Directed filling functions and the groups \diamond_{n}

Fedor Manin

University of Toronto
manin@math.toronto.edu
March 14, 2016

Filling functions in 1D

Let Γ be a finitely presented group and X its Cayley complex. Then we can construct. . .
... its Dehn function $\delta_{\Gamma}(k)$: how hard is it to fill a circle in X of length k with a disk?

... its homological filling function $\mathrm{FV}_{\Gamma}^{1}(k)$: how hard is it to fill a cellular 1-cycle in X of volume k with a 2-chain?

Notice that $\mathrm{FV}_{\Gamma}^{1}(k) \lesssim \delta_{\Gamma}(k)$; for some Γ, this inequality is strict (Abrams-Brady-Dani-Young 2013).

Higher-dimensional filling functions

Let Γ be a group of type \mathcal{F}_{n+1}; that is, there is a $K(\Gamma, 1)$ with finite $(n+1)$-skeleton. Let X be the universal cover of this ($n+1$)-skeleton. Then we can construct...
...the higher Dehn function $\delta_{\Gamma}^{n}(k)$: how hard is it to fill an n-sphere in X of volume k with a ball?

...the homological filling function $\mathrm{FV}_{\Gamma}^{n}(k)$: how hard is it to fill a cellular n-cycle in X of volume k with an $(n+1)$-chain?

What do we know about filling functions?

- Up to coarse equivalence, they depend only on the group Γ.
(Alonso-Wang-Pride '99, Robert Young '11)
- When $n \geq 3, \mathrm{FV}_{\Gamma}^{n}(k) \lesssim \delta_{\Gamma}^{n}(k)$.
(Brady-Bridson-Forester-Shankar '09)
- This is not necessarily the case for $n=2$. (Young '11)
- A group is hyperbolic if and only if all of its filling functions are linear.
(Mineyev '00)

What functions can be filling functions?

- There are groups with higher-dimensional filling functions k^{α} for a dense set of α in $[1, \infty)$. (BBFS '09, Brady-Forester '10)
- Unlike the Dehn function, δ_{Γ}^{2} is computable for any group Γ of type \mathcal{F}_{3}.
(Papasoglu '00)
- For any n, there are groups Γ such that the function $\mathrm{FV}_{\Gamma}^{n}(k)$ grows uncomputably fast. In particular, when $n \geq 3, \delta_{\Gamma}^{n}(k)$ can grow uncomputably fast as well.
(Young '11)
- There are groups with 2-dimensional Dehn functions which grow as any tower of exponentials.
(Barnard-Brady-Dani '12)

Counting fundamental domains

Suppose Γ is the fundamental group of an $(n+1)$-dimensional aspherical manifold M, with a cell structure which has one ($n+1$)-cell.

Counting fundamental domains

Suppose Γ is the fundamental group of an $(n+1)$-dimensional aspherical manifold M, with a cell structure which has one $(n+1)$-cell. Then FV_{Γ}^{n} counts the number of fundamental domains you can lasso with an n-cycle.

Counting fundamental domains

Suppose Γ is the fundamental group of an $(n+1)$-dimensional aspherical manifold M, with a cell structure which has one $(n+1)$-cell. Then FV_{Γ}^{n} counts the number of fundamental domains you can lasso with an n-cycle.

Notice $F V_{\Gamma}^{n}$ is linear if and only if Γ is non-amenable!

Filling homology classes

Here are some features of the situation in the previous slide:

- Any n-cycle c in \tilde{M} projects to the chain $0 \in C_{n}(M)$.
- Fillings are unique. Therefore, they project to a unique cycle in $C_{n+1}(M)$.
- In other words, every c is assigned a filling homology class $\operatorname{Fill}(c) \in H_{n+1}(M) \cong \mathbb{Z}$. The filling volume of c is $|\operatorname{Fill}(c)|$.
Notice that the only requirement for this is that the covering map $\pi: \tilde{M} \rightarrow M$ sends $c \mapsto \pi_{\#}(c)=0 \in C_{n}(M)$. There is a well-defined filling homology class in $H_{n+1}(\Gamma)$ for any such c in any group Γ of type \mathcal{F}_{n+1}. However, we cannot necessarily compare filling classes to create a filling function.

Directed filling functions

As before, let X be an n-connected complex which Γ acts on, and let $w \in H^{n+1}(\Gamma)$ be a cohomology class. Then we can define a filling function

$$
\mathrm{FV}_{\Gamma, w}^{n}(k)=\sup \left\{|\langle w, \operatorname{Fill}(c)\rangle|: c \in \tilde{X}, \operatorname{vol} c \leq k, 0=\pi_{*} c \in C_{n}(X / \Gamma)\right\}
$$

Notice that for any w,

$$
\mathrm{FV}_{\Gamma, w}^{n}(k) \lesssim \mathrm{FV}_{\Gamma}^{n}(k)
$$

Examples

- Let $\Gamma=\mathbb{Z}^{d}, d>n$, and fix a $0 \neq w \in H^{n+1}\left(\mathbb{Z}^{d}\right)$. Then $\langle w$, Fill $c\rangle$ measures the signed area in a direction indicated by w. In particular, $\mathrm{FV}_{\Gamma, w}^{n}(k) \sim \mathrm{FV}_{\Gamma}^{n}(k) \sim k^{\frac{n+1}{n}}$.

horizontal filling size is

$$
2-1=1 .
$$

- Let $\Gamma=B S(1,2)=\left\langle a, b \mid b a b^{-1} a^{-2}=1\right\rangle$. Then $\mathrm{FV}_{\Gamma}^{1}(k) \sim 2^{k}$, but $H^{2}(\Gamma)=0$ and so there are no directed 1-dimensional filling functions.
- Other known examples of large filling functions also collapse (e.g. those from Young '11.)

Why are they useful?

- Potentially a way to find easy lower bounds for other filling functions.
- Relates characteristic classes of certain bundles to their large-scale geometry.

In the remainder of the talk, I will demonstrate a sequence of groups with large directed filling functions.

The group \diamond_{1}

We would like to "fix" the fact that $B S(1,2)$ has $H_{2}=0$.

$$
B S(1,2)=\left\langle a, b \mid b a b^{-1} a^{-2}\right\rangle
$$

The only 2 -cell B has nonempty boundary.
$\diamond_{1}=\left\langle a, b, c \mid b a b^{-1} a^{-2}, c a c^{-1} a^{-2}\right\rangle$

Here, $B-C$ is a cycle which generates $H_{2}\left(\diamond_{1}\right)$.

The group \diamond_{1}

We would like to "fix" the fact that $B S(1,2)$ has $H_{2}=0$.

$$
B S(1,2)=\left\langle a, b \mid b a b^{-1} a^{-2}\right\rangle
$$

A hard-to-fill cycle with homologically trivial filling.

$$
\diamond_{1}=\left\langle a, b, c \mid b a b^{-1} a^{-2}, c a c^{-1} a^{-2}\right\rangle
$$

A cycle whose filling class is

$$
\left(2^{k}-1\right)(B-C)
$$

The group \diamond_{n}

Define
$\diamond_{n}=\left\langle b_{1}, c_{1}, \ldots, b_{n}, c_{n}, a \left\lvert\, \begin{array}{l}b_{i}^{-1} a b_{i}=c_{i}^{-1} a c_{i}=a^{2} \\ {\left[b_{i}, b_{j}\right]=\left[b_{i}, c_{j}\right]=\left[c_{i}, c_{j}\right]=0 \text { for } i \neq j}\end{array}\right.\right\rangle$,
or inductively as a double HNN-extension of \diamond_{n-1} via the endomorphism

$$
a \mapsto a^{2}, b_{i} \mapsto b_{i}, c_{i} \mapsto c_{i} .
$$

By induction, \diamond_{n} has an ($n+1$)-dimensional classifying complex X_{n}. In fact,

$$
H_{n+1}\left(X_{n}\right) \cong \mathbb{Z}
$$

A generator of $H_{3}\left(X_{2}\right)$.

Filling functions in \diamond_{n}

Theorem

Let $w \neq 0 \in H^{n+1}\left(X_{n}\right)$. Then

$$
\mathrm{FV}_{\diamond_{n}, w}^{n}(k) \sim \mathrm{FV}_{\diamond_{n}}^{n}(k) \sim \delta_{\diamond_{n}}^{n}(k) \sim \exp (\sqrt[n]{k})
$$

Proof
Note first that

$$
\mathrm{FV}_{\diamond_{n}, w}^{n}(k) \lesssim \mathrm{FV}_{\diamond_{n}}^{n}(k) \lesssim \delta_{\diamond_{n}}^{n}(k)
$$

So we need to show that

$$
\mathrm{FV}_{\diamond_{n}, w}^{n}(k) \gtrsim \exp (\sqrt[n]{k})
$$

and

A hard-to-fill sphere in

The chain $\tau_{2}(4)$ in the universal cover \tilde{X}_{2}. In general, $\tau_{n}(k)$ has volume $O\left(2^{n} k^{n}\right)$ and filling volume $O\left(2^{n+k}\right)$.
This gives us the lower bound.

Finding an upper bound for $\delta_{\diamond_{n}}^{n}(k)$

- We show by induction that if $\delta_{\diamond_{n-1}}^{n-1}\left(k^{n-1}\right)=O\left(2^{k}\right)$, then $\delta_{\diamond_{n}}^{n}\left(k^{n}\right)=O\left(2^{k}\right)$.
- Look at layers in the Bass-Serre tree.
- A refinement of the methods of BBFS '09.

Thank you!

