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Abstract. The area of a convex projective surface of genus g ≥ 2 is at
least (g − 1)π2/2 + ‖τ‖2/8 where τ = (log ti) is the vector of triangle
invariants of Bonahon-Dreyer and ti are the Fock-Goncharov triangle
coordinates.
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A convex projective surface is F = Ω/Γ where Ω ⊂ RP 2 is the inte-
rior of a compact convex set disjoint from some projective line, and Γ ⊂
PGL(3,R) is a discrete subgroup that preserves Ω and acts freely on it. An
example is a hyperbolic surface. Let RP (S) be the space of marked con-
vex real-projective structures on a closed orientable surface S. Goldman and
Choi [8] showed that this can by identified with the Hitchin component of
Hom(π1S,PGL(3,R))/PGL(3,R). Bonahon and Dreyer [7] showed:

Theorem 0.1. Suppose S is a closed orientable surface of genus g ≥ 2. There
are real analytic maps, the triangle invariant τ : RP (S) → R

4g−4, and the

shear invariant σ : RP (S) → R
12g−10, so that β = (τ, σ) : RP (S) → R

16g−14

is a real-analytic parameterization. The image of β is the an open cone defined

by 2 linear inequalities and 2 linear equalities. The image of τ is open in a

codimension-1 subspace.

The Hilbert metric dΩ on a bounded convex set Ω ⊂ R
2 is a Finsler

metric normalized so that when Ω is the interior of the unit disc the Hilbert
metric is the hyperbolic metric (curvature −1). A Finsler metric determines
a measure called p-area or just area that is the largest measure in the same
measure class as Lebesgue so that the area of an infinitesimal parallelogram
is at most the product of the side lengths, see Definition 1.1. In general this
is not Hausdorff measure [4] but coincides with it for Riemannian metrics.
For example the unit ball in the sup-norm is a square of side-length 2 which
has p-area equal to the Euclidean area 4, and in the taxicab norm the unit

.
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ball has p-area 2 but the Hausdorff measure of the unit ball of a norm is
always π. When applied to the Hilbert metric we call p-area the Hilbert area

or just area. In the positive quadrant the Hilbert area form is dxdy/(4xy),
see Lemma 2.4.

An ideal triangle in Ω has a shape parameter t > 0. This is one of the
coordinates introduced by Fock and Goncharov [13]. The triangle invariant

in the Bonahon-Dreyer theorem for this triangle is τ = log t which is a certain
signed distance, see Figures (2) and (4). Our main result is:

Theorem 0.2. Suppose T is an ideal triangulation of a surface F . The map

αT : RP (S) → R defined by

αT (F ) = (g − 1)π2/2 + ‖τ‖2/8
satisfies area(F ) ≥ α(F ). Here τ = (τ1, · · · , τ4g−4) are the components of τ
and ‖τ‖2 =

∑

τ2i .

This follows from:

Proposition 0.3. If T is an ideal triangle with shape parameter t in a properly

convex domain Ω then

areaΩ(T ) ≥ (π2 + (log t)2)/8

with equality iff Ω is the interior of a triangle.

The area of a compact hyperbolic surface F is 2π|χ(F )| and in particular
is bounded below. A corollary of the above gives a lower bound on the area
of a convex projective surface by using an ideal triangulation of the surface.

Theorem 0.4. If F is a compact, properly convex projective surface then

area(F ) ≥ (π/2)2 · |χ(F )|.

It follows that if Q is a compact 2-orbifold with χorb(Q) < 0 then
every convex projective structure on Q has area at least (π/2)2 · |χorb(Q)|. In
particular this area is bounded below by π2/168. The first author has given
lower bounds on the volumes of hyperbolic orbifolds [1]; and with Guofang

Wei see also [2] and for complex hyperbolic orbifolds [3].
With the above normalization the Hilbert metric on the interior of the

unit disc equals the hyperbolic metric. The above lower bound is π/8 ≈ 38%
of the hyperbolic area. In the remainder of this paper we normalize the Hilbert
metric so that it is twice that above. This means the areas calculated in the
rest of the paper should be divided by 4 to give the results announced.

This result extends to complete convex projective structures 2-orbifolds
and to surfaces with cusps. Theorem 0.2 suggests various questions. For ex-
ample there is a graph Γ with a vertex for each ideal triangulation T of F
and edges that correspond to edge flips. Given a strictly convex structure
on F what are the properties of the function defined on the vertices of Γ by
T 7→ αT (F ) ? Is the maximum attained ? Is there a uniform upper bound
on the difference between the maximum and the area of F ?
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It follows from the Margulis lemma for convex projective orbifolds [10],
[11] that there is a lower bound on the Hilbert volume of a strictly convex
projective n-orbifold. What are explicit lower bounds ?

The proposition is proved by using the following observation. An ideal
triangle T in a domain Ω meets ∂Ω at its three vertices. There is a triangle ∆
that contains Ω and is tangent to Ω at these three points, see Figure 2. The
Hilbert metric given by ∆ is smaller than that given by Ω. Thus the area of
T in the Hilbert metric on Ω is bigger than its area using the Hilbert metric
from ∆. We explicitly calculate the latter. The theorem follows by using ideal
triangulations.

After the first version of this paper was written the authors learned of
[9]. In that paper the authors show that the (Hausdorff) area of an ideal
triangle is bounded below, and also that it is not bounded above. Their lower
bound is different because they use a different definition of area. However,
as Marquis remarks in [15], although there are different notions of area for
Finsler metrics, because of the Benzécri compactness theorem [6], there is a
universal bound on the ratios of different area forms for reasonable choices.
The point of this paper is the relation to Fock-Goncharov coordinates.

1. Length and Area in Hilbert geometry

The cross-ratio of four distinct points y1, y2, y3, y4 ∈ R is

cr(y1, y2, y3, y4) =
(y1 − y3)

(y1 − y2)

(y2 − y4)

(y3 − y4)

Using the embedding R ⊂ RP 1 given by y/x 7→ [x : y] cross-ratio extends

to a continuous map cr : X −→ RP 1 where X ⊂
(

RP 1
)4

is the subset of
quadruples of points at least 3 of which are distinct:

cr([x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4])

= [(x2y1 − x1y2)(x4y3 − x3y4) :(x3y1 − x1y3)(x4y2 − x2y4)].

Suppose Ω ⊂ R
n ⊂ RPn is an open convex set that contains no affine

line. Given b, c ∈ Ω there is a projective line ℓ in RPn that contains them.
This line meets ∂Ω ⊂ RPn in two distinct points a, d. Label these points so
a, b, c, d are in linear order along ℓ∩R

n. Since Ω contains no affine line a 6= d.
The Hilbert metric on Ω is

dΩ(b, c) = | log cr(a, b, c, d)|
Some authors use (1/2) of this so that when Ω is the unit ball then dΩ has
curvature −1. This is a Finsler metric and

dΩ(x, x+ dx) =

(

1

|x− a| +
1

|x− b|

)

dx

In particular if Ω = (0,∞) ⊂ R
1 then a = 0, b = ∞ and dΩ(x, x+dx) = dx/x.

The literature contains many distinct definitions of area for Finsler met-
rics [4],[5]. These depend on how area is defined for a normed vector space
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(V, ‖ · ‖). Area is a Borel measure on V that is preserved by translation (ie
a Haar measure) so it is some multiple of Lebesgue measure. We will adopt
the following definition which is particularly well suited for our purposes.

Definition 1.1. Suppose (V, ‖ ·‖) is a normed 2-dimensional real vector space.
Choose an inner product on V and let λ be the resulting Lebesgue measure.
Set K = supλ({αa + βb : 0 ≤ α, β ≤ 1 }) where the supremum is over all
a, b ∈ V with ‖a‖, ‖b‖ ≤ 1. Then define the parallelogram measure or p-area
ω‖·‖ on V by ω‖·‖ = K−1 · λ.

It is easy to check the definition is independent of the choice of inner
product. Having done this we dispense with the inner product, and refer to the
norm of a vector as its length. The definition is equivalent to declaring that the
maximum area of a parallelogram with sides of unit length is 1. If the norm
is given by an inner product then parallelogram measure coincides with the
usual area. This definition generalizes to n dimensions using parallelopipeds
spanned by n vectors of norm one.

A rectangle in (V, ‖ · ‖) is defined to be any parallelogram with side
lengths x and y and area xy. Such parallelograms always exist. This enables
the standard construction of Lebesque measure in the plane, starting from
an inner product, to be extended to an arbitrary norm on the plane.

Parallelogram measure is an increasing function of the metric in the
sense that if ‖ · ‖ and ‖ · ‖′ are two norms on V with ‖ · ‖ ≤ ‖ · ‖′ then
ω‖·‖ ≤ ω‖·‖′ . In particular if α > 0 then ωα‖·‖ = α2ω‖·‖.

A Finsler surface is a pair (S, ds) where S is a smooth surface and dsx
is a norm on TxS for each x ∈ S. The p-area form on S is the p-area form
for dsx on TxS. For a properly convex projective surface S the resulting area
form ωS is called the Hilbert area form, and the Hilbert area of S is

∫

s
ωS . If

Ω′ ⊂ Ω are properly convex then dΩ ≤ dΩ′ on Ω′ and µΩ ≤ µΩ′ .

2. Hex geometry

A reference for this section is [12]. Let u0, u1, u2 ∈ R
2 be unit vectors with

respect to the standard inner product such that u0 + u1 + u2 = 0. We will
use u0 = (1, 0) and u1 = (−1/2,

√
3/2) then u2 = −u0 − u1. The convex hull

of the vectors {±u0,±u1,±u2} is a regular Hexagon H .

Definition 2.1. The Hex plane (H, dH) is the metric space obtained from the
norm on R

2 with unit ball H .

For the Hex plane p-area is different to Busemann volume, used for
example in [15], or Holmes-Thompson used in [17]. On a normed plane all
these measures are multiples of Haar measure, and so they are multiples of
each other. We will describe some properties of p-area for the Hex plane
which suggest this is the right definition to use.

Lemma 2.2. Let ωH denote the area form on the Hex plane and λ be Lebesgue

measure with respect to the standard inner product. Then ωH = (2/
√
3)λ
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Figure 1. In Hex geometry area = base × height

Proof. Let a, b be unit vectors in the Hex norm. Then they lie on the bound-
ary of the regular unit Hexagon H center at the origin and determine a
parallelogram P (a, b) with vertices {0, a, b, a+ b}. Suppose a lies on the edge
e of H . Then the area of P (a, b) is maximized by taking b to be a vertex of
H that that is not an endpoint of ±e. The Euclidean area of P (a, b) is then√
3/2. �

Our choice of normalization of area has the following consequences in
the Hex plane. A Hex circle of radius r is a Euclidean regular Hexagon so
that the (Euclidean=Hex) distance from the center to a vertex is r. The
circumference of this circle is 6r and the p-area is 3r2.

The positive quadrant is Q = {(x, y) : x, y > 0 }. A triangle in RP 2 is a
compact convex subset, ∆, bounded by 3 segments of projective lines. There is
a projective transformation taking the interior of ∆ to {[x : y : 1] : x, y > 0 }
which may be identified with Q. Thus the Hilbert metric on the interior of
∆ is isometric to (Q, dQ).

Lemma 2.3 (Proposition 7 in [12]). The Hilbert metric on Q is isometric to

the Hex plane (H, dH).

Proof. There is an isometry A : (R2, ‖ · ‖Hex) → (Q, dQ) given by

A(u, v) =
(

e
u+ 1√

3
v
, e

2√
3
v
)

= (x, y).

This may be checked as follows. The map A conjugates the action of R2 on
itself by translations to the action of the positive diagonal group on Q. Thus
it suffices to check A is infinitesimally an isometry at the origin. �

If Ω ⊂ RP 2 is a properly convex domain the Hilbert area form ωΩ is the
2-form given by the Hilbert metric.
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Lemma 2.4. The Hilbert area form on the positive quadrant Q = {(x, y) :
x, y > 0} is

ωQ =
dxdy

xy
.

Proof. The isometryA in Lemma 2.3 infinitesimally multiplies Lebesgue mea-
sure λ on R

2 by

J =

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

e
u+ 1√

3
v 1√

3
e
u+ 1√

3
v

0 2√
3
e

2√
3
v

∣

∣

∣

∣

∣

=
2√
3

(

e
u+ 1√

3
v
)(

e
2√
3
v
)

=
2√
3
xy.

Since ωH = (2/
√
3)λ it follows that

ωQ =
ωH
2√
3
xy

=
λ

xy
=

dxdy

xy
.

�

Lemma 2.5. The p-area of every parallelogram in the Hex plane is base ×
height.

Proof. Affine maps of the plane multiply Euclidean area (and hence p-area)
by the determinant of the linear part. Hence it suffices to prove the result in
the special case of a parallelogram P with vertices 0, v0, v1, v0 + v1 for which
the length of the base is ‖v0‖Hex = 1 and the height is also one. Moreover a
rotation through an angle of π/3 is an isometry of Hex. Thus we may assume
v0 is on the side of H between u0 and u0 + u1.

Refer to Figure 1. We transform P to P ′ to P ′′ and show that each of
these parallelograms has the same p-area. A shear parallel to the base of P
preserves base, height and p-area. Shear P parallel to v0 sending v1 to u1 to
give a parallelogram P ′ with vertices 0, v0, u1, v0 + u1. Now shear P ′ parallel
to the u1-direction to get a parallelogram P ′′ with vertices 0, u0, u1, u0 + u1.
This shear preserves base and height because of the special properties of H .
The area of P ′′ is 1. �

3. Ideal triangles in Hex geometry

Suppose Ω ⊂ RP 2 is an open properly convex set. If T is a triangle with
vertices in ∂Ω then T ∩Ω is called an ideal triangle in Ω. It is proper if T ∩∂Ω
consists of only the vertices of T . We will only be concerned with proper ideal
triangles, and will henceforth omit the term proper.

If ∆ = {[x0v0 + x1v1 + x2v2] : xi > 0 } is the interior of triangle in
RP 2 there is an isometry φ : (∆, d∆) −→ (H, dH) given by

φ[x0v0 + x1v1 + x2v2] = (log x0)u0 + (log x1)u1 + (log x2)u2

Suppose T is an ideal triangle in ∆. We refer to φ(T ) as an ideal triangle in
the Hex plane. Then T ⊂ ∆ together with an ordering of the vertices of ∆
determines a shape parameter t = t(T,∆) ∈ R defined as follows, see Figure
2. If the vertices of T are [w0 = v0 + av1], [w1 = v1 + bv2], [w2 = v2 + cv0]
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[1 : 0 : 0]

[0 : 1 : 0]

[0 : 0 : 1]

[1 : a : 0]

[0 : 1 : b]

[c : 0 : 1]

t = abc

∆

[1 : 1 : 0]

[1 : 0 : 1]

[0 : 1 : t]

[0 : 1 : 1]

τ = log t

τT

Figure 2. The shape parameter t > 0 and triangle invariant
τ = log t

with a, b, c > 0 then t = abc. This depends only on the cyclic ordering of
the vertices. Changing this ordering replaces t by 1/t. Observe that when
a = b = 1 then | log t| is the Hilbert distance in (v1, v2) between [w2] and the
midpoint [v1 + v2].

The group PGL(Ω) is the subgroup of PGL(3,R) which preserves Ω.
Using the basis v0, v1, v2 of R3 the identity component PGL0(∆) consists of
positive diagonal matrices. This group acts transitively on the interior of ∆.
There is a unique element τ ∈ PGL0(∆) which takes two of the vertices of T
to [u1 + u2], [u1 +u3]. The remaining vertex is taken to [u2 + tu3], see Figure
(2). The regular ideal triangle is given by t = 1. It has maximal isometry
group: dihedral of order 6.

Proposition 3.1. Isometry classes of ideal Hex triangle are in 1-1 correspon-

dence with shape parameters t ∈ [1,∞).

Lemma 3.2. The Hilbert area of an ideal triangle in the Hex plane with shape

parameter t is

B(t) =

∫ ∞

1

1

s
log

(

(st+ 1)(s+ t)

t(s− 1)2

)

ds

Proof. By Lemma 2.3, the ideal triangle is isometric to an ideal triangle T
in Q. By means of a projective transformation preserving Q we can arrange
that one side of T is given by x+ y = 1 and the other two sides are then the
parallel rays in Q given by y− 1 = tx and y = t(x− 1). Refer to Figure 3. It
is easy to check that t is the shape parameter.

For s ≥ 1 define α(s), β(s) to be the points of intersection of the line
x + y = s with the sides y − 1 = tx and y = tx + 1 of T . Let γ(s) be the
line segment with these endpoints. For s ≥ 1 these lines foliate T . For s > 1
define

ℓ(s) = dQ(α(s), β(s))

to be the Hilbert length of γ(s). The distance between γ(s) and γ(s + ds)
is ds/s. This is easily seen by projecting onto the x-axis along the direction
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x+y = 0. It follows from Lemma 2.5 that the Hilbert area of the infinitesimal
parallelogram shown is ℓ(s)ds/s, thus

area∆(T ) =

∫ ∞

1

ℓ(s)
ds

s

Next we compute

ℓ(s) = log

(

(s+ t)(st+ 1)

t(s− 1)2

)

This may be done as follows. Projection of one line onto another preserves
Hilbert distance. Let π be vertical projection of the line segment x + y = s
in Q onto the x-axis. The image of this segment is [0, s]. Then

π(α(s)) =
s− 1

t+ 1
, π(β(s)) =

s+ t

t+ 1

Then ℓ(s) = dQ(α(s), β(s)) = d[0,s](α(s), β(s)) = | logCR(0, α(s), β(s), s)|.
�

Next we calculate this integral. This implies Proposition 0.3.

Lemma 3.3.

B(t) =
π2 + (log t)

2

2

Proof.

dB

dt
=

d

dt

(
∫ ∞

1

1

s
log

(

(st+ 1)(s+ t)

t(s− 1)2

)

ds

)

Taking the derivative inside the integral gives
∫ ∞

1

1

s

d

dt

(

log

(

(st+ 1)(s+ t)

t(s− 1)2

))

ds =

∫ ∞

1

1

s

(

s

1 + st
+

1

s+ t
− 1

t

)

ds

=

∫ ∞

1

(

1

1 + st
− 1

t(s+ t)

)

ds

=

[

1

t
(log(1 + st)− log(s+ t))

]s=∞

s=1

=

[

t−1 log

(

1 + st

s+ t

)]s=∞

s=1

= t−1 log t

Thus
dB

dt
= t−1 log t

Integrating gives B(t) = (1/2)(log t)2 + C. The next lemma shows C =
π2/2. �

Lemma 3.4.

B(1) =
π2

2
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y =
t(x

− 1)

y − 1 =
tx

1

1

s

s

s+ ds

s+ ds

ds/
s

α(s)

β(s)

ℓ(s)

∆ = Q

T
t = 1

t = 100

Figure 3. Ideal triangles in the Hex plane and the positive quadrant.

Proof.

B(1) =

∫ ∞

1

1

s
log

(

(s+ 1)2

(s− 1)2

)

ds =

∫ ∞

1

2

s
log

(

s+ 1

s− 1

)

ds

Set w = (s+ 1)/(s− 1) then

s =
w + 1

w − 1
= 1 +

2

w − 1
and

ds

dw
= −2(w − 1)−2

hence

B(1) =

∫ ∞

1

2

s
log

(

s+ 1

s− 1

)

ds =

∫ 1

∞
2

(

w − 1

w + 1

)

logw (−2)(w − 1)−2dw

=

∫ ∞

1

4 logw dw

w2 − 1
.

Set w = ex this becomes

B(1) =

∫ ∞

0

4x exdx

e2x − 1
=

∫ ∞

0

4x dx

ex − e−x
.

The integrand is even so

B(1) =

∫ ∞

−∞

2x dx

ex − e−x
.

Define

g(z) =
i

4π
z(z − 2πi),

then

g(z)− g(z + 2πi) = z.

Hence

B(1) =

∫ ∞

−∞

2x dx

ex − e−x
= 2

∫ ∞

−∞

g(x)− g(x+ 2πi)

ex − e−x
dx.
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−R
R

R+ 2πi−R+ 2πi ΓR

πi

Residue = −1/2

We claim this equals the limit of the contour integrals

B(1) = lim
R→∞

∮

ΓR

2g(z)

ez − e−z
dz.

Where ΓR is the rectangle

([−R,R]× {0, 2πi})∪ ({±R} × [0, 2πi])

oriented counterclockwise. Observe that on the vertical sides ({±R}×[0, 2πi])
the integrand goes to 0 as R → ∞. The integral along the horizontal sides
([−R,R]× {0, 2πi}) with the orientation specified is

2

∫ R

−R

g(z)− g(z + 2πi)

ez − e−z
dz.

This proves the claim. To evaluate the contour integral we observe the only
singularity inside ΓR of

2g(z)

ez − e−z

is a simple pole at z = iπ. Now

2g(iπ) = 2
i(iπ)(−iπ)

4π
=

iπ

2
.

Also the denominator is ez − e−z = 2z + · · · has residue −1/2 at z = iπ
because

residue = lim
z→iπ

z − iπ

ez − e−z

= lim
w→0

w

ew+iπ − ew−iπ

= lim
w→0

w

e−iπ(ew − e−w)

= − lim
w→0

w

(1 + w + · · · )− (1− w + · · · )
= − lim

w→0

w

2w + · · ·
= −1

2
.
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p

q

r

T

∆

Ω

Figure 4. An ideal triangle T in Ω

Thus the residue of the integrand at iπ is (−1/2)(iπ/2) = −iπ/4. Cauchy’s
theorem gives the contour integral is

(2πi)(−iπ/4) = π2/2.

�

4. Ideal triangulations

Ideal triangulations of surfaces were introduced by Thurston for hyperbolic
surfaces, see [14],[16]. The extension to properly convex surfaces is routine.

Definition 4.1. An ideal triangulation of a convex projective surface F = Ω/Γ
is a decomposition of F into closed subsets with disjoint interiors called ideal

triangles such that each component of the preimage of an ideal triangle in F
is an ideal triangle in Ω.

Proposition 4.2. If F is a closed convex projective surface then F has an ideal

triangulation. The number of ideal triangles is 2|χ(F )|.

Suppose F = Ω/Γ is a compact, strictly convex projective surface with
χ(F ) < 0. Then Ω ⊂ RP 2 has a unique tangent line at each point of ∂Ω by
[6]. If T ⊂ Ω is an ideal triangle with vertices p, q, r ∈ ∂Ω. The tangent lines
at p, q, r contain the sides of a triangle ∆ which contains Ω. Following Fock
and Goncharov [13] we define the shape t = t(T,Ω) ∈ [1,∞) of T in Ω to be
the shape t(T,∆) of T in ∆ previously defined.

For a properly convex set Ω we denote the Hilbert area form on Ω by
ωΩ. This pushes down to a 2-form ωF on F . We denote the Hilbert area of a
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measurable subset X ⊂ F by

areaF (X) =

∫

X

ωF

Since Ω ⊂ ∆ it follows that d∆ ≤ dΩ and ω∆ ≤ ωΩ. It follows that if T ⊂ F
is an ideal triangle with shape parameter t then

areaF (T ) ≥ B(t) ≥ π2/2

Since F contains 2|χ(F )| ideal triangles with disjoint interiors Theorem 0.2
follows from Propositions 4.2 and 0.3.
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pour les géométries de Hilbert. Ann. Math. Blaise Pascal, 20(2):363–376, 2013.



Area and Fock-Goncharov Coordinates 13

[12] P. de la Harpe. On Hilbert’s metric for simplices. In Geometric group theory,
Vol. 1 (Sussex, 1991), volume 181 of London Math. Soc. Lecture Note Ser.,
pages 97–119. Cambridge Univ. Press, Cambridge, 1993.

[13] V. V. Fock and A. B. Goncharov. Moduli spaces of convex projective structures
on surfaces. Adv. Math., 208(1):249–273, 2007.

[14] M. Lackenby. Taut ideal triangulations of 3-manifolds. Geom. Topol., 4:369–395
(electronic), 2000.

[15] L. Marquis. Around groups in Hilbert geometry. In Handbook of Hilbert geom-
etry, volume 22 of IRMA Lect. Math. Theor. Phys., pages 207–261. Eur. Math.
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