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Encoding homotopical information

Let X and Y be finite simplicial complexes. . .

Fact

The number of simplicial maps from X to Y is bounded above
by |Y ||X| (exponential in |X|.)

Theorem (Gromov)

Fix a simply connected Y and the homotopy type of X. Then
the number of homotopy classes of simplicial maps X → Y is
a polynomial P (|X|).

(Contrast growth of fundamental groups)

???
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I lied!

Here’s Gromov’s actual theorem*:

Theorem

Let X and Y be compact Riemannian manifolds with boundary,
Y simply connected. Then the number of homotopy classes of
L-Lipschitz maps X → Y is O(Lα), where α depends only on
the rational homotopy of X and Y .

But the first formulation I gave is closely related via. . .

The quantitative simplicial approximation theorem

Any L-Lipschitz map between simplicial complexes X and Y is
close to one which is simplicial on a subdivision of X at scale L.

*may not actually be a theorem of Gromov
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A sketch of the proof of Gromov’s theorem

Let f : X → Y be a map. Two key observations:

Rational homotopy theory gives invariants classifying maps
f : X → Y up to some finite torsion part. These are forms
built from f∗ωi, for some finite set {ωi}, by repeated
multiplication and antidifferentiation.

A coisoperimetric inequality: every exact ω ∈ Ωn(Y )
has an antidifferential α ∈ Ωn−1(Y ) such that
‖α‖∞ ≤ Cn,Y ‖ω‖∞.

Therefore the obstructions classifying an L-Lipschitz map can’t
be more than polynomial in size.
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Isoperimetric duality

The coisoperimetric inequality we want: every exact
ω ∈ Ωn(Y ) has an antidifferential α ∈ Ωn−1(Y ) such that

‖α‖∞ ≤ Cn,Y ‖ω‖∞.

This has a dual isoperimetric inequality: every
boundary T ∈ Nn−1(Y ) has a filling S ∈ Nn(Y ) such that

mass(S) ≤ Cn,Y mass(T ).

This follows from the Federer–Fleming deformation
theorem.

Isoperimetric duality says the two constants are equal.

This is an application of the Hahn–Banach theorem.
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What about embeddings?

Consider embeddings of a manifold M in a manifold N . Such
an embedding can be complicated even if its Lipschitz constant
is small. E.g.:

A tiny but complicated knot in S3

Two linked Sn’s in S2n+1:

What geometric quantities might encapsulate the “complexity”
of embeddings?
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Thick embeddings

If we force our embeddings to have tubular (or regular)
neighborhoods of radius 1/L, that seems to limit the amount of
information. This has not been studied much as far as I know,
except for:

Ropelength and physical knot theory
(many authors)

“Combinatorially” thick embeddings
of simplicial complexes in Rn
(Gromov–Guth)

C2 conditions have a similar effect.
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The bilipschitz constant: a weaker bound

We will say f : X → Y is L-bilipschitz if

1

L
d(x1, x2) ≤ d(f(x1), f(x2)) ≤ Ld(x1, x2).

(Some might call this L2-bilipschitz.) What happens if we
restrict embeddings to be L-bilipschitz?

Links can’t get too close

With knots, though, you can do this:

⇒
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What can we say about bilipschitz embeddings

Mm → Nn?

It depends on codimension and category:

When n−m = 2, there are always knots.

When n/3 & n−m ≥ 3, there are smoothly
knotted spheres in Rn (Haefliger); however,
these are PL unknotted.

So in these two situations, there’s an infinite
number of isotopy classes with the same
bilipschitz constant. On the other hand:

When n−m 6= 2, the number of
topological isotopy classes of embeddings
with bilipschitz constant ≤ L is finite
(Joshua Maher, unpublished thesis)
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Reducing embedding theory to homotopy theory

Theorem (Haefliger)

When 2m > 3(n+ 1), isotopy classes of embeddings Mm → Nn

correspond to homotopy classes of maps
F : M ×M × [0, 1]→ N ×N preserving the following structure:

(E1) F |t is equivariant with respect to the involution
(x, y) 7→ (y, x)

(E2) F |t=1 is isovariant* with respect to this involution

(E3) F |t=0 = f × f for some map f : M → N .

When N = Rn, this reduces to Z/2Z-equivariant homotopy
classes of maps

M ×M \∆→ Sn−1.

*isovariant: preimages of fixed points are fixed points
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Homotopy theory of diagrams

These are not homotopy classes of maps between spaces! So
Gromov’s theorem doesn’t directly apply.

Definition

Let D be a small category. A D−diagram of spaces is a functor
D → Top. These map to each other in the obvious way.

E.g., here’s (part of) what’s preserved in Haefliger’s theorem:

∆

ν∆

∂ν∆

M ×M \ ν∆M × cM

∆× [0, 1]

cM ×M

∆× [0, 1]
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Gromov’s theorem for diagrams

Theorem (M.–Weinberger)

Let X and Y be free* diagrams of simply connected spaces over
a finite EI** category D such that tensor products of injective
QD-modules are injective. Then the number of homotopy
classes of diagram maps X → Y which are objectwise
L-Lipschitz is polynomial in L.

Applications:

Equivariant maps (here D is the orbit category)

L-bilipschitz isovariant maps

L-bilipschitz embeddings in the metastable range (as
asserted by Gromov)

*the sort you can do homotopy theory with
**in an EI category, all endomorphisms are automorphisms
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What’s special about the metastable range?

Two things (apparently coincidentally.)

1 Generically, there are no triple intersections.

2 Homotopy classes of isovariant maps TM → TN are the
same as homotopy classes of bundle monomorphisms
TM → TN .

The second of these is harder to deal with than the first. . .
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The calculus of manifolds

Theorem (Goodwillie–Klein–Weiss)

There is a sequence of functors T k from manifolds to
diagrams(-ish) such that, if n−m ≥ 3, then for every r there is
a large enough k = k(r,m, n) such that the map
Emb(M,N)→ Map(T kM,T kN) is r-connected.

This would be just what we need, but the “-ish” includes some
tangential information.
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A conjecture

Conjecture (Ferry–Weinberger, 2013)

If Mm and Nn are (topological or PL) manifolds and
n−m ≥ 3, then the number of isotopy classes of
L-bilipschitz embeddings M → N is polynomial in L.

Perhaps this can be proven
by harnessing the calculus of
manifolds in a clever way?
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Thank you!
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