Counting embeddings

Fedor Manin
University of Toronto
manin@math.toronto.edu
June 10, 2016

Encoding homotopical information

Let X and Y be finite simplicial complexes...

Fact

The number of simplicial maps from X to Y is bounded above by $|Y|^{|X|}$ (exponential in $|X|$.)

Theorem (Gromov)

Fix a simply connected Y and the homotopy type of X. Then the number of homotopy classes of simplicial maps $X \rightarrow Y$ is a polynomial $P(|X|)$.
(Contrast growth of fundamental groups)

I lied!

Here's Gromov's actual theorem*:

Theorem

Let X and Y be compact Riemannian manifolds with boundary, Y simply connected. Then the number of homotopy classes of L-Lipschitz maps $X \rightarrow Y$ is $O\left(L^{\alpha}\right)$, where α depends only on the rational homotopy of X and Y.

But the first formulation I gave is closely related via...

The quantitative simplicial approximation theorem

Any L-Lipschitz map between simplicial complexes X and Y is close to one which is simplicial on a subdivision of X at scale L.
*may not actually be a theorem of Gromov

A sketch of the proof of Gromov's theorem

Let $f: X \rightarrow Y$ be a map. Two key observations:

- Rational homotopy theory gives invariants classifying maps $f: X \rightarrow Y$ up to some finite torsion part. These are forms built from $f^{*} \omega_{i}$, for some finite set $\left\{\omega_{i}\right\}$, by repeated multiplication and antidifferentiation.
- A coisoperimetric inequality: every exact $\omega \in \Omega^{n}(Y)$ has an antidifferential $\alpha \in \Omega^{n-1}(Y)$ such that $\|\alpha\|_{\infty} \leq C_{n, Y}\|\omega\|_{\infty}$.
Therefore the obstructions classifying an L-Lipschitz map can't be more than polynomial in size.

Isoperimetric duality

- The coisoperimetric inequality we want: every exact $\omega \in \Omega^{n}(Y)$ has an antidifferential $\alpha \in \Omega^{n-1}(Y)$ such that

$$
\|\alpha\|_{\infty} \leq C_{n, Y}\|\omega\|_{\infty} .
$$

- This has a dual isoperimetric inequality: every boundary $T \in \mathbf{N}_{n-1}(Y)$ has a filling $S \in \mathbf{N}_{n}(Y)$ such that

$$
\operatorname{mass}(S) \leq C_{n, Y} \operatorname{mass}(T)
$$

- This follows from the Federer-Fleming deformation theorem.
- Isoperimetric duality says the two constants are equal.
- This is an application of the Hahn-Banach theorem.

What about embeddings?

Consider embeddings of a manifold M in a manifold N. Such an embedding can be complicated even if its Lipschitz constant is small. E.g.:

- A tiny but complicated knot in S^{3}
- Two linked S^{n} 's in $S^{2 n+1}$:

What geometric quantities might encapsulate the "complexity" of embeddings?

Thick embeddings

If we force our embeddings to have tubular (or regular) neighborhoods of radius $1 / L$, that seems to limit the amount of information. This has not been studied much as far as I know, except for:

- Ropelength and physical knot theory (many authors)
- "Combinatorially" thick embeddings of simplicial complexes in \mathbb{R}^{n} (Gromov-Guth)
C^{2} conditions have a similar effect.

The bilipschitz constant: a weaker bound

We will say $f: X \rightarrow Y$ is L-bilipschitz if

$$
\frac{1}{L} d\left(x_{1}, x_{2}\right) \leq d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq L d\left(x_{1}, x_{2}\right) .
$$

(Some might call this L^{2}-bilipschitz.) What happens if we restrict embeddings to be L-bilipschitz?

- Links can't get too close
- With knots, though, you can do this:

What can we say about bilipschitz embeddings

$$
M^{m} \rightarrow N^{n} ?
$$

It depends on codimension and category:

- When $n-m=2$, there are always knots.
- When $n / 3 \gtrsim n-m \geq 3$, there are smoothly knotted spheres in \mathbb{R}^{n} (Haefliger); however, these are PL unknotted.

So in these two situations, there's an infinite number of isotopy classes with the same bilipschitz constant. On the other hand:

- When $n-m \neq 2$, the number of topological isotopy classes of embeddings with bilipschitz constant $\leq L$ is finite (Joshua Maher, unpublished thesis)

Reducing embedding theory to homotopy theory

Theorem (Haefliger)

When $2 m>3(n+1)$, isotopy classes of embeddings $M^{m} \rightarrow N^{n}$ correspond to homotopy classes of maps
$F: M \times M \times[0,1] \rightarrow N \times N$ preserving the following structure:
(E1) $\left.F\right|_{t}$ is equivariant with respect to the involution

$$
(x, y) \mapsto(y, x)
$$

(E2) $\left.F\right|_{t=1}$ is isovariant* with respect to this involution
(E3) $\left.F\right|_{t=0}=f \times f$ for some map $f: M \rightarrow N$.
When $N=\mathbb{R}^{n}$, this reduces to $\mathbb{Z} / 2 \mathbb{Z}$-equivariant homotopy classes of maps

$$
M \times M \backslash \Delta \rightarrow S^{n-1}
$$

*isovariant: preimages of fixed points are fixed points

Homotopy theory of diagrams

These are not homotopy classes of maps between spaces! So Gromov's theorem doesn't directly apply.

Definition

Let \mathcal{D} be a small category. A \mathcal{D}-diagram of spaces is a functor $\mathcal{D} \rightarrow$ Top. These map to each other in the obvious way.
E.g., here's (part of) what's preserved in Haefliger's theorem:

Gromov's theorem for diagrams

```
Theorem (M.-Weinberger)
Let \(\underline{X}\) and \(\underline{Y}\) be free* diagrams of simply connected spaces over a finite EI** category \(\mathcal{D}\) such that tensor products of injective
\(\mathbb{Q D}\)-modules are injective. Then the number of homotopy classes of diagram maps \(\underline{X} \rightarrow \underline{Y}\) which are objectwise L-Lipschitz is polynomial in L.
```


Applications:

- Equivariant maps (here \mathcal{D} is the orbit category)
- L-bilipschitz isovariant maps
- L-bilipschitz embeddings in the metastable range (as asserted by Gromov)
*the sort you can do homotopy theory with
**in an EI category, all endomorphisms are automorphisms

What's special about the metastable range?

Two things (apparently coincidentally.)
(1) Generically, there are no triple intersections.
(2) Homotopy classes of isovariant maps $T M \rightarrow T N$ are the same as homotopy classes of bundle monomorphisms $T M \rightarrow T N$.

The second of these is harder to deal with than the first...

The calculus of manifolds

Theorem (Goodwillie-Klein-Weiss)

There is a sequence of functors T^{k} from manifolds to diagrams(-ish) such that, if $n-m \geq 3$, then for every r there is a large enough $k=k(r, m, n)$ such that the map $\operatorname{Emb}(M, N) \rightarrow \operatorname{Map}\left(T^{k} M, T^{k} N\right)$ is r-connected.

This would be just what we need, but the "-ish" includes some tangential information.

Fedor Manin
Counting embeddings

A conjecture

Conjecture (Ferry-Weinberger, 2013)

If M^{m} and N^{n} are (topological or PL) manifolds and $n-m \geq 3$, then the number of isotopy classes of L-bilipschitz embeddings $M \rightarrow N$ is polynomial in L.

Perhaps this can be proven by harnessing the calculus of manifolds in a clever way?

Thank you!

