(Cn) is polycyclic of length at most k, then there
is a characteristic subgroup C ≤ Γ with |Γ : C| ≤ c and C preserves a one-dimensional subspace of
Cn.

Proof. We use induction on n and k. For n = 1 the result is obvious. For k = 1 the result follows
from Jordan normal form with c = 1. Assume the result true for k. Suppose Γ is polycyclic of
length k+1. Then Γ contains a normal polycyclic group Γk of length k with Γ/Γk cyclic. There is a
characteristic subgroup Ck ≤ Γk of index at most c(n, k) that preserves a one-dimensional subspace
W .

There is some weight λ : Ck −→ C∗ with W contained in the weight space E = E(λ). There
are at most n such weights. If θ is an automorphism of Ck then λ ◦ θ is a weight for Ck. Since Ck
is a characteristic subgroup of Γk, and Γk is normal in Γ, it follows that Ck is perserved by inner
automorphisms of Γ. Thus an inner automorphism of Γ permutes these weights, so an element γ ∈ Γ
induces a permutation with order m ≤ n of the weights. Choose γ ∈ Γ which generates Γ/Γk. Then
γm induces the identity permutation. Hence the subgroup Γ′ = 〈Ck, γm〉 preserves E. Applying
Jordan normal form to γm|E gives a one-dimensional subspace of E that is preserved by γm. This
subspace is also preserved by Ck. Then |Γ : Γ′| ≤ m|Γk : Ck| ≤ n · c(n, k) since m ≤ n. By (6.6)
there is a characteristic subgroup C ≤ Γk ≤ Γ with |Γ : C| ≤ c(n, k + 1) = h(n · c(n, k), k + 1). �

Proposition 6.8. ∃ d(n, k) such that for all polycyclic groups G of length at most k there is C ≤ G
with |G : C| ≤ d(n, k) such that if ρ : G −→ GL(n,C), then ρ(C) preserves a complete flag in C

n.

Proof. Below we show by induction on n that for a fixed ρ there is a subgroup of index at most
e(n, k) =

∏n
i=1 c(i, k) that preserves a complete flag. The result follows from (6.6) with d(n, k) =

h(e(n, k), k).
For n = 1 the result is clear. By (6.7) there is a subgroup Γ′ < Γ = ρ(G) of index at most

c(n, k) that preserves a one-dimensional subspace E ⊂ V = Fn. Then Γ′ acts on V/E ∼= Fn−1. By
induction there is Γ′′ < Γ′ with |Γ′ : Γ′′| ≤ e(n − 1, k) that preserves a complete flag F in V/E.
The preimage of F in V , together with E, forms a complete flag for V which is preserved by γ′′.
Moreover |Γ : Γ′′| = |Γ : Γ′| · |Γ′ : Γ′′| ≤ c(n, k)e(n− 1, k) = e(n, k). �

A group Γ ⊂ GL(n,R) is conjugate into UT(n) if and only if Γ preserves a complete flag and
every weight of Γ is positive.

Corollary 6.9. Suppose G is finitely generated and virtually nilpotent. Let m > 0. Then there is a
finite index subgroup H = core(G,m) < G called the m–core of G such that for every homomorphism
ρ : G→ GL(m,F):

(1) If F = C, then ρ(H) preserve a complete flag in Cm.
(2) If F = R and every weight of ρ(H) is real, then ρ(H) is conjugate into UT (m).

Moreover the set ρ ∈ Hom(G,GL(m,R)) for which ρ(G) has a finite index subgroup that preserves
a complete flag in Rm is a semi-algebraic set VFG(G,GL(m,R)).

Proof. (1) follows from (6.8). (2) follows from (1) as follows. Set U = Rm and V = U ⊗ C so
G ⊂ GL(U) ⊂ GL(V ). By (1) V = ⊕V (λ) where V (λ) = ∩h∈H ker(ρ(h) − λ(h))m. Observe
that V (λ) ⊂ Cm is given by linear equations that are defined over R because λ(H) ⊂ R and
ρ(H) ⊂ GL(m,R). Thus V (λ) is the complexification of U(λ) = ∩h∈H ker(ρ(h) − λ(h))m ⊂ R

m so
U = ⊕U(λ). Hence ρ(H) preserves a complete flag in Rm. By replacing H by a subgroup of index
2m we may ensure that all real weights are positive. Then ρ(H) is conjugate into UT(m). The last
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assertion follows from (2) and the observation that every weight real is defined by the semi-algebraic
equations that say every eigenvalue of every element of ρ(H) is real. �

Suppose U is a real vector space and Γ < GL(U) preserves a complete flag in V = U ⊗ C. Then

combining each weight λ for V with the complex-conjugate weight λ gives a real invariant subspace
U(λ, λ) = (V (λ)+V (λ))∩U ⊂ U and U =

⊕
U(λ, λ). We call U(λ) a conjugate generalized weights

space. For each γ ∈ Γ the eigenvalues of γ|U(λ,λ) are λ(γ) and λ(γ).

Proposition 6.10. Suppose Ω/Γ is a quasi-cusp of dimension n. Then core(Γ, n+ 1) is conjugate
into UT(n+ 1). In particular Γ ∈ VFG.

Proof. Write V = Rn+1 so Γ ⊂ PGL(V ). By (2.1) we may lift to get Γ ⊂ GL(V ). By (6.9)(1) we can
conjugate so that H = H(Γ, n+ 1) is contained in the upper-triangular subgroup in GL(n+ 1,C).
We replace Γ by H . Then V = A⊕B where A is the sum of the generalized weight spaces for real
weights and B = ⊕Bi is the sum of the remaining conjugate generalized weights spaces. It suffices
to show B = 0, since then by (6.9)(2) Γ is conjugate into UT(n+ 1).

Each vector x ∈ V is uniquely expressed as a linear combination a+ b1+ · · ·+ bk with a ∈ A and
bi ∈ Bi. Define n(x) to be the number of distinct i with bi 6= 0. Choose x 6= 0 with [x] ∈ Ω so that
n(x) is minimal.

Claim n(x) = 0.

Proof of the claim. If n(x) 6= 0, then some bj 6= 0. There is γ ∈ Γ which has eigenvalues λj(γ), λj(γ)
that are not real. Let 〈γ〉 be the cyclic group generated by γ. Let C ⊂ Bj be the convex hull of the
orbit 〈γ〉 · bj.

Suppose 0 /∈ C. Then K = cl(P+(C)) is a closed convex cell in P+(Bj) that is preserved by γ. By
the Brouwer fixed point theorem, γ fixes a point [v] ∈ K, so v ∈ Bj is an eigenvector of γ|Bj with a

positive eigenvalue. However every eigenvector for γ in Bj has eigenvalue λj(γ) or λj(γ) which are
both not real. This contradiction shows that 0 ∈ C.

The convex cone CΩ ⊂ V is preserved by Γ. Since 0 ∈ C there is a finite convex combination∑
tiγ

ibj = 0 with ti ≥ 0 and
∑
ti = 1. Since x ∈ CΩ and this cone is Γ-invariant it follows that

γix ∈ CΩ. Since CΩ is convex the convex combination x′ =
∑
tiγ

ix ∈ CΩ. In particular x′ 6= 0
and [x′] ∈ Ω. The component of x′ in Bj is

∑
tiγ

ibj = 0. Since the conjugate weights spaces
are Γ invariant, the property that a point has a zero component in some Bi is preserved by Γ, so
n(x′) < n(x) contradicting minimality. Hence no such bj exists this proves the claim. �

Since x 6= 0 this implies A 6= 0 and [x] ∈W := Ω ∩ P(A) is a nonempty properly convex set that
is preserved by Γ. The manifold P = Ω/Γ is homeomorphic to Q × R for some closed manifold Q.
Then M = W/Γ is a submanifold of P and π1M ∼= Γ. Each Bi has real dimension at least 2 so
dimA ≤ dimV −2 and thus dimM ≤ n−2. Passing to a double cover we may assumeQ is orientable.

Since Ω ∼= Q̃× R is follows that Q̃ is contractible so Q is a K(Γ, 1) and Hn−1(Γ) ∼= Hn−1(Q) ∼= Z.
The universal cover of M is W, which is contractible and so π1M ∼= Γ. Hence Hn−1(M) ∼= Hn−1(Γ).
However dimM ≤ n− 2 so Hn−1(M) = 0 which is a contradiction. �

A virtual syndetic hull of a discrete subgroup Γ < H of a Lie group H is a connected Lie subgroup
G < H such that |Γ : G ∩ Γ| < ∞ and (G ∩ Γ)\G is compact. When syndetic hulls exist they are
not always unique because the exponential map on gl(n) is not injective for n ≥ 2. It is useful to
have a unique version of a syndetic hull.

Let r ⊂ gl be the subset of all matrices M such that all the eigenvalues of M are real. The set
R = exp(r) consists of all matrices A such that every eigenvalue of A is positive. Then exp : r −→ R
is a diffeomorphism with inverse log. An element of R is called an e-matrix and a group G ⊂ R is
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called an e-group. For example UT(n) is an e-group. If G is a connected e-group, then exp : g −→ G
is a diffeomorphism. If S ⊂ R define 〈logS〉 to be the vector subspace of gl spanned by logS.

Definition 6.11. Given a discrete subgroup Γ ⊂ GL(n+ 1,R) a virtual e-hull for Γ is a connected
Lie group G that is an e-group and |Γ : G ∩ Γ| <∞ and (G ∩ Γ)\G is compact. There might not be
such a group.

Definition 6.12. If Γ ⊂ GL(n,R) and Γ ∈ V FG, then the translation group of Γ is T (Γ) =
exp〈log(core(Γ, n))〉.
Theorem 6.13. Suppose Ω/Γ is a quasi-cusp with translation group T = T (Γ). Then T is the
unique virtual e-hull of Γ.

Proof. By (6.10) core(Γ, n+ 1) is conjugate into UT(n+ 1) and is therefore an e-group. By (6.15)
core(Γ, n + 1) has an e-hull T that is conjugate into UT(n + 1). Thus T is a virtual e-hull of Γ.
Uniqueness of T follows from (6.16). It is clear that T is the group T (Γ) in (6.12). �

Proposition 6.14 ((9.3) of [10]). Suppose that Γ is a finitely generated, discrete nilpotent subgroup
of GL(n,R). Then Γ contains a subgroup of finite index Γ0, which has a syndetic hull G ≤ GL(n,R)
that is nilpotent, simply-connected and a subgroup of the Zariski closure of Γ0.

Lemma 6.15. If Γ ⊂ UT(n) is nilpotent, then it has an e-hull G ⊂ UT(n).

Proof. There is a finitely generated discrete subgroup Γ′ ⊂ Γ such that 〈log Γ〉 = 〈log Γ′〉. By (6.14)
there is a finite index subgroup Γ0 ⊂ Γ′ which has a syndetic hull G. Since UT(n) is an algebraic
subgroup it follows that the Zariski closure of Γ is in UT(n) so G ⊂ UT(n). Since Γ0 ⊂ G it follows
that 〈log Γ0〉 = 〈log Γ′〉 = 〈log Γ〉 ⊂ g thus Γ ⊂ G. Since G ⊂ UT(n) it is an e-group. Moroever Γ\G
is a quotient of Γ0\G and so is compact. Hence G is a syndetic hull of Γ. �

Lemma 6.16. If G0 and G1 are virtual e-hulls of Γ, then G0 = G1.

Proof. The group H = G0 ∩ G1 is connected because if h ∈ H, then the one parameter group
exp〈log h〉 is contained in both G0 and G1. If γ ∈ Γ ∩R (with R defined above), then γn ∈ Gi for
some n > 0. Thus log γn = n log γ ∈ logGi so γ ∈ Gi. Thus Γ ∩ R = Γ ∩ Gi ⊂ Gi so Γ ∩ R ⊂ H .
Also (Γ ∩ Gi)\Gi is compact and H is a closed subset of Gi, so (Γ ∩ Gi)\H is also compact. It
follows that H = Gi since otherwise (Γ ∩Gi)\Gi is not compact. �

The next thing to do is show that the orbit under T (Γ) of a point x ∈ ∂Ω is a strictly convex
hypersurface.

A projective flow Φ on RP
n is a continuous monomorphism Φ : R −→ PGL(n + 1,R). There is an

infinitesimal generator A ∈ gln+1 with Φt := Φ(t) = exp(tA). If p ∈ RP
n and Φt(p) = p for all t,

then p is a stationary point of Φ. A radial flow is a projective flow that is stationary on a hyperplane
H ∼= RPn−1 and that is parameterized so that Φt(p) → H as t→ −∞ whenever p is not stationary.
It follows that Φt = exp(tA), where A ∈ gln+1 is a rank one matrix and H is the projectivization
of kerA. The projectivization of the image of A is a point p ∈ RPn, called the center of the flow,
that is also fixed by Φ. Every orbit is contained in a line containing the center. This property
characterizes radial flows.

A radial flow is parabolic if p ∈ H and hyperbolic otherwise. Every radial flow is conjugate to
one generated by an elementary matrix Ei,j . A parabolic flow is conjugate to (I + t ·E1,n+1) and a
hyperbolic flow is conjugate to the diagonal group (exp(t), 1, · · · , 1). The backward orbit of X ⊂ RP

n

is Φ(−∞,0](X). A set X ⊂ RP
n is backwards invariant if X contains its backwards orbit, and it is

backwards vanishing if ∩t<0Φt(X) = ∅.
A displacing hyperplane for a radial flow Φ is a hyperplane P such that P and Φt(P ) are disjoint

in RP
n \H for all t 6= 0. A hyperplane P is displacing if and only if P 6= H and P does not contain

the center of Φ.
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Proposition 6.17. Suppose Ω/Γ is a quasi-cusp and Γ ⊂ UT(n+ 1). For each weight λ : Γ → R∗

with generalized weight space V = V (λ) there is a radial flow Φ = Φλ that is centralized by Γ, and
Φ acts trivially on each generalized weight space other than V .

If dimV ≥ 2, then Φ is parabolic, and if dim V = 1, then Φ is hyperbolic. The center of Φ is the
projectivization of some vector in the weightspace P(E(λ)).

If the orbit of x ∈ RP
n under T (Γ) is a strictly convex hypersurface, then the group G(Γ) :=

Γ⊕ Φ(R) generated by T (Γ) and Φ(R) is a direct sum and G(Γ) · x ⊂ RP
n is open.

Proof. We may assume Γ upper-triangular and block diagonal with one bock for each generalized
weight space. We may assume V is the first block and set m = dimV . As above, let Ei,j ∈ gl(n) be
the elementary matrix with 1 in row i and column j. Define Φ(t) = exp(tE1,m). Then Rn = V ⊕W
where W is the sum of the other generalized weight spaces and the action of Φ on W is trivial. If
m = 1 then Φ(t) = diag(exp(t), 1, · · · , 1) is a hyperbolic flow. If m ≥ 2 then Φ(t) is a parabolic
flow given by the unipotent subgroup with t in the top right corner of the block for V . The center
is P(e1) and the stationary hyperplane is H = P(〈e1, · · · , em−1〉 ⊕W ). It is easy to check that Γ
centralizes Φ.

Since T (Γ) = exp(t) and Φ(R) = exp(f) are e-groups, if they have a nontrivial intersection, then
Φ(R) ⊂ T (Γ). The orbits of Φ are lines. If S = T (Γ) · x is a strictly convex hypersurface, then
it does not contain a line so Φ(R) ∩ Γ is trivial. Since Φ(R) and T (Γ) commute they generate
G = Φ(R)⊕ T (Γ). It follows that Φ(R) · S ⊂ RP

n is open. �

Definition 6.18. A radial flow Φt is compatible with a properly convex manifold M = Ω/Γ if Φ(R)
commutes with Γ and Ω is disjoint from the stationary hyperplane of Φ and Ω is backwards invariant
and backwards vanishing.

A radial flow end is a properly convex manifold M = Ω/Γ with compact, strictly convex boundary
and for which there is a compatible radial flow. A radial flow cusp is a radial flow end that is also
a generalized cusp.

The hypersurfaces S̃t := Φ−t(∂Ω) are strictly convex and Γ-invariant and foliate Ω for t ≥ 0.
They are all disjoint from H . Their images under the projection π : Ω →M give a product foliation

of M by compact strictly convex hypersurfaces St = π(S̃t). There is a transverse foliation of Ω by
flowlines that limit on the center of Φ. These project to a transverse foliation of M by rays.

The flow time function is T̃ : Ω → [0,∞) defined by T̃ (x) = t if Φt(x) ∈ ∂Ω. Thus T̃ (x) is the

amount of time for x to flow into ∂Ω and T̃ (S̃t) = t. Let π : Ω →M be the projection. Then there

is a map T :M → [0,∞) defined by T (πx) = T̃ (x). The level sets of T are the hypersurfaces St.

Lemma 6.19. Suppose Φ is a radial flow with center p and stationary hyperplane H. Suppose
Ω ⊂ RP

n \H is a properly convex manifold. If Φ is hyperbolic and p /∈ cl(Ω), then Ω is backwards
vanishing. If Φ is parabolic, then Ω is backward vanishing for either Φ(t) of Φ′(t) := Φ(−t).
Proof. If Φ is hyperbolic and p /∈ cl(Ω), then by the Hahn-Banach separation theorem there is P
that separates Ω from p. If Φ is parabolic, then choose any hyperplane P disjoint from Ω that
does not contain P . In either case P is a displacing hyperplane. After possibly reversing Φ in the
parabolic case, the half space U ⊂ Rn = RP

n \H that contains Ω is backwards vanishing, and hence
so is Ω. �

Proposition 6.20. Every minimal generalized cusp C = Ω/Γ with Γ ⊂ UT(n+ 1) is a radial flow
cusp.

Proof. Claim 1. Ω is disjoint from every Γ-invariant hyperplane P

Proof of claim 1. If P ∩Ω 6= ∅, then P ∩∂Ω 6= ∅ since C is minimal. Observe that P ∩Ω is properly
convex and preserved by Γ. Thus R = (P ∩Ω)/Γ is a codimension-1 submanifold of C. Moreover ∂R
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is a non-empty codimension-1 closed submanifold of ∂C. But ∂R and ∂C are homotopy equivalent,
a contradiction. This proves the first claim. �

There are now two cases:

Parabolic case. There is a generalized weight space W for Γ with dimW ≥ 2. Let Φ be the
parabolic radial flow that centralizes Γ given by (6.17). Let H be the stationary hyperplane and
p ∈ H the center of Φ. Let P be a displacing hyperplane that is tangent to Ω at q ∈ ∂Ω.

Hyperbolic case. Every generalized weight space has dimension 1, so Γ is diagonalizable. The
weight spaces projectivize to give points p0, · · · , pn ∈ RP

n that are in general position. The hy-
perplane Pi contains all these points except pi. These hyperplanes divide RP

n into 2n−1 open
n-simplices. These hyperplanes are Γ-invariant so Ω is contained in one of these simplices ∆. There
is a vertex p of ∆ with p /∈ Ω because ∂Ω is a strictly convex hypersurface in ∆. After relabelling
p = p0, let H = P0 and let Φ be the radial flow with center p and stationary hyperplane H . Then
Φ centralizes Γ and p is disjoint from cl(Ω). By (6.19) there is a displacing hyperplane P that
separates p from Ω.

In each case, Ω is disjoint from H by claim 1. Set Rn = RP
n \ H so Ω ⊂ Rn. Let U be the

closure of the component of Rn \ P that contains Ω. Choose linear coordinates on R
n such that

q = e1 = (1, 0, · · · , 0), U is x1 ≥ 1, and, moreover, p = 0 in the hyperbolic case and p is the limit of
the positive x1-axis in the parabolic case. Then P = ∂U is the horizontal hyperplane x1 = 1.

We may assume U is backward invariant after possibly reversing the flow in the parabolic case.
We reparameterize Φ so that in these coordinates in the parabolic case Φt(x) = x− t · e1 and in the
hyperbolic case Φt(x) = exp(−t) · x.

Let p1 : U → P be the projection along flowlines. Thus in the parabolic case p1(x1, · · · , xn) =
(1, x2, · · · , xn) and in the hyperbolic case p1(x1, · · · , xn) = (1, x2/x1, · · · , xn/x1).

Claim 2. Let Ω1 be the backward orbit of intΩ. Then Ω1 is open and properly convex.

Proof of claim 2. First we show that Ω1 is convex. Suppose a, b ∈ Ω1. Then a = Φα(a
′) and

b = Φβ(b
′) for some α, β ≤ 0 and a′, b′ ∈ intΩ. Let ℓ = [a′, b′] be the line segment with endpoints

a′, b′. Since Ω is convex ℓ ⊂ Ω. Then ∪t≤0Φt(ℓ) is a planar convex set in Ω1 that contains a and b.
Hence Ω1 is convex.

Let C be the cone of Ω from 0. Since Ω is properly convex and p /∈ Ω it follows that C is properly
convex. Moreover C is backward invariant and so contains Ω1. Thus Ω1 is properly convex proving
claim 2. �

Observe that Ω1 is backward invariant. Define ΩM to be the flow closure of Ω1, i.e. the set of all

points x such that Φt(x) ∈ Ω1 for all t < 0. There is a homeomorphism F̃ : ∂ΩM × [0,∞) → ΩM
given by F (x, t) = Φ−t(x).

Claim 3. Γ acts freely and properly discontinuously on ΩM .

Proof of claim 3. Since Γ commutes with Φ it follows that Ω1 is preserved by Γ. Since Γ acts freely
on Ω it contains no elliptics and therefore acts freely on Ω1. Moreover Γ is discrete and therefore
acts properly discontinuously on Ω1. The map Φ−1 embeds ΩM into Ω1 and since Φ−1 commutes
with Γ it follows that Γ acts freely and properly discontinuously on ΩM . �

ThusM = ΩM/Γ is a properly convex manifold and there is a homeomorphism F : ∂M×[0,∞) →
M covered by F̃ . The proof is not completed with the following:

Claim 4. ΩM = Ω, and hence M = C.
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By (8.3) there is a collar neighborhood P ⊂ C of ∂C with ∂P = ∂C ⊔Q and Q is strictly convex.
Let R = cl(C \ P ) so ∂R = Q and R is a generalized cusp. Since C is a closed manifold and a
K(Γ, 1), it is easy to see that the inclusions Q ⊂ R ⊂M are homotopy equivalences. Thus there is
a compact submanifold X ⊂M with ∂X = ∂M ⊔Q and X ≃ ∂M × [0, 1]. In particular Q separates
∂M from the end of M . Since X ⊂ M is compact and P \ ∂C ⊂ X it follows that ∂C ⊂ M . Thus
Ω ⊂ ΩM .

For t ≥ 0 there is a map φt : M → M covered by Φ−t. Let T be the supremum of t > 0 such
that φt(∂C) ⊂ CH(∂C). Then T > 0 because ∂C is compact and strictly convex. It is easy to see
that if s, t < T then s+ t < T so T = ∞. Thus Ω is backward invariant, and so ΩM ⊂ Ω. �

Lemma 6.21. Suppose Ω ⊂ RP
n andM = Ω/Γ is a radial flow end with radial flow Φ. Let H ⊂ RP

n

be the stationary hyperplane for Φ. Then ∂Ω = ∂Ω ⊔ (H ∩ Ω). In particular, if M is a radial flow
cusp, then it is minimal.

Proof. Let Rn = RP
n\H, so that Ω ⊂ Rn. Let p be the center of Φ. Choose a displacing hyperplane

P ⊂ RP
n that is disjoint from Ω such that if Φ is hyperbolic P separates p from Ω in Rn.

Let U be the closure of the component of Rn \ P that is the halfspace containing Ω. Then U is
backward invariant. Thus U is the backward orbit of P . Define the function τ : U → [0,∞) by
τ(x) = t if Φt(x) ∈ P . This is the amount of time it takes x to flow into P . Observe that if x, y ∈ Ω,

then T̃ (x)− T̃ (y) = τ(x) − τ(y).

Because each S̃t is strictly convex it follow that the only critical points of the restriction of T̃
to a segment are maxima, and therefore there is at most one critical point on a segment. Thus
T : M → [0,∞) has the same critical point behaviour along segments.

Choose a metrically-complete Riemannian metric on M and use the lifted metric on Ω. Suppose
∂Ω is not properly embedded in Rn. Then there is a sequence p̃k ∈ ∂Ω which converges in Rn to a
point p̃∞ /∈ ∂Ω.

Let αk be the length of [p̃0, p̃k] ⊂ Ω. Then αk → ∞ because p̃∞ /∈ Ω and the metric on Ω is

complete. Let ℓ̃k : [0, 1] → [p̃0, p̃k] be the unit segment. Hence ℓ̃k converges to ℓ̃∞ : [0, 1] → [p̃0, p̃∞].

The restriction of ℓ̃∞ to [0, 1) is a ray, ℓ̃ : [0, 1) → Ω, of infinite length in Ω. Since p̃k → p̃∞ there

is β > 0 such that τ ◦ ℓ̃k ≤ β for all k ∈ [0,∞]. Since T̃ (x) = τ(x) − τ(p̃0) + T̃ (p̃0), replacing β by

β − τ(p̃0) + T̃ (p̃0) gives T̃ ◦ ℓ̃k ≤ β everywhere.

The projection ℓk = π ◦ ℓ̃k : [0, 1] → M is an immersed affine segment and T ◦ ℓk ≤ β. Thus

ℓk is contained in the compact set Mβ := ∪0≤t≤βSt. These segments converge to the ray ℓ = π ◦ ℓ̃
of infinite length that is also contained Mβ. Now T ◦ ℓ∞ : [0, 1) → [0, β] is eventually monotonic
and so taking limits of subsegments of length 1 there is a segment of length 1 along which T is
some constant α. This segment is contained in Sα. But this contradicts the fact that Sα is strictly
convex. It follows that ∂Ω is properly embedded in Rn. Hence Ω is a closed convex set in Rn �

Proposition 6.22. Suppose C = Ω/Γ is a minimal generalized cusp and Γ ⊂ UT(n + 1). Let
T = T (Γ) be the translation group. Then C contains a minimal homogeneous cusp CT = ΩT /Γ and
T acts transitively on ∂ΩT .

Proof. By (6.20) C is a radial flow cusp for some flow Φ. Let H be the stationary hyperplane of
Φ and set Rn = RP

n \H . Since T centralizes Φ it preserves H and acts affinely on Rn. By (6.21)
Ω ⊂ Rn is a closed subset bounded by the properly embedded strictly convex hypersurface ∂Ω.

Claim. There is x ∈ Ω such that T · x ⊂ Ω.

Proof of claim. Let π : Ω −→ C be the covering space projection. There is a continuous map
F : T × ∂Ω → R

n/Γ given by F (t, x) = π(t · x). Since C = Ω/Γ is compact there is a compact
subset D ⊂ ∂Ω such that Γ ·D = ∂Ω. So T · ∂Ω=T ·D because Γ ⊂ T . There is compact X ⊂ T
such that ΓX = T. So T ·D = (ΓX) ·D. Hence Im(F ) = π(X ·D) because π(Γ · x) = π(x). Thus
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Im(F ) ⊂ Rn/Γ is compact because it equals F (X×D) and X×D is compact. Thus K = Im(F )∩C
is compact. Choose x ∈ Ω such that π(x) /∈ K, then T · x ⊂ Ω. This proves the claim. �

The set Ω0 = cl(CH(T ·x)) ⊂ Ω is properly convex and T –invariant. Since Ω0 is a closed properly
convex set in Rn there is an extreme point y ∈ ∂Ω0 at which ∂Ω0 is strictly convex. Thus ∂Ω0 is
strictly convex at every point in the orbit S = T · y ⊂ ∂Ω0. Then ΩT = CH(S) ⊂ Ω0 is properly
convex. Since Γ ⊂ T it follows that ΩT is Γ-invariant. Thus CT = ΩT /Γ is a generalized cusp
and a submanifold of C. Both CT and C are contractible with the same fundamental group. Since
C ∼= ∂C× [0, 1) with C closed it follows that CT ∼= ∂CT × [0, 1) with CT closed and dimCT = dimC.
Hence dimΩT = dimΩ. Moreover S ⊂ ∂Ω0 so S ⊂ ∂ΩT . Since ΩT = CH(S) it follows that S = ∂ΩT
and ΩT = Ω0. �

Lemma 6.23. Suppose C = Ω/Γ is a minimal generalized cusp and T = T (Γ) ⊂ UT(n + 1) and
Γ0 = T ∩Γ. Suppose Ω/Γ0 contains a homogeneous cusp ΩT /Γ0 and ΩT is preserved by T . Then Γ
preserves ΩT so C contains the homogeneous generalized cusp ΩT /Γ.

Proof. By (6.20) C∗ = ΩT /Γ0 is a radial flow cusp and by (6.21) ΩT ⊂ Rn is bounded by the strictly
convex properly embedded hypersurface ∂ΩT . By (6.13) T = T (Γ) is the unique translation group
that contains Γ.

Since Γ normalizes itself it follows that Γ normalizes T and therefore Γ permutes the decomposi-
tion of RPn into T –orbits. The domain ΩT is foliated by T –orbits and ΩT /T ∼= [0, 1). Since Γ ∩ T
preserves ΩT and |Γ : Γ∩T | <∞ it follows the Γ–orbit of ΩT is a finite number of pairwise disjoint
convex sets all contained in Ω. Thus Γ∩T permutes these domains. There is a finite index subgroup
Γ1 ⊂ Γ ∩ T that preserves each domain. We may assume Γ1 is normal in Γ. Thus M = Ω/Γ1 is
a regular cover of C that contains one copy of P = ΩT /Γ1 for each domain. However M and each
copy of P is a generalized cusp. Each copy of ∂P separates ∂M from the end ofM . Since the copies
of P are disjoint there is only one copy of P and Γ preserves ΩT . �

Lemma 6.24. Suppose G is a connected group with dimG = n − 1. For x ∈ RP
n the subset of

Hom(G,GL(n+ 1,R)) consisting of all ρ with ρ(G) · x a strictly convex hypersurface is open.

Proof. Suppose the map f : G −→ RP
n given by f(g) = (ρ(g)) · x has image a strictly convex

hypersurface S. Because G acts transitively on S by projective maps it follows that S is strictly
convex everywhere if and only if it is strictly convex at the single point x. Strict convexity of S at
x is equivalent to the quadratic form Q = ν · D2

ef being positive or negative definite where ν is a
normal to S at x and e ∈ G is the identity. This form Q = Q(ρ) is a smooth function of ρ. The set
of definite quadratic forms is open in the set of all quadratic forms. �

Theorem 6.25 (stability of generalized cusps). Suppose M is a generalized cusp of dimension n.
Then

VFG(M) := {ρ : π1M → GL(n+ 1,R) | ρ(π1M) ∈ VFG }
is semi-algebraic. Let U be the set of the holonomies of properly convex structures on M with
∂M strictly convex. Then U is open in VFG(M) and consists of the holonomies of homogenous
generalized cusp structures on M .

Proof. By (6.9) VFG(M) is semi-algebraic. By (6.10) U ⊂ VFG(M) and by (6.5) every element of
U is the holonomy of a homogeneous generalized cusp. It remains to show U is open in VFG(M).

Set H = core(π1M,n+ 1). By (6.12) for ρ ∈ VFG(M) the translation group is

T (ρ) := T (ρ(π1M)) = exp〈log(ρH)〉.
This is clearly a continuous function of ρ ∈ VFG(M).

If ρ ∈ U there is a properly convex domain Ω preserved by T (ρ). Choose x ∈ ∂Ω. By (6.24) for
σ ∈ VFG(M) close enough to ρ the hypersurface S = T (σ) · x is strictly convex. By (6.17) there is
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a radial flow Φ that is centralized by T (σ) and the group G = T (σ)⊕Φ(R) has an open orbit W in
RP

n. Moreover W is foliated by the strictly convex hypersurfaces St = Φt(S).
After replacing t by −t we may assume for t < 0 and close to 0 that St is on the convex side

of S = S0. Let Ω+ = ∪t≤0St. Then ∂Ω+ = S0. This set is preserved by T (σ) and therefore by
σ(H). It is contained in a properly convex cone by the argument of (3.4) using Figure 1. Hence
Ω(σ) := CH(Ω+) is properly convex and T (σ)–invariant. The argument of claim 3 in (6.20) shows
that σ(H) acts freely and properly discontinuously on Ω(σ). Since it is T (σ)–invariant, ∂Ω(σ) is
strictly convex. Thus Ω(σ)/σ(H) is a homogeneous generalized cusp.

It only remains to show that Ω(σ) is preserved by all of σ(π1M). The argument is very similar
to the proof of (6.23). The σ(π1M)–orbit of Ω(σ) is finite because |π1M : H | < ∞. By (6.16)
T (σ) is the unique virtual e-hull of σ(π1M). Thus σ(π1M) preserves the decomposition of RPn into
T (σ)–orbits. Moreover Ω(σ) is a union of such orbits. Thus if g ∈ π1M then (σg)(Ω(σ)) is either
Ω(σ) or disjoint from Ω(σ). We need only look at finitely many such g. Observe that Ω(σ) is close to
Ω(ρ) and ρ(g) is close to σ(g) and ρ(π1M) preserves Ω(ρ). Thus ρ(g) preserves Ω(ρ) so (σg)(Ω(σ))
intersects Ω(σ). It follows that (σg)(Ω(σ)) = Ω(σ). �

Lemma 6.26. Every homogeneous cusp has an exhaustion function.

Proof. Suppose M = Ω/Γ is a homogeneous cusp and T = T (Γ) is the translation subgroup. Then
Ω has a codimension–1 foliation by T –orbits that covers a smooth foliation of M . Pick y in the
interior of Ω and define F : Ω → R by F (x) = dΩ(x, T · y) if T · y separates ∂Ω from x and 0
otherwise. This covers a map f :M → R and C = f−1(0) is a compact collar neighborhood of ∂M
and f(x) = d(y, C) and f−1(t) is a leaf of the foliation of M for t > 0.

It is clear that ‖df‖ ≤ 1 when f > 0. Thus it suffices to show that ‖D2f‖ is bounded. Suppose
there is a sequence (Mk, fk, xk) such that ‖D2fk‖xk

> k. Then Mk = Ωk/Γk and Γk is a lattice
in Gk = PGL(Ωk). We may assume all the Ωk are in Benzecri position and 0 covers xk. We may
also assume Ωk → Ω in the Hausdorff topology. Then Gk → G ⊂ PGL(Ω). The T orbits are a
smooth foliation of Ω and we define a smooth function F : Ω −→ R using y = 0 as above. Then
Fk converges to F in C∞ on compact sets. But ‖D2fk‖ = ‖D2Fk‖ → ∞ contradicts ‖D2F‖ < ∞
because F is smooth. �

Theorem 6.27 (Main Theorem). Suppose N is a compact connected n–manifold and V is the union
of some of the boundary components V1, · · · , Vk ⊂ ∂N. Let M = N \ V. Assume π1Vi is virtually
nilpotent for each i. The natural map Devce(M) → {ρ ∈ Rep(π1N) : ∀i ρ(π1Vi) ∈ VFG} is open.

Proof. Let Bi be the end of M corresponding to Vi. By (5.7) the map

EK : Devce(M,P) → RelHol(M,K)

is open. By (6.25) for each Bi the map K(Bi) → VFG(Bi) is open. Composing these gives the
openness of

Devce(M,P) → {ρ ∈ Rep(π1N) : ∀i ρ(π1Vi) ∈ VFG}. �

By definition Hol : Devce → Repce(M) is onto. It is clearly continuous. So (6.27) implies (0.1).

7. Three dimensional generalized cusps

An orientable three-dimensional generalized cusp is diffeomorphic to T 2 × [0,∞). Leitner [22]
shows in this dimension that every generalized cusp Lie group is conjugate to a unique group of the
form Cn(α, β) with β ≥ α > 0, where n is the number of non-trivial weights:
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C0 C1 C2(α) C3(α, β)




1 s t s2+t2

2
0 1 0 s
0 0 1 t
0 0 0 1







es 0 0 0
0 1 t 1

2 t
2 − s

0 0 1 t
0 0 0 1







es 0 0 0
0 et 0 0
0 0 1 −t− αs
0 0 0 1







es 0 0 0
0 et 0 0
0 0 e−αs−βt 0
0 0 0 1




There is a compact, properly convex domain Ωn = Ωn(α, β) preserved by Cn = Cn(α, β) and
∂Ωn = A⊔B where A = Cn ·x is an orbit and B is a simplex contained in a projective hyperplane. If
Γn ⊂ Cn is a lattice thenM = Ωn/Γn is a compactification of the generalized cuspM = (Ωn\B)/Γn
obtained by adding ∂∞M = B/Γ which is a point for C0, a circle for C1, and a torus for C2 or C3.
The group Cn is a translation group and is contained in the cusp Lie group PGL(Ωn).

The group C0 is conjugate into PO(3, 1) and contains the holonomy of a cusp of a hyperbolic
3-manifold. Ballas [1] found a lattice in C1 that is the holonomy of a generalized cusp for a properly
convex structure on the figure eight knot complement. The groupsC3(α, β) are diagonal affine groups
that satisfy the uniform middle eigenvalue condition of Choi [6]. Gye-Seon Lee found lattices in
some of these groups that are holonomies of generalized cusps for a properly convex structure on
the figure eight knot complement. At the time of writing it is not known if there is 3-manifold that
admits a finite volume hyperbolic structure and also a properly convex structure that is a lattice in
some C2(α). The classification of generalized cusps in all dimensions is given in [2].

C0 point C1 S1
C2 & C3 T 2

∂M

∂∞M

0

∞

Figure 2. Generalized cusps in dimension 3

8. Convex Smoothing

A function f : (a, b) → R is Hessian-convex if it is smooth and f ′′ > 0 everywhere. A smooth
function on an affine manifold is Hessian-convex if its restriction to each line segment is. For affine
manifolds, we show how to approximate a convex function which is strictly convex somewhere by a
smooth, Hessian-convex one.
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The main application is that given a projective manifold which has a convex boundary that
is strictly convex at some point, we can shrink the manifold slightly to produce a submanifold
with Hessian-convex boundary: locally the graph of a Hessian-convex function. One might imagine
using sandpaper to smooth the boundary and produce a submanifold with smooth strictly convex
boundary.

The idea is to improve a convex function which is already Hessian-convex on some open subset,
by changing it in a small convex set C, and leaving it unchanged outside C. This is done so that
it is Hessian-convex inside a slightly smaller convex set C− ⊂ C, and also Hessian-convex at any
point, where it was previously Hessian-convex. In this way the problem is reduced to a local one in
Euclidean space.

Greene and Wu [16, Theorem 2], see also [15], showed that on a Riemannian manifold, any
function f with the property that locally there is a function g with positive definite Hessian such
that f − g is convex along geodesics (they call f strictly convex) can be uniformly approximated
by smooth, Hessian-convex functions. Smith [27] gives an example, for each k ≥ 0, of a Ck convex
function on a non-compact Euclidean surface which is not approximated by a Ck+1 convex function.

A function f is convex down if −f is convex. This means secant lines lie below the graph:
tf(a) + (1− t)f(b) ≤ f(ta+ (1− t)b) for all a, b and 0 ≤ t ≤ 1. Equivalently the set of points below
the graph of f is convex.

If f, g are smooth convex down functions, then min(f, g) is convex down, but need not be smooth
at points where f = g. We construct a smooth approximation mκ on R2

+ which agrees with min
outside a certain neighborhood of the diagonal and has good convexity properties.

Lemma 8.1 (smoothing min). Given κ ∈ (0, 1) there is a smooth function mκ : R2
+ −→ R+, which

is convex-down and non-decreasing in each variable such that if x ≤ κy or y ≤ κx, then mκ(x, y) =
min(x, y). It follows that if f, g : C −→ R+ are convex down, then so is h(x) = mκ(f(x), g(x)).

Proof. On R2
+

min(x, y) = (x+ y) · k(x/(x+ y)), where k(t) = min(t, 1− t).

Choose δ so that κ = δ/(1− δ). Then δ ∈ (0, 1/2). Let K : [0, 1] −→ [0, 1] be a convex-down smooth
function that agrees with k outside (δ, 1− δ). Define m : R2

+ −→ R by

m(x, y) = (x+ y) ·K(x/(x+ y)).

If x/(x+ y) ≤ δ, then m(x, y) = x. This happens when x ≤ κy. Similarly m(x, y) = y when y ≤ κx,
thus

m(x, y) = min(x, y) if x ≤ κy or y ≤ κx.

The subset of R2
+ where neither x ≤ κy nor y ≤ κx is called the transition region. Outside the

transition region m = min.
The graph of m is a convex-down surface above R2

+ that is a union of rays starting at the origin.
One can picture the graph of m: it is the cone from the origin of the convex-down arch that is the
part of the graph lying above x + y = 1. This arch is given by K(x). Since K(x) is convex down
the graph of m is convex-down; though in the radial direction it is, of course, linear.

This surface is comprised of three parts. The central part is curved down. The other two parts
are sectors of flat planes, one containing the x–axis and the other containing the y–axis.

We claim m(x, y) is a non-decreasing function of each variable. The is clear on the two parts of
the graph of m that are flat, since they are planes containing either the x-axis or the y-axis. Now

mx =
∂m

∂x
= K(x/(x+ y)) + (x + y) · y(x+ y)−2K ′(x/(x + y)).

Since mx(tx, ty) = mx(x, y) we may assume x+ y = 1. Then

∂m

∂x
= K(x) + (1− x)K ′(x).
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Recalling the defining properties of K and looking at its graph one sees this is non-negative. Similar
calculations work for my. This proves the claim.

We deduce that h is convex-down using these two properties of m, where

h(ta+ (1 − t)b) = m(f(ta+ (1− t)b), g(ta+ (1 − t)b)).

Since m is non decreasing in the first variable and f is convex-down

m(f(ta+ (1− t)b), g(ta+ (1 − t)b)) ≥ m(tf(a) + (1− t)f(b), g(ta+ (1− t)b))

Similarly m is non decreasing in the second variable and g is convex-down

m(tf(a) + (1− t)f(b), g(ta+ (1− t)b)) ≥ m(tf(a) + (1− t)f(b), tg(a) + (1− t)g(b))
= m(t(f(a), g(a)) + (1− t)(f(b), g(b))).

Finally since m is convex down

m(t(f(a), g(a)) + (1− t)(f(b), g(b))) ≥ t ·m(f(a), g(a)) + (1 − t)m(f(b), g(b))
= t · h(a) + (1− t)h(b). �

Corollary 8.2 (relative convex smoothing). Suppose C ⊂ Rn is a compact convex set with nonempty
interior and C− is a compact convex set in the interior of C. Suppose f : C −→ R is a non-constant,
convex function, which is Hessian-convex on a (possibly empty) subset S ⊂ C. Assume f |∂C = 0.
Then there is a convex function F : C −→ R such that F is Hessian-convex on S ∪ C− and f = F
on some neighborhood of ∂C.

Proof. Observe f < 0 on the interior of C. Let g be a Hessian-convex function on Rn which is
negative everywhere on C and g ≥ f/2 everywhere on C−. Since f is not identically zero this can
be done with, for example, g(x) = α‖x‖2 + β with suitable constants.

For κ ∈ (0, 1/2) define F (x) = −mκ(−f(x),−g(x)) and observe that F (x) = max(f(x), g(x))
except when f(x) is close enough to g(x), depending on κ. Since g < f = 0 on ∂C it follows that
F = f on some neighborhood of ∂C. Moreover F = g on C− and therefore F is Hessian-convex on
C−.

By (8.1) F is convex. Since m = mκ and g are smooth and the composition of smooth functions is
smooth, it follows F is smooth on S. It only remains to show D2F is positive definite on S ∪C−. It
suffices to show for every a ∈ S ∪C− and every unit vector u ∈ Rn the function p(t) = −F (a+ t ·u)
satisfies p′′(0) < 0. Computing

p′ = −mxfu −mygu

where

mx =
∂m

∂x
, my =

∂m

∂y
and fu, gu are the derivatives in direction u at a ∈ C,

fu = df(u), gu = dg(u).

Then
p′′ = [mxx(fu)

2 + 2mxyfugu +myy(gu)
2] − [mxfuu +myguu].

Since m is smooth and convex down it follows that D2m is negative semi-definite, so the first term
is non-negative. Now mx and my are both non-negative. Also guu > 0 everywhere and fuu > 0 on
S. �

A component N of the boundary of a projective manifold M is Hessian-convex if N is locally
the graph over the tangent hyperplane of a smooth function with positive definite Hessian in some
chart.

Proposition 8.3 (smoothing convex boundary). Suppose M is a projective manifold and ∂M is
everywhere locally convex, and also strictly convex at one point on each component of ∂M . Then
there is a submanifold N ⊂M such that M ∼= N ∪ ([0, 1]× ∂N) and ∂N is Hessian-convex.



DEFORMING CONVEX PROJECTIVE MANIFOLDS 29

Proof. Suppose ∂M is strictly convex at x ∈ ∂M . Choose a (subset of a) hyperplane H ⊂M close
to x so that the component C of M \ H containing x is a small convex set V . Using local affine
coordinates, S = C ∩ ∂M is the graph over H of a convex function f, which is 0 on H ∩ ∂M . Apply
(8.2) to produce a smooth function g with positive definite Hessian and satisfying 0 ≤ g ≤ f . The
graph of g is a smooth hypersurface between H and S. Replace S by this graph. This smoothes
out part of ∂M . Repeating this procedure smoothes the entire boundary. �

In a similar way one can prove:

Corollary 8.4 (smoothing convex functions). Suppose M is a connected affine manifold and f :
M −→ R is a convex function, which is strictly convex at some point. Given ǫ > 0 there is
g :M −→ R, which is smooth, Hessian-convex and satisfies |f − g| < ǫ.

9. Benzécri’s Theorem

Theorem 9.1 (Benzécri). For each n > 1 there is a Benzécri constant R = RB(n) ≤ 5n−1 with the
following property. Suppose Ω is a properly convex open subset of RPn and p ∈ Ω. Then there is a
projective transformation τ ∈ PGL(n + 1,R) such that τ(p) = 0 and B(1) ⊂ τ(Ω) ⊂ B(R), where
B(t) is the closed ball of radius t in Rn centered at 0.

The projective transformation τ is called a Benzécri chart for Ω centered at p and the image
τ(Ω, p) is called Benzécri position. The following proof provides an algorithm to find one. The set
of Benzécri charts for (Ω, p) is a compact subset of PGL(n+ 1,R).

Proof. The proof is by induction on n. If n = 1, then Ω is an open interval in RP 1 with closure a
closed interval. There is a projective transformation taking Ω to (−1, 1) and p to 0 so RB(1) = 1.

For the inductive step, choose a projective hyperplane Hn−1 ⊂ RP
n containing p. Then Ω′ =

Ω∩H is an open convex set in H ∼= RPn−1 and p ∈ Ω′. Since Ω is properly convex, Ω is disjoint from

some projective hyperplane Kn−1. Thus Ω
′
= Ω ∩H is disjoint from H ∩K, which is a hyperplane

in H . It follows that Ω′ is properly convex in H . By induction, and after choosing appropriate
coordinates on an affine patch in H (or using a fixed coordinate system and applying a Benzécri
transformation to Ω′), we may assume that Ω′ ⊂ Rn−1 ⊂ H with p = 0 and Bn−1(1) ⊂ Ω′ ⊂
Bn−1(r), where r = RB(n− 1).

Ω′

xn

−1S

0

1
zR

n−1 × 1

Rn−1 × 0 ⊂ H

Rn−1 × (−1)

A = Ω ∩ [Rn−1 × (−1)] ⊂ S

Figure 3. Shadows

There are affine coordinates on RP
n \K = Rn so that the affine part of H is Rn−1 × 0. In what

follows we will apply projective transformations in PGL(n+1,R) which are the identity on H . This
moves Ω while keeping Ω′ fixed. The first step is to arrange that

Ω ⊂ R
n−1 × [−1, 1]



30 DARYL COOPER, DARREN LONG, AND STEPHAN TILLMANN

and ∂Ω contains a point z ∈ Rn−1 × 1. Then we may shear so that z = (0, · · · , 0, 1).
Next consider the one-parameter group A(t) ∈ PGL(n + 1,R) fixing z and H . As t varies, the

points that are not fixed move between z and H . This group preserves the family of affine planes
{xn = const} in Rn. Since it fixes z the affine plane Rn−1 × 1 is preserved (though not fixed)
by this group. Thus we may move Ω by an element of this group so that it still is contained in
Rn−1 × [−1, 1], still contains z, and

A = Ω ∩
(
R
n−1 × (−1)

)

in not empty. Let C ⊂ R
n−1 × [−1, 1] be the set of points on all lines ℓ passing through z and some

point in Ω′. Then S = C∩ [Rn−1×(−1)] is the shadow from the point z of Ω′ on Rn−1×(−1). Since
Ω is convex it follows that A ⊂ S. Since Ω′ ⊂ Br(0) it follows that S is contained in the shadow of
Br(0), which is the ball D ⊂ Rn−1 × (−1) of radius 2r center (0, · · · , 0,−1). Finally, let X be the
union of all line segments in Rn−1 × [−1, 1] containing a point of S and Br. This is contained in
the union of the shadows on Rn−1 × 1 of Br(0) ⊂ H from points in D. This is a ball in Rn−1 × 1 of
radius 4r center z. It lies within distance 1 + r ≤ 5r from 0. �

Let S be the set of all Ω ⊂ RPn, which are disjoint from some hyperplane and compact, convex,
and with non-empty interior, equipped with the Hausdorff topology. Let S∗ ⊂ S × RPn be the set
of all pairs (Ω, p) with p in the interior of Ω with the subspace topology of the product topology.
There is an action of τ ∈ PGL(n+ 1,R) on S∗ given by τ(Ω, p) = (τΩ, τp). The quotient of S∗ by
this action is given the quotient topology and denoted B. The flowing is due to Benzécri [3]

Corollary 9.2 (Benzécri’s compactness theorem). B is compact.

It follows that there is a compact set of preferred charts centered on a point in a properly convex
manifoldM . Different preferred charts give Euclidean coordinates around p which vary in a compact
family independent of M , depending only on dimension.
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[31] J. H. C. Whitehead. On C1-complexes. Ann. of Math. (2), 41:809–824, 1940.

DC & DL: Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

ST: School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia

E-mail address: cooper@math.ucsb.edu

E-mail address: long@math.ucsb.edu

E-mail address: tillmann@maths.usyd.edu.au


