ORDINARY FAMILIES OF KLINGEN EISENSTEIN SERIES ON
SYMPLECTIC GROUPS

ZHENG LIU

ABSTRACT. We construct (n 4 1)-variable Hida families of Klingen Eisenstein series on Sp(2n + 2)
for n-variable Hida families on Sp(2n), and relate their images under the Siegel operator to p-
adic L-functions. We also carry out some preliminary calculation on the non-degenerate Fourier
coefficients of the constructed Klingen Eisenstein families.
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1. INTRODUCTION

In his proof of the converse to Herbrand’s Theorem, K. Ribet constructed Selmer classes for odd
powers of Teichmiiller characters via congruences between Eisenstein series and cuspidal modular
forms on GL(2) /o Later, the strategy of showing lower bound for Selmer groups via congruences
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between suitable automorphic forms with reducible and irreducible Galois representations has been
greatly developed, and successfully exploited in the proof of the Iwasawa main conjectures for
totally real fields [MW84, Wil90] and CM fields [HT94, Hsil4], as well as for symmetric square
of elliptic curves over Q [Urb01, Urb06], elliptic curves over Q and over a imaginary quadratic
field [SU14, Wan13].

The semi-simple Galois representation attached to an Eisenstein series is decomposable. Its
congruence with irreducible Galois representations gives rise to nice classes in the first Galois coho-
mology group, and is expected to be closely connected with the “constant terms” of the Eisenstein
series. Meanwhile, the “constant terms” are known to be closely related to special values of L-
functions. In this article, we consider Klingen Eisenstein series attached to cuspidal automorphic
representations generated by holomorphic Siegel modular forms.

Let G'= Sp(2n) /g and G’ = Sp(2n + 2) o The Klingen parabolic subgroup P C G’ consists
of elements of the form

n 1 n 1
a 0 b *\n
* T * * 1 a b

2 L(1) o.
s |1 (¢ 1) e spmye e L)
00 0 z71/1

Its Levi subgroup is isomorphic to G x GL(1) jg. Let 7 C Ag(G(Q)\G(A)) be an irreducible cuspidal
automorphic representation of G(A), and £ : Q*\A* — C* be a Dirichlet character. Given a section

®(s,&) inside the 7m-isotypic part of the space Ip,, (s, &), which is isomorphic to IndIG;;(,‘X) &R,

see §2.1 for the precise definition of Ip_,(s,£)), one defines the Klingen Eisenstein series as
G g

EX (¢, 8(s,€)) = Y 25,99
Y€ Pgr (Q\G'(Q)

Assume that the archimedean component of 7 is isomorphic to the holomorphic discrete series
of weight t = (¢1,...,t,), and suppose that s = sg is a critical point to the left of the center
for the standard L-function L(s,7 x ¢). Then EX!(®(s,¢)) (g’)’szs0 is algebraic after suitable

normalization [Shi00]. Let p be a prime number, and pr : Gal(Q/Q) — GL(2n + 1,Q,) (resp.

pe + Gal(Q/Q) — @; ) be the p-adic Galois representation associated to 7 (resp. &) constructed
in [Art13,CHLN11,Shil1,CH13] (resp. by class field theory). The semi-simple Galois representation
corresponding to EX! (®(s, €)) (¢')] is

s=S0

(1.0.1) pe(s0) @ pr @ pe-1(—50).

Given an algebraic irreducible cuspidal automorphic representation IT of G'(A) whose Hecke eigen-
values are congruent to those of the Klingen Eisenstein series modulo certain power of p, with a
suitably chosen lattice for pry, we have

pelso) x
prn = 0 prx *
0 0 pe-1(—s0)

modulo that power of p. If prr is irreducible (for example if II is stable), then x gives rise to
nontrivial Selmer classes for pr ® pe(so) with Q,/ (’)@p coeflicients. This consideration motivates
the study of the Klingen Eisenstein congruence ideal, which measures the congruences between the
Klingen Eisentein series and cuspidal automorphic forms. Such study for the groups Sp(4), U(2,2),
U(2,1), U(3,1) has played a crucial role in [Urb06,SU14, Hsil4, Wan13].
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In order to show desired properties for the Klingen Eisenstein congruence ideals, it is crucial to
study the p-adic properties of Klingen Eisenstein series, especially to prove: (1) the relation between
its “constant terms” and L-values, (2) its p-adic primitivity after appropriate normalization, (3)
its p-adic interpolatability into p-adic families. We address (1) and (3) here, and carry out some
preliminary computation on the non-degenerate Fourier coefficients which expects to help address
(2).

Assume that p > 3. Fix a positive integer N > 3 prime to p and a sufficiently large finite
extension F' of Q,. For m = n,n + 1, denote by T}, the standard maxinal torus of GL(m) and
we identify T,41 with T, X G,,. A @; -valued character of T;,,(Z,) is called arithmetic if it is a
product of an algebraic character and a finite order character. For an arithmetic character (T, ) of
Tn+1(Zp) = Tn(Zyp) X Z,, we denote by (t, k) = (t1,...,tn) (vesp. (€, x)) its algebraic (resp. finite
order) part. We call (1, k) admissible if it is arithmetic and ¢; > t9 > -+ >t, >k >n+ 1.

Define the m-variable Iwasawa algebra A,, as Op[T;,(1 + pZ,)]. By Hida theory [Hid02], there
is an Op[Ty+1(Zp)]-module M%,Olrd finite free over Ay,41 (resp. Op[T,(Z,)]-module MOGmd finite
free over A,) consisting of cuspidal Siegel modular forms of genus n + 1 (resp. genus n) and tame
level principal level N. By the Hida theory for non-cuspidal Siegel modular forms [LR18], there is
also an Op[Ty41(Zp)]-module Mé,}ord finite free over A,41 consisting of ordinary families of Siegel
modular forms of genus n + 1 and tame principal level IV, which vanish along the strata with cusp
labels of rank > 1 in a toroidal compactification. In addition, there is the following short exact
sequence

Pde

(102) 0— M%,ord — MlG’,ord — @ M%,ord ®(9F[[Tn(Zp)]] OF[[TH(ZP) X Z;;]] — 0.

Le¢y /T (N)
rkL=1

The quotient map Pgee is called the Siegel operator. It generalizes the operator of taking the
constant term of modular forms on GL(2). The set €y//T'¢/(N) parameterizes strata of the minimal
compactification, and each M%prd is isomorphic to M(();,ord' (See (1.0.7) for the definition of the
congruence subgroups of G(Z) and G'(Z) we will use in this article.) The image of Zjeg of a family
in MlG’,ord measures its congruences with cuspidal Hida families. For each L € Cy//T'¢/(N), we
denote by Pyeq 1, the projection of the Siegel operator Pye; to the component indexed by L.
Denote by T%,ord the O[T, (Zy)]-algebra consisting of unramified Hecke operators away from

Np and U,-operators acting on MOGprd. The natural map Spec (T%jord) — Spec (Op[Th(Zy)]) is

called the weight projection map. A point (x, %) is called admissible if (T, ) is admissible with T,
being the projection of z to the weight space. Let € be a geometrically irreducible component of

Spec (']I‘OG ord Qop F ) with function field Fg. Denote by I the integral closure of A, in Fg.

Theorem 1.0.1 (Theorem 2.6.2, Theorem 3.6.1). Assume that p, N > 3, and n is a Dirichlet
character with conductor dividing N. There exists an ordinary family

ggl € Fg @A, MOG,ord ®OF[[Tn(Zp)]] Mé’,ord

which, at an admissible point (x,r) € €(Q,) x Spec (Op[ZX]), specializes (up to an explicit con-
stant) to the automorphic form

Kl
P& B <"(:Dflz,n(3)»§0>

(¢, )

s=n+1—k

PpEG,

if © is classical and the weight projection is étale at x and k(—1) = n(—1). Here &, consists of
an orthogonal basis of algebraic ordinary cuspidal holomorphic Siegel modular forms on G(A) of
3



wetght t,,, nebentypus €, at p and tame level fG,l(N) on which the Hecke algebra acts through the
eigenvalues parameterized by x. The precise formulas for the section @y () , € Ip,,(s,nX) are
given as (2.2.2) and §2.3.

Moreover, the image of the ordinary Klingen family &gl under the Siegel operator is divisible by
the (n+1)-variable p-adic L-function associated to €. More precisely, for the family
(id X Pyeg,1.) <5gl) € M%,ord QOp[Tn(Zp)] M%,ord ROp[T,(Z,)] I [Z,] 1, Fe,
let
(103) sgf\é,)gf)'YNi (Bla /827 fPdeg,L <5§1)> S H% [[Z;)(]] ®Hqg F%’

be the coefficient indexed by (B1,32) € N1 Sym(n,Z):(%92 of its p-adic q-expansion at the cusp
associated to YN 1,7N2 € G(Z/N). Let v; € G'(Z/N) be associated with the stratus L. Then
(1.0.3) vanishes unless v;, € Por(Zy)wpaUp,, (Zy) for all v | N. If nonvanishing, then it satisfies
the interpolation properties of the p-adic L-function for €, i.e. at (x,rk) as above, it takes the value

YN,1,7N, K1
5q£\éxlp N2 (517 B, Pdeg,L (5% )) (‘Ta '%)

:p2”2 (p—1)"vol (fGJ (pN)) (nk)Nn (pGL(l) (V}J))
n2-n n?—n ]
\/jl 2 Q_Zti+ 2 Z Egi\é’xlp (517 ()0) ggi%L)ﬁN,z (627 eGW(SO))
dim (GL(n),L,) & (%)

x Ef (k—n, X I D EL(k—n,mx YD LN (k —nym x Y.

Here Ef (s, axn~ix7Y) (resp. EL(s,mxn~"1x™1)) is the modified Euler factor at p (resp. at infinity)
for our p-adic interpolation, and it aligns with the conjecture of Coates—Perrin-Riou [Coa91] (see
Remarks 3.5.8, 8.5.3 for their explicit formulas). eq denotes the ordinary projector on G, and the
operator W on holomorphic Siegel modular forms is defined as (3.5.19). See also (3.5.10) for the
definition of (pa,par()) : Porwe, Up,, — G x GL(1).

Remark 1.0.2. Compared to [Liul6, Theorem 1.0.1], we do not assume the nontriviality of 7?
(denoted as ¢? loc. cit). Thanks to the assumption N # 1 and our choice of sections at v | NV,
the degenerate Fourier coefficients at the infinity cusp of our Siegel Eisenstein series on G’ vanish
by Proposition 2.4.1, so the issue of the pole of p-adic zeta function does not show up. In fact the
condition ¢? # 0 is also unnecessary loc. cit as long as N # 1. In Proposition 4.4.1 loc. cit, for
¢gX = triv, the pole of the p-adic zeta function is canceled by [] L,(k —n, ¢51X*1).
v|N

The above theorem together with the short exact (1.0.2) reduces proving the divisibility of the
Klingen Eisenstein ideals by the p-adic L-functions to showing the primitivity of &gl. One possible
approach, which has been successfully carreid out in the cases Sp(4) and U(2,2) [Urb06, SU14],
is to show that there does not exist height one prime ideal of I [Z,] that divides simultaneously
the p-adic L-function and all the non-degenerate Fourier coefficients of Sgl. (Strictly speaking, we
need a further normalization so that everything becomes integral and we can discuss divisibility
and primitivity. Such a normalization is related with the congruence of € with other cuspidal Hida
families on GG and can be done by assuming that T%md is Gorenstein in a similar way as in [EHLS16],
but we do not pursue it here.) Therefore, an accurate computation of the non-degenerate Fourier
coefficients of Sggfl is of great interest.

Theorem 1.0.3. Given a € GL(n+1,Af) and 8 € Sym(n +1,Z)%, such that 'a,3'a, € Sym(n +

1,Zy)* and 2%,8'a, € GL(n + 1,7Z,) for all vt Npoo, let 5;7&2)”3, : Ml’,ord — Op[Th41(Zp)] be
4



the map of taking the ('-th coefficient in the p-adic q-expansion at the cusp associated to m(a) =
(8 tagl ) Then for (x,k) as in Theorem 1.0.1 with t, being a scalar weight and a sufficiently large
(with respect to n,x ) integer r, the evaluation of

(id X snf(a) ’ ) (E;I;l> € MDG,Ord o, Iz[Z,)] @1, F

equals

¥ <<Ck7nx Hv\Np UQGW)T ESi ('v fé,gx,n(k -n- 1)) 025 ('7 ¢§ﬂ',u,gz,n) ,¢>
(v, 9)

O

PES,

)

where G denotes the metaplectic group S\f)(2n) See Theorem /.8.1 for the detailed formulas
of the scalar (x), the section f@lwﬁ and the Schwartz function d)gﬁ’,u,zz,n on My n41(Qy). The

quly 0
0 ¢ 'ln

1, o

operator Ug,,» 15 defined as / right translation by( o1 ) (
Sym(n,Zy) "

oXp (D)™ P F 27 [ v o (g0) ™" ol 2"

) do, and cpy, =

By Siegel-Weil formula, the Siegel Eisenstein series on G can be obtained as a theta lift of the
trivial representation on the orthogonal group O(2k —n—1). At the end of §4, we discuss expressing
the product of the Siegel Eisenstein series and the theta series in the above theorem in terms of
theta lift from O(2k). This point of view is more convenient for dealing with general vector weight
at the archimedean place and the place 2 when n is even.

Compared to the construction of Klingen Eisenstein families on unitary groups in [Wanl5], we
have a more refined study on the properties of the constructed families. Firstly, we do not assume
the condition that the nebentypus at p are sufficiently ramified for the evaluations of the “constant
terms” and the non-degenerate Fourier coefficients. (The evaluations for trivial nebentypus are of
more interest and even crucial particularly if the size of the group is not very small.) Secondly, the
archimedean weights are assumed to be scalar in [Wanl15] and we include all vector weights. Our
results rely on a good understanding of Maass—Shimura differential operators and the computation
of archimedean zeta integrals in [Liul9]. Finally, we include a discussion on expressing the local
sections in Theorem 1.0.3 in terms of theta lifts from O(2k), which can be useful for potential
applications as explained in §4.9.

The article is organized as follows. In §2, we construct the Klingen Eisenstein family &gl. The
construction relies on Garrett’s generalization of the doubling method and the p-adic interpola-
tion of p-adic g-expansions of a collection of nice Siegel Eisenstein series on Sp(4n + 2) . Extra
care needs to be taken for selecting the sections at p in order to ensure the nonvanishing of the
ordinary projection of the resulting Klingen Eisenstein series on Sp(2n + 2),p. In §3, we iden-
tify the coefficients of the p-adic g-expansions of Pyee (&Igfl) with p-adic L-functions by computing
their evaluations at admissible points. §§3.2-3.4 reduce the problem to local computations, and 3.5
computes the local integrals place by place. §4 is about computing the non-degenerate Fourier coef-
ficients of specializations of &gl at admissible points. The strategy is to compute the partial Fourier
expansions of the Siegel Eisenstein series on Sp(4n + 2) . After the standard unfolding in §4.1,
involved computation is done in §§4.4-4.7 to work out the precise formulas for local sections which
are crucial for further study of the p-adic properties of the non-degenerate Fourier coefficients.

Notation. We fix an odd prime p and a positive integer N > 3 coprime to p. We also fix an
embedding Q < C and an isomorphism between Q, and C.
5



Fix the standard additive character ey = @), e, : Q\A — C* with local component e, defined

6—27ri{a:}v’ v 7& 00

as ey(z) = J2ria where {x}, is the fractional part of z. All the gamma factors

V=00
appearing in this article are with respect to this fixed additive character, and we omit e, from the
notation for gamma factors.

For a positive integer m, define the algebraic group Sp(2m) over Z as

socom) = {g e cn o (9 )o= (1) )b

The standard Siegel parabolic subgroup @ C Sp(2m) consists of elements whose lower left m x m

d
Ug C Q is identified with Sym(m), the space of symmetric m X m matrices, via

m+1
blocks are 0. The modulus character d¢ is given as dg <g b) = |detal,® . The unipotent radical

1,
§»—>u(<)=<0 f), ¢ € Sym(m),

and the Levi subgroup Mg C @ is identified with GL(n) via

(1.0.4) a —s m(a) = <g ta‘L) , a € GL(m).

For each finite place v of Q, the group Sp(2m,Z,) is a maximal open compact subgroup of
Sp(2m, Q,). For the archimedean place, the maximal compact subgroup

(1.0.5) { (_ab 2) cat+vVbe U(m,R)}

is isomorphic to the rank m definite unitary group over R.

For a finite place v, we fix the Haar measure on Q,, (resp. Sp(2m, Q,)) with Z,, (resp. Sp(2m, Z,))
having volume 1. We take the usual Lebesgue measure for R, and for the group Sp(2m,R),
we take the product measure where the one on the maximal compact subgroup (1.0.5) has to-
tal volume 1 and the one on the upper half space H,, = {z = x + iy € Sym(m,C) : y > 0}
is det(y)™™ ! T[] dw;jdy;;. The Haar measures on A and Sp(2m,A) are obtained by taking

1<i<j<m
products of the local ones.
Let V (resp. V') be a vector space over Q with a fixed basis ey, ..., e, f1,..., fn (vesp. €],... €/, ;,
. . . .. . 1 1
fis+-5 fr41) equipped with the symplectic pairing given by 0 ") (resp. 0 il )
n -1, O —1,41 0
with respect to the fixed basis. Let V' C V' be the 2n-dimensional subspace spanned by €/, ..., €},

f1,-.., [}, with a symplectic pairing induced from that of V. Put W = V @ V” with basis
€Ly ny €yl fioeoy fuy f1s ooy [l and W = VoV with basis eq, ..., en, €], ..., €0, f1,- oy fat1,

fiso- s fryq- The spaces W, W’ are endowed with symplectic pairings induced from those on
vV, V" V.
The following four symplectic groups will be used.
G = Sp(V) = Sp(2n) g G = Sp(V') 2 Sp(2n + 2) g,
H = Sp(W) = Sp(4n)q, H' = Sp(W') = Sp(4n +2) g,

where the isomorphisms are given by the above fixed basis. The Siegel modular forms we are
interested in are on G and the families of Klingen Eisenstein series we are going to construct and
6



study are on G'. The auxiliary groups H, H' appear in the doubling method on which the auxiliary
Siegel Eisenstein series live. We fix the following embeddings

tg:GxG—H LH/:GXG/‘—>H/
al 0 b1 0 a 0 b 0
al bl a9 b2 0 as 0 bg a b a b 0O a 0 b
(Cl d1> x (02 dg) — C1 0 d1 0 ’ (C d> x <C D) — c 0 d 0
0 C9 0 2 0O ¢c 0 0
We will also view G as a subgroup of G’ via the embedding
G— G’
a 0 b 0
(1.0.6) a by, |0 100
c d c 0 d 0
0 0 01

For R = Z,Z,, we denote by Sym(m, R)* the subset of Sym(m, R®Q) consisting of 3’s such that
TrfBs € R for all ¢ € Sym(m, R). We fix the Haar measures on Sym(m, Q,) such that Sym(m,Z,)
has volume 1.

For a positive integer M, we define the following congruence subgroups of Sp(2m, Z).

Lspam)(M) = {g € Sp(2m,Z) : g =12, mod M},

(1.0.7) L
Lspemy,1(M) = g € Sp(2m,Z) : g = R mod M
H

Denote by T,, (resp. T,+1) the standard maximal torus of GL(n) (resp. GL(n + 1)) consisting
of diagonal matrices. By (1.0.4), T}, (resp. T5,+1) can be identified as the standard maximal torus
of G (resp. G'). Via (1.0.6), we view T), as a subgroup of T),4+1 and identify T),11 as G, x T),.

The weight space for p-adic forms on G (resp. G') is

Homgont (Tn(Zp)a@;> (TeSP- Homeont (TnJrl(Zp)a@;))
A point (1) (resp. (1,K) of the weight space is called arithmetic if it is a product of algebraic
character and a finite order character, and we denote its algebraic part as t = (t1,...,t,) € Z"

(resp. (t,k) = Z"*!) and its finite order part as € = (e1,...,e,) (resp. (g %)). An arithmetic point
(T, k) is called admissible if ¢; > -+ >t, > k+1>n+ 1.

2. ORDINARY FAMILIES OF KLINGEN EISENSTEIN SERIES ON Sp(2n + 2)

2.1. The basic setup for Klingen Eisenstein series and Siegel Eisenstein series. We first
recall the definition of Klingen Eisenstein series on G’. Let P be the (standard) Klingen parabolic
subgroup of G’ consisting of elements of the form

n 1 n 1

a 0 b x\n

* T ok ok 1 a b
00 0 z74/1



(This Pgr is the parabolic subgroup of G’ preserving the isoropic subspace space spanned by e/, 41
inside V’). Its Levi subgroup is isomorphic to Sp(2n) x GL(1), and its modulus character is

5PG’ : Pgl(A) — C*
a 0 b x
*x Xk * n
e 0 d o« |l
00 0 27t

Given a Dirichlet character  : Q\A* — C* and a complex number s, define Ip_,(s,&) as the
space of smooth functions

CI)(S7 f) : UPG/ (A) ' MPG/ (Q)\G/(A) — C
such that:

1,
W 06,0 (1)) = €l 00, 0(e) = el B () for al

z € A% and ¢’ € G'(A),

(2) The space spanned by the right translation of Sp(2n + 2, 2) X Kgr0o C G'(A) on ®(s,€) is
finite dimensional, where K¢/ oo C G'(R) is the maximal compact subgroup defined as in
(1.0.5),

b

a0bo0
(3) For any ¢’ € G'(A) the function g = <Z d> — (s, §) <(2 5o 8) g') is a cuspidal auto-
0001
morphic form on G(A).

(Note that unlike the degenerate principal series defined below, the space [ P (8 €) does not fac-
torize to a product of local spaces.)
The Klingen Eisenstein series attached to ®(s,§) € Ip,, (s,§) is defined as

E¥ (g, 2(5,)) = Y. (5,99
1€P6 (@\C'(Q)

The sum converges absolutely for Re(s) > 0.

Next we recall the definition of Siegel Eisenstein series on H'. Let Qg C H' be the standard
Siegel parabolic subgroup (which is the parabolic subgroup preserving the maximal isotropic sub-
space W' inside W’ spanned by ey,...,en, €},...,¢,). Let Ig,,(s,&) be the space consisting of
smooth functions f(s,&) on H'(A) which are K o-finite and satisfy

£(5,€) ((90‘ g) h’) = &(det )| det A3 ) (det A) F(h) = &(det A)| det A F(R).
The Siegel Eisenstein series attached to f(s,§) € Ig,,(s,&) is defined as

S, f(5,0) = Y. f(sO0N).
7€Q (Q\H'(Q)

Again the sum converges absolutely for Re(s) > 0. One defines Siegel Eisenstein series on H in
the same way.



We also recall here the definition of intertwining operators which will be frequently used later.
The intertwining operator on sections for Klingen Eisenstein series is defined as

MPG/ (Sa 5) : IPG/ (Sa 6) — IPG/ (_57 6_1)

(2.1.1) B(s,€) — (Mp,, (5,6)®(s,£)) (9) =

/ &(s, &) (wp,, ug) du.
Ur,, (@\Ur,, (4)

Similarly, the intertwining operator on the degenerate principal series is defined as

MQH/,U(Sag) : IQH/(S7E)”U — IQH/(_S7£_1)”U

2.1.2
(2.12) Fo(5,€) s (Mo, (5, €)fo(5,6)) (9) = / fuls, &) (wo, ug) du.
UQH/(QU)
Here
1, 0 O 0
(o 0 0o -1 (0 —lyp
Yo =0 0 1, 0| Yo = \ 15,44 0 :
0O 1 0 0

2.2. The doubling method formula. In [Gar89], a slight generalization of the classical doubling
method for symplectic groups is introduced and gives rise to an integral representation of the
Klingen Eisenstein series on Sp(2n + 2) in terms of the Siegel Eisenstein series on Sp(4n + 2).

In order to state the integral representation formula, we first define the so-called doubling Siegel
parabolic subgroup. In addition to W/ C W’, we introduce another maximal isotropic subspace

W/<>:span{e1—i—f{,...,en—i—f;,fl—|—e’1,...,fn—|—e;,e;l+1}.

The doubling Siegel parabolic subgroup Q%, is defined as the Siegel parabolic subgroup preserving
W', We have

1, 0 0 0 0 0
0 1, 0 0 0 0
6 o o o1 _|o 0o 10 00
i = S Qu Sy Sw=1, 1, 0 1, 0 0
1, 0 0 0 1, 0
0 0 0 0 1

Given f(s,£) € Ig,, (s,€), define fO(s,€) € Lo (s,€) as

(5, 0)(W) = f(5,)(Sprh'):
For a cuspidal automorphic form ¢ € Ag(G(Q)\G(A)), define the linear functional
L AUH'(Q\H'(A)) — A(G(Q\G'(A))

Fr— Z5(F)(¢) = F(ur(9,9))%(9) dg.

GQ\G(A)
Theorem 2.2.1 ( [Gar89, Theorem on p. 255]). For f(s,§) € Ig,, (s,§) and v € Ao(G(Q)\G(A)),
L (€5, £(5,8) = EX' (4 ®p(s))

where the section @6y, € Ip,(8,§) is given by

(2.2.1)

(2.2.2) Dris6)0(9) = £, (err(9,9"))2(9) dg.
G(A)
9



The doubling method formula reduces the construction of families of Klingen Eisenstein series
on G’ to the selection of families of sections inside the degenerate principal series on H'.

2.3. Our choices of sections. There is a simple strategy for selecting sections from the degen-
erate principal series for p-adic interpolation as explained in [Liul6]. The idea is that, combining
the theory of differential operators and theta correspondence, there are natural choices for the
archimedean place, and the sections at the place p are determined by the archimedean sections
due to the requirement that the Fourier coefficients be p-adically interpolatble. We will not say
more about the strategy here, but simply list our choices of the sections. In the following we
fix a Dirichlet character n : Q*A* — C* with conductor dividing N. For each admissible point

(7, k) € Homeont (Tn(Zp) X Z;j,@;) with nx(—1) = (—1)*, we pick a section f.+(s) € Io,,, (s, nx)-

2.3.1. The unramified places. For v{ Npoo, set

frww(s) = £ (s,m),

the standard unramified section in Ig (s,mx) which takes value 1 on H'(Z,).

2.3.2. The archimedean place. For an integer k, the canonical section of scalar weight & in I, (S, sgn®)
is defined as

5. (s,5gn") (QQ:[ g) = det(€V—=1 4 D) F|det(¢v/—1 + D)~ (stntD),

/\+ _ /\+ . . . . . . !
Let iy = (Mo,z‘j) Lcien1<icntt be the n x (n + 1) matrix with entries inside (LieH’)c whose

(i,7) entry is given as

00 0 Ej
. 0 0 By O _ 1 1 V-1-1
+ , iJ 1 R 2n+1 2n+1

(2.3.1) Foig =JIm g o o o |/ I V2 (ﬁ Lopt1 Lont1 > ’

00 O 0

where Ej; is the n x (n + 1) matrix with 1 as the (7, j)-entry and 0 elsewhere. The ﬁaij’s act on
A(H'(Q)\H'(A)) by differentiating the right translation of H'(R). Their realizations on the Siegel
upper half space are the Maass—Shimura differential operators (see [Liul6, §2.4]).

For admissible (1, k) with nx(—1) = (—1)*, set

n—1 ﬁ+ ti—tj+1 //,Z+ tn—k
s) = det; [ —2— det 0 - fE (s, sgn®),
feae(s) =1 (%) N

where det; denotes the determinant of the upper left j x j block of a matrix.

2.3.3. The places dividing N. We choose our sections at v | Np from a special type of sections,
the so-called “big cell” sections. Given a finite place v and a compactly supported locally constant
function o, on Sym(2n + 1,Q,), the “big cell” section in Ig,, +(s,§) associated to ay is defined as

F(5,€) <<9{ ’B>> [ (det @) det efy T a, (@71D), it det @ £ 0,
| €9 0, if det @ = 0.
10



. Uy up- Uy off-di . . . . .

We write o, = [ 0uPleft voff-diag ) i o is factotizable with respect to the embedding ¢
Oy off-diag  Xv,low-right

in the sense that

n n-+1
S S n _ /
Oy (t§0 §(/) > nt1 = O‘v,up—left(g) * Oy Jow-right (§ ) : av,off—diag(gﬂ)-

Later all the ay,’s we will use are factorizable.

Define the Schwartz function o' by

vol _ vol _
av,up—left - ]lSym(n,Zv)7 O‘v,lovv—right - ]lSym(n+1,NZv)7
1% oo % %
(23.2) o _ R R
Qy'ofi-diag = characteristic function of { xg € My p41(Zy) 10 =~ | . . e mod N .
00 1x

For v | N, we set frxv(s) € Ig,,, »(s,mX) to be
Framw(s) =y (=s —n,n 7! H Yo(—25 — 2n — 1+ 25,2 ?)
(2.3.3)
X MQH/,v( s, M 1X_1)fav (—3777_196_1)7
where the intertwining operator Mg, »(—s, 7 'x™!) is defined in (2.1.2).

Remark 2.3.1. The definition of a°! here is slightly different from its analogue in [Liul6] as an
intertwining operator is involved and we use a different tame level structure I' ; (V) rather than
the principal level structure I'g(IN) used loc. cit. The level structure I'g ;1 (V) is more convenient
for our later computation in §4.6.

: . ~ Q. . Q. _di .
2.3.4. The place p. For arithmetic (T, %), define Qg p = | 0" left L m.pooff-diag with,
- Q1 i poff-diag  Ot,x,p,low-right

n n—1
aT ,K,p,0ff- d1ag(§0) - ]an nt+1(Zp) §0 H ZX det 2§0)) H 5]'5;_:1 (detj(2§0)) enX_l (detn(2§0)) 5
6zg,.l-@,p,up—left - ]lSym(n,Zp)*7 65\1,.Lc,p,lovv—right - ]lSym(n+1,Zp)* .

Let
nale) = | Griep(8) ep(Tr6) dB,
Sym(2n+1,Qp)
the inverse Fourier transform of the above defined @y, 1 p. Set
frmp(s) = fo5r(s,mx).

2.4. The Fourier coefficients of the adelic Siegel Eisenstein series. We write ¢k to denote
an arithmetic element in Homeont (Tn(Zp),@; ) with finite order part ¢ and algebraic part the

scalar weight k. Given 8 € Sym(2n + 1,Q), we consider the Fourier coefficients
(2.4.1)

i 19,

€5 fernls)) = | e (7 5 ) b)) ea-TiB0
Sym(2n+1,Q)\Sym(2n+1,A) 2n41

11



from which we can easily deduce p-adic g-expansions of (2.5.7) for general T, because the action of
~t+
4:% corresponds to the action of algebraic differential operators on global sections of automorphic

sheaves over Siegel varieties for H' [Liul6, Proposition 2.3.1, 2.4.1], and those algebraic differential
operators admit simple formulas on p-adic g-expansions.

We introduce some notation. Let byt ™(s,&) = [ bara(s,€) with
vtNpoo
(2.4.2) brro(s,€) = Ly (s +n+1,6) [ Lo (25 +2n + 2 — 25,€%).
j=1

For an integer m, define the gamma function

T(s) = o H I'(s — l)

Given z = x + v/—1y € Ha, 11, define
-1
(2.4.3) W, . = <Vf'7 zVY ) € H'(R).

0 vy!
n n+1
Proposition 2.4.1. Let 8 = <t§0 g? >n:L— ) € Sym(2n + 1,Q), and hl, = 1y - b}, €
H'(A), k? € [luppoo H'(Zy). The Fourier coefficient @%i(kﬁh’z,fgkﬁ(s)) R vanishes unless
B e N7'Sym(2n + 1,Z)%, and rank(8) > 2n. Moreover, when k:’; = lany2,
(24.4) b (5,100) €3 (h, fern(s))

s=n+1—k
is nonvanishing only when B is non-degenerate. For such 3 € N~ Sym(2n + 1, 7)%,, we have

\/jl(2n+1)k2(2n+1)(k—n)ﬂ-(n-i-l)(2n+1) o )
h 2 €y n+2n det 23 - ey 2n

x [ 7o (det B) @y (8) x(| det 281,)| det 28[5 "

v|N

X H 9w (WX(QU)%I?_(%H_Q)) agk,n,p(ﬁ) (det y)

v|det 23
vfNpoo

(2.4.4) =

(2.4.5)

k
2

ex(TrBz).

Here hq,(28) is the Hasse invariant and y(det 23,€,) is ratio of Weil indices. For our purpose it

suffices to know that they are eight roots of unity. The term aY°(8) is given as

arl(B) = N~D% e, (Tr(2B0.47)1<ij<n) Lsymn,z,)* (B) Lsym(n+1,2,)«(NB') Loy, (N o),

*0 - 00
where Un, = {330 € Mpni1(Zy) : 20 = — <** 00) mod N}, The ggv()’s are polynomials
with coefficients in 7. e

Proof. Since we have chosen the “big cell” section at the place p,

e%i(hlv fern(s)) = H Wﬂw(h,a fern(s))

12



with

0 —19,
Wﬁ,v<h;afgk,n,v(3)) = / fg-kﬁ,v(s) <( ; H) hv) e,(—TrBs) dys.
Sym(2n+1,Qu)

12n+1 S

The proof is about computing Wg ,(hy, ferxv(s)) place by place.

For v = p, an easy computation shows that W3 ,(12n+2, frrp(s)) = Qrkp(B3). Hence the support
of our chosen ar , implies that (’E%i(kzgi - hl,, ferr(8)) vanishes unless rank(3) > 2n. For v = oo
or unramified, the formulae for Wg ., (hy, fi*(s,€)) and Wg (R} o, fX (s,sgn*)) are computed by
Shimura [Shi82, Theorem 4.2] [Shi97, Theorem 13.6, Proposition 14.9]. We omit recalling them here,
but simply mention that Wg , (R, X (s,sgn*)) ‘s:n—i—l—k # 0 only if B is positive semi-definite. One
can look at [LR18, §2.4]) and references there for precise formulas.

For the places dividing N, there is some difference from [Liul6, LR18]. Instead of the “big cell”
section in Iq,, »(s,7X), we have picked the intertwining of the “big cell” section in Ig,, »(—5,17X)-
We need the following proposition.

Proposition 2.4.2. Forv | N and o, € C°(Sym(2n +1,Q,)), we have
e If B is of corank 1, then

W,B,v(14n+27 MQH/,U(Sv f)fav (575)) =0.

e If 3 is non-degenerate, then

WﬁfU (h;7MQH/7U(S)§)fU(87§))) = CU(S,f,,B) ’ Wﬂ,v (hi)v fv(svf))) )
with

(s, €, 8) :hQU(Zﬂ)v(év)2”2+2"'y(det 20,€,)*" &, (det 28) 1| det 28,
-1

n
x| (s =n,&) [ w (25 — 2n — 1+ 24,€)
j=1

Proof. The second statement directly follows from the functional equation for non-degenerate
Fourier coefficients [LR05, (14)] [Swe95, Proposition 4.8].

Assume that 8 € Sym(2n + 1,Q) is of corank 1. By definition,
(2.4.6)

Waw (Lant2, Moy, (s, )£ (5,€))

:/ / fov (wH/ <12n+1 T >wH/ (12n+1 g )) e, (—TrBo) dr do
Sym(2n+1,Q,) J Sym(2n+1,Qy) 0 lop 0 1oyt

:/ / e det )| det 7|, ay (0 — 77 ey (= TrBo) dr do.
Sym(2n+1,Q,) JSym(2n+1,Qy)

We can further assume that 3 = A O) for some 3 = diag(by,...,b,) with by,...b, # 0, and

0 0
that there exists oy, € C°(Sym(2n,Qy)), a2, € C(Q?") and a4, € C2°(Q,) such that

o <<Tl TQ)) = a1,0(7T1) 2,0 (T2) g (74).

‘o T
13



Then by the change of variable 77! — 7,

(2.4.6) = / / &(det(m — 7'27'4_“7'2))] det(m — 7'27'4_“7'2)\ffnflf(7'4)|74\ff"71
Sym(2n+1,Qy) J Sym(2n+1,Qy)
x ey(—TrBio1)a w(01 — T1)og (02 — T2)ou (04 — T4) dT do
-/ / €(dev )] det ;) rafs e (<Tun)
Sym(2n+1,Qy) Y Sym(2n+1,Qy)
X 04171,(0'1 - T+ 7'27'[“7‘2)0(2’1,(02 — 7'2)0(4’1,(04 — T4) dr do

Since 31 is non-degenerate, we can change the order of integration for 71,01 and 79, 09, and get

(2.4.6) = / 06171,(01)61,(—1\1‘,6101) dUl/ f(detﬁ)|detﬁ\f}_”_lev(—Tr,BlTl) dT1
Sym(znv(@v) Sym(2nv@v)

X /an agy(02) doa /v o, {(74)]74];9)_"_10447”(04 —T4) /an eU(Tr,BngletTg) dro dry doy.
By [Swe95, Lemma 4.4] we have
/@v e (bjry '73;) dray = 2,75 2y (b7 e,
Plugging it into the above equality and putting Ag, = (-, det B1)q, (the Hilbert symbol), we get

(246) = / OZLU(O'l)ev(*TI“,Blo'l) d0'1 / f(det Tl)| det T1 |1S)_n_lev(*TI“,317'1) dT1
Sym(2n,Qy) Sym(2n,Qy)

x / az,(0) doy - | det 281 "2 hg, (261)7(2,)*"(det 281, 2,)
Qi

[ [ @l s - marion
Qv JQu

Q4 v [ ” : : : SL(2,Qy s
Now denote by fSEiQ)(S’é)‘ﬂl) the “big cell” section inside IndB(gv? )(g)\ﬁ1| -1%). Then

| 3 mlmli anuton = m)dra = (M-, € A Moo (5,600, Fiis (5:E001)) (1)

= 71}(5 + 1a€>‘,@1)711(_5 + 17§71)‘511) : gﬁ{é)(sag)‘ﬁl)(l?)
=0

which implies that (2.4.6) = 0 and the proposition is proved. ]

Combining this proposition for v | N with the fact Wg p(1ont2, frrp(s)) = Qrkp(B) and the
formulae in [LR18, §2.4]) for v unramified or archimedean finishes the proof of Proposition 2.4.1. O

Next we normalize the Siegel Eisenstein series €5i(-, fr .(s)) so that its restriction to G x G’ at
s =mn+1—kis the image of a geometrically defined nearly holomorphic Siegel modular form &,
under the embedding (2.5.2). We also compute the p-adic g-expanisons of the & ,’s at the infinity
cusp and see that they admit p-adic interpolation.

2.5. p-adic g-expansion of & .
14



2.5.1. Nearly holomorphic Siegel modular forms. Let I' C G(Z) (resp. I' C G'(Z)) be a congruence
subgroup. Let Xg,r (resp. Xg,,,r,) be a smooth toroidal compactification of the Siegel variety
(definite over a number field) of level T" (resp. I").

Let Vi = U,5o Vi (resp. Vix = U,> Vi, )) the locally free sheaf over XGF (resp. X3, 1) of
nearly holomorphic Siegel modular forms of weight ¢ (resp. (¢, k)). There are canonical embeddlngs

(25.1)  H°(XEp, V) — A(GQ\G(A)), H° (ng,p,v(m) — A(C'(Q\G'(A)),

(2.5.2) HO (XE;J’F X XEI,,V;& V(Lk)) — A( >< G/ \G >< G/ ))

as explained at the end of [Liul6, §2.4]. In order to attach an adelic form to a global section of
automorphic bundle defined from an irreducible GL(n)-representation o, one needs to pick a linear
functional on 0. We shall always view algebraic irreducible representations of GL(m) as realized as

(2.5.3) {f :GL(m) = Al: f(gb) =a;'™...a; f(g) for all b= <a1 ) € GL(m)},

am

with ({1, ...,ly) being a dominant weight and GL(m) acting by left inverse translation. By canoni-
cal embedding into adelic forms, we mean the linear functional picked as the evaluation at identity.

2.5.2. p-adic Siegel modular forms and g-expansions. Let F' be a finite extension of Q,, which is
always assumed to be sufficiently large. Let Xg = Xg,Fg(N) (resp. Xg = Xg’/,FG/(N)) be the
smooth toroidal compactification of the Seigel variety over Z[(y,1/N] of principal level N, over
which there is the semi-abelian scheme G — X’ >,ord (resp. G' — X, > Ord) extending the universal
principally polarized abelian scheme. Pick a hft E of a certain power of the Hasse invariant, and
define
¥,ord ¥/ ord /
X5 = XG[1/F] (resp. X" = X5/ [1/E)).

Let X CE; %d (resp. Xg > Ord) be the reduction modulo p™ of X %ord (resp. Xg, ord

dent of the choice of E and is called the ordinary locus.
The Igusa tower over Xg’zi (resp. X, = Ord) is defined as

T = som g.ona (G074, (/0" 2)")

(resp. ng 1= ISOmXE/ ord ((g’[pm])D,ét, (Z/me)n—H)),

G/

), which is indepen-

where the superscript D means the Cartier dual. There is a natural action of GL(n,Z,) (resp.
GL(n+1,Zp)) on 9(;2,m,z (resp. 9”G2,/m 1)- Denote by By, (resp. By11) the standard Borel subgroup
of GL(n) (resp. GL(n + 1)) consistiné; of upper triangular matrices, and by N,, (resp. N,41) the
its unipotent subgroup. Define

JG m,l

>Nn(Zp) >Nn+1(Zp)

0 0
VGml—H <°/G’ml’00‘2 s VG’ml—H <'/G’ml’05702’

m,l

The left hand side of (2.5.1)(2.5.2) embeds into p-adic Siegel modular forms [Liul6, §6.2.1], i.e

H° (Xg Ta(N )mraﬁl(pZ)sz) — <@MVG,m,l> (1/p],
(2.5.4) mod

> . .
H’ (XG" FG/(N)QFG/J(IJZ)’V(Lk:)) — <%11$VG’,WL,I> [1/p}7
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(2.5.5)
H° (Xg,FG(N)nFG,l(N) X Xg,rg/(zv)mrc, oy e V(Lk)) — (@@VG,m,l ®0r VG/,m,z> [1/p].
, e

For each yv € G(Z/N) and vy € G'(Z/N), by evaluating the elements in V;,,; and V ; at the
Mumford object, one defines the (p-adic) g-expansion maps

Eg-]\éxp : &gnh?nj VG,m,l — OFHNil Sym(”? Z);OH
extp B0 i Ve g < Op ([N~} Sym(n + 1, Z)%,]]
m

and

(2.5.6) Eg_J\ég)N : @MVG,m,l Rop VG”,m,l — OF[[N_I Sym(n, Z)*ZO D Nt Sym(n + 1, Z);OH
m

The injectivity follows from the irreducibility of the Igusa tower [FC90, V.7] [Hid02, Theorem 3.1].

2.5.3. Defining the &, ’s. Now we normalize the Siegel Eisenstein series as

i Ibn—l—l(n + 1) Npoo Si
2.5.7) €S f) = by (s,mx) €7 (- fa
( ) (7f1, ) \/j1(2n+1)k2(2n+1)(k—n)ﬂ(n+1)(2n+1) H (5,m%) ( fx, (5))

s=n+1—k ’

It is a standard fact that the g-expansions of nearly holomorphic Siegel modular (as global sections
over Siegel varieties) can be computed in terms of the Fourier coefficients of their embeddings into
the space of adelic automorphic forms. From Proposition 2.4.1 plus the g-expansion principle and
the correspondence between algebraic differential operators and the Lie algebra action, we deduce
that the automorphic form

(2.5.8) E (e fem) e
belongs to the image of the embedding (2.5.2).
For admissible (1, k) with k(—1) = n(—1), we define
0= b3l
Erw € H (XG,FG(N)mFG,l(pl) X XG’,FG/(N)OFG/J(ply Vi V(t,k))
as the element whose image under (2.5.2) equals (2.5.8). We will also view & as an element in

(%iLnligVG,m,l R0y Vé/,rn,l) [1/p] via the embedding (2.5.5).

m ]

2.5.4. The (p-adic) q-expansion of Er . From Proposition 2.4.1 on the Fourier coefficents of the
Siegel Eisenstein series @%i(hz, fg.kﬁ(s))‘ - the same argument as in [Liul6, Proposition
s=n+1—

4.4.1] gives the following proposition on the (p-adic) g-expansions of & .
Proposition 2.5.1. For (8,8') € N~!Sym(n, Z)5,®N ! Sym(n+1,Z)% and (yn,vy) € G(Z/N)x
G'(Z/N), let egf\ég)}v (8,8, Ex) denote the coefficient indexed by (B, 8') in the image of Ex, under

the q-expansion map (2.5.6). Then ng\é,’%;" (ﬂ,ﬁ’,glﬁ) vanishes unless B > 0 and rank(f') > n. If
YN =N = 1, the coefficient (B, B, Ex,) vanishes unless 8,5' > 0 and for such (B, 8") we have

(259) E;Zéxp (57 /Bla EI,N) = Z CLN(B)a

ﬂ:(tgo g(,) ) €N~1Sym(2n+1,2)%
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with
cor(B) =[] ho, (28)7(80) %" 72"y (det 28 - 8,)*" 1, (det B) G2 (B)

v|N
x&(!det2ﬁ|v)|det2ﬂ|;\7n*1 H 98w (U(%)K(qv)q;?n_2)
(2510) v| det(28)
vINpoo
n—1
x anx det;((260)) [ tjm;hs (det;(260)) Tar™" (detn(260)) -
j=1 =1

2.6. Construction of the ordinary family of Klingen Eisenstein series.

2.6.1. Recalling some Hida theory. As our goal is to construct and study p-adic families of Klingen
Eisenstein series, the usual Hida theory for cuspidal Siegel modular form [Hid02] [Pil12] does not
suffice for our purpose. We need the Hida theory for Siegel modular forms vanishing along the
strata with cusp labels of rank > 1 as developed in [LR18]. We briefly recall some notation and
facts loc. cit.. o ord

,or

There is a stratification of the (partial) toroidal compactification X Gy indexed by cotorsion free

isotropic Z-submodules of V), where Vi C V' is the Z-lattice spanned by €},... €}, 1, f1,-.., fri1-
(Here we do not need the finer stratiﬁcation indexed by cones in the polyhedral cone decompo-

sition.) The union of all the strata indexed by the Z-submodules of rank strictly larger than 1

>/ ord

is a closed subscheme in X G'm and we denote the corresponding ideal sheaf by Zt,, . Write
X )

G m
Jmi ./G, il Xg, ©rd for the projection from the Igusa tower to the ordinary locus of Siegel
variety. The space of p-adic Siegel modular forms vanishing along the strata with cusp labels of
rank > 1 is defined as

1 0 1 Nn+1(Zp)
*
Ve i = H (T nis i Zh st ona
k) ) k) El XG’ym

5 {Vé/ — 11 h VGll 1
Il

which are natural Op[Ty,41(Zp)]-modules.
There are Up-operators acting on 9 preserving the subspace V%, [LR18, §1.9]. According

o [LR18, Theorem 1.3.1], there exists an ordinary projector eqr = (eG/)2 on 'Vcl;, constructed as
limit of powers of U,-operators. Define
({Vé’,ord)* = Homg,, (e Vi, Qp/Zy) , MIG, ord = Homyp, ((‘Vé/’ord)* ,An+1> ,

where Ay y1 = Op[[Th+1(1+pZy)]]. Both (‘Vé, and MG, ord are OFr|[Th+1(Zp)]]-modules, and
they are free of finite rank as A, i-modules. If P, is the ideal attached to an admissible point
(T,k) € Homeont (TnH(Zp),@; ), then there is the Hecke-equivariant embedding

(2.6.1)
. !
llﬂ 60/H0 (XG'IGI(N)OFG/J(Z’Z)’ V( k) ® I;(
l

Jord

), (lmlimeVo () 177

— Mé’,ord ® OF[[TnH(Zp)]]/PmIv

G/ L (NN 4 (PY)

where the subscript (, means the nebentypus at p.
Replacing G’ with G and 1 with 0, we define VGOm b ‘Vg, the space of cuspidal p-adic Siegel
modular forms of genus n. The cuspidal Hida theory indicates the existence of ordinary projectors

*
and analogous properties as above for ('Vg 0rd> , M% ord-
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Now we define the space which our later constructed measures take values in. Let
VO,LA C @@Vg,m,l ®(’)F Vé”,m,l
m 1

be the subspace annihilated by vy ® 1 — 1 ® (v,1) for all v € T,,(Z,), which admits a natural
OFr|[Th+1(Zy)]]-module structure. Put

1,A
V071

ord T (e X eG’)VOJ’A'

i
Denote by Meas (Tn(Zp) X Ly, V;Or’j’A> the subspace of Meas (Tn(Zp) X Ly, V;%’A> consisting of

measures f satisfying
Oar,amansy) ¥ 1= diag(an, ..., an, any1) - p, (a1, ... an, ant1) € Tn(Zyp) % Z;,

where 04, an.a,.1) 15 the measure in Meas (Tn(Zp) X Ly (’)F) sending a continuous function to
its value at (aq,...,an,ant+1), and

ord

«: Meas (Tn(Zy) x LS, OF) x Meas (Tn(zp) x L, VO’I’A> s Meas (Tn(zp) < L), VOQQ’A)

is the convolution of measures on abelian groups.
The canonical pairing

Vo™ X (Wona)” % (Vrona)”) — O

induces the morphism of Op[[T},+1(Zp)]]-modules

i
k) ’A
(2.6.2) D2 : Meas (Tn(zp) X LY, Voo ) — M ord @O ([1(2,)] ME ords

such that the following diagram commutes

] A
0,1,A N
Meas (Tn(Zp) X Ly, Vo ) = M@ rd O (T0 (2,)]) M ord

Ik, T
MHan(Zp)XZ; (Iv”i) d,U, J{

tim limy (V2,,,,[7] 90, €V (. 9)])

m ]

where the specialization map 4, 1 is defined by mod Py r and the isomorphism in (2.6.1).

2.6.2. Formulae for the adelic U,-operators. Via the embedding of (2.5.1) and (2.5.4), the action
of the Up-operators on the space of p-adic Siegel modular forms induces a U,-action on the au-
tomorphic forms on G (resp. G’) which belong to the image of (2.5.1) for some ¢, k. This action
admits the following formulae.

Suppose that ¢’ (resp. ¢) is a nearly holomorphic form of weight (¢, k) (resp. t). Given a
decreasing n+1-tuple (resp. n-tuple) of positive integers b’ = (b, ...,b, ;) (resp. b= (b1,...,bn)),
the action of the Uy-operator U,y (vesp. Up,p) on ¢ (resp. ¢) is

(Upy#') (g') = plED 26 ¥) / o(g'up?) du
UBG/ (ZP)
(reSp‘ (Upse) (g) = pltH2vet) / o(gup”) du
UBG (ZP)
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a b
0 9d
and Up,, is its unipotent radical. Similar definition applies to Bg, Up,. The weight

Here B¢y is the standard Borel subgroup of G’ consisting of < € G’ with a upper triangular

2pcre=(nN,n—2,...,—n) (resp. 2pgec=(n—1,n—3,...,—n+1))
is the sum of compact roots of Lie G’ (resp. Lie G), and

= diag(pbl7 o phert pTh ,p*b"“) (resp. = diag(pbl, ooptrpTh ,p*b")).
Up to scalar the operator is purely local, but the normalization crucially depends on the archimedean

weight of the automorphic form.

2.6.3. The ordinary family Eorq on G x G'. Tt follows from the vanishing of the coefficients indexed
by (3, 8’) with rank(3) < n or rank(8’) < n in the g-expansion of &, at all p-adic cusps that

Exw € @@V&ml ] ®0p Vi (T, )] € VOLA,
m 1
Proposition 2.6.1. There exists an ordinary family Eora € MG ora @0 ([T, (2,)) My ora Such that

(2.6.3) sen(Eona) {(6@ x e )exw, if (T,K) is admissible and nx(—1) = (=1)*,
-0. T,k\Cord) =

0, if n(=1) # r(=1),
where & . 1s the p-adic Siegel modular form defined in §2.5.3.

Proof. First, a simple examination of the terms in (2.5.10) plus the theorem on the existence of
Kubota—Leopoldt p-adic L-functions [Hid93, Theorem 4.4.1] verifies the existence of
ji q-exp € Meas (Tn(Zy) x L, Op[N~' Sym(n, Z)5o & N~" Sym(n + 1,Z)%])

with properties

/ (t,x)d egexp (Ex) s if (T, %) is admissible and 7y (—1) = (~1)¥,
T,K)GUE g-exp = a .
T (Zp) X ZX e 0, if n(—1) # r(-1).

The p-adic density of admissible points implies that the measure pig 4exp takes values inside the
subspace of Or[N~! Sym(n, Z)%0® N=1Sym(n +1, Z)%,] consisting of the g-expansions of p-adic
forms. Hence, there exists pug € Meas (Tn(Zp) X Z;,VO’LA)h such that

E}Iitlaxp (Nc‘:) = K& g-exp-

Define the ordinary family £ € M(();,ord QO p ([T (Zp)]] MlG”,ord as

Eord = P2 ((e X e'),ug) )
It is easily checked that the specializations of Eyq satisfy (2.6.3). O

2.6.4. Projecting Eorq to € on the first factor. Denote by TY , the Op[T,,(Z,)]-algebra generated by

T
the unramified Hecke operators away from Np and the U,-operators acting on MOGmd. The algebra
’]I‘é\id is reduced and finite torsion free over A,. Let € be a geometrically irreduible component
Spec (’]I‘gd ®op F ) with function field Fg. Define lg as the integral closure of A,, in Fg. Attached

to €, there is a homomorphism A\g : ng — g of A,-algebras, and an isomorphism of Fg-algebras
T4 ®, Fs = Fg ® Rg

such that the projection onto the first factor coincides with Ag. Define 1¢ € ng ®a,, Fe to be the
element corresponding to (1,0) € Fg @ Rg.
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Define the (n + 1)-variable ordinary family of Klingen Eisenstein series attached to € as
E¢' = (Lg x 1) Eora € Fo @6, M 0ra RO p 10 (2] M 0rd-

From the construction of 5%;1 and the doubling method formula recorded in Theorem 2.2.1, we
deduce the following theorem.

Theorem 2.6.2. There exists an ordinary family Egl € Fg®a, M%?Ord RO [Tn(Zp)] ./\/lé, ord Whose
specialization at (x, k) € €(Q,) x Homeont (Z;,@;) satisfies:

o Ifn # k(—1), then the specialization is 0.
o If (k,T,) is admissible with n = k(—1), and the weight projection is étale at x, then EXY(x, k) is
the p-adic form attached to the Klingen Fisenstein series

Tons1(n + 1) by?™ (s, nx) p® B (" ‘I’f%,,{(s)#p)
/=12 Dk (2n41) (k—n) o (n+1) (2n+1) (0, 9)

9

PE€Gs s=n+1—k

where Qg (s)p € Ip,, (s,mx) is defined from fr x(s) and ¢ as (2.2.2), and &, consists of an
orthogonal basis of the space spanned by cuspidal ordinary holomorphic Siegel modular forms
on G(A) of weight t, and tame level I'c1(N) on which the Hecke operators act through the
ergensystem parameterized by x.

Note that although we construct the family &gl inside the space of Hida families of tame principal
level N, our choice of sections frx(s) in fact implies that the specializations are of tame level
Lgi(N) x TGP (N), where TP (N) = {g € G'(Z) : g € Tgr 1 (N)}-

In order to apply the above constructed Klingen family &gl to study the Klingen Eisenstein
congruence ideal for G’, one needs very precise information on its image under the map the Siegel
operator Pyeq, as well as its non-degenerate Fourier coefficients. We discuss these two problems in
the next two sections.

3. THE IMAGE OF THE KLINGEN EISENSTEIN FAMILY UNDER THE SIEGEL OPERATOR

3.1. The Siegel operator and the short exact sequence. According to the Hida theory for
non-cuspidal Siegel modular forms established in [LR18, Theorem 1.3.1], there is a short exact
sequence

Pdeg

(3.1.1) 0— M g — Mo B Mo Ropiraz, OFlTn(Zy) x Z5] — 0.

Le€y /T i (N)
rkL=1
Here €y stands for the set of cotorsion free isotropic Z-submodules of V{,. There is a natural G(Z)-
action on it. The space M%,ord is isomorphic to M% ord- This short exact sequence is sometimes
called the fundamental exact sequence in the study of Eisenstein congruences. If A is an eigensystem
valued in I, of the Hecke algebra acting on ./\/l%;,prd, and if F € .MlG,md QO p[Tni1(Z,)]Ir 1S @ primitive
eigenfamily for A, then the image of F under the Siegel operator measures the congruences between
A and cuspidal Hecke eigensystems.
We define the following Siegel operator

0 1 0 0
Pacg : MG ordP0s [Tz IME od — P MG 0ra®0uT 2, 1M Y 0rd @0 (12,1 OF [Tn(Zp) X 2]
LEQ:V//FG/ (N)
rkL=1
as the identity (on the first factor) tensored with the quotient map in (3.1.1) (by abuse of notation
we denote this operator still by Pgeg).
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3.2. The g-expansions of Py, (Egl) and p-adic L-functions for €. As explained in [Liul6,
§6.1.5], for B € N~1'Sym(n,Z)%, and v € G(Z/N) (resp. B € N~ !'Sym(n + 1,Z)%, and
Yn € G'(Z/N)) there is the Op[T,(Zp)]-linear (resp. Op[Z, x Ty, (Zp)]-linear) map of taking
the coefficient indexed by 3 (resp. 4') in the p-adic g-expansion at the cusp indexed by vy (resp.
W)

(821) &p(Br) : M ord — Or[Tn(Z)], (resp. epep(8,) : My g — Orl[Tsn (Z,)]).
We denote by

YN 7’73\]

€g-exp (Ba B,a ) : M%’,ord ®(9F[[Tn(Zp)]] Mé",ord — OF [[Tn(Zp)]]

the map combining the ones in (3.2.1). Similarly, for 81,82 € N~ Sym(n,Z)%, and vn1,7n2 €
G(Z/N) we have the map

gy V2 (B, Ba, ) - M%,ord QOp[Th(Zp)] M%,ord — Op[Tn(Zp)].

Given L € &y /T(N) of rank 1, we fix a basis of L /L so that we can define the g-expansion
map for MJ _ like (3.2.1). Take 7}, € G'(Z) such that the basis

~ ~ ry ry ! ! ! /
(61’ c '76n+1a f17 AR fn+1)7L - (617 . "en—i-l’flv . "fn—i-l)
satisfies that €], spans L, and €|,...,€}, f{,..., f;, mod L is our fixed basis of L+/L. These

1, 0 0 =
properties determines v, up to left multiplication by an element in G’(Z) of the form < 0 iol 1, x ) .

0 0 0 +1
Define

Ly, G(Z) — G/(Z
a b A
c d YL

Proposition 3.2.1. Let Pyeq,1, be the projection to the direct summand indexed by L in the right
most term in (3.1.1). For By, 82 € N~ Sym(n,Z)%, and yn1,vn2 € G(Z/N), we have the follow-
ing commutative diagram

o0 o8 —
O O = O
oo
o o O

Pdeg, L
M ord OwTn()] M ord ——— M ord @0 p[10(2,)] MY ord @0r[Tn(z,)] OF[Tn(Zy) X ZX] -

YN,1,YN,2 .
a;{g),(lpva<’YN,2) <,81,<602 8)7 ) qu-exp (B1,B2,")

Or[To(Zy) x 2]

Therefore, in order to detect information on Pyee (&gl), it suffices to look at egf\é;%” (51, (%2 8) , Egl)
for all vy € G(Z/N), vy € G'(Z/N) and B, 2 € N~ Sym(n,Z)%,. The rest of this section is
devoted to prove Theorem 3.6.1, which essentially says that the image under the Siegel operator of
our constructed family &gl is the p-adic L-function attached to €.

3.3. The degenerate coefficients in the g-expansions. We deduce information on the degen-
erate coefficient E:]Y_Ae[;%]v (51, (502 8) ,Eéfl) by computing the (%2 8)—th Fourier coefficient of the Siegel
modular form

(3.3.1) Zs (Q?Si(» fz,n)bxcf)
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for admissible (T, k). For given 8 € N~ Sym(n, 7)%y, we compute the Fourier coefficient

EX o (9?\/9;'007(I)ﬁ B ) —/ EX! (u(§)gf\fgé>o P (s )eA (—Tr(ﬁ O)g) ds,
(60) 2 ) T a1, 0\4) SRS 00

where gy € [[, v G'(Qv), 9., € Q&(R) is the element attached to z' € H,y1 in the same
1n+1 S

way as (2.4.3), u(s) = ( o 1n+1)’ and @y (o), € Ip,(s,mx) is the section attached to our

chosen section fr.(s) € Ig,,(s,n7x) and a cuspidal Siegel modular ¢ € 7 as in (2.2.2). It follows
from [MgW94, I1.1.7] that
(3.3.2)

Bl oy (6 8(5:)) = /S o (2(5,€) + Mp,, (5,6)2(5,€) ) (<1n0+1 (56) ) g'> ex (~Txfs) ds

1n+1
The proof of Theorem 3.6.1 reduces to computing the right hand side of (3.3.2) for ¢’ = gf\,g'z,7OO
and ®(s,§) = @y (), as above.

3.4. The vanishing of the first term in (3.3.2).

Proposition 3.4.1. By our choice of frx(s) € Ig,, (s,1x), for gy € [Tow G'(Qyp) and 2’ € H,yq,

0
D In+ (0 0) > ING OO) ep (—TrBs) ds = 0.
/Sym(n,Q\A) Jarlohe << 0 1ot NI ( )

Proof. It suffices to show that the projection to G'(Q,) of the support of ® fen(s),e intersects trivially
with Q¢ (Qp), and this will be implied by that the support of fr. ,(s) intersects trivially with

St v (G(Qy) x Qcr(Qy) becanse
B = [ Fenls) (St (0.) 9lg) do.
GQ\G(A)
The lower left (2n + 1) x (2n + 1) block of

0 b 0
1 N a 0 b _fa b\ , (a a
SH,(LH’(Q,Q))— c (an)a d (1n0)b ) g_<C d)g —<0 0)7
(g)a 0 (G)b
is not invertible. By definition the support of fr ., (s) lies inside the “big cell”, so its intersection
with S5 - e (G(Qp) x Qe (Qp)) is empty. O

o Q

3.5. Computing Mp,, (5,7x) P, . (s)¢

3.5.1. The unramified places. At v { Npoo, we have chosen fr . ,(s) € Ig,, (s,7x) to be the standard
unramified section and we assume that ¢ € 7 is fixed by G(Z,). Hence ®; (), is spherical at
v 1 Npoo.

Before moving on, We introduce some notation. For f(s,§) € Ig,,+(s,§) and g, € G'(Qy), we

define the operator T, (SE : Ao (G(Q)\G(A)) — Ag(G(Q)\G(A) as

(3.5.1) (va(’;?g ,g,so (91) / / §) (11 (9o, wrg ugy)) ©(9190) dgo du,
v UP /(Q’U Qv



which can be viewed as a combination of the doubling zeta integral and the intertwining operator.
Similarly as (2.4.2), we define

2 1
bH,v<s,s>—Lv<s+ " ,g)HL 25+ 20+ 1 2j,€%)

7j=1

and it is easily checked that bp (s + %, §) =bur ,(s,8).

Proposition 3.5.1. For giy = ®g, € [[, |y G'(Quv) and g1 € G(A), we have

N 1 -
(MPG,(s, nX)q)fLK(s),cp) (g1 9%) =bp" (s + 5.x) T LNP® (s, x nx)

2

Mp Mp Mp

(el (el (el 9

XN T S0 tomia L) 20mge L e o), % | (91):
v|N

Here gV = (1 1") g1 (1 1”) is the MVW involution of g1 € G(A).
Proof. Tt follows from the doubling method [Gar84, PSR87] that for g1, ¢ P gnpee € G(A),

/ £0 (5,10 (111 (67 Grpoos 1) Pg) dg VP>
G(ANp)

= F2e oo (5:1X) (11 (9pocs 9v)) /G(AN IT 76+ mx) (e (9™, 120)) (g7 9) dg
poo
) viNpoo

1
N — _
=" (s 5o m) T LN (s o+ L X X)) oo (5:7%) (urrr (9vpoc: 9ly)) #(9Y),

Then by the definition of ®;_, (), € Ip,, (s,1x) as in (2.2.2), we get
(3.5.2)

1 _
D, (9)p(g19N) = Uiy (55, m0) TP (41, mxap) /G . )ffm,zvpoo(smx) (e (g, 9v)) P97 9) dg
Npoo

Next, by [Shal0O, Proposition 4.3.1] we have

LAP (s, X 1)
LNPo(s+ 1,7 X nx

(MP]YGP,OO (37 nX)q)fg,x(s)m) (glgN) ) (I)fg,n(s),ga (glgkf)v

which combining with (3.5.2) proves the proposition. O

3.5.2. The archimedean place.

Proposition 3.5.2. Assumed that m = Dy and ¢ € 7 is holomorphic of weight t. Then

TMPG’ . B \/j1(2”+1)k2(2”+1)(k?—n)ﬂ.(n—i-l)(2n+1)
Srmoo () Lans2¥ oy g T Loptr(n+1)
n2-n 2
2nk+ _  n?-n
-1 7 9= 2 tjt
X\/i 2 Eo_o(n+17k,77><’l’]x)¢,

dim(GL(n), ?)

where dim(GL(n), t) is the dimension of the irreducible algebraic representation of GL(n) of highest
weight t, and E_(s,mxnx) is the modified archimedean Euler factor conjectured by Coates—Perrin-
Riou for p-adic interpolations [Coa91].
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Remark 3.5.3. According to [Coa91], the modified archimedean Euler factor for p-adic interpolation
of critical values of L(s, 7 x nx) to the left (resp. right) of the center is

n
/=1
Ey(s,mxny) =977 [[Tels +t5 —j)
7=1
n

m/=1 FR
(resp. EL(s,m x nx) = ¢e° 2 FRl—s H (s+t;—17)),

where I'c(s) = 2(2m) *T'(s), Tr = 7~ */T (3).

Before starting proving this proposition, we show a proposition in the flavor of functional equa-
tions. For fy(s,§) € Ig,, (s,§) and g, € G'(Qy), define the operator

Tt (6.9, - Ao(GQNG(A)) — Ao(G(QN\G(A))

¢+ (Tp,(s.6).9,%0) (91) = /G(Q )ff(s,f) (et (9vs 90)) ©(9190) dgo.

Proposition 3.5.4. For ¢ € w and a place v, we have

-1
Mp, r, 1 7
Tt 5009,9 = — X&) Thg,, ((56)fu(5.6).0, P

where

-1
n

(353) Fv (S—;,W,f) :ﬂ-v(_l)fyv (S,?TX{) T (S—n,f)H’YU (25—2n_1+2j7§2)

Proof. We first show that for all K’ € H'(Q,), the function

3.5.4
( ) h — fl?(s,g) (LH/(lzn,pr,u)SH/hh') du
UPG,(@U)
1 moo A B
belongs to Ig, (s — 3,€). For u = 8”” é{g/tffy € Uy (q,) and qm = <0 tA—1> € Qu(Qy),
we have
1, 0 00 0 0
0 1, 0:0 O Y
1 0 0 0:0 O -1
SH/ LH/(]-QnwaG/u)SH/ == 7707767 7073 *1;,/* 70777::& - -
0 0 0:0 1, -z
by 1 0 % z+'y
1, 0 0.0 O O 1, O O 0 O 0
0 1, —-y:0 0 O 0 1, 0:0 O 0
_ (.o 0 1 0 0 0y 0 0 080 0 - -1
a 0 0 0:1, 0 O 0 0 0:1, O —y ’
0 0 0:0 1, 0 0O 0 0:0 1, —x
0 0 0:0 %y 1 o 110 0 z4+'wy+lyz



and

1, 0 0:0 0 0
0 1, —y: 0 0 0 A —-AB(Y)! B 0
0 0 1:0 0 O 0 1 : 0 0
-1 — e _ o ___Z__Z_ e . = —
0 0 0:0 1, 0 0 0 i(w=)B 1
0 0 0:0 1
1o, 0 0 0
o et S
0 01! 1y, —*A (5
(y@)A 11 0 z+y+yz+ (ye)BA(Y)

Therefore,

£(5,€) (vrr (Qom, wpg, uw) Serqul’) du
UPGI(Q’U)

=¢(det A)| det A / ( )f?(s,@ (tr(Lan, wpy, u)Sy/k) du,
UPG’ Qv

and the function (3.5.4) belongs to Ig,, v(s — %, ¢). Now applying the functional equation for the
local doubling zeta integrals [LRO5, (19)(25)], we get
(3.5.5)

Iy (3 % f) (T]]c\:[( £).9) W) (91)

/ / / £8(5,€) (err(L2n, wp ) - Serwg,ui Syt -t (g, 9)) ©(g190) du duy dg,
G(Qv UH(QU UP @v

/ / / (LH/(lgn,pr,)wQH- éi{Sﬁ}LH/(lgn,u)SH/wQHul-SI}}LH/(gv,g;)>
G(Qu) JUR(Qy) UP (Qv)

(P(glgv) du duy dgv-

The formula (3.5.3) for T', (s — 1,7, €) is given in [LRO5, (14)(19)(25)], where for determining the
factor ¢, (s, &, A), one can use the formulas in [Swe95, Proposition 4.8] for finite places and compute
by definition with formulas in [Shi82] for the archimedean place.

Since
1, 0 0:0 0 0 1, 0 0:0 0 y
0 1, 0:0 0 y 0 1, 0:0 0 T
1 e 0 2 110 % z+%by 0 % 1'% % z+%y
Sorl-—--2 -4 e Spwg, = |-+ - 2% -+ -2 T L ,
0 0 0:1, O 0 0 0 0:1, 0 0
o 0 0:0 1, -z 0O 0 0:0 1, y
0 0 0:0 0 1 0 0 00 O 1
we obtain

(3.5.5) /GQ / v(s,i) (wq,, v - Sgrer (g, 95)) ©(9190) du'dg,

Lo, il 101 00 0) 0

- <TMQH/7U(57§)fv(87§)7g'{1(p) (gl)
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M
Proof of Proposition 3.5.2. First we observe that T TPG' ().9"

z',00

@ is a multiple of @, because it lies
inside 7, and by definition of fr x ~, it is of the same weight as . Hence it suffices to compute the

. Mp, _
inner product Tf;,m,oo(S),g’, D, ).

It follows from [Shi82, (1.31)(4.34K)] and the definition of fr . (s) € Ig,, (s, sgn”) that

(356) MQH’700(87 Sgnk‘)fz7ﬁ700(8) = CH/J{:(S) fI,H,OO(_S)
with

(3.5.7)

crpp(s) = V=IO TIE g@naD)(1=s) f(nt1)2n+1) Taopi1(s)

Tont1 (3(s+n+1)+5)Tonpr (3(s+n+1)— &)

By Proposition 3.5.4,

Mp,, — —
<Tf1,mio(8)712n+280’ s0> - <TMQH/,oo(Sngnk)an,oo(3)»12n+280’ SO>

1
— =T |s—z,mX 77X> -
(¢, P) = ( 2 {0, )
]. -1 <Tf1,m,oo(_5)712n+2¢7 SO>
= FOO S— -, T XnNX CH’,k(S) —
(3.5.8) 2 (. @)
1 - (Tys, _rpPoe)
1 -1 Zoo (fE _(—s+ 1), 0,0
e (S T 77X> crr i (s)— Usinool ) 2),
(o)

where the operator Tpn _ (_, is defined as in [Liul6, §4.1] and its connection with the standard

doubling zeta integral Z,, (with definition recalled loc. cit) is obvious by definition. Plugging the
formula for Z, [Liul9, Theorem 2.4.1] into (3.5.8) proves the proposition.
O

3.5.3. The places dividing N. For a finite place v, we consider the “big cell” (with respect to the
Klingen parabolic) in G,

a; ag bl bg
3.5.9 Powp Up, =<4 =9 ™
( ) G'wWpLUP, g G ¢ D Do
3 €4 03 04

€ G ey € GL(1)

=3 =3



By the decomposition

a — OQCZIC?, 0 bp— CIQCZ103 0 1, 0 0 (%3 — t03ttzlta4)t4
g = 0 1 0 0 az —agc;teg Tt by —agc; o3 ay
¢1—cocgics 0 D5 —cocg 03 0 0 0 1, (—tag + fezte, May) ey
0 0 0 1 0 0 0 4
1, 0 0 0 I, 0 0  fogle!
L0 00 1) gt 1 oGy ol
0 01, O 0 0 1, —filt]’
0 1 0 O 0 0 0 1

we define the map
(3.5.10)
(PG Pary pu) : Perwp, Up,, — G x GL(1) x Upy,
1, 0 0 ‘fogl?

-1 -1
/ s ap—azey ¢z bi—azc, 03 o les 1etos o to
g ( -1 -1 , €4, 43 4.9 T4 fl
€1—C2¢, €3 01—C2C, 03 0 0 1, —tC3°c4
0O 0 O 1

Proposition 3.5.5. For v | N and g, € G'(Qy), we have
1,

00
5oL 2> mod N, then
0 1

e If g, belongs to the “big cell” with py(g,) € Up,, (Zy), pu(g,) = (
0

oo

M ! p— —_ S—n—
(Tflyffj (S),gy)(gl) =)y (Parq)(92) ey (gn)ls ™™

X 7y (—=1) (1x)u(=1)"vol (Ca 1 (N)y) Yols,m xnx) " - @ (glpG(9;)§> :

e If ¢! does not satisfy the conditions above, then

MpG,

Ty a2 =0

Proof. According to Proposition 3.5.4,

MPG’

T, =T (1) (s, mx )™

n
X 7v(5 -n, 77X) H '71)(25 —2n—1+ 2j> 7]2X2) ’ TMQH,,u(s,nx)fl,n,v(s),gga'
j=1

By the definition of fr ., we have

n
. vol _ _
(3.5.11) (s —n,mx) [ [ 10(2s — 20 — 14 24,0°X%) Mg, (s, m) frmw(s) = f5 (=5, XY,
j=1

Thus,

Mpg,

= — _ —1 _
Ty %60 P = To(=1)v(s, ™ X nx) Trato (_gm-1x-1).0. P

and we need to compute

v

— _ ayls -1.-1 -1, I\ —
(3.5.12) (Tfagol(_s7nflel)7g,<ﬁ> (91)—/G(Qv)f (=517 X)) (Spp err (902 9,)) Blg190) dgo-
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For g, = <CCL Z) € G(Qy) and g, € G'(Q,) written in blocks as in (3.5.9),

a 0 0 :b 0 0

0 ay ag 1+ 0 by ba

. 0 as ag + 0 b3 by
SH/ LH/(g’U?g’:)) = 77677:E117 7_7a;7:7d77:617 7—7b;7

—a ¢ ¢ =b 9 0

1 . _ .
The support of fo° (—s,n71x~!) contains SH,lLH/ (gv, g,,) only if
c —a; —az -1 d —by —bs 1, "a;—tdcy  ‘tbag—Tdeo -1 0 ®b;—tdd; bo—tdoo
(*a ¢ €2 ) —b 01 02 = 0 —taa;+tec; —taas+tecy 1, —tabi+td; —taba+tcds
0 3 0 03 04 0 c3 c4 0 03 04

belongs to Sym(2n + 1,Z,) and is congruent to

* * * 0 —1 % * %
* * * 0 -1 * %
* * e % i 0 0 - =1 x
=10 - 070 0 - 0 0 mod N,
*x -1 .- 00 O -~ 0 O
% -1 0 o0 00
* * * 0 0 0 0

so only if (c3 ¢4) # 0 and there exists a € GL(n,Z,), a

1 =%
< ) mod N, € M ,(Z,) and
i
Y11 Y12
( > € Sym(n + 1,Z,) such that

Y21 Y22
1, * * * 0 x
0 * * ||~ Nyn Nyp|=[1. * =
0 ¢3 ¢4 x Ny Nxoo 0 03 4

From

a € GL(n,Z,), (3 ¢1) #0, cs'a=cuw, 03=N(cgyi1 +cayo1), 4= N(c3y21 + caya2),
we deduce that the necessary conditions for faZOl(—s, n~x1) (Slfl,1 ti (v, 9)) # 0 include
(3.5.13) ¢a #0, and ;' (3 03 04) € Mi,(Zy) X My py1(NZy).

This proves the vanishing statement in the proposition.
Now suppose that (3.5.13) is satisfied. Then

—n— aVOI _ _ _ .
(3.5.12) = Ipary () 15" 'mxw (PaLy (92)) S (=5 I (Sprear (9, pa(gh)wr, ) B(g19) dgo
G(Qy)

—n— aVOI _ _ _ .
= [Py (9)ly ™ muxw (pGL(l)(gL))/G(Q )f C(=s,m T (SH/ILHf(gmeG,))w(glpc(gq’;)ﬂgv) dge.
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Meanwhile, since

a 0 0:b 0 O
0 1, 0:0 0 0
g-1 | o 0o o0i0 0 -1 4 (& oy od 00y (ath —ato
R = s RO S N CIR GRS
—a 0 0!=b 1, O
0 0 1:0 0

we see that faZOI(—s,n_lx_l) (S;I}LH/ (9w, pr,)) # 0 if and only if g, € I'g,1(IN),. Therefore,

(3.5.12) = [para)(g)ls "™ "mXe (Pary(9h)) - noxo(—=1)"vol (g1 (N)w) - @ (91pa(gqﬁ)ﬂ) :
0

3.5.4. The place p. In order to obtain information on %yee (&gl), one needs to consider (3.3.1) with
the action of Up-operators being taken into account. In this subsection, we compute the p-adic

limit
. Mp,,
lim (T a’ ),
s=n+1—k

moroo \ (UZEXUTL) frnp(s) Lanta ¥
where U, ¢ (resp. U, ) is the adelic U,-operator attached to (n,n—1,...,1) (resp. (n+1,n,...,1))
normalized by weight ¢ (resp. (¢, k)). (The formula for its action is given in §2.6.2).
In the same way as defining the “big cell” section in §2.3.3, one can define the “big cell” section
associated to a Schwartz function off on Sym(2n,Q,) inside Io,, (s,€) as

£ (s §)<(A B))— ¢1(det O)| det C|~T*5 N, (C71D),  if det C #£0,
’ ¢ D)) o, if det C' = 0.

Proposition 3.5.6. For a = (ay,...,a,) € Z" and b’ = (by,...,bp,bpi1) € Z"" with a; > -+ >
an >0 and by > -+ > byy1 >0,

(T

_ bn +b +1—k))by,,
T(Up,gxUp’b/)fl,ﬁ,p(s)§12n+280> (gl) —np(p) 1207 0y Jp(s (n Nbnt1

(3.5.14)
x | T
( (Up,aXUp,b)fa!r{’H’p(s_é)SO> (91)7
~H

where b = (b1, ...,bn) and the Schwartz function oz, ,, on Sym(n,Qp) is defined as

s 0
agn,p(g) = Qrk, (0 O) 3

and the normalization of Upa, Upp (resp. U,y ) is with respect to weight t (resp. (t,k)).
Proof. For up € Up,(Zy), uly € Up,,(Zy) and up € Up,,(Q,), we write
e ) uy ' 0 oatuy 0 1, —m —m' v—mw 1,00 y
() - (TR (ST EE) e (e
00 0 1 0 0 'm 1 00
with u1,ug € Bn(Zp), 01,09 € Sym(n,Zy), m,v € Zy, w € Zp, z,y € Qp, z € Qp. By definition,

the left hand side of (3.5.14) equals
(3.5.15)

p<t+2pG,c:a>+<(t7k)+2pG/,c’bl>/ / /
Uk (@) /G(Qp) JUng () xUsg, (Z)

bl
o) (s (s () ot (7)) ottt
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b 2A B - . g

We consider the integration of (3.5.15) over Up,,(Qy) X Up(Zy) x Up,,(Zyp). (Interchanging the
integration order for ¢g; and u, can be justified when s > 0.) We have

P tw —aTtbtor:  —at 0] [upe
CT'D = ptuy Tl i-ca 40210 uzp™?
1 0" 1T TT0 0 1
0 waele'm L waTlw ]

a | mbytug + uzytm—i- 1 —a

n p b mizta™ Yy | mtrea ug + ugcatztm ! qi:?;f(g(g ;;ccs 1;:)) p b
T | _metm = mtrea Yt TE T N
P -1t - o+ (y+ wea g .. —1 P
ot e gy, | W e

1

)

Applying the change of variables 7 = uyja™tx, § = ug(my +ca™'z) +m(z —rca™), 7 = 2 — wca™
we obtain

- (e Tb oyl ;e YupkTm o F o
_ I Trog)ug+ 1 -
o p—b . ustaYuy + m? 3 UZ( + % Uir)ftl?n ytw p—b b
—On41 || - _ _ _ _ _ _ _ _ _ _ ‘f ,,,,,,,, :,;,,, —On+41
p & | U+ ey p

If ¢1D lies inside the support of a . p, then (p~2yp=bnt1 p=2n17) € Ly X Lp, 50 my+gm—mzm
belongs to Sym(n, Z,) and we can apply the change of variable g = o9 —I—u2_1 (mt§+gfm—m?m)%2_l.

Setting (1X)v,s = (MX)v | - |5, we have
(3.5.16)

pltitrowel (e 2o o) fo o (s)(H)
:P<H2pc‘c’g+b>+zj: it (k=m)b nH(WX)p s+n+1 (det(—a) pb"+1+zjzlaﬂ'+bﬂ') g p(€T1D)
=1y (p) Prr1pltr 2o eat) T bt kst Db (g )L (det(—a) pi=1 %ithi ) g p(€71D).
Integrating (3.5.16) with respect to v, w,y, z, we obtain
np(p)*bn-&-l*z;:l aj+bj . p<t+2/7c:,c£+b> (TIX)I;;J,-n (det(—a) pZ?:1 aj+bj)

(3.5.17) x ag,w’up_left (p™%ur(—a" b+ o1)'urp™?) Oégn,p,low-right (p_b ug(—ca™t + Uz)tu2p_b)

X p(k*nfl+5)bn+1+2?:1 aj+bj agn,p,oﬁf—diag <p—£(_ula u2 4 mm) ) ]lZ" (p “rp~ n+1)‘
Next we integrate (3.5.17) over Z, m.
(3.5.18)

/n /Zn agﬁ,p,off-diag (pig(_ula fug + T'm)p~ ) Lzp (p™%2p “Ontt) dm d
P

- / Ek\’ic;{f-e,p,off—diag <§) ]IZ;L (pigfpibn-‘rl) €p (Tr(_gpigulailtuﬂ?ib + gpig‘%tmpib)> dmdz ds.
ZpxQpxSym(n,Zp)
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After another change of variable 7= ¢p~ % and integrating with respect to m,
(3.5.18) = p~ 2=1% / GH .  ofi-ding(6) L2z (¢ ap ™) 1gn (p 7 7)
Q7 xSym(n,Zy)

e,(—Trep 2uraugp ) dz ds.

By our deﬁmtlon of a aTHP’Oﬁg diag (§2.3.4), it is supported on GL(n,Z,) and for ¢ € GL(n,Z,), we

have 1zn (¢t Ip “hnt1) = Lz (xp_b“H) Hence

_ b —
(3.5.18) = p~ Zi=1 9t ol o e (0 Cura Mugp™h).

Plugging this into (3.5.17), we obtain

/ / (3.5.16) dup du'y du'p
Up, (Qp) /U, (Zp) XUB Zp)

= np(p) P TR p““ notE . pltrecatt) / (1A (det(—a) p=ima o)
Upg (Zp)*xUpg (Zp)
H p_gul —a_1b+01 a_l tulp a
X Qs p off-diag << p—b u2> < tg—1 —ca '+ o9 t’ng_Q doyduy doadusg

_ SN b (e 1
:np(p) bnt1—2 01 a;j+b; p(k n—1+8)bny1 | (Up@ X Up,b) fl{{mp(s — 5)(g1),

which combined with (3.5.15) proves the proposition. O

Now combining the above proposition and [LR18, §2.8], we deduce

Proposition 3.5.7. Suppose that ¢ € w is an ordinary adelic holomorphic Siegel modular form of
weight t and nebentypus € invariant under I'q 1(N)P. Then

)
s=n+1—k

=" (p = 1)"vol(Caa (p)p)X (~1)"E, (n+1 = k,m x 0x) - e W(e)

where the operator W : m — w is defined as

) Mg
]'lm m! m!
m—00 (U XUpy'G/)fme(s)JZnJr?

(3.5.19) wielo) = | L Pl g <Gl

and the factor E; (s, X 1) is the modified Euler factor at p for p-adic interpolation as defined
in [Coa91].

Remark 3.5.8. For the convenience of the reader, we briefly describe the modified Euler factor at p
in our case. The condition in the above proposition implies that there exist continuous characters

Or, 0+ QF — C such that val, (6;(p)) = —t;+7, 0], = ¢ and m, = Tndgt) (01, 0n).
Then for p-adically interpolating the critical values to the left (resp. right) of the center, the

modified Euler factor is given as

n n
Ey (s, xmx) = [ [ (5, 0mpxp) ™", (xesp . B (s, 7 x 1x) = (5, m0x0) " [ 90 (5. 05mpx0) ™).
j=1 Jj=1
We refer to [LR18, §2.3] for more details.
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3.6. The image of Séfl under the Siegel operator and the p-adic L-function for €. For
all L € ¢y /T'e(N), as in §3.2, we can choose a basis of L1/L and use it to define the (p-adic)
g-expansion map for ./\/l%’ orq- The basis gives an element 7, € G'(Z). (Whether ~}; belongs to the
“big cell”, the image pa(y;,) € G(Q) and the image py(v;,) € Up, (Q) up to Up,, (NZ) do not
depend the choice.)

By the doubling method (Theorem 2.2.1), the coefficient indexed by (81, 82) € Sym(n, N~1Z)*%?
in the p-adic g-expansion of Pyeg 1, (5%;1) at the cusp (Yn,1,7n,2) equals (up to necessary normaliza-
tions) the product of e, (61, @) and

N 1 Kl
by (s + 3 nx) €G'E(52 ) (’Y/L’YN,zg;/,oo, CI’fM(s),@>
00 s=n+1—k
9
M M M
_ 1 Npoo Pagr Par Pey —
o Tr%LI;I(l)O L (S,T(' x nx) sz,n,w(5)112n+2 (U;:LéXU;"!G,)fLN’p(S),IQn+2 an,v(S)f}’/L’YN,Q(p
’ N
ol B2 s=n+1—k

Recall that (3.3.2) says that the left hand side is computed by the sum @ (5 ,+Mp_, (5, 7X) Py, ()05
Proposition 3.4.1 says that the first term vanishes at v} yn,29., ., due to our choice of fL&p(s):and
Proposition 3.5.1 says that the contribution from second term is the right hand side, which is
computed in Proposition 3.5.2, 3.5.5, 3.5.6.

Theorem 3.6.1. Given L € €y /T'¢/(N) of rank 1, yn.1,7n.2 € G(Z/N) and 1, B2 € N~ Sym(n,Z)%,,
the meromorphic function egenp > (51, B2, Pieg,I. (&gl)) inside Iz[[Z, ]| @1, F satisfies the follow-
mg interpolationi properties.

Let v : g — Q, be an Q,-point of €p. Suppose that the weight projection A, — 'I[‘f)\;d is étale at
x and maps T to an admissible point T € Homeont (Tn(Zp),@;). For k € Homeont (Z;,@;) such
that (T, k) is admissible, we have

o If nr(—1) = 1 and v}, belongs to the “big cell” with py(vy) € Uy, (Zy), congruent to
1,0 0 0
( 5 6L 2) modulo N for allv | N (see (3.5.10) for the definition of the map (pg, L), PU)

0001
PG/wPG,UpG, — G x GL(1) x UPG,), then

YN,1,IN, Kl
Eqﬁfexlp 2 (517 B2, Pdeg,L (&g >> (.f, ’%)

=p*" (0= 1)"vol(T a1 (N)) () (pery (1)) [T w5(=1) [T wtn 1= ko )"

7=1 v|N

’“2;" n27n !
y V=1 2 9 Xtit*s Z Eqexp (B1, p) €§?e%L)’7N’Q (B2, ecW(¢p))
dim (GL(n),t,) (¢, P)

PESy
X Ep_(n—{—l—kr,wxnx)E;o(n—{—l—k,wxnx)LNpoo(n—i—l—/{:,ﬁ X 1X)-
e Otherwise,

6 (81, B2, Bace . (1)) (2m) = 0.

Here (nn)N(pGL(l)(fy’L)) = 1|_[ (TIX)v(PGL(l)(V;;)) ’pGL(l)(’YH;k and s, 18 a finite set consisting of an
v|N

orthogonal basis of the eigenspace for the Hecke eigensystem parameterized by x inside the space of
ordinary cuspidal Siegel modular form of genus g, weight t, p-nebentypus € and tame level T'g 1 (N).
If s, is empty, then the evaluation is 0.
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Remark 3.6.2. By applying the functional equation for the L-function L(s, 7 x nx) [LR05, (33)], we

can also write the formula on agf\éQI;WN . (ﬁl, B2, Pieg, I. (5%1)) (x,k) in terms of the critical L-values

to the right of the center, i.e.
Eqonp 2 (517 B2, Pdeg,L (5%;1)) (7, k)

=p*" (p— 1)"vol(Te1 (pN)) (nw) N (e (V1))

o =" 7L277L /
Vo1 2 2m 2ttt 3 el (B, ) RS TNE (By e W ()
dim (GL(n),t,) &7 (¢, 9)

X E;r(k: —n,T X nflel) Ef(k—n,m x 77*1)(1) LNpOO(k: —n,T X 7]*1)(1).

The interpolation properties of agf\éﬁrﬁN 2 (ﬁl, B2, Pieg, I. (5%1)) (x, k) justify that it can be viewed
as the p-adic L-function attached to €. The theorem essentially says that the image of our con-
structed family &gl of Klingen Eisenstein series under the Siegel operator

Pacg : MY 0ra®0p T2 JMbrord — D M 0rd®0p 10 20)] M 0rd @0 12, ] OF [Tn(Zp) X 2]
LEQ:V//FG/ (N)
rkL=1

is given by the p-adic L-functions attached to €.

4. NON-DEGENERATE FOURIER COEFFICIENTS OF THE KLINGEN EISENSTEIN FAMILY

In order to relate the “constant term” Pyeg (&gl) to the congruence ideal associated to the
Hecke eigensystem of EX!, one needs to verify the primitivity of the Klingen Eisenstein family 5};1.
One strategy (as used in [Urb06,SU14]) is to show the coprimeness of the non-degenerate Fourier
coefficients and (the Fourier coefficients of) Peq (EX!).

In this section, we study the non-degenerate coefficients aélZ{Q’p (5, B ,&gl). More precisely, we
compute the Fourier coefficients
(4.0.1)

(e B g (m(ag)gls oo @ e ) :/

eqr BN ((anH 1,;1) m(ar)gs o (sz,ﬁ,w) ea(—Trf'c) ds
Sym(n+1,Q\A)

for a certain collection of 8’ € Sym(n + 1,Q)~o and ay € GL(n + 1,Af). The results are recorded

in Theorem 2.6.2, which expresses (4.0.1) as the Petersson inner product of @ with the product of a

Siegel Eisenstein series and a theta series. For the purpose of further studying of 5éléxp (B B, &gl)

and verifying the primitivity of £X!, it is crucial to obtain precise formulas for the local sections

giving rise to the Seigel Eisenstein series and the Schwartz functions giving rise to the theta series.
We compute (4.0.1) by first computing

GSi‘GXG/ﬂ/ (g’m(af)géﬁoo’ (U;;?G X U;?G’)fﬁ,l(s»
_ Si , Iny1 < / m m B /
= /sym(nﬂ,w)"f (e (9 (57 15, ) mUa)gl) ) s (Ut X Ut Fials) ) ea(~Ted's) ds,

and then pairing it with ©.

Compared to the analogous computation for unitary groups in [Wanl15], one major improvement
of our computation pertains to the computation at the place p. By handling the intertwining
operator in a more effective way, we do not need to assume the condition that the nebentypus
is sufficiently ramified. This is important especially when one cannot identify the non-degenerate
coefficients in the g-expansion of the family with a known p-adic L-function. Moreover, we include
a discussion of expressing the local F'Jg ,’s by using the Siegel-Weil sections, which on one hand
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can be useful for considering the seesaw diagram, and on the other hand allows us to obtain a better
expression for the place 2 when n is even and deal with the vector weight case for the archimedean
place. (Only the scalar weight case is computed in [Wanl15].)

4.1. The unfolding. Define the parabolic subgroup Py of H' as the subgroup consisting of ele-
ments of the following form

n n+l n n+1
A 0 B * n
* A * * n+1 / A B

H G, € GL 1).
c o D . €, (CD>e,e(n+)
0 0 0 '/ n+1

It is not difficult to check that the image of Wg G,\WG/ /Wao o under ¢z constitutes a set of repre-
sentatives of Wq , ,\Wx//Wp,,. Given f(s,§) € Ig,, (s,§) and ' € Sym(n +1,Q)~o,

GSi ‘GXG’,B’ (97 glv f(87 ‘S))

f(5,€) (WH’ (97 (1”0“ 1,;1) 9’)) ep(=Trf's) ds
YE(Qp\H')(Q)

> > f(5,€) (w’YLH’ (g, (1”0“ TR ) g’)) en(=Trf's) ds

weWQ , \Wit /Wry, ve(QY, NPy \ Py ) (Q)

2 2.

weWQ, \Wear /W, v€(QY, NPy \Pyr ) (Q)
7(5.8) (e (1w (M5 1.5, )) 10 (9.9) ) ea(Te8s) d,

where for w € Wy (resp. w € Wer), Q% = w'Qpw (resp. Q% = vy (1,w) Qe (1, w)).
Because of the non-degeneracy of ', the only nonvanishing term in the sum over Wq_,\Wa//Wq_,

0 _1n+1
. Hence,
1n+1 0 )

Sy (09 F(56) = Y > /S

+EQG(Q\G(Q) €My, 1 (Q) ¥ SYRU(NHLA)

/Sym(n—l—l,Q\A)

/Sym(n-i-lQ\A)

B /Sym(n+1,Q\A)

is the one attached to we, = <

1, 0 O

0
f(s,6) <LH/(12n,wQG,) (tg 1"0+1 10n ,Om ) LHY (797 (1"0+1 1;+1 ) g’)) ex(—Tr3's) ds

0 0 0 1p41
Denoting the term in the summand as FJg (79,9, x, f(s,£)), the above identity is written as

(4.1.1) ey 99 f(5,0)= Y > FJg(v9,9 2 f(5,9).
’YEQG(Q)\G(Q) xeMn,n+l(Q)

If fu(s, &) factorizes, then FJg (9.9’ %, f(s,€)) = [[ FJp 0 (9.9 2, fu(s,£)) with

(4.1.2)
FJﬁ’,'U (gaglvx7fv(87§))
1, O 0 0

— Jo(8,6) | trr(Qon,wg ) @ Ing1 0 _Oz v (g, gy < g | e, (—Trf's)ds
T T SR A

0 0 lnt:
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By the functional equation for Siegel Eisenstein series, we also have

(413) €, 0a 9.9, f(5,0)= Y Y. Flp (19,92, Mg, (s,6)f(s,6)) -
7€Qa(@\G(Q) 2€ M n41(Q)

In the following we will work with (4.1.3) rather than (4.1.1)

4.2. Some remarks on F'Jg , and its computation. The next few sections are devoted to
computing F'Jg , (g, g, x,Mgq,, (s, §)f17,€,v(s)) place by place. Before launching the involved com-
putation, we give a rough description on how it should look like and in what format we would like
to express it.

It is not very difficult to observe that as a function on (g,z) € G(Qy) X My n4+1(Qy), the term
Flg (9,9, Mg, (5,€) frru(s)) takes the form of (a linear combination of) the product

(4.2.1) () - fa, (—87 (&)Xm,v)’l) (g, €) - wagr (g9, €) (),

where (%) is a constant independent of g, z, the pair (g, €) with € € {£1} denotes an element inside
the metaplectic group G(Q,) = Sp(2n, Q,), f&, is a section inside the degenerate principal series

on G(Q,), and wapr (g, €)@y is the action of (g, €) on the Schwartz function ¢, € S(Myn4+1(Qy),C)
via the Weil representation (with respect to the symmetric form 23).

Therefore, as a function on g € G(Q)\G(A), the above GSi’GxG,ﬂ, (9,9, f(s,€)) is a (linear
combination of) product of a Siegel Eisenstein series and a theta series associated to the orthogonal
group O(24’). The B'-th Fourier coefficient of the Klingen Eisenstein series EX! (-, @ ) is (a
linear combination of) the Petersson inner product of ¢ € 7 with the product of a Siegel Eisenstein
series and a theta series associated to O(23’). Right now it is not clear if this Petersson inner
product is related to an integral representation of certain L-functions (unless when n = 1 it is the
usual integral representation of Rankin-Selberg L-function).

When evaluated at s = n + 1 — k, if £, is a quadratic character, by applying the Siegel-Weil
formula, one may write the (linear combination of) (4.2.1) in terms of theta lifts from an orthogonal
group of size 2k, and attempt to transfer the Petersson inner product on G(Q)\G(A) to an integral
on orthogonal groups via a seesaw diagram. This is discussed in §4.9. In fact the main reason
that we choose to compute FJg , (g,g’,x, MQH,(S,é)fLH,U(s)) instead of FJg , (g,g’,:r:, fL,w(s))
is that when evaluated at s = n+ 1 — k with k relatively small, their images in Ig »(—s,§) under
the intertwining operator are more conveniently related to Siegel-Weil sections associated to an
orthogonal group of size 2k —n — 1.

4.3. Basics on Weil representation. We recall some basic facts about the Weil representation
of metaplectic groups, which will be needed in our upcoming computation. Let K = Q,, V =
V® K and W be a finite dimensional symmetric space. Fix a polarization V = X @ Y with

X =spang{e1,...,ep} and Y =spang{fi,..., fn} -

4.3.1. The metaplectic group. Let §I;(V) = Sp(V) x {£1} be the metaplectic group. The group
law is given by

(91, €1) - (92, €2) = (9192, €1€2¢(g1, 91)),
where ¢(, ) is a 2-cocycle on Sp(V') valued in {£1}. The covering splits uniquely over Ug, which
can be viewed canonically as a subgroup of é\f)(V) Let Qx C Sp(V) be the Siegel parabolic

subgroup preserving X C V and @ x be the inverse image of Qx in Sp(V). Then @ x admits the
Levi decomposition

Qx = Mx x Ugx,
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with Mx = GL(X) x {1} equipped with the group law
(al, 61) . (CLQ, 62) = (alag, eleg(det ai, det ag)K) y

where (-, ) is the Hilbert symbol of K.

4.3.2. Formulas for the Weil representation of Sp(V') x O(W'). Denote by S(Y @ W) the space of
Schwartz functions on Y ® g W. The symmetric bilinear form on W and the skew-symmetric form
on V induces a skew-symmetric form on W ® g V' which we denote by (-, ). The Weil representation
depends on the choice of an additive character of K = Q,. We fix our choice as e,,.

Define the characters

)\W,v KX — C*
(t,2) —s (t,(—1)w det W)K,
and
A 0 KX x € — C*
(4.3.1) 1, if dim W is even,
(8, 2) — Awo(t) { z-yp(t,e,)"t, if dim W is odd.

Denote by wy i the Weil representation of Sp(V)xO(W) on S(Y @ W). Then for ¢ € S(Y @ W),
the action of O(W) is by inverse translation on W, and the action of Sp(V) is by

a bla? 5y g 1 t
o Wy 0 tg-l )€ o(y) = Aw(det a, €)| det al, e, (5 (y, by}) o(fay),

cava (1 737) 1) 6000 = e o W) I [ ole) el

Here we identify functions on X ®x W and Y ®x W via our fixed basis. The Haar measure on
X ®g W is the unique one such that the above formulas define a group action. The constant
(e, o W) is the Weil index associated to e, and W.

4.4. The unramified places. First we define some notation. Given a section fév(s,ng/,v) €

IQG”U(S, 5X2B,ﬂ,) and a Schwartz function ¢op , € S (My n+1(Qy), C), we define the following func-
tion on G(Qy) X My n41(Qy),

(441) S (gv &€ févv(sv gXQﬁ’,v)a ¢2,8"U> = fé,v(s’ é‘XQB’,'U)(gu 6) : w?ﬂ’,v(ga 6)¢25/,U(x)7

where the right hand side does not depend on the choice of € € {£1}. Like by ,(s,€) (defined in
(2.4.2)), define

(2]

+1 = .
bero(8,€) = Ly <s+n2 ,§> H L, (2s+n+1-25¢%).
Jj=1

Proposition 4.4.1. Let v be a finite place where &, is unramified. For given 3’ € Sym(n + 1,Q)
and a, € GL(n+1,Q,) such that ‘a,8'a, € Sym(n +1,Z,)* and 2%,8a, € GL(n+1,Z,), we have

1 n even

1
FJgr v o =¢(det vildt vis+1b/ ﬁ
Jﬁ, (gvm(a )7x7fv (S,f)) f( € Cl) ’ eta ’v G' <S+ 27§> L, (S_‘_HT—H?f)‘?ﬁ’) n odd

. pur 31 -1
xS (9,5 £, (5, 255), R ar, )
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and

bH/,v(S’g) FJB’,U( (av) x MQH/( ) ( ’ ))

m
=¢(det a,)| det ay |t 4y (s — n, &) 7 v (25 —2n — 1424, €2) H Ly(2s — 2n — 1 + 2§, €2)
j=["+1

1 n even
8 Lty ) y L3 o A , ty 1 1
{Lu—sw;awm o (“fﬂ 1), B o)

u::

where R(‘a, 1) denotes the right translation by ‘a,*

Remark 4.4.2. Note that when n is even and v = 2, one cannot find positive definite 8’ and a, such
that the conditions in the above proposition is satisfied. In this case the F'Jg ,, cannot be written
as a simple product as (4.4.1). Instead, it is a linear combination of such products. See §4.9 for
more discussion.

Proof. The function g — FJg , (g,m(ay),z, f"(s,§)) is invariant under the right translation by
G(Z,). Meanwhile, the conditions in the above proposition imply the existence of an unramified

section inside the degenerate principal series on é(@v) attached to the character §UX25/, as well
as the invariance of the Schwartz function 1y, ., (z,) under the action of G(Z,) by the Weil

. . . e . b
representation. Thus it suffices to check the identities in the proposition for g = (g ta_1> €

Qc(Qy). The left hand side is computed as follows.

Flp (550 )  mia) 2, £37(5,6))
- / (s, €)
Sym(n+1,Qy)

_ / 125 (5,€)
Sym(n+1,Qy) 0 0 xbta™1 a,
(

=¢(det a)| det al$T" e, (Trp""zbz) &(deta,) | det ay [, 5

1, 0 0 0
0 1n41 O O
x / v o) ([0 el o] eu(Tra,Bage) de.
Sym(n+17Q’U) 1t,

ay ‘ra ¢ 0 1pt1

1, O 0 0
ur 0 1p41 0 O
Gare, e (2) = / (s, 6) 1 00 ) ) o (Trla, Bage) d.
Sym(n+1,Q,) t:p IS

0 1n+1

0 0 1, —taztay ! ) ev(—Trﬁ/g) ds

ap tta 1op1 0 ap 'stay '4ap Mabatay !

Put

Then by the formulas of Weil representations recalled in last section,

Fla (850 ) sm(a). @, £25(s,€) ) =€(deta,)[deta,; - 12 (s,350,) ((5%e)))

<o (5 05) 1)) B - v (o)

Therefore, the desired identity follows from the following proposition.
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Proposition 4.4.3. Let v be a finite place where &, is unramified and 3], be an element inside
Sym(n + 1,7Z,)* such that val,(det24]) < 1. Then

1, 0 O 0
ur 0 1, 0 0
bappala) = [ e ([0 M L b)) eu(mesle) s
Sym(n+1,Qy) tr ¢

0 1n+1

ur n
=Wg o (1n+17 fer (s + §7§)> Aty 1 (@0) (),

where fu§’v(s+ 5,8) € Ig w(s+5,&) is the standard unramified section in the degenerate principal
series 1., (5,§) on G'(Qy), and Wy, , is the local Fourier coefficient for Ig ., »(s,§) defined as

Wi (9 fora(s:9) = [ fera(s.©) (M 1,9,)) en(Tesls) do.

Sym(n+1 Qv )

Moreover, by [Shi97, Theorem 13.6, Proposition 14.9], we have

1, n even

W (Lusr S8 4(5:©) = ga,ra, (€0)a 5 ) b <s>1{L (541 Ehng) odd
v 2 .

with g, pra, (T') € Z[T] of degree less or equal to 4n - val,(det 26;) and constant term 1.

Proof. Given ¢ € My, ,4+1(Q,), pick a € GL(n + 1,Z,) and ¢’ € GL(n + 1,Z,) such that

r n+l-r %™
— 0 r
(4.4.2) az'a’ =P =
0 * n—r q
*
with m = (m1,...,m,) € Z{; and * € My_rpny1—r(Zy). Then
1, 0 0 0
.0 e 100
¢2,8;,v(x) :/ [y (s,6) 0 (q5ﬂ0> ', 0 eu(Trﬁqlﬁ) ds
Sym(n+1,Qy) m 0 = !
<‘Iu0 t*) Cl/§ta/ i O 1n+1
(4.4.3) ;
1, 0 : 0 0
.0 ey 200
—/ o5 (s,€) 0 (q;mo) ‘1, 0 e, (Tr'a' 18l d 1) ds.
Sym(n+1,Q,) . 00 |
(qvof 8) S 0 1,41
Write
r n+l-—r

¢ =(1 G12 T '
$21 S22 n+1l—r
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" 0 vS11qy”  —qusiz 10 0 1, 0
1, 0 "0 0 0 1p—»r 9n 0 3 0 0 0 0
! 0 0 B 0o 1, 0 0 0
0 17”317737977977 0o 0 0 Logir ! 0O 0 0 0
0 ("v* ) ‘1, 0 = 0 0 0 0 '™ o 0 0
m ; 0 0 0 0 0 1,, O 0
(q"o o) S 0 1o 0 0 0 0 e 0 o™ 0
0 0 0 0 | 0 0 lnpi,
1. 0 0 0 ‘0 0 0 0 0o 0 0 0 0 0o -1, 0
0 1, ., 0 0 ‘0 0 0 0 0 1., 0 0 10 0 0 0
0 0 1, o0 10 0 0 0 0 0 0 0 -1, 0 0 0
0 0 0 g1, 0 0 0 0 0 0 0 1pp1p! O 0 0 0
19" "0 " "0 T ° 0 "1, "0 "o "o || o "o~ I, 0 &m0 T 0 T T o
0 0 0 0 0 1,, O 0 0 0 0 0 1,, 0 0
0 0  gfaug g2 100 1, 0 1, 0 0 1o 0o 0
0 0 S on G2 10 0 0 lnti-r 0 0 0 10 0 0 lpp1r

0
0
0
0
Therefore, by change of variable ¢ — ( v 0 ) < (qJ =0 )7

(4.4.3) = €(det g22)? det g22[2+

1, 0 0 0
0 1p41 0 O o 151 (@™
></ for(s,€) 0 0 1, 0 €y <Tr (qvo 1 fl_ )ta/ ! (qvo 1 +01- ><> ds.
Sym(n+1,Qy) 0 < 1 B o

This integral vanishes unless

(4.4.4) (qvo 0 > /7Bl a1 (qvo 0 > € Sym(n + 1,7Z,)*.

1n+1—7“ 1n+1—7’

-m -m
Meanwhile, if val,(2det 8)) < 1, then 2 (qv 0 )ta’lﬁ;a’l (q” 0 ) cannot be
0 1n+1—r 0 1n+1—7"

integral unless m = 0 and r = 0, i.e. (4.4.4) holds only if m = 0 and » = 0. Hence by (4.4.2),
¢(z) # 0 only if x € M, p41(Zy). For x € My, pn11(Zy), we have

1, O 0
d)(;g) :/S . fur s é‘ ( § 1n+1 10n 8 >> ev(TrBLC) ds
ym(n 5 ’U

0
S
— /sym(nﬂ,(@v) for Z,f (<1n+1 Lo )) ey (Trf,¢) ds = Wg, <1n+1, 18 (s + g’é)) _

The proposition is proved.

4.5. The archimedean place. In this section, we compute F'Jg , evaluated at s = n+1—k for
the special case t = (k,...,k). The general case will be discussed in §4.9.5.

Denote by §§ﬁk - the character on R* xC* attached to a positive definite symmetric quadratic
form on R™ by (4.3.1). Let h : Sp(2n,R) xH,, — C* be the automorphy factor for metaplectic group
defined as in [Shi00, Theorem A2.4]. We know that for g = (¢ b) h((g,€), z)? equals det(cz+d) up

ntl n __j_ntl
7 (s,580" #) in IQé,Oo(s,sgnk -QH) and

k—
to root of unity. We define the canonical section f~
the Gaussian function Gagr oo on My, n11(R) as

ntl n+1

k—"5— —f—ntl —2k+n+1 —aTrz8'
(451) f@OOQ (S7Sgnk 2 )(g,G) =h ((gae)u \% _11n+1) o ) GZﬂ',OO(x) =e ref :
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Proposition 4.5.1. Let 5/ € Sym(n + 1,Q)so and k be an integer. Then
\/_*1(2—")’“2(2n+1)k—%—— (n+1)(2n+1+k)
s=n+1—k N F2n+1(n + 1)Fn+1 (k’)

FJ,B/,OO (gaglz’a €, MQH/(Sv Sgnk)ffo(s> Sgnk))

n+1l n+1

x (dewﬁ’)k—"?"(detlmz')éewmﬁz').5<g,x f~ > (5,580 "7 ), Gag, )

Proof. The right translation by the maximal compact subgroup of G(R) on both sides of the identity
is by j(-,v/—1)7F, so it suffices to check the identity for g = g.,z € H,. Let

n n+l1

VYT XY
L1y = F A e Hopg, L= 4 | € HR).
+ <tZ0 Z/ n + 1 2n+1 VA 0 t Y/ 1 ( )

The evaluation at z = 2y of the integral
(4.5.2)

g oo (Rprs v, f(s,5g0))

t,
:/ ffo(S:Sgnk) <LH/(17wQG’) ( (Q)C lno+1 1qu —Oa: > La <1m <1n0+1 1n§+1 )) /Z/> eoo(—TrB'q) ds
Sym(n+1,R)

gives F'Jgr o (gz,g;,,x, fE (s, sgnk)). Because
1, 0 0 0

1 +1 0 0 1ot S !
LH'(l’ch/)<0 01, —z JtE e (0 1,0 7=

0 0 0 1p4

V(020 ) VI (220 ) XV (3 ) V)

the integrand in (4.5.2) equals

1n 0 1n —x Y/_l
tr2+%0 Lt 0 tzzaz+fzoz+trzo+2'+< ’

s+n+1
2

det (‘zzz + 2oz + w20 + 2 + <) ‘det (‘wez + 2oz + ‘w20 + 2’ + ) ‘k_(8+n+1) (det Y') o(=Trp'sZ).

Writing z = u + v/—1v, 2/ = v + V-1V, 20 = up + vV—1vg with uw,v € Sym(n,R), v/,v" €
Sym(n + 1,R), ug,vo € My pn11(R), we have

(4.5.2) =(detY )Hn+1 / det (V=1("zvz + oz + wvg + v') + (wuz + oz + wug + o' + §))_k
Symn+1(R)

)) ‘k—(s—i—n—i-l) e

|det (\/ 1("zvz + o + wvg + ') + (wuz + oz + ug +u’ +¢ o (=TrB's) ds

eC>O (TrB (*ruzx + oz + rup 4+ u )) / det (\/ —1(*zvz + oz + 'rvg + ') + §) "
Sym(n+1,R)

x |det (—vV=1("zvz + oz + v + v') + <) [h=(stnt e (—Tvf's) ds
By [Shis2, (4.34K)(4.35K)],

= (det Y’)

(4.5.2)]_p_p_q =(detY") e (Tef' (‘wuz + ‘oz + ‘wug + ')

s+n+1 k s+n+1
X Enat | vz + or + frvg + 2, B,f+77—*+7
2 2 2 b—m—1
(ntDkg,—(EDn 19y
v—=1 2
M (det 28)F 2" - (det V') 2 en (Tef' (‘wzx + ‘20w + w20 + 27)) .

Iwn—&-l (k)
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Combining with the formulas (3.5.6)(3.5.7) for the intertwining operator acting on fX (s, sgn*), we

get the desired identity.
0

4.6. Places dividing N. Assume v | N. By (3.5.11), for a, € GL(n+1,Q,), g = <i Z) € G(Qy)

and ' € Sym(n + 1,Q), we have

avol _ _
FJB’,'U (g7m(a’l))7xaMQHu’l)(S?nX)fLH,U(S)) - FJﬁ’,'U <g7m(a’l})7x7f v (_8717 1X 1)) .

We compute the right hand side for “big cell” sections with more general Schwartz function a,.
Before stating the result, we introduce the following operator acting on smooth functions on

G(Qu),

_ 1, o Wwln 0
(4.6.1) Ugaw = /Sym(nyzv)R«o 1n> < 0 qv_11">> do

This operator resembles the Up-operator U, (11, 1), but there is no normalization factor here and
it is purely local.

For the metaplectic group é, we can also associate to a Schwartz function oy, ,, on Sym(n,Q,) a
“big cell” section fg"v” (s, {XQ,B/) inside the degenerate principal series IQé,v(s, ngﬂ,) as

(4.6.2) fgnv (375X2_51/)> (g = <CCL Z) ,6) = ¢, (det C)ng/’v(det c et an (e td).

,U

Proposition 4.6.1. Suppose that the Schwartz function «, on Sym(2n + 1,Q,) can be written

(% - « _di
as oy = | 4 v,up-left v,off -diag

Oy off-diag  (v,low-right
Then for r >0,

> (where the notation is as in §2.5.3) and ay up-ets = Lsym(n,z,)-

FJg . (g,m(a),z, f*(5,€)) =& (det ay)| det au |, G tow-righe (‘a05'a0) v(ey 0 26) 7"
% gv(qv)rn’qv|gn(s+n+l) Uéc,v .S <g’ x: fgv,up_lcft (s, &)XQ‘B%) JR(—q;" - 28'a,) av,oﬁ_diag>

Remark 4.6.2. The formula here shows that in general F'Jg , is not a simple product of a sec-

tion on G(Q,) for Siegel Eisenstein series and a Schwartz function acted on by G(Q,) via Weil
representation, but a linear combination of such products.

Proof.
a 0 b 0 L
00 0 —tfay
Fipo(g.mla). .1 (5,6) = | o | 0o g i) e (o) de
Sym(n+1,Qu) t2a ay b ctay !
1 _ 1 —ld _ =1t ;1
=§, (deta, det )| det a, det c[, (et /Sym(n-H Qu) v (( faicltxtc—l a;ltmac—lcxfaziera;lctaZl )) v (—Trﬁ'g) de
~ _g_ntl
= 5;1 (det ay,)| det av|v_s+1 Qy low-right (‘apB'ay) - Eoropr »(det ch 1)_1| det ¢|y T2 Oéwup_left(c_ld)
~ _n+t1
X Aogrp(dete™ !, 1) detel, * e, (Trac 'zB'r) a;’,?gﬂ_diag(cflxta;l)
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—c1 t.—1
Since g = <CCL g) = <10n (i d) (_(i 10”> <CO Z), we have
—1,.t —1)

~ _n+4l
Aogr p(det c 1)|detcly, ? e, (Tr ac_lxﬁlt:c) Qy off-diag (¢ T'@

=was (9. 1)z (Y 75.4) (L8, 5)1)) BOay) otaiag (2)

—y(ev 028) " detayft - wop (g (Y 75.) 1) R(=28/00) Gooftaag (2):

Plugging this into the above equation,
(4.6.3)
FJg . (g,m(a0),z, f*(5,€)) =& (det ay)] det an] @y tow-rigt (‘008'00) - (e, 0 28') ™"

g2 (5,650 ) (01) - wa (o (B 750) 1) R(-26'00) Gofraing (7).

If we assume conditions on a, and A such that 'a,3'a,, ¢ 'd, x - 28'a, belong to the support of
aZf’llow_right, ay) &p-left’ v Oﬁc diag oDy if c~'d-xB"%c € Sym(n,Z,)*, then we can simply get rid of the

1, —cld\. : o
term ( O" Cl ) in the above equation and obtain a nice formula for F'Jg ,, (g, m(ay), z, f*(s,&))
n
without introducing the operator Ug,, . However, such such conditions on a, and ' can be incon-
venient for potential applications, so we need to do a little bit more work.
Recall that the proposition assumes that oy, yp-lefi = Lsym(n,z.)- When ', a,, Oy off-diag are fixed,

for sufficiently large r, the action of
-1
_ a1 cd+o -1
Lsym(n,z,) (¢ 'd) - wapr (g (10" 1 d) ’1> = > sz <2r> - Wap (9 (10" 1 d) ’1>
o€Sym(n,Z/q3") o
on R(—2f'ay) Qy off-diag 15 the same as that of

cld+o -
Z Lsym(n,z,) (27“) ~wa (9 (g 0,):1)

oeSym(n,Z/q3") K
Therefore,
(4.6.3) = fv (det ay)| det av|—s+”+1av Jow-right ( fa,8'a,) - y(e, 028) "

v,up-le - n Z]-n 0
Y e (e (o O ) (0 ) )

oeSym(n,Z/q3")
x e (905 £) (9" o1, ) 1) B2 - 5'00) 8 ot aing (2)
28 0 1, 0 ¢ "1, ) qy v )Gy off-diag
_é.v (det av)’det av| S+n+1av low- rlght(a'UIB av) : (evo26,)_n
% &u(qo) g [Pt U, - (g,m fa” upleft (s,ﬁvxggg,,) JR(—q, " 26’av)av,off-diag> :
]

4.7. The place p. Like in the previous section, we work with a general “big cell” section f* (s, &) €
IQH“U(S, &) with Qy up-left = ]lSym(n,Zv)‘
Proposition 4.7.1. Suppose that o, upett = Lsym(n,z,)- Then for a, € GL(n +1,Q,) and r >0,

Fg o (g,m(ay), 2, Mg, (5,6) f*(s,£))
—&)(det av) 1| det Ay | S+n+10‘v Jow- rlght( avﬁ av) Cy (3 - g, f, B/> . Aggl’v(—l)n+1

X Eul@0) ™ laoly" T U - S (g, 25 Mag (s, E”XQB')fgvyupile&(Sa Eohopr ), R(—a;" - 25/0v)av,off-diag) ;
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where the factor ¢, (s — %,f,ﬂ’) is given as

(4.7.1)
n ho, (26" )vq, (e )n2;2n n even
Cy (S - 57&75,> :7(det 25/76’0)” o (ng’;}? ! ’ _1
To.(60) 2 M (5 - %75)\25/) , n odd
» 242 1
x €u(det 268) 7Y det 26", 2 (s — n, &) T (25 — 20— 1+25,€2) .
j=1

Proof. First it is easy to check that for a, € GL(n + 1,Q,),

FJB’,U (g7m(a’v)7 x7MQH/(S7§)fav (876)) = fv(det av)’ det Ay f;+1 F‘]tavﬁ/av,’v (g7 12n+27mta1717 MQH/<S7€)faU(S7£)) )

so it suffices to prove the identity for a, = 1,,41. Let

AU(g,r,7,5) B(g,z,7,5)
g, z,7,5) D(g,z,7,5)

1, 0 0 0
_ 1o,41 T 2 1,41 O 0 1,1 <
_wQH/< 0 12n+1) vir(Lzn, WQg) o 0 1, — |"\P 0 1..))
0 0 0 1,

Then

FlJg v (9, Lont2, ¢, Mg, (5,6) [ (s,€))

A B
= / / fa11(57 é‘) (nguxy T, gg Dggﬂxy T, gg) e, (_Trﬁlg) dT dg
Sym(n+1,Q,) 4 Sym(2n+1,Q,) 9,2, 7,6 9,2, T,S

- / / & (Clg,2,7,6) " |Cg, @, 7,)[ (T
Sym(n—i—l,@v) Sym(2n+1’(@v)

X Oy (C(g,w,T,g)_lD(g,:):,T,g)) e, (—Trﬁ'g) dr ds.

n n+1
Write g = (© b and T=(/1 T " . We have
c d T T4 Jn+1
_(a+Tic+na ™\ (1, nr Y\ (fa+me 0\ (1, 0
Clg,a,7,6) = < e + 14'ra 7'4> - <0 1,11 toe 1) \a 1,01/
D(g,,7,¢) = b+ 1mid+ b —TX + Tog (1, 7'27';1 b+ 1d —7'{:6—1—7‘27[1
G, T58) = ‘od + 14'rb x4+ 1 —1,41)  \ 0 1,4 bod + 74t —‘mx + 1y — 1,41/
with 7] = 71 — 797, 're. Direct computation shows
latroTtbtrd) o (et )M (orrt )

C(g,%,7,¢) ' D(g,2,7,¢) =

+¢—1, —zala+ T{C)’l(—T{x + 11, )
(atrmotbtmd) I
= t ) L — 7'471 — 7| —TTét(a + 11 ¢)cT)

T. ‘
2 D - i a + Tie)x — w(a + Tie)Th
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with 75 = (a + 1{¢) "} (7|2 + 7, '). By change of variable, we get
(4.7.2)
FJg (9, Langa, @, Mg, (s, ) f*(5,€))

—1
_/ / -1 (det(ra(a + m1¢)))| det 74| det(a + 1)) | ((a”lc)t (b+71d) TQ)
Sym(n+1,Qy) JSym(2n+1,Qy) T2 S

X ey (—Trﬁ’(g + 7'[1 + Y+ tTgt(a + T1c)eTe + tTgt(a + 110)r + "z(a + 710)72)) dr dg

[0 — « _di
Suppose a = [ v,up-left v,off-diag _ Then
Oy off-diag v, low-right

(473) FJB’, (g, 12n+27x MQH/ v( g)fav( 6)) = av,low—right(ﬂ/) : 11(5’5) : I2(57§U7QU)~
with

11(37 gvv B/) = / gv_l(det 7-4)| det T4|178_1ev(_’1‘r/8/7_4;1) d7_47
Sym(n+1,Qy)
12(57&)’041)75/) :/ g (det(a+710))|det(a+7-lc)| Ay up-left (((I—|—T16)_1(b+7'1d)) ( TI'ﬁ $7’1£13)
Sym(n,Qy)

X / Qy off-diag (T2) €0 ( Trf ("' (a + mie)em + m'(a + me)z + w(a + 7'10)7'2)) dro dm
My n+1(@v)

The proof of Proposition 4.7.1 reduces to computing I1(s, &, 8) and I(s, &, ay).
Proposition 4.7.2.

~ n ~
a'u,low—right(ﬁ,) : 11(5, &v, B/) =Cy <S - 575, ﬂ,) : O‘v,low—right(ﬁ/),

with the factor ¢, ( - 5,6, ﬁ) given by (4.7.1).
Proof. First observe that

righ n
Wﬁ’,v <l2n+27MQG/,v (5 - ,g) fav lowright (S Y g))

/ fOé'u ,Jow-right (S _ ﬁ7§) <wG/ <1n+1 7_4 > wG/ <1n+1 (o2 >>
m(n+1,Qy) JSym(n+1,Qy) 2 0 1,41 0 1,11

_/sy (n+1,Q.)
e, (—Trﬂ’o) dry do
—/ / &7 (det )| det 4| * e, Jow-right (0 — T e, (—Trf'o) dry do
Sym(n+1,Qy) J Sym(n+1,Qy)
_/Sy ( )

&, H(det )| det |, ey, (—TrB'ry ) dry
m(n+1,Q,

/ av,low-right(U - 7—4_1)6’0 (—Trﬁ’(a - 7_4_1)) do
Sym(n+1,Qv)
= 6z'u,low—right (6/) : Il(S, gva B/)
On the other hand, by the functional equation for Wy ,, [LRO5, (14)], we have
aU Oow-T1 n
W,B’,v (12n+27 MQG/,U (5 - ag) f : teht (S - 576))
n av OwW-Ti. n n ol
=Cy (3 - 5757/8/> : WB/,v (12n+27 f : teht (3 - 575)) =Cy (3 - 57576/) ’ av,low-right(ﬁ/)'

The formulas for the ¢, (s, &, 8’) are given in [Swe95, Proposition 4.8]. O
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Proposition 4.7.3. Forr >0,

IZ(S’ &v, v, ﬁ/) :)‘25’,v(_1)n+1 ) gv(Qv)Tn|QU|Zn(s+n+l)

X Uéc,v S (g, €5 MQ@ (57 gvXQﬂ’,v)fgvyup_leﬂ (Sa gvXZ,B’,v)7 R(_qv_r : 26,) av,off—diag)

Proof. We can write the interior integral of I5(s, &y, o, 5) as

QU off-diag (T2) €v (—TI',B/(tTQt(CL + 1e)er + nlla+ me)r + wla + 710)7'2)) dro

Mn,n+1(@v)
= g o(det(—a — m1¢), 1) det(a + 116)| " "F (ey 0 28') " wagn (( 0 *(“”10)) 1) o off-diag ()
= A28 v 1¢), 1 T\ €v 283 t(aJrTlC)—l _c s v,off-diag .
Plugging it into the expression of Is(s, &, oy, 8), we get
Iy(s, €, 0, B') = (e, 028" / Xogr o(det(—a — m1¢,1)) 7€, (det(a + 1c))| det(a + mc)[ ")
Sym(n,Qy)

—C

<y ((a+10) b nd) - (4 77 (rtoys 7). 1) @ ota(@) .

Then since

<1on —1:) (t(a—I—?'lc)_l —(aj—cnc)) _ (Z z) <1On —(a—i—nc)lnl(b—l—ﬁd)) <10n —3n>’

we get
Iy(5,&, a, ) = Aapr o (—1)"H1 / Xagro(det(a + 71¢), 1)Ly (det(a + me))| det(a + )| ")
Sym(n,Qy)
X Oty up-left ((a + Tlc)_l(b + Tld)) “ Wag (g (10” _(a+7—10)171(b+nd)> , 1) R(2B/) av,oﬁr_diag(:E) dry.

n

By a similar manipulation as in Proposition 4.6.1 (recall that o, yp-left = Lsym(n,z,) is still assumed),
for r > 0 we get

12(85 fa Qy), B/)
_ )\25,71)(_1)11—&-1&)(qv)—rn’qv ;rns Z /S o fgu,up—left (8, vaQﬁ’,v> (( 10n leln ) g (qloln q;qu:l-?'fzﬂ'))
r) ym(n, Uy

oeSym(nZ/q3

X wapr <g (qv(:)l” qqu_rla'-n) s 1) R(_qv—r . 26/) av,off-diag(x) dr,

and the proposition follows. O

Finally, combining (4.7.3) with Propositions 4.7.2, 4.7.3 proves Proposition (4.7.1).
O

4.8. Summary. We summarize the computation in the last few sections on the non-degenerate
Fourier coefficients of the specializations of the family &,.4 on G X G’ constructed in Proposi-
tion 2.6.1.
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Theorem 4.8.1. Assume that ‘a,'a, € Sym(n+1,Z,)* and 2'a’a € GL(n+1,Z,) for allvt Npoo.

_ —1Dk n(n+1)
N S ;
gord(Ia ’%),3’ ('7 m(af)g,lz/) = UX(det le) 1| det af‘llgf H | det av|17jl+1
Fn—i-l(k) oI N
t o ¢ o —ktEE ~ t, of ne )
X H NuXv(det 2%, 5 a, )| det 2%, 5 ay |y H Qx s, low-right (0 3 @) - (Imz ) 2 exo (Trﬁ z )
vipoo v|Np
T / Si T
X (Ck,nx 11 UQGW) : (Ql(svnx, 20" E ('7fé£7n(_$)) Oapr ('7¢25’,a£ﬁ>> L_nﬂ,k'
v|Np B
Here
craxe = MpXp(P)" D" F 2 T ] moxo (@) " lawl®,
v|N
(23] n
Als,mx,28) = [] (%(8 —n,nx) ] w(@s—2n—1+2j, 772x2)> IT 27725 —2n— 1+ 2j,7°x°)
e =t ey
" hq,(28") 1 1 n even
LNP (—s 4+ 25 =™ op) p (s — %55, nxAep)  n odd
The section féTn(—s) € lg, (—s,n_lx_lxgﬁla 18 the factorizable with local factors given as
gv(—sﬂl_lX_l)\gigl/)» ZfUTNpOO,
f—ntl 7. n+tl .
f ( ) féooz (—s,sgn 2 )7 va:OO7
é: sH, —5) = O‘;,n,v,u -le _ 15N = . )
Sy fé;u plft(_5>77 1X 1)‘251/)7 ZfU’N,

Mg (s,mxhap) F&=7"" " (s,mxhep),  if v =D,

and the Schwartz function Do
local ones given as

€ S(Myn+1(A,C) for the theta series is the product of the

v, TR

R(ay; ), 0 0v(20)s if v Npoo
¢T . GQﬁ’,OOv ZfU = o0
28/ = ~ .
phatmy R(_qg : 2/8,av) Ot i,v,0ff-diag> Zf U‘N
R(_qg : QB/av) ag,n,v,off-diaga ZfU =D

ntl 4 ntl

See (4.5.1) (resp. (4.6.2)) for the definition of the canonical archimedean section féiooT(s, sgn” 2 )

and the Gaussian function Gag o (Tesp. the “big cell” sections on é} The local operator Ug,, ., 15
defined in (4.6.1).

4.9. Expressing FJg , by using Siegel-Weil sections. Suppose that 7 is the quadratic char-
acter 1, = (-, dy), for some d,, € Q*, and that the finite part x (resp. the algebraic part k) of the
arithmetic « is trivial (resp. has the parity (—1)* = sgnd,). Then inside the degenerate principal

series IQ@U (k —n—1, 77*1X2_ 5,) there are a special type of sections called the Siegel-Weil sections,

which come from the theta lift of the trivial representation on O(25,)(Q,) for a quadratic form 2,
of dimension 2k — n — 1 and determinant (—1)*(d, det 23’)~!. They are sections inside the image
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of the map
S(Mppk—n-1(Qy),C) — I (k=1 —1,As,)

4.9.1
( ) ¢ — ((gve)'_)(*)?ﬂ*(gve)'qb(o))'

We denote the image as Rz (284).

v
In this section, we discuss expressing F'Jg (g, m(0y), T, frrw) as

(4.9.2) W(QB/ 0 )(g) : ¢B/,ﬁ*,1,n,v($70)
0 2B«

with suitable 3, and ¢ g, txv € S(My 21(Qy), C). We make a few remarks here:

(1) It is not always possible to express F'Jg ,,(g,m(ay), Z, frxv) in this way because the Siegel-
WEeil sections attached to a single 28, do not always span the degenerate principal series.

(2) The map (4.9.1) is not injective. In general the trivial representation is a quotient but not
necessarily a natural sub-representation of the Weil representation.

(3) One motivation for trying to express the FJg (g, m(ay),x, frrw) as (4.9.2) is because it
will be useful if one studies the Fourier coefficient via the seesaw diagram

theta series Siegel Eis series o(m)
(4.9.3) Sp(2n) x  Sp(2n) 0 (25/ z}i)
Sp(2n) 0(28) x O(26)
s triv

(4) Another motivation is that it helps deal with the cases excluded from Theorem 4.8.1, i.e.
vector weights at the archimedean place and the place v = 2 when n is even.

4.9.1. Assumptions. From now on, we only consider 3'’s satisfying the following conditions:
e At vt 2Npoo, there exists a, € GL(n + 1,Q,) such that

fa,8'a, € Sym(n +1,7Z,)* NGL(n + 1,Z,).
e At the place v = 2, there exists, a, € GL(n + 1,Q,) such that

.
2 |, ifnis odd,
1n 1 0

2tav/8/av = 0

if n is even.

N O O

e At v = o0, ' is positive definite.

We also fix an a, at each v { Npoo appearing in the above conditions. (For almost all places we
can choose a, = 1,41.)

We assume that the arithmetic character x, the quadratic character n = (-, d,), d, € Q* and the
auxiliary quadratic form 3, € Sym(2k —n — 1, Q) satisfy

det 28, = (—1)"(d,, det 268') 7, 26, > 0,

dy €LY, &,(268:) =1, forallvf{2Npoo, (—1)Fd, € (QF)?, e2(2B:) = (1)

where £,(-) denotes the Hasse invariant of a quadratic form over Q,.
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4.9.2. The ~7um7”a7m'ﬁed places not dividing 2. From our assumption on 3’ and f,, the Weil represen-
tations of G(Q,) corresponding to 23" and 28, both contain G(Z,)-fixed vectors, and it is easy to
see that we have

Proposition 4.9.1. For v { 2Npoo, suppose that ', By, ay,m, k are given as in §4.9.1. Pick s, €
GL(2k —n —1,Q,) such that 's,B.s, € Sym(2k —n — 1,Z,)* N GL(2k —n — 1,Z,). Then

bH’,’U (87 77) : FJ,B’,U (g) m(a'v)u z, MQH/,’U(S7 77)f$7n,v(5)) }S:n+1_k
1s giwen by Proposition 4.4.1 withé =n, s=n+1—k and

S (g, z; f8 (5,050, R(tail)]an,nH(zv))

t -1
- ’ R ( G E) ) A ,O .
s w<25 22*)(9) 0ty My 21,(2) (%5 0)

4.9.3. The place 2. The case when n is odd is the same as the previous subsection.

Proposition 4.9.2. Suppose that n is odd, v = 2 and ', B«, ay,n, k are given as in §4.9.1. Pick

0 ]-k_@
2

Then the same formula in
1]{/,_an1 0

g9 € GL(2k — n — 1,Q,) such that 2%53,59 = (

Proposition 4.9.1 holds.
Now we look at the case when n is even. In this case, the Weil representation of G (Qy) associated

/
to 23 or 2/, does not contain unramified vector, but the one associated to <25 2% > does.

Proposition 4.9.3. Suppose n that is even, v =2 and (', B«, ay,n, k are given as in §4.9.1. Pick

20 0 N
g9 € GL(2k —n—1,Q,) such that 2%38,50 = | 0 0 1k;—g . Put Ty = ] .
0 1p.n 0 log n—2
2

Then
bH’,Q (37 77) . F']ﬂ’,Q (gv m(a’u)7 xZ, MQH/,2(57 77)f1,k,2(3)) ‘s:n—l—l—k

n
Yo (25 = 2n — 1+ 2j,triv) ™" [ Lo(2s — 2n — 1+ 25, triv)
1 J=2+1

e

=na(det az)| det a|" 27 -y (s — m,m) 7!

J
T ' 0
X w(2ﬁ’ 0 ) 2(9)R( 2 ( 0 %2_1)) .]an,Qk(ZQ)(x’O)
0 28« )’
Note that when n is even, F'Jg 5 is not a simple product of local sections for Siegel Eisenstein
tay! 0 1 . t a simpl
0 1)) L@ is not a simple

product of Schwartz functions on M, y41(Z2) and My, op—n—1(Z2).

series and theta series, and the Schwartz function R <T2 (

4.9.4. Pluri-harmonic polynomials and holomorphic differential operators. Before discussing F'Jgr
evaluated at s = n 4+ 1 — k for general weight ¢, we first introduce the notion of pluri-harmonic
polynomials and define a pluri-harmonic polynomial P; ; on May, 1 2k.

Let C[M,,,] be the space of polynomials on m x [ matrices. For 1 < ¢,j < m, define the operator
Aij as

l
82
r=0 r T

As in [KV78], a polynomial in C[M,,;] is called pluri-harmonic if it is annihilated by A;; for all

1 <4,j < m. The subspace of pluri-harmonic polynomials in C[M,, ;] is denoted as $),,;. Pluri-

harmonic polynomials are introduced loc. cit to study the Weil representation of Sp(2m, R) x O(l, R)
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when [ is even. (In this section, by writing O(/,R) we mean the definite orthogonal group for the
quadratic form given by 1;.)
There is a natural embedding of C[M,, ;] into the space of Schwartz functions on M, ;(R),

jm,l : (C[Mm,l] — S (Mm,l(R)v (C)

Pr— (as — P(1) - ex (?Trx%)) :

This embedding relates the action of A;; on the left hand side to the Lie algebra action of us_p(2m) C

Lie Sp(2m) on the right hand side. More precisely,

jm,l (A”P) = —47v _1Lz_] jm,l(P)a forall 1 <i,7 <mand P € C[Mm,l];
where
- 0 0\ 1 _ — _ 1 (1, iy
Lij = (EU + Eji 0> Je uSp(Qm)7 J = E (Zlm 1,/

Thus, pluri-harmonic polynomials correspond to vectors in the Weil representation killed by uS_p(Qm)’
i.e. elements inside the lowest Ko-types of holomorphic discrete series of Sp(2m) appearing in the
Weil representation.

Specializing to our situation, we define the following two conditions on polynomials on Moy, 1 2.

((n,n + 1)-ph) A polynomial P € C[May41 2] is called pluri-harmonic with respect to Sp(2n) x
’ Sp(2n+1) = Sp(dn+2)if AjjP=0forall 1 <i,j <norn+1<14,j<2n+1.

A polynomial P € C[My,12x] is called O-invariant if there exists a polynomial
(O-inv) Qp € C[Sym(2n + 1)] such that P(z) = Qp(z'z).

Proposition 4.9.4. For k > n and a dominant weight t with t1 > --- > t, > k, there exists a
unique polynomial Py j, € C[Mayy1.2k] satisfying the conditions ((n,n + 1)-ph), (O-inv) and
(4.9.4)

2k
n—1
P, p(x) = H detj(2x1tx2)tj_tj+1detn(Qxltxg)t"_k mod (1%, z2'2)Clz], for x = L1 no
= =1 T ) n+1

where (z1'%1, x2'22)Clx] denotes the ideal in C[May,11.2k] generated by entries of x1'r1, xo'vs.

We will see from the proof that the Schwartz function Fo,11 1 (P k) is the highest weight vector
inside the lowest Koo-type of the summand isomorphic to Dy KDy 1) of the Weil representation of

Lie (Sp(2n, R) x Sp(2n + 2,R)) on S(Mop 4125 (R))OER).

Proof. Let pgq,, be the (2n + 1) x (2n + 1) matrix with the (4, j)-th entry being <8 Eingji ) Its

entries constitute a basis of ug,,, the Lie algebra of the unipotent radical of Qps. Then

Q (2;‘%) - € <\/2_71Tmtx> — Q(a'r) e (\/;TTM%) . Qe C[Sym(2n +1)].

Inside the Weil representation,

(4.9.5) U(Lie H)(R) - ex <TTrxtx> =U(ug,,)(R) - ex (TTrx%) :
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Hence, Sfo,,11 .91 induces a bijection between (4.9.5) and C[Sym(2n + 1)]. By [JV79, Proposition
2.2, Corollary 2.3], there is a multiplicity free decomposition

(4.9.6) (4.95)|eaxriean® = D Daythoanth ® Dayik,.anthk-

a1>->an>0

Therefore, there exists a polynomial Q; € C[Sym(2n + 1)] such that Qx(1q,,) - € (@Traz%)

spans the highest weight space inside the lowest Ko.-type of D;KD; ;.. Moreover, from the discussion
in [Liul6, §3.4], after rescaling we have

Qur(1Q,) Hdet it dety, (i ) = HdEt (1@ ,0)7 1 detn (g 0) " "
7j=1

Define P, , € C[M2n+1 k] by Pir(z) = Qui(a). Then P,y satisfies the conditions ((n,n + 1)-ph),
(O-inv) and (4.9.4). If there exists another P; satisfying ((n,n + 1)-ph), (O-inv) and (4.9.4), then
the first two conditions imply that @ P, (,UH’) sends the Gaussian function to the space spanned by

lowest Koo-types (with respect to G (R) x G'(R)), and the condition (4.9.4) further implies that the
Koo-type is t X (¢, k) and the weight is t, (£, k). By the multiplicity freeness of the decomposition
(4.9.6), we know that P/, = Pyy. O

4.9.5. The archimedean place. With the polynomials P, j, € C[May 112k and Q€ C[Sym(2n+1)]
as defined in Proposition 4.9.4, we express F'Jg o, evaluated at s = n + 1 — k for general weight ¢
as follows.

Proposition 4.9.5. Keep the setting of Proposition 4.5.1. For ty > - > t, > k > n, let
= Quk ( P ) € U(Lie H'). Then

yE e
(2—n)k (2n+1)k———3—" a(n+1)(2n+14k)
v-=1 2
FJg o " x, M, YDy o 1" k =
B, (g,gz » Ly QH,(S,SgD ) kaoo(sasgn )) s—ntl_k anﬂ(n—{—l) et (2]{)
% (det26)F "5 (det Tmz) 2en(TrB'2) W oy o\ (9)bthas.oo(2; (2,0)),
( 0 2'12k—n—1>

where the Schwartz function ¢y k28’ 00(2;+) 0n My pi1(R) X My, ok—n—1(R) is defined as

Otk2500(2s () = Pix ( ﬁﬁ N g) Coo (V-1Tr(28"z + yy))

Remark 4.9.6. The archimedean section Dy fE (s,sgn*) gives rise to holomorphic forms when
evaluated at s = n + 1 — k, and differs from the section frx o(s) we choose in §2.3.2. However,
after ordinary projection on G x G’, the corresponding Siegel modular forms are the same.

W o n)k2(2n+1)k—T 30 (nt1)(2nt1+k)

Proof. Let Ay = o T (20)

. By the computation in §4.5,

_n+2 T 0
FJg oo (h’,x, ffo(s,sgnk)> = Ay, det(28")* Wi o (W) G /o 0 <1 0> .
( 0 212k—n—1) ( 0 2cot 12k—n—1) n+l1

The Gaussian function here is defined as

G<26, 0 )(X)_eoo (T&FX( 0 )U(), X € Moyi12k(R).

0 1
0 21op 1 2k—n—1
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Hence

P (o Do fils,sm)) = den(8) " w0y W) bunamee (37 1)
( 0 242k7n71) Gar
P28 (X)_Qk<X</8/ 0 )tX>G (X)
t,k,287,00 =, 23 0 ,
0 12]67”71 ( g 2'12k7n71>
and the proposition follows. O

4.9.6. The places with “big cell” sections. The discussion in this subsection and the next is mainly
based on results in [KR92, Swe]. We consider FJg , (g, m(a,),z, fa”(—s,n_l))‘sznﬂ_k for a

Qg up-left Qy off-diag

Schwartz function o, = | 4
Qly off-diag v low-right

) on Sym(2n+1,Q,) with Oy up-left = ]lsym(n+1,zv)-

., . . . . ]l m(n N
By Proposition 4.6.1, we need to examine when the “big cell” section fész (n20) (k: —n—1, )\25*,1,)
belongs to the image of the map (4.9.1). First, when 23, admits sufficiently large isotropic subspace,
we have the easy proposition below.

Proposition 4.9.7. Suppose v # 2, ', By, 6y, 1, k are given as in §4.9.1, and o, yp-left = Lsym(n+1,20)-
If there exists s, € GL(2k —n — 1,Q,) such that

n n 2k—3n-—1
0o 1, 0 n

2t51)/8*51} :<1n 0 0 ) n S Sym(2k -n— 1,ZU),
0 0 * 2k —3n —1

then

Fg (g,m(a0),, f* (=8,07 )| i1

1

is given by the formula in Proposition 4.6.1 with € =n"", s=k—n—1 and

S (ga xT; fgv,up—ldt <37 7771%_51/) ) R(_q;r : 2B/av)av,0ff—diag) ‘

—q,-2f'a, 0O ~
=Wrag o (9)R< ¢ 06 t5—1> : (av,off—diagv]lGL(n,Zu)ﬁ]an,zk—n—l(Zv)) (z,0)
0 28.

s=k—n—1

v

The condition on 25, in the above proposition is always satisfied if k > 3”; 5 j.e. the size of 23,
is larger or equal to 2n + 4, which is exactly the range where the map (4.9.1) is surjective for all
20, according to [KR92,Swe]. Also, it is obvious that the size of 23, must be at least 2n in order
for the condition to be satisfied. Thus, when the condition is satisfied, the corresponding critical
point for L(s,7m x n) is far from the center (unless n = 1).

When the condition on 25, in Proposition 4.9.7 is not satisfied, the image of the map (4.9.1) for
a single 20, is a proper subspace of the degenerate principal series, and in general does not contain
the “big cell” sections. Let 23 € Sym(2k—n—1,Q) be a quadratic form of dimension 2k—n—1 and
determinant (—1)*(d, det28’)~! with Hasse invariant (over Q,) equal to 1. Denote by R(28%)
the image of the map (4.9.1) associated to 237 (if 28, does not exist then we set R(23;) = 0).

Theorem 4.9.8 ( [KR92,Swe]). R(26;)+R(28;) = IQé,v(k:—n—l,ij) if and only if k—n—1 > 0.

It follows that when & > n + 1 but the condition in Proposition 4.9.7 is not satisfied, one can
still express FJg ,, (9, m(ay), z, f*(—s,n71)) ‘s:n—l—l—k by using Siegel-Weil sections but one needs
to take a linear combination over 23 and 20; .
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If E < n+ 1, then according to Theorem 4.9.8 one does not expect the “big cell” section to be a
Siegel-Weil section. (There are some reasons to think of “big cell” sections as unlikely to lie inside
a proper sub-representation.)

4.9.7. The places with intertwining operator applied to “big cell” sections.

Theorem 4.9.9 ( [KR92,Swe]). Let 235,28, be as in Theorem 4.9.8. Then

REBT) + R2A7) = Mg (n+1 -k (op) ™) Tgga (n 1= b Oggr )7
if and only if 0 <k <n+1.

Therefore, when k < n+1, the “big cell” section f;sym("’z“) (k: —n—1, XQ Bi) is not a Siegel-Weil

K
. . T Tsym(n T .
section, but the section Mg, (n +1—k, )\261+> ész ) (n F1—k, )\251+) can be written as sum
of Siegel-Weil sections. ’
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