
ORDINARY FAMILIES OF KLINGEN EISENSTEIN SERIES ON

SYMPLECTIC GROUPS

ZHENG LIU

Abstract. We construct (n+ 1)-variable Hida families of Klingen Eisenstein series on Sp(2n+ 2)
for n-variable Hida families on Sp(2n), and relate their images under the Siegel operator to p-
adic L-functions. We also carry out some preliminary calculation on the non-degenerate Fourier
coefficients of the constructed Klingen Eisenstein families.
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1. Introduction

In his proof of the converse to Herbrand’s Theorem, K. Ribet constructed Selmer classes for odd
powers of Teichmüller characters via congruences between Eisenstein series and cuspidal modular
forms on GL(2)/Q. Later, the strategy of showing lower bound for Selmer groups via congruences
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between suitable automorphic forms with reducible and irreducible Galois representations has been
greatly developed, and successfully exploited in the proof of the Iwasawa main conjectures for
totally real fields [MW84, Wil90] and CM fields [HT94, Hsi14], as well as for symmetric square
of elliptic curves over Q [Urb01, Urb06], elliptic curves over Q and over a imaginary quadratic
field [SU14,Wan13].

The semi-simple Galois representation attached to an Eisenstein series is decomposable. Its
congruence with irreducible Galois representations gives rise to nice classes in the first Galois coho-
mology group, and is expected to be closely connected with the “constant terms” of the Eisenstein
series. Meanwhile, the “constant terms” are known to be closely related to special values of L-
functions. In this article, we consider Klingen Eisenstein series attached to cuspidal automorphic
representations generated by holomorphic Siegel modular forms.

Let G = Sp(2n)/Q and G′ = Sp(2n + 2)/Q. The Klingen parabolic subgroup PG′ ⊂ G′ consists
of elements of the form

n 1 n 1


a 0 b ∗ n
∗ x ∗ ∗ 1
c 0 d ∗ n
0 0 0 x−1 1

,

(
a b
c d

)
∈ Sp(2n)/Q, x ∈ GL(1)/Q.

Its Levi subgroup is isomorphic to G×GL(1)/Q. Let π ⊂ A0(G(Q)\G(A)) be an irreducible cuspidal

automorphic representation ofG(A), and ξ : Q×\A× → C× be a Dirichlet character. Given a section

Φ(s, ξ) inside the π-isotypic part of the space IPG′ (s, ξ), which is isomorphic to Ind
G′(A)
PG′ (A) π� ξ| · |sA,

(see §2.1 for the precise definition of IPG′ (s, ξ)), one defines the Klingen Eisenstein series as

EKl
(
g′,Φ(s, ξ)

)
=

∑
γ∈PG′ (Q)\G′(Q)

Φ(s, ξ)(γg′).

Assume that the archimedean component of π is isomorphic to the holomorphic discrete series
of weight t = (t1, . . . , tn), and suppose that s = s0 is a critical point to the left of the center
for the standard L-function L(s, π × ξ). Then EKl (Φ(s, ξ)) (g′)

∣∣
s=s0

is algebraic after suitable

normalization [Shi00]. Let p be a prime number, and ρπ : Gal(Q/Q) → GL(2n + 1,Qp) (resp.

ρξ : Gal(Q/Q) → Q×p ) be the p-adic Galois representation associated to π (resp. ξ) constructed
in [Art13,CHLN11,Shi11,CH13] (resp. by class field theory). The semi-simple Galois representation
corresponding to EKl (Φ(s, ξ)) (g′)

∣∣
s=s0

is

(1.0.1) ρξ(s0)⊕ ρπ ⊕ ρξ−1(−s0).

Given an algebraic irreducible cuspidal automorphic representation Π of G′(A) whose Hecke eigen-
values are congruent to those of the Klingen Eisenstein series modulo certain power of p, with a
suitably chosen lattice for ρΠ, we have

ρΠ ≡

ρξ(s0) ∗ ∗
0 ρπ ?
0 0 ρξ−1(−s0)


modulo that power of p. If ρΠ is irreducible (for example if Π is stable), then ? gives rise to
nontrivial Selmer classes for ρπ ⊗ ρξ(s0) with Qp/OQp

coefficients. This consideration motivates

the study of the Klingen Eisenstein congruence ideal, which measures the congruences between the
Klingen Eisentein series and cuspidal automorphic forms. Such study for the groups Sp(4), U(2, 2),
U(2, 1), U(3, 1) has played a crucial role in [Urb06,SU14,Hsi14,Wan13].
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In order to show desired properties for the Klingen Eisenstein congruence ideals, it is crucial to
study the p-adic properties of Klingen Eisenstein series, especially to prove: (1) the relation between
its “constant terms” and L-values, (2) its p-adic primitivity after appropriate normalization, (3)
its p-adic interpolatability into p-adic families. We address (1) and (3) here, and carry out some
preliminary computation on the non-degenerate Fourier coefficients which expects to help address
(2).

Assume that p ≥ 3. Fix a positive integer N ≥ 3 prime to p and a sufficiently large finite
extension F of Qp. For m = n, n + 1, denote by Tm the standard maxinal torus of GL(m) and

we identify Tn+1 with Tn × Gm. A Q×p -valued character of Tm(Zp) is called arithmetic if it is a
product of an algebraic character and a finite order character. For an arithmetic character (τ, κ) of
Tn+1(Zp) = Tn(Zp)× Z×p , we denote by (t, k) = (t1, . . . , tn) (resp. (ε, χ)) its algebraic (resp. finite
order) part. We call (τ, κ) admissible if it is arithmetic and t1 ≥ t2 ≥ · · · ≥ tn ≥ k ≥ n+ 1.

Define the m-variable Iwasawa algebra Λm as OF JTm(1 + pZp)K. By Hida theory [Hid02], there
is an OF JTn+1(Zp)K-moduleM0

G′,ord finite free over Λn+1 (resp. OF JTn(Zp)K-moduleM0
G,ord finite

free over Λn) consisting of cuspidal Siegel modular forms of genus n+ 1 (resp. genus n) and tame
level principal level N . By the Hida theory for non-cuspidal Siegel modular forms [LR18], there is
also an OF JTn+1(Zp)K-moduleM1

G′,ord finite free over Λn+1 consisting of ordinary families of Siegel
modular forms of genus n+ 1 and tame principal level N , which vanish along the strata with cusp
labels of rank > 1 in a toroidal compactification. In addition, there is the following short exact
sequence

(1.0.2) 0 −→M0
G,ord −→M1

G′,ord

Pdeg−→
⊕

L∈CV′/ΓG′ (N)
rkL=1

M0
L,ord ⊗OF JTn(Zp)K OF JTn(Zp)× Z×p K −→ 0.

The quotient map Pdeg is called the Siegel operator. It generalizes the operator of taking the
constant term of modular forms on GL(2). The set CV′/ΓG′(N) parameterizes strata of the minimal
compactification, and each M0

L,ord is isomorphic to M0
G,ord. (See (1.0.7) for the definition of the

congruence subgroups of G(Z) and G′(Z) we will use in this article.) The image of Pdeg of a family
in M1

G′,ord measures its congruences with cuspidal Hida families. For each L ∈ CV′/ΓG′(N), we
denote by Pdeg,L the projection of the Siegel operator Pdeg to the component indexed by L.

Denote by T0
G,ord the OF JTn(Zp)K-algebra consisting of unramified Hecke operators away from

Np and Up-operators acting on M0
G,ord. The natural map Spec

(
T0
G,ord

)
→ Spec (OF JTn(Zp)K) is

called the weight projection map. A point (x, κ) is called admissible if (τx, κ) is admissible with τx
being the projection of x to the weight space. Let C be a geometrically irreducible component of

Spec
(
T0
G,ord ⊗OF F

)
with function field FC. Denote by IC the integral closure of Λn in FC.

Theorem 1.0.1 (Theorem 2.6.2, Theorem 3.6.1). Assume that p,N ≥ 3, and η is a Dirichlet
character with conductor dividing N . There exists an ordinary family

EKl
C ∈ FC ⊗ΛnM0

G,ord ⊗OF JTn(Zp)KM1
G′,ord

which, at an admissible point (x, κ) ∈ C(Qp) × Spec
(
OF JZ×p K

)
, specializes (up to an explicit con-

stant) to the automorphic form

∑
ϕ∈Sx

ϕ⊗ EKl
(
·,Φfτx,κ(s),ϕ

)∣∣∣
s=n+1−k

〈ϕ,ϕ〉

if x is classical and the weight projection is étale at x and κ(−1) = η(−1). Here Sx consists of
an orthogonal basis of algebraic ordinary cuspidal holomorphic Siegel modular forms on G(A) of
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weight tx, nebentypus εx at p and tame level Γ̂G,1(N) on which the Hecke algebra acts through the
eigenvalues parameterized by x. The precise formulas for the section Φfτx,κ(s),ϕ ∈ IPG′ (s, ηχ) are

given as (2.2.2) and §2.3.
Moreover, the image of the ordinary Klingen family EKl

C under the Siegel operator is divisible by
the (n+1)-variable p-adic L-function associated to C. More precisely, for the family

(id× Pdeg,L)
(
EKl
C

)
∈M0

G,ord ⊗OF JTn(Zp)KM0
L,ord ⊗OF JTn(Zp)K ICJZ×p K⊗IC FC,

let

(1.0.3) ε
γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
∈ ICJZ×p K⊗IC FC

be the coefficient indexed by (β1, β2) ∈ N−1 Sym(n,Z)∗,⊕2
>0 of its p-adic q-expansion at the cusp

associated to γN,1, γN,2 ∈ G(Z/N). Let γ′L ∈ G′(Z/N) be associated with the stratus L. Then
(1.0.3) vanishes unless γ′L ∈ PG′(Zv)wPG′UPG′ (Zv) for all v | N . If nonvanishing, then it satisfies
the interpolation properties of the p-adic L-function for C, i.e. at (x, κ) as above, it takes the value

ε
γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
(x, κ)

= p2n2
(p− 1)n vol

(
Γ̂G,1(pN)

)
(ηκ)N

(
pGL(1)(γ

′
L)
)

×
√
−1

n2−n
2 2−

∑
ti+

n2−n
2

dim (GL(n), tx)

∑
ϕ∈sx

ε
γN,1
q-exp (β1, ϕ) ε

pG(γ′L),γN,2
q-exp (β2, eGW (ϕ))

〈ϕ,ϕ〉

× E+
p (k − n, π × η−1χ−1)E+

∞(k − n, π × η−1χ−1)LNp∞(k − n, π × η−1χ−1).

Here E+
p (s, π×η−1χ−1) (resp. E+

∞(s, π×η−1χ−1)) is the modified Euler factor at p (resp. at infinity)
for our p-adic interpolation, and it aligns with the conjecture of Coates–Perrin-Riou [Coa91] (see
Remarks 3.5.8, 3.5.3 for their explicit formulas). eG denotes the ordinary projector on G, and the
operator W on holomorphic Siegel modular forms is defined as (3.5.19). See also (3.5.10) for the
definition of (pG, pGL(1)) : PG′wPG′UPG′ → G×GL(1).

Remark 1.0.2. Compared to [Liu16, Theorem 1.0.1], we do not assume the nontriviality of η2

(denoted as φ2 loc. cit). Thanks to the assumption N 6= 1 and our choice of sections at v | N ,
the degenerate Fourier coefficients at the infinity cusp of our Siegel Eisenstein series on G′ vanish
by Proposition 2.4.1, so the issue of the pole of p-adic zeta function does not show up. In fact the
condition φ2 6= 0 is also unnecessary loc. cit as long as N 6= 1. In Proposition 4.4.1 loc. cit, for
φβχ = triv, the pole of the p-adic zeta function is canceled by

∏
v|N

Lv(k − n, φ−1
β χ−1).

The above theorem together with the short exact (1.0.2) reduces proving the divisibility of the
Klingen Eisenstein ideals by the p-adic L-functions to showing the primitivity of EKl

C . One possible
approach, which has been successfully carreid out in the cases Sp(4) and U(2, 2) [Urb06, SU14],
is to show that there does not exist height one prime ideal of ICJZ×p K that divides simultaneously

the p-adic L-function and all the non-degenerate Fourier coefficients of EKl
C . (Strictly speaking, we

need a further normalization so that everything becomes integral and we can discuss divisibility
and primitivity. Such a normalization is related with the congruence of C with other cuspidal Hida
families on G and can be done by assuming that T0

G,ord is Gorenstein in a similar way as in [EHLS16],

but we do not pursue it here.) Therefore, an accurate computation of the non-degenerate Fourier
coefficients of EKl

C is of great interest.

Theorem 1.0.3. Given a ∈ GL(n+ 1,Af ) and β′ ∈ Sym(n+ 1,Z)∗>0 such that tavβ
′av ∈ Sym(n+

1,Zv)∗ and 2tavβ
′av ∈ GL(n + 1,Zv) for all v - Np∞, let ε

m(a)
q-exp,β′ : M1

G′,ord → OF JTn+1(Zp)K be
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the map of taking the β′-th coefficient in the p-adic q-expansion at the cusp associated to m(a) =(
a 0
0 ta−1

)
. Then for (x, κ) as in Theorem 1.0.1 with tx being a scalar weight and a sufficiently large

(with respect to η, χ) integer r, the evaluation of(
id× εm(a)

q-exp,β′

)(
EKl
C

)
∈M0

G,ord ⊗Λn ICJZ×p K⊗IC FC

equals

(∗)
∑
ϕ∈Sx

ϕ ·
〈(
ck,ηχ

∏
v|Np UQG,v

)r
ESi

(
·, f

G̃,τx,κ
(k − n− 1)

)
θ2β′

(
·, φr2β′,a,τx,κ

)
, ϕ
〉

〈ϕ,ϕ〉
,

where G̃ denotes the metaplectic group S̃p(2n). See Theorem 4.8.1 for the detailed formulas
of the scalar (∗), the section f

G̃,τx,κ
and the Schwartz function φr2β′,a,τx,κ

on Mn,n+1(Qv). The

operator UQG,v is defined as

∫
Sym(n,Zv)

right translation by
(
1n σ
0 1n

) ( qv1n 0

0 q−1
v 1n

)
dσ, and ck,ηχ =

ηpχp(p)
n pn(k−2n−2)

∏
v|N ηvχv(qv)

−n|qv|nkv .

By Siegel–Weil formula, the Siegel Eisenstein series on G̃ can be obtained as a theta lift of the
trivial representation on the orthogonal group O(2k−n−1). At the end of §4, we discuss expressing
the product of the Siegel Eisenstein series and the theta series in the above theorem in terms of
theta lift from O(2k). This point of view is more convenient for dealing with general vector weight
at the archimedean place and the place 2 when n is even.

Compared to the construction of Klingen Eisenstein families on unitary groups in [Wan15], we
have a more refined study on the properties of the constructed families. Firstly, we do not assume
the condition that the nebentypus at p are sufficiently ramified for the evaluations of the “constant
terms” and the non-degenerate Fourier coefficients. (The evaluations for trivial nebentypus are of
more interest and even crucial particularly if the size of the group is not very small.) Secondly, the
archimedean weights are assumed to be scalar in [Wan15] and we include all vector weights. Our
results rely on a good understanding of Maass–Shimura differential operators and the computation
of archimedean zeta integrals in [Liu19]. Finally, we include a discussion on expressing the local
sections in Theorem 1.0.3 in terms of theta lifts from O(2k), which can be useful for potential
applications as explained in §4.9.

The article is organized as follows. In §2, we construct the Klingen Eisenstein family EKl
C . The

construction relies on Garrett’s generalization of the doubling method and the p-adic interpola-
tion of p-adic q-expansions of a collection of nice Siegel Eisenstein series on Sp(4n + 2)/Q. Extra
care needs to be taken for selecting the sections at p in order to ensure the nonvanishing of the
ordinary projection of the resulting Klingen Eisenstein series on Sp(2n + 2)/Q. In §3, we iden-

tify the coefficients of the p-adic q-expansions of Pdeg

(
EKl
C

)
with p-adic L-functions by computing

their evaluations at admissible points. §§3.2-3.4 reduce the problem to local computations, and 3.5
computes the local integrals place by place. §4 is about computing the non-degenerate Fourier coef-
ficients of specializations of EKl

C at admissible points. The strategy is to compute the partial Fourier
expansions of the Siegel Eisenstein series on Sp(4n + 2)/Q. After the standard unfolding in §4.1,
involved computation is done in §§4.4-4.7 to work out the precise formulas for local sections which
are crucial for further study of the p-adic properties of the non-degenerate Fourier coefficients.

Notation. We fix an odd prime p and a positive integer N ≥ 3 coprime to p. We also fix an
embedding Q ↪→ C and an isomorphism between Qp and C.
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Fix the standard additive character eA =
⊗

v ev : Q\A → C× with local component ev defined

as ev(x) =

{
e−2πi{x}v , v 6=∞
e2πix, v =∞

where {x}v is the fractional part of x. All the gamma factors

appearing in this article are with respect to this fixed additive character, and we omit ev from the
notation for gamma factors.

For a positive integer m, define the algebraic group Sp(2m) over Z as

Sp(2m) =

{
g ∈ GL(2n) : tg

(
0 1m
−1m 0

)
g =

(
0 1m
−1m 0

)}
.

The standard Siegel parabolic subgroup Q ⊂ Sp(2m) consists of elements whose lower left m×m

blocks are 0. The modulus character δQ is given as δQ

(
a b
0 d

)
= | det a|

m+1
2

A . The unipotent radical

UQ ⊂ Q is identified with Sym(m), the space of symmetric m×m matrices, via

ς 7−→ u(ς) =

(
1n ς
0 1n

)
, ς ∈ Sym(m),

and the Levi subgroup MQ ⊂ Q is identified with GL(n) via

a 7−→ m(a) =

(
a 0
0 ta−1

)
, a ∈ GL(m).(1.0.4)

For each finite place v of Q, the group Sp(2m,Zv) is a maximal open compact subgroup of
Sp(2m,Qv). For the archimedean place, the maximal compact subgroup

(1.0.5)

{(
a b
−b a

)
: a+

√
−1b ∈ U(m,R)

}
is isomorphic to the rank m definite unitary group over R.

For a finite place v, we fix the Haar measure on Qv (resp. Sp(2m,Qv)) with Zv (resp. Sp(2m,Zv))
having volume 1. We take the usual Lebesgue measure for R, and for the group Sp(2m,R),
we take the product measure where the one on the maximal compact subgroup (1.0.5) has to-
tal volume 1 and the one on the upper half space Hm = {z = x + iy ∈ Sym(m,C) : y > 0}
is det(y)−m−1

∏
1≤i≤j≤m

dxij dyij . The Haar measures on A and Sp(2m,A) are obtained by taking

products of the local ones.
Let V (resp. V′) be a vector space over Q with a fixed basis e1, . . . , en, f1, . . . , fn (resp. e′1, . . . , e

′
n+1,

f ′1, . . . , f
′
n+1) equipped with the symplectic pairing given by

(
0 1n
−1n 0

)
(resp.

(
0 1n+1

−1n+1 0

)
)

with respect to the fixed basis. Let V′′ ⊂ V′ be the 2n-dimensional subspace spanned by e′1, . . . , e
′
n,

f ′1, . . . , f
′
n with a symplectic pairing induced from that of V′. Put W = V ⊕ V′′ with basis

e1, . . . , en, e
′
1, . . . , e

′
n, f1, . . . , fn, f

′
1, . . . , f

′
n, and W′ = V⊕V′ with basis e1, . . . , en, e′1, . . . , e

′
n, f1, . . . , fn+1,

f ′1, . . . , f
′
n+1. The spaces W, W′ are endowed with symplectic pairings induced from those on

V,V′′,V′.
The following four symplectic groups will be used.

G = Sp(V) ∼= Sp(2n)/Q, G′ = Sp(V′) ∼= Sp(2n+ 2)/Q,

H = Sp(W) ∼= Sp(4n)Q, H ′ = Sp(W′) ∼= Sp(4n+ 2)/Q,

where the isomorphisms are given by the above fixed basis. The Siegel modular forms we are
interested in are on G and the families of Klingen Eisenstein series we are going to construct and
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study are on G′. The auxiliary groups H, H ′ appear in the doubling method on which the auxiliary
Siegel Eisenstein series live. We fix the following embeddings

ιH : G×G ↪−→ H ιH′ : G×G′ ↪−→ H ′

(
a1 b1
c1 d1

)
×
(
a2 b2
c2 d2

)
7−→


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 ,

(
a b
c d

)
×
(
a b
c d

)
7−→


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 .

We will also view G as a subgroup of G′ via the embedding

(1.0.6)

G ↪−→ G′

(
a b
c d

)
7−→


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 .

For R = Z,Zv, we denote by Sym(m,R)∗ the subset of Sym(m,R⊗Q) consisting of β’s such that
Trβς ∈ R for all ς ∈ Sym(m,R). We fix the Haar measures on Sym(m,Qv) such that Sym(m,Zv)
has volume 1.

For a positive integer M , we define the following congruence subgroups of Sp(2m,Z).

(1.0.7)

ΓSp(2m)(M) = {g ∈ Sp(2m,Z) : g ≡ 12m mod M} ,

ΓSp(2m),1(M) =

g ∈ Sp(2m,Z) : g ≡


1 ··· ∗ ∗ ··· ∗
. . .

...
...
. . .

...
1 ∗ ··· ∗

1
...
. . .
∗ ··· 1

 mod M

 .

Denote by Tn (resp. Tn+1) the standard maximal torus of GL(n) (resp. GL(n + 1)) consisting
of diagonal matrices. By (1.0.4), Tn (resp. Tn+1) can be identified as the standard maximal torus
of G (resp. G′). Via (1.0.6), we view Tn as a subgroup of Tn+1 and identify Tn+1 as Gm × Tn.

The weight space for p-adic forms on G (resp. G′) is

Homcont

(
Tn(Zp),Q

×
p

)
(resp. Homcont

(
Tn+1(Zp),Q

×
p

)
).

A point (τ) (resp. (τ, κ) of the weight space is called arithmetic if it is a product of algebraic
character and a finite order character, and we denote its algebraic part as t = (t1, . . . , tn) ∈ Zn
(resp. (t, k) = Zn+1) and its finite order part as ε = (ε1, . . . , εn) (resp. (ε, χ)). An arithmetic point
(τ, κ) is called admissible if t1 ≥ · · · ≥ tn ≥ k + 1 ≥ n+ 1.

2. Ordinary families of Klingen Eisenstein series on Sp(2n+ 2)

2.1. The basic setup for Klingen Eisenstein series and Siegel Eisenstein series. We first
recall the definition of Klingen Eisenstein series on G′. Let PG′ be the (standard) Klingen parabolic
subgroup of G′ consisting of elements of the form

n 1 n 1


a 0 b ∗ n
∗ x ∗ ∗ 1
c 0 d ∗ n
0 0 0 x−1 1

,

(
a b
c d

)
∈ Sp(2n)/Q, x ∈ GL(1)/Q.
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(This PG′ is the parabolic subgroup of G′ preserving the isoropic subspace space spanned by e′n+1

inside V′). Its Levi subgroup is isomorphic to Sp(2n)×GL(1), and its modulus character is

δPG′ : PG′(A) −→ C×
a 0 b ∗
∗ x ∗ ∗
c 0 d ∗
0 0 0 x−1

 7−→ |x|2n+2
A .

Given a Dirichlet character ξ : Q×\A× → C× and a complex number s, define IPG′ (s, ξ) as the
space of smooth functions

Φ(s, ξ) : UPG′ (A) ·MPG′ (Q)\G′(A) −→ C

such that:

(1) Φ(s, ξ)

((
1n

x
1n

x−1

)
g′
)

= ξ(x)|x|sA δ
1/2
PG′

(x) Φ(s, ξ)(g′) = ξ(x)|x|s+n+1
A Φ(s, ξ)(g′) for all

x ∈ A× and g′ ∈ G′(A),

(2) The space spanned by the right translation of Sp(2n+ 2, Ẑ)×KG′,∞ ⊂ G′(A) on Φ(s, ξ) is
finite dimensional, where KG′,∞ ⊂ G′(R) is the maximal compact subgroup defined as in
(1.0.5),

(3) For any g′ ∈ G′(A) the function g =

(
a b
c d

)
7→ Φ(s, ξ)

((
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

)
g′
)

is a cuspidal auto-

morphic form on G(A).

(Note that unlike the degenerate principal series defined below, the space IPG′ (s, ξ) does not fac-
torize to a product of local spaces.)

The Klingen Eisenstein series attached to Φ(s, ξ) ∈ IPG′ (s, ξ) is defined as

EKl
(
g′,Φ(s, ξ)

)
=

∑
γ∈PG′ (Q)\G′(Q)

Φ(s, ξ)(γg′).

The sum converges absolutely for Re(s)� 0.

Next we recall the definition of Siegel Eisenstein series on H ′. Let QH′ ⊂ H ′ be the standard
Siegel parabolic subgroup (which is the parabolic subgroup preserving the maximal isotropic sub-
space W ′ inside W′ spanned by e1, . . . , en, e′1, . . . , e

′
n). Let IQH′ (s, ξ) be the space consisting of

smooth functions f(s, ξ) on H ′(A) which are KH′,∞-finite and satisfy

f(s, ξ)

((
A B
0 D

)
h′
)

= ξ(detA)|detA|sA δ
1/2
QH′

(detA) f(h′) = ξ(detA)| detA|s+n+1
A f(h′).

The Siegel Eisenstein series attached to f(s, ξ) ∈ IQH′ (s, ξ) is defined as

ESi
(
h′, f(s, ξ)

)
=

∑
γ∈QH′ (Q)\H′(Q)

f(s, ξ)(γh′).

Again the sum converges absolutely for Re(s) � 0. One defines Siegel Eisenstein series on H in
the same way.
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We also recall here the definition of intertwining operators which will be frequently used later.
The intertwining operator on sections for Klingen Eisenstein series is defined as

(2.1.1)

MPG′ (s, ξ) : IPG′ (s, ξ) −→ IPG′ (−s, ξ
−1)

Φ(s, ξ) 7−→
(
MPG′ (s, ξ)Φ(s, ξ)

)
(g) =

∫
UPG′

(Q)\UPG′ (A)
Φ(s, ξ)(wPG′ug) du.

Similarly, the intertwining operator on the degenerate principal series is defined as

(2.1.2)

MQH′ ,v(s, ξ) : IQH′ (s, ξ)v −→ IQH′ (−s, ξ
−1)v

fv(s, ξ) 7−→
(
MQH′ ,v(s, ξ)fv(s, ξ)

)
(g) =

∫
UQH′

(Qv)
fv(s, ξ)(wQH′ug) du.

Here

wPG′ =


1n 0 0 0
0 0 0 −1
0 0 1n 0
0 1 0 0

 , wQH′ =

(
0 −12n+1

12n+1 0

)
.

2.2. The doubling method formula. In [Gar89], a slight generalization of the classical doubling
method for symplectic groups is introduced and gives rise to an integral representation of the
Klingen Eisenstein series on Sp(2n+ 2) in terms of the Siegel Eisenstein series on Sp(4n+ 2).

In order to state the integral representation formula, we first define the so-called doubling Siegel
parabolic subgroup. In addition to W ′ ⊂W′, we introduce another maximal isotropic subspace

W ′♦ = span {e1 + f ′1, . . . , en + f ′n, f1 + e′1, . . . , fn + e′n, e
′
n+1}.

The doubling Siegel parabolic subgroup Q♦H′ is defined as the Siegel parabolic subgroup preserving

W ′♦. We have

Q♦H′ = SH′QH′S
−1
H′ , SH′ =


1n 0 0 0 0 0
0 1n 0 0 0 0
0 0 1 0 0 0
0 1n 0 1n 0 0
1n 0 0 0 1n 0
0 0 0 0 0 1

 .

Given f(s, ξ) ∈ IQH′ (s, ξ), define f♦(s, ξ) ∈ IQ♦
H′

(s, ξ) as

f♦(s, ξ)(h′) = f(s, ξ)(S−1
H′ h

′).

For a cuspidal automorphic form ϕ ∈ A0(G(Q)\G(A)), define the linear functional

(2.2.1)

Lϕ : A(H ′(Q)\H ′(A)) −→ A(G′(Q)\G′(A))

F 7−→Lϕ(F )(g′) =

∫
G(Q)\G(A)

F (ιH′(g, g
′))ϕ(g) dg.

Theorem 2.2.1 ( [Gar89, Theorem on p. 255]). For f(s, ξ) ∈ IQH′ (s, ξ) and ϕ ∈ A0(G(Q)\G(A)),

Lϕ

(
ESi(·, f(s, ξ)

)
= EKl

(
·,Φf(s,ξ),ϕ

)
,

where the section Φf(s,ξ),ϕ ∈ IPG′ (s, ξ) is given by

(2.2.2) Φf(s,ξ),ϕ(g′) =

∫
G(A)

f♦(s, ξ)(ιH′(g, g
′))ϕ(g) dg.
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The doubling method formula reduces the construction of families of Klingen Eisenstein series
on G′ to the selection of families of sections inside the degenerate principal series on H ′.

2.3. Our choices of sections. There is a simple strategy for selecting sections from the degen-
erate principal series for p-adic interpolation as explained in [Liu16]. The idea is that, combining
the theory of differential operators and theta correspondence, there are natural choices for the
archimedean place, and the sections at the place p are determined by the archimedean sections
due to the requirement that the Fourier coefficients be p-adically interpolatble. We will not say
more about the strategy here, but simply list our choices of the sections. In the following we
fix a Dirichlet character η : Q×A× → C× with conductor dividing N . For each admissible point

(τ, κ) ∈ Homcont

(
Tn(Zp)× Z×p ,Q

×
p

)
with ηχ(−1) = (−1)k, we pick a section fκ,τ(s) ∈ IQH′ (s, ηχ).

2.3.1. The unramified places. For v - Np∞, set

fτ,κ,v(s) = fur
v (s, ηχ),

the standard unramified section in IQH′ (s, ηχ) which takes value 1 on H ′(Zv).

2.3.2. The archimedean place. For an integer k, the canonical section of scalar weight k in IQH′ ,∞(s, sgnk)
is defined as

fk∞(s, sgnk)

(
A B
C D

)
= det(C

√
−1 + D)−k|det(C

√
−1 + D)|k−(s+n+1).

Let µ̂+
0 =

(
µ̂+

0,ij

)
1≤i≤n, 1≤j≤n+1

be the n × (n + 1) matrix with entries inside (LieH ′)C whose

(i, j) entry is given as

(2.3.1) µ̂+
0,ij = JH′


0 0 0 Eij
0 0 tEij 0
0 0 0 0
0 0 0 0

 J−1
H′ , JH′ =

1√
2

(
12n+1

√
−1 · 12n+1√

−1 · 12n+1 12n+1

)
,

where Eij is the n × (n + 1) matrix with 1 as the (i, j)-entry and 0 elsewhere. The µ̂+
0,ij ’s act on

A(H ′(Q)\H ′(A)) by differentiating the right translation of H ′(R). Their realizations on the Siegel
upper half space are the Maass–Shimura differential operators (see [Liu16, §2.4]).

For admissible (τ, κ) with ηχ(−1) = (−1)k, set

fκ,τ,∞(s) =
n−1∏
j=1

detj

(
µ̂+

0

4π
√
−1

)tj−tj+1

detn

(
µ̂+

0

4π
√
−1

)tn−k
· fk∞(s, sgnk),

where detj denotes the determinant of the upper left j × j block of a matrix.

2.3.3. The places dividing N . We choose our sections at v | Np from a special type of sections,
the so-called “big cell” sections. Given a finite place v and a compactly supported locally constant
function αv on Sym(2n+ 1,Qv), the “big cell” section in IQH′ ,v(s, ξ) associated to αv is defined as

fαv(s, ξ)

((
A B
C D

))
=

{
ξ−1(detC)|detC|−(s+n+1)

v αv(C
−1D), if detC 6= 0,

0, if detC = 0.
10



We write αv =

(
αv,up-left αv,off-diag

tαv,off-diag αv,low-right

)
if αv is factotizable with respect to the embedding ιH′

in the sense that

αv


n n+ 1( )
ς ς0 n

tς0 ς ′ n+ 1

 = αv,up-left(ς) · αv,low-right(ς
′) · αv,off-diag(ς0).

Later all the αv’s we will use are factorizable.

Define the Schwartz function αvol
v by

(2.3.2)

αvol
v,up-left = 1Sym(n,Zv), αvol

v,low-right = 1Sym(n+1,NZv),

αvol
v,off-diag = characteristic function of

{
x0 ∈Mn,n+1(Zv) : x0 ≡ −

(
1 ∗ ··· ∗ ∗
0 1 ··· ∗ ∗
...
...
. . .

...
...

0 0 ··· 1 ∗

)
modN

}
.

For v | N , we set fτ,κ,v(s) ∈ IQH′ ,v(s, ηχ) to be

(2.3.3)
fτ,κ,v(s) =γv

(
−s− n, η−1χ−1

) n∏
j=1

γv(−2s− 2n− 1 + 2j, η−2χ−2)

×MQH′ ,v(−s, η
−1χ−1)fα

vol
v (−s, η−1χ−1),

where the intertwining operator MQH′ ,v(−s, η
−1χ−1) is defined in (2.1.2).

Remark 2.3.1. The definition of αvol
v here is slightly different from its analogue in [Liu16] as an

intertwining operator is involved and we use a different tame level structure ΓG,1(N) rather than
the principal level structure ΓG(N) used loc. cit. The level structure ΓG,1(N) is more convenient
for our later computation in §4.6.

2.3.4. The place p. For arithmetic (τ, κ), define α̂τ,κ,p =

(
α̂τ,κ,p,up-left α̂τ,κ,p,off-diag

tα̂τ,κ,p,off-diag α̂τ,κ,p,low-right

)
with,

α̂τ,κ,p,off-diag(ς0) = 1Mn,n+1(Zp)(ς0)
n∏
j=1

1Z×p (detj(2ς0))
n−1∏
j=1

εjε
−1
j+1(detj(2ς0)) εnχ

−1 (detn(2ς0)) ,

α̂τ,κ,p,up-left = 1Sym(n,Zp)∗ , α̂τ,κ,p,low-right = 1Sym(n+1,Zp)∗ .

Let

ακ,τ,p(ς) =

∫
Sym(2n+1,Qp)

α̂κ,τ,p(β) ep(Trβς) dβ,

the inverse Fourier transform of the above defined α̂κ,τ,p. Set

fτ,κ,p(s) = fακ,τ,p(s, ηχ).

2.4. The Fourier coefficients of the adelic Siegel Eisenstein series. We write ε ·k to denote

an arithmetic element in Homcont

(
Tn(Zp),Q

×
p

)
with finite order part ε and algebraic part the

scalar weight k. Given β ∈ Sym(2n+ 1,Q), we consider the Fourier coefficients
(2.4.1)

ESi
β (h, f ε·k,κ(s)) :=

∫
Sym(2n+1,Q)\Sym(2n+1,A)

ESi

((
12n+1 ς

0 12n+1

)
h, fε·k,κ(s)

)
eA(−Trβς) dς,
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from which we can easily deduce p-adic q-expansions of (2.5.7) for general τ, because the action of
µ̂+

0,ij

4π
√
−1

corresponds to the action of algebraic differential operators on global sections of automorphic

sheaves over Siegel varieties for H ′ [Liu16, Proposition 2.3.1, 2.4.1], and those algebraic differential
operators admit simple formulas on p-adic q-expansions.

We introduce some notation. Let bNp∞H′ (s, ξ) =
∏

v-Np∞
bH′,v(s, ξ) with

(2.4.2) bH′,v(s, ξ) = Lv (s+ n+ 1, ξ)
n∏
j=1

Lv
(
2s+ 2n+ 2− 2j, ξ2

)
.

For an integer m, define the gamma function

Γm(s) := π
m(m−1)

4

m−1∏
j=0

Γ(s− j

2
).

Given z = x+
√
−1y ∈ H2n+1, define

(2.4.3) h′z,∞ =

(√
y x

√
y−1

0
√
y−1

)
∈ H ′(R).

Proposition 2.4.1. Let β =

n n+ 1( )
β β0 n

tβ0 β′ n+ 1
∈ Sym(2n + 1,Q), and h′z = 1f · h′z,∞ ∈

H ′(A), kpf ∈
∏
v-p∞H

′(Zv). The Fourier coefficient ESi
β (kpfh

′
z, fε·k,κ(s))

∣∣∣
s=n+1−k

vanishes unless

β ∈ N−1 Sym(2n+ 1,Z)∗≥0 and rank(β) ≥ 2n. Moreover, when kpf = 14n+2,

(2.4.4) bNp∞H′ (s, ηχ)ESi
β (hz, fε·k,κ(s))

∣∣∣
s=n+1−k

is nonvanishing only when β is non-degenerate. For such β ∈ N−1 Sym(2n+ 1,Z)∗>0, we have

(2.4.5)

(2.4.4) =

√
−1

(2n+1)k
2(2n+1)(k−n)π(n+1)(2n+1)

Γ2n+1(n+ 1)
hQv(2β)γ(ev)

2n2+2nγ(det 2β · ev)2n

×
∏
v|N

η−1
v (detβ) α̂vol

v (β)χ(|det 2β|v)|det 2β|k−n−1
v

×
∏

v|det 2β
v-Np∞

gβ,v

(
ηχ(qv)q

k−(2n+2)
v

)
α̂ε·k,κ,p(β) (dety)

k
2 e∞(Trβz).

Here hQv(2β) is the Hasse invariant and γ(det 2β, ev) is ratio of Weil indices. For our purpose it
suffices to know that they are eight roots of unity. The term α̂vol

v (β) is given as

α̂vol
v (β) = N−(n+1)2

ev (Tr(2β0,ij)1≤i,j≤n) 1Sym(n,Zv)∗(β)1Sym(n+1,Zv)∗(Nβ
′)1UN,v(Nβ0),

where UN,v =

{
x0 ∈Mn,n+1(Zv) : x0 ≡ −

( ∗ 0 ··· 0 0
∗ ∗ ··· 0 0
...
...
. . .

...
...

∗ ∗ ··· ∗ ∗

)
modN

}
. The gβ,v(·)’s are polynomials

with coefficients in Z.

Proof. Since we have chosen the “big cell” section at the place p,

ESi
β (h′, fε·k,κ(s)) =

∏
v

Wβ,v(h
′, fε·k,κ(s))
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with

Wβ,v(h
′
v, fε·k,κ,v(s)) =

∫
Sym(2n+1,Qv)

fε·k,κ,v(s)

((
0 −12n+1

12n+1 ς

)
hv

)
ev(−Trβς) dvς.

The proof is about computing Wβ,v(hv, fε·k,κ,v(s)) place by place.
For v = p, an easy computation shows that Wβ,p(12n+2, fτ,κ,p(s)) = α̂τ,κ,p(β). Hence the support

of our chosen ατ,κ,p implies that ESi
β (kpf · h

′
z, fε·k,κ(s)) vanishes unless rank(β) ≥ 2n. For v = ∞

or unramified, the formulae for Wβ,v(hv, f
ur
v (s, ξ)) and Wβ,v(h

′
z,∞, f

k
∞(s, sgnk)) are computed by

Shimura [Shi82, Theorem 4.2] [Shi97, Theorem 13.6, Proposition 14.9]. We omit recalling them here,
but simply mention that Wβ,v(h

′
z, f

k
∞(s, sgnk))

∣∣
s=n+1−k 6= 0 only if β is positive semi-definite. One

can look at [LR18, §2.4]) and references there for precise formulas.
For the places dividing N , there is some difference from [Liu16,LR18]. Instead of the “big cell”

section in IQH′ ,v(s, ηχ), we have picked the intertwining of the “big cell” section in IQH′ ,v(−s, ηχ).
We need the following proposition.

Proposition 2.4.2. For v | N and αv ∈ C∞c (Sym(2n+ 1,Qv)), we have

• If β is of corank 1, then

Wβ,v(14n+2,MQH′ ,v(s, ξ)f
αv(s, ξ)) = 0.

• If β is non-degenerate, then

Wβ,v

(
h′v,MQH′ ,v(s, ξ)fv(s, ξ))

)
= cv(s, ξ,β) ·Wβ,v

(
h′v, fv(s, ξ))

)
,

with

cv(s, ξ,β) =hQv(2β)γ(ev)
2n2+2nγ(det 2β, ev)

2n ξv(det 2β)−1|det 2β|−sv

×

γv (s− n, ξ)
n∏
j=1

γv
(
2s− 2n− 1 + 2j, ξ2

)−1

.

Proof. The second statement directly follows from the functional equation for non-degenerate
Fourier coefficients [LR05, (14)] [Swe95, Proposition 4.8].

Assume that β ∈ Sym(2n+ 1,Q) is of corank 1. By definition,
(2.4.6)
Wβ,v

(
14n+2,MQH′ ,v(s, ξ)f

αv(s, ξ)
)

=

∫
Sym(2n+1,Qv)

∫
Sym(2n+1,Qv)

fαv
(
wH′

(
12n+1 τ

0 12n+1

)
wH′

(
12n+1 σ

0 12n+1

))
ev (−Trβσ) dτ dσ

=

∫
Sym(2n+1,Qv)

∫
Sym(2n+1,Qv)

ξ−1(det τ)|det τ |−s−n−1
v αv(σ − τ−1) ev (−Trβσ) dτ dσ.

We can further assume that β =

(
β1 0
0 0

)
for some β1 = diag(b1, . . . , bn) with b1, . . . bn 6= 0, and

that there exists α1,v ∈ C∞c (Sym(2n,Qv)), α2,v ∈ C∞c (Q2n
v ) and α4,v ∈ C∞c (Qv) such that

αv

((
τ1 τ2
tτ2 τ4

))
= α1,v(τ1)α2,v(τ2)α4,v(τ4).
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Then by the change of variable τ−1 → τ ,

(2.4.6) =

∫
Sym(2n+1,Qv)

∫
Sym(2n+1,Qv)

ξ(det(τ1 − τ2τ
−1
4

tτ2))| det(τ1 − τ2τ
−1
4

tτ2)|s−n−1
v ξ(τ4)|τ4|s−n−1

v

× ev(−Trβ1σ1)α1,v(σ1 − τ1)α2,v(σ2 − τ2)α4,v(σ4 − τ4) dτ dσ

=

∫
Sym(2n+1,Qv)

∫
Sym(2n+1,Qv)

ξ(det τ1)|det τ1|s−n−1
v ξ(τ4)|τ4|s−n−1

v ev(−Trβ1σ1)

× α1,v(σ1 − τ1 + τ2τ
−1
4

tτ2)α2,v(σ2 − τ2)α4,v(σ4 − τ4) dτ dσ

Since β1 is non-degenerate, we can change the order of integration for τ1, σ1 and τ2, σ2, and get

(2.4.6) =

∫
Sym(2n,Qv)

α1,v(σ1)ev(−Trβ1σ1) dσ1

∫
Sym(2n,Qv)

ξ(det τ1)|det τ1|s−n−1
v ev(−Trβ1τ1) dτ1

×
∫
Q2n
v

α2,v(σ2) dσ2

∫
Qv

∫
Qv
ξ(τ4)|τ4|s−n−1

v α4,v(σ4 − τ4)

∫
Q2n
v

ev(Trβ1τ2τ
−1
4

tτ2) dτ2 dτ4 dσ4.

By [Swe95, Lemma 4.4] we have∫
Qv

ev
(
bjτ
−1
4 τ2

2,j

)
dτ2,j = |2bjτ−1

4 |
− 1

2
v γ(bjτ

−1
4 ev).

Plugging it into the above equality and putting λβ1 = (·,detβ1)Qv (the Hilbert symbol), we get

(2.4.6) =

∫
Sym(2n,Qv)

α1,v(σ1)ev(−Trβ1σ1) dσ1

∫
Sym(2n,Qv)

ξ(det τ1)|det τ1|s−n−1
v ev(−Trβ1τ1) dτ1

×
∫
Q2n
v

α2,v(σ2) dσ2 · | det 2β1|−
1
2hQv(2β1)γ(ev)

2nγ(det 2β1, ev)

×
∫
Qv

∫
Qv
ξλβ1(τ4)|τ4|s−1

v α4,v(σ4 − τ4) dτ4 dσ4.

Now denote by f
α4,v

SL(2)(s, ξλβ1) the “big cell” section inside Ind
SL(2,Qv)
B(Qv) (ξλβ1 | · |s). Then∫

Qv
ξλβ1(τ4)|τ4|s−1

v α4,v(σ4 − τ4) dτ4 =
(
MB,v(−s, ξ−1λ−1

β1
)MB,v(s, ξλβ1)f

α4,v

SL(2)(s, ξλβ1)
)

(12)

= γv(s+ 1, ξλβ1)γv(−s+ 1, ξ−1λ−1
β1

) · fα4,v

SL(2)(s, ξλβ1)(12)

= 0

which implies that (2.4.6) = 0 and the proposition is proved. �

Combining this proposition for v | N with the fact Wβ,p(12n+2, fτ,κ,p(s)) = α̂τ,κ,p(β) and the
formulae in [LR18, §2.4]) for v unramified or archimedean finishes the proof of Proposition 2.4.1. �

Next we normalize the Siegel Eisenstein series ESi(·, fτ,κ(s)) so that its restriction to G ×G′ at
s = n+ 1− k is the image of a geometrically defined nearly holomorphic Siegel modular form Eτ,κ
under the embedding (2.5.2). We also compute the p-adic q-expanisons of the Eτ,κ’s at the infinity
cusp and see that they admit p-adic interpolation.

2.5. p-adic q-expansion of Eτ,κ.
14



2.5.1. Nearly holomorphic Siegel modular forms. Let Γ ⊂ G(Z) (resp. Γ′ ⊂ G′(Z)) be a congruence

subgroup. Let XΣ
G,Γ (resp. XΣ′

G′,Γ′) be a smooth toroidal compactification of the Siegel variety

(definite over a number field) of level Γ (resp. Γ′).

Let Vt =
⋃
r≥0 Vrt (resp. Vt,k =

⋃
r≥0 Vr(t,k)) the locally free sheaf over XΣ

G,Γ (resp. XΣ′
G′,Γ′) of

nearly holomorphic Siegel modular forms of weight t (resp. (t, k)). There are canonical embeddings

(2.5.1) H0
(
XΣ
G,Γ,Vt

)
↪−→ A (G(Q)\G(A)) , H0

(
XΣ′
G′,Γ′ ,V(t,k)

)
↪−→ A

(
G′(Q)

∖
G′(A)

)
,

(2.5.2) H0
(
XΣ
G,Γ ×XΣ′

G′,Γ′ ,Vt � V(t,k)

)
↪−→ A

(
G(Q)×G′(Q)

∖
G(A)×G′(A)

)
,

as explained at the end of [Liu16, §2.4]. In order to attach an adelic form to a global section of
automorphic bundle defined from an irreducible GL(n)-representation σ, one needs to pick a linear
functional on σ. We shall always view algebraic irreducible representations of GL(m) as realized as

(2.5.3)

{
f : GL(m)→ A1 : f (gb) = a−lm1 . . . a−l1m f(g) for all b =

( a1 ··· ∗
. . .

...
am

)
∈ GL(m)

}
,

with (l1, . . . , lm) being a dominant weight and GL(m) acting by left inverse translation. By canoni-
cal embedding into adelic forms, we mean the linear functional picked as the evaluation at identity.

2.5.2. p-adic Siegel modular forms and q-expansions. Let F be a finite extension of Qp, which is

always assumed to be sufficiently large. Let XΣ
G = XΣ

G,ΓG(N) (resp. XΣ′
G = XΣ′

G′,ΓG′ (N)) be the

smooth toroidal compactification of the Seigel variety over Z[ζN , 1/N ] of principal level N , over

which there is the semi-abelian scheme G → XΣ,ord
G (resp. G′ → XΣ′,ord

G′ ) extending the universal
principally polarized abelian scheme. Pick a lift E of a certain power of the Hasse invariant, and
define

XΣ,ord
G = XΣ

G[1/E] (resp. XΣ′,ord
G′ = XΣ′

G′ [1/E]).

Let XΣ,ord
G,m (resp. XΣ′,ord

G′,m ) be the reduction modulo pm of XΣ,ord
G (resp. XΣ′,ord

G′ ), which is indepen-

dent of the choice of E and is called the ordinary locus.

The Igusa tower over XΣ,ord
G,m (resp. XΣ′,ord

G′,m ) is defined as

TΣ
G,m,l = Isom

XΣ,ord
G,m

(
(G[pm])D,ét, (Z/pmZ)n

)
(resp. TΣ′

G′,m,l = Isom
XΣ′,ord

G′,m

(
(G′[pm])D,ét, (Z/pmZ)n+1

)
),

where the superscript D means the Cartier dual. There is a natural action of GL(n,Zp) (resp.

GL(n+ 1,Zp)) on TΣ
G,m,l (resp. TΣ′

G′,m,l). Denote by Bn (resp. Bn+1) the standard Borel subgroup

of GL(n) (resp. GL(n + 1)) consisting of upper triangular matrices, and by Nn (resp. Nn+1) the
its unipotent subgroup. Define

VG,m,l = H0
(
TΣ
G,m,l,OTΣ

G,m,l

)Nn(Zp)
, VG′,m,l = H0

(
TΣ′
G′,m,l,OTΣ′

G′,m,l

)Nn+1(Zp)

.

The left hand side of (2.5.1)(2.5.2) embeds into p-adic Siegel modular forms [Liu16, §6.2.1], i.e.

(2.5.4)

H0
(
XΣ
G,ΓG(N)∩ΓG,1(pl),Vt

)
↪−→

(
lim←−
m

lim−→
l

VG,m,l

)
[1/p],

H0
(
XΣ′

G′,ΓG′ (N)∩ΓG′,1(pl),V(t,k)

)
↪−→

(
lim←−
m

lim−→
l

VG′,m,l

)
[1/p],
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(2.5.5)

H0
(
XΣ
G,ΓG(N)∩ΓG,1(N) ×X

Σ′

G′,ΓG′ (N)∩ΓG′,1(pl),Vt � V(t,k)

)
↪−→

(
lim←−
m

lim−→
l

VG,m,l ⊗OF VG′,m,l

)
[1/p].

For each γN ∈ G(Z/N) and γ′N ∈ G′(Z/N), by evaluating the elements in Vm,l and V ′m,l at the

Mumford object, one defines the (p-adic) q-expansion maps

εγNq-exp : lim←−
m

lim−→
l

VG,m,l ↪−→ OF [[N−1 Sym(n,Z)∗≥0]]

ε
γ′N
q-exp : lim←−

m

lim−→
l

VG′,m,l ↪−→ OF [[N−1 Sym(n+ 1,Z)∗≥0]],

and

(2.5.6) ε
γN ,γ

′
N

q-exp : lim←−
m

lim−→
l

VG,m,l ⊗OF VG′,m,l ↪−→ OF [[N−1 Sym(n,Z)∗≥0 ⊕N−1 Sym(n+ 1,Z)∗≥0]].

The injectivity follows from the irreducibility of the Igusa tower [FC90, V.7] [Hid02, Theorem 3.1].

2.5.3. Defining the Eτ,κ’s. Now we normalize the Siegel Eisenstein series as

(2.5.7) ESi,∗(·, fτ,κ) :=
Γ2n+1(n+ 1)

√
−1

(2n+1)k
2(2n+1)(k−n)π(n+1)(2n+1)

bNp∞H′ (s, ηχ)ESi
(
·, fτ,κ(s)

)∣∣∣
s=n+1−k

.

It is a standard fact that the q-expansions of nearly holomorphic Siegel modular (as global sections
over Siegel varieties) can be computed in terms of the Fourier coefficients of their embeddings into
the space of adelic automorphic forms. From Proposition 2.4.1 plus the q-expansion principle and
the correspondence between algebraic differential operators and the Lie algebra action, we deduce
that the automorphic form

(2.5.8) ESi,∗(·, fτ,κ)
∣∣
G×G′

belongs to the image of the embedding (2.5.2).
For admissible (τ, κ) with κ(−1) = η(−1), we define

Eτ,κ ∈ H0
(
XΣ
G,ΓG(N)∩ΓG,1(pl) ×X

Σ′

G′,ΓG′ (N)∩ΓG′,1(pl),Vt � V(t,k)

)
as the element whose image under (2.5.2) equals (2.5.8). We will also view Eτ,κ as an element in(

lim←−
m

lim−→
l

VG,m,l ⊗OF V ′G′,m,l

)
[1/p] via the embedding (2.5.5).

2.5.4. The (p-adic) q-expansion of Eτ,κ. From Proposition 2.4.1 on the Fourier coefficents of the

Siegel Eisenstein series ESi
β (hz, fε·k,κ(s))

∣∣∣
s=n+1−k

, the same argument as in [Liu16, Proposition

4.4.1] gives the following proposition on the (p-adic) q-expansions of Eτ,κ.

Proposition 2.5.1. For (β, β′) ∈ N−1 Sym(n,Z)∗≥0⊕N−1 Sym(n+1,Z)∗≥0 and (γN , γ
′
N ) ∈ G(Z/N)×

G′(Z/N), let ε
γN ,γ

′
N

q-exp

(
β, β′, Eτ,κ

)
denote the coefficient indexed by (β, β′) in the image of Eτ,κ under

the q-expansion map (2.5.6). Then ε
γN ,γ

′
N

q-exp

(
β, β′, Eτ,κ

)
vanishes unless β > 0 and rank(β′) ≥ n. If

γN = γ′N = 1, the coefficient
(
β, β′, Eτ,κ

)
vanishes unless β, β′ > 0 and for such (β, β′) we have

(2.5.9) ε1,1
q-exp

(
β, β′, Eτ,κ

)
=

∑
β=

(
β β0

tβ0 β′

)
∈N−1 Sym(2n+1,Z)∗>0

cτ,κ(β),
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with

(2.5.10)

cτ,κ(β) =
∏
v|N

hQv(2β)γ(ev)
2n2+2nγ(det 2β · ev)2n η−1

v (detβ) α̂vol
v (β)

× κ (|det 2β|v) | det 2β|−n−1
N

∏
v| det(2β)
v-Np∞

gβ,v
(
η(qv)κ(qv)q

−2n−2
v

)

×
n∏
j=1

1Z×p (detj((2β0))
n−1∏
j=1

τjτ
−1
j+1 (detj(2β0)) τnκ

−1 (detn(2β0)) .

2.6. Construction of the ordinary family of Klingen Eisenstein series.

2.6.1. Recalling some Hida theory. As our goal is to construct and study p-adic families of Klingen
Eisenstein series, the usual Hida theory for cuspidal Siegel modular form [Hid02] [Pil12] does not
suffice for our purpose. We need the Hida theory for Siegel modular forms vanishing along the
strata with cusp labels of rank > 1 as developed in [LR18]. We briefly recall some notation and
facts loc. cit..

There is a stratification of the (partial) toroidal compactification XΣ′,ord
G′),m indexed by cotorsion free

isotropic Z-submodules of V′0, where V′0 ⊂ V′ is the Z-lattice spanned by e′1, . . . , e
′
n+1, f

′
1, . . . , f

′
n+1.

(Here we do not need the finer stratification indexed by cones in the polyhedral cone decompo-
sition.) The union of all the strata indexed by the Z-submodules of rank strictly larger than 1

is a closed subscheme in XΣ′,ord
G′,m , and we denote the corresponding ideal sheaf by I1

XΣ′,ord

G′,m

. Write

fm,l : TΣ
G′,m,l → XΣ′,ord

G′,m for the projection from the Igusa tower to the ordinary locus of Siegel

variety. The space of p-adic Siegel modular forms vanishing along the strata with cusp labels of
rank > 1 is defined as

V 1
G′,m,l = H0

(
TΣ
G′,m,l, f

∗
m,lI1

XΣ′,ord

G′,m

)Nn+1(Zp)

, V 1
G′ = lim−→

m

lim−→
l

V 1
G′,m,l,

which are natural OF JTn+1(Zp)K-modules.
There are Up-operators acting on VG′ preserving the subspace V 1

G′ [LR18, §1.9]. According

to [LR18, Theorem 1.3.1], there exists an ordinary projector eG′ = (eG′)
2 on V 1

G′ constructed as
limit of powers of Up-operators. Define(

V 1
G′,ord

)∗
= HomZp

(
eG′V 1

G′ ,Qp/Zp
)
, M1

G′,ord = HomΛn+1

((
V 1
G′,ord

)∗
,Λn+1

)
,

where Λn+1 = OF [[Tn+1(1+pZp)]]. Both
(

V 1
G′,ord

)∗
andM1

G′,ord are OF [[Tn+1(ZP )]]-modules, and

they are free of finite rank as Λn+1-modules. If Pτ,κ is the ideal attached to an admissible point

(τ, κ) ∈ Homcont

(
Tn+1(Zp),Q

×
p

)
, then there is the Hecke-equivariant embedding

(2.6.1)

lim−→
l

eG′H
0
(
XΣ′

G′,ΓG′ (N)∩ΓG′,1(pl),V(t,k) ⊗ I1
XΣ′
G′,ΓG′ (N)∩ΓG′,1(pl)

)
ε,χ

↪−→
(

lim←−
m

lim−→
l

eVG′,m,l[(τ, κ)]
)

[1/p]

∼−→M1
G′,ord ⊗OF JTn+1(Zp)K/Pκ,τ,

where the subscript ε,χ means the nebentypus at p.
Replacing G′ with G and 1 with 0, we define V 0

G,m,l, V 0
G, the space of cuspidal p-adic Siegel

modular forms of genus n. The cuspidal Hida theory indicates the existence of ordinary projectors

and analogous properties as above for
(

V 0
G,ord

)∗
, M0

G,ord.
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Now we define the space which our later constructed measures take values in. Let

V 0,1,∆ ⊂ lim←−
m

lim−→
l

V 0
G,m,l ⊗OF V

1
G′,m,l

be the subspace annihilated by γ ⊗ 1 − 1 ⊗ (γ, 1) for all γ ∈ Tn(Zp), which admits a natural
OF [[Tn+1(Zp)]]-module structure. Put

V 0,1,∆
ord = (eG × eG′)V 0,1,∆.

Denote by M eas
(
Tn(Zp)× Z×p , V

0,1,∆
ord

)\
the subspace of M eas

(
Tn(Zp)× Z×p , V

0,1,∆
ord

)
consisting of

measures µ satisfying

δ(a1,...,an,an+1) ∗ µ = diag(a1, . . . , an, an+1) · µ, (a1, . . . , an, an+1) ∈ Tn(Zp)× Z×p ,

where δ(a1,...,an.an+1) is the measure in M eas
(
Tn(Zp)× Z×p ,OF

)
sending a continuous function to

its value at (a1, . . . , an, an+1), and

∗ : M eas
(
Tn(Zp)× Z×p ,OF

)
×M eas

(
Tn(Zp)× Z×p , V

0,1,∆
ord

)
−→ M eas

(
Tn(Zp)× Z×p , V

0,1,∆
ord

)
is the convolution of measures on abelian groups.

The canonical pairing

V 0,1,∆
ord ×

((
V 0
G,ord

)∗ × (V 1
G′,ord

)∗) −→ OF
induces the morphism of OF [[Tn+1(Zp)]]-modules

(2.6.2) Φ∆ : M eas
(
Tn(Zp)× Z×p , V

0,1,∆
ord

)\
−→M0

G,ord ⊗OF [[Tn(Zp)]]M1
G′,ord,

such that the following diagram commutes

M eas
(
Tn(Zp)× Z×p , V

0,1,∆
ord

)\ Φ∆
//

µ7→
∫
Tn(Zp)×Z×p

(τ,κ) dµ
++

M0
G,ord ⊗OF [[Tn(Zp)]]M1

G′,ord

sκ,τ

��

lim←−
m

lim−→
l

(
eV 0

G,m,l[τ]⊗OF eV 1
G′,m,l[(τ, κ)]

)
,

where the specialization map sκ,τ is defined by mod Pκ,τ and the isomorphism in (2.6.1).

2.6.2. Formulae for the adelic Up-operators. Via the embedding of (2.5.1) and (2.5.4), the action
of the Up-operators on the space of p-adic Siegel modular forms induces a Up-action on the au-
tomorphic forms on G (resp. G′) which belong to the image of (2.5.1) for some t, k. This action
admits the following formulae.

Suppose that ϕ′ (resp. ϕ) is a nearly holomorphic form of weight (t, k) (resp. t). Given a
decreasing n+1-tuple (resp. n-tuple) of positive integers b′ = (b′1, . . . , b

′
n+1) (resp. b = (b1, . . . , bn)),

the action of the Up-operator Up,b′ (resp. Up,b) on ϕ′ (resp. ϕ) is(
Up,b′ϕ

′) (g′) = p〈(t,k)+2ρG′,c, b
′〉
∫
UBG′

(Zp)
ϕ(g′upb

′
) du

(
resp.

(
Up,bϕ

)
(g) = p〈t+2ρG,c, b〉

∫
UBG (Zp)

ϕ(gupb) du
)
.
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Here BG′ is the standard Borel subgroup of G′ consisting of

(
a b
0 d

)
∈ G′ with a upper triangular

and UBG′ is its unipotent radical. Similar definition applies to BG, UBG . The weight

2ρG′,c = (n, n− 2, . . . ,−n) (resp. 2ρG,c = (n− 1, n− 3, . . . ,−n+ 1))

is the sum of compact roots of LieG′ (resp. LieG), and

pb
′

= diag(pb1 , . . . , pbn+1 , p−b1 , . . . , p−bn+1) (resp. pb = diag(pb1 , . . . , pbn , p−b1 , . . . , p−bn)).

Up to scalar the operator is purely local, but the normalization crucially depends on the archimedean
weight of the automorphic form.

2.6.3. The ordinary family Eord on G×G′. It follows from the vanishing of the coefficients indexed
by (β, β′) with rank(β) < n or rank(β′) < n in the q-expansion of Eτ,κ at all p-adic cusps that

Eτ,κ ∈ lim←−
m

lim−→
l

V 0
G,m,l[τ]⊗OF V

1
G′,m,l[(τ, κ)] ⊂ V 0,1,∆.

Proposition 2.6.1. There exists an ordinary family Eord ∈M0
G,ord ⊗OF [[Tn(Zp)]]M1

G′,ord such that

(2.6.3) sτ,κ(Eord) =

{
(eG × eG′)Eτ,κ, if (τ, κ) is admissible and ηχ(−1) = (−1)k,

0, if η(−1) 6= κ(−1),

where Eτ,κ is the p-adic Siegel modular form defined in §2.5.3.

Proof. First, a simple examination of the terms in (2.5.10) plus the theorem on the existence of
Kubota–Leopoldt p-adic L-functions [Hid93, Theorem 4.4.1] verifies the existence of

µE,q-exp ∈ M eas
(
Tn(Zp)× Z×p ,OF JN−1 Sym(n,Z)∗≥0 ⊕N−1 Sym(n+ 1,Z)∗≥0K

)
with properties∫

Tn(Zp)×Z×p
(τ, κ) dµE,q-exp =

{
ε1,1
q-exp

(
Eτ,κ

)
, if (τ, κ) is admissible and ηχ(−1) = (−1)k,

0, if η(−1) 6= κ(−1).

The p-adic density of admissible points implies that the measure µE,q-exp takes values inside the
subspace of OF JN−1 Sym(n,Z)∗≥0 ⊕N−1 Sym(n+ 1,Z)∗≥0K consisting of the q-expansions of p-adic

forms. Hence, there exists µE ∈ M eas
(
Tn(Zp)× Z×p , V 0,1,∆

)\
such that

ε1,1
q-exp (µE) = µE,q-exp.

Define the ordinary family E ∈ M0
G,ord ⊗OF [[Tn(Zp)]]M1

G′,ord as

Eord = Φ∆
(
(e× e′)µE

)
.

It is easily checked that the specializations of Eord satisfy (2.6.3). �

2.6.4. Projecting Eord to C on the first factor. Denote by TNord the OF JTn(Zp)K-algebra generated by
the unramified Hecke operators away from Np and the Up-operators acting onM0

G,ord. The algebra

TNord is reduced and finite torsion free over Λn. Let C be a geometrically irreduible component

Spec
(
TNord ⊗OF F

)
with function field FC. Define IC as the integral closure of Λn in FC. Attached

to C, there is a homomorphism λC : TNord → IC of Λn-algebras, and an isomorphism of FC-algebras

TNord ⊗Λn FC = FC ⊕RC

such that the projection onto the first factor coincides with λC. Define 1C ∈ TNord⊗Λn FC to be the
element corresponding to (1, 0) ∈ FC ⊕RC.
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Define the (n+ 1)-variable ordinary family of Klingen Eisenstein series attached to C as

EKl
C = (1C × 1) Eord ∈ FC ⊗ΛnM0

G,ord ⊗OF JTn(Zp)KM1
G′,ord.

From the construction of EKl
C and the doubling method formula recorded in Theorem 2.2.1, we

deduce the following theorem.

Theorem 2.6.2. There exists an ordinary family EKl
C ∈ FC⊗ΛnM0

G,ord⊗OF JTn(Zp)KM1
G′,ord whose

specialization at (x, κ) ∈ C(Qp)×Homcont

(
Z×p ,Q

×
p

)
satisfies:

• If η 6= κ(−1), then the specialization is 0.
• If (κ, τx) is admissible with η = κ(−1), and the weight projection is étale at x, then EKl

C (x, κ) is
the p-adic form attached to the Klingen Eisenstein series

Γ2n+1(n+ 1) bNp∞H′ (s, ηχ)
√
−1

(2n+1)k
2(2n+1)(k−n)π(n+1)(2n+1)

∑
ϕ∈Sx

ϕ⊗ EKl
(
·,Φfτx,κ(s),ϕ

)
〈ϕ,ϕ〉

∣∣∣∣∣∣
s=n+1−k

,

where Φfτx,κ(s),ϕ ∈ IPG′ (s, ηχ) is defined from fτx,κ(s) and ϕ as (2.2.2), and Sx consists of an

orthogonal basis of the space spanned by cuspidal ordinary holomorphic Siegel modular forms
on G(A) of weight tx and tame level ΓG,1(N) on which the Hecke operators act through the
eigensystem parameterized by x.

Note that although we construct the family EKl
C inside the space of Hida families of tame principal

level N , our choice of sections fτ,κ,v(s) in fact implies that the specializations are of tame level
ΓG,1(N)× Γopp

G′,1(N), where Γopp
G′,1(N) = {g ∈ G′(Z) : tg ∈ ΓG′,1(N)}.

In order to apply the above constructed Klingen family EKl
C to study the Klingen Eisenstein

congruence ideal for G′, one needs very precise information on its image under the map the Siegel
operator Pdeg, as well as its non-degenerate Fourier coefficients. We discuss these two problems in
the next two sections.

3. The image of the Klingen Eisenstein family under the Siegel operator

3.1. The Siegel operator and the short exact sequence. According to the Hida theory for
non-cuspidal Siegel modular forms established in [LR18, Theorem 1.3.1], there is a short exact
sequence

(3.1.1) 0 −→M0
G′,ord −→M1

G′,ord

Pdeg−→
⊕

L∈CV′/ΓG′ (N)
rkL=1

M0
L,ord ⊗OF JTn(Zp)K OF JTn(Zp)× Z×p K −→ 0.

Here CV ′ stands for the set of cotorsion free isotropic Z-submodules of V′0. There is a natural G(Z)-
action on it. The space M0

L,ord is isomorphic to M0
G,ord. This short exact sequence is sometimes

called the fundamental exact sequence in the study of Eisenstein congruences. If λ is an eigensystem
valued in Iλ of the Hecke algebra acting onM1

G′,ord, and if F ∈M1
G′,ord⊗OF JTn+1(Zp)KIλ is a primitive

eigenfamily for λ, then the image of F under the Siegel operator measures the congruences between
λ and cuspidal Hecke eigensystems.

We define the following Siegel operator

Pdeg :M0
G,ord⊗OF JTn(Zp)KM1

G′,ord −→
⊕

L∈CV′/ΓG′ (N)
rkL=1

M0
G,ord⊗OF JTn(Zp)KM0

L,ord⊗OF JTn(Zp)KOF JTn(Zp)×Z×p K

as the identity (on the first factor) tensored with the quotient map in (3.1.1) (by abuse of notation
we denote this operator still by Pdeg).
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3.2. The q-expansions of Pdeg

(
EKl
C

)
and p-adic L-functions for C. As explained in [Liu16,

§6.1.5], for β ∈ N−1 Sym(n,Z)∗>0 and γN ∈ G(Z/N) (resp. β′ ∈ N−1 Sym(n + 1,Z)∗≥0 and

γ′N ∈ G′(Z/N)) there is the OF JTn(Zp)K-linear (resp. OF JZ×p × Tn(Zp)K-linear) map of taking
the coefficient indexed by β (resp. β′) in the p-adic q-expansion at the cusp indexed by γN (resp.
γ′N ),

εγNq-exp(β, ·) :M0
G,ord −→ OF JTn(Zp)K, (resp. ε

γ′N
q-exp(β′, ·) :M1

G′,ord −→ OF JTn+1(Zp)K).(3.2.1)

We denote by

ε
γN ,γ

′
N

q-exp (β, β′, ·) :M0
G,ord ⊗OF JTn(Zp)KM1

G′,ord −→ OF JTn(Zp)K

the map combining the ones in (3.2.1). Similarly, for β1, β2 ∈ N−1 Sym(n,Z)∗>0 and γN,1, γN,2 ∈
G(Z/N) we have the map

ε
γN,1,γN,2
q-exp (β1, β2, ·) :M0

G,ord ⊗OF JTn(Zp)KM0
G,ord −→ OF JTn(Zp)K.

Given L ∈ CV′/Γ(N) of rank 1, we fix a basis of L⊥/L so that we can define the q-expansion
map for M0

L,ord like (3.2.1). Take γ′L ∈ G′(Z) such that the basis

(ẽ′1, . . . , ẽ
′
n+1, f̃

′
1, . . . , f̃

′
n+1)γ′L = (e′1, . . . , e

′
n+1, f

′
1, . . . , f

′
n+1)

satisfies that ẽ′n+1 spans L, and ẽ′1, . . . , ẽ
′
n, f̃

′
1, . . . , f̃

′
n mod L is our fixed basis of L⊥/L. These

properties determines γ′L up to left multiplication by an element inG′(Z) of the form

( 1n 0 0 ∗
∗ ±1 ∗ ∗
0 0 1n ∗
0 0 0 ±1

)
.

Define

ιL : G(Z) −→ G′(Z)

(
a b
c d

)
7−→ γ′L


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 .

Proposition 3.2.1. Let Pdeg,L be the projection to the direct summand indexed by L in the right
most term in (3.1.1). For β1, β2 ∈ N−1 Sym(n,Z)∗>0 and γN,1, γN,2 ∈ G(Z/N), we have the follow-
ing commutative diagram

M0
G,ord ⊗OF JTn(Zp)KM1

G′,ord

Pdeg,L
//

ε
γN,1,ιL(γN,2)
q-exp

(
β1,
(
β2 0
0 0

)
, ·
)

,,

M0
G,ord ⊗OF JTn(Zp)KM0

L,ord ⊗OF JTn(Zp)K OF JTn(Zp)× Z×p K

ε
γN,1,γN,2
q-exp (β1,β2,·)
��

OF JTn(Zp)× Z×p K

.

Therefore, in order to detect information on Pdeg

(
EKl
C

)
, it suffices to look at ε

γN ,γ
′
N

q-exp

(
β1,
(
β2 0
0 0

)
, EKl

C

)
for all γN ∈ G(Z/N), γ′N ∈ G′(Z/N) and β1, β2 ∈ N−1 Sym(n,Z)∗>0. The rest of this section is
devoted to prove Theorem 3.6.1, which essentially says that the image under the Siegel operator of
our constructed family EKl

C is the p-adic L-function attached to C.

3.3. The degenerate coefficients in the q-expansions. We deduce information on the degen-

erate coefficient ε
γN ,γ

′
N

q-exp

(
β1,
(
β2 0
0 0

)
, EKl

C

)
by computing the

(
β2 0
0 0

)
-th Fourier coefficient of the Siegel

modular form

(3.3.1) Lϕ

(
ESi(·, fτ,κ)

∣∣
G×G′

)
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for admissible (τ, κ). For given β ∈ N−1 Sym(n,Z)∗>0, we compute the Fourier coefficient

EKl(
β 0
0 0

) (g′Ng′z′,∞,Φfτ,κ(s),ϕ

)
=

∫
Sym(n+1,Q\A)

EKl
(
u(ς)g′Ng

′
∞,z′ ,Φfτ,κ(s),ϕ

)
eA
(
−Tr

(
β 0
0 0

)
ς
)
dς,

where g′N ∈
∏
v|N G

′(Qv), g
′
z′,∞ ∈ QG′(R) is the element attached to z′ ∈ Hn+1 in the same

way as (2.4.3), u(ς) =
(

1n+1 ς
0 1n+1

)
, and Φfτ,κ(s),ϕ ∈ IPG′ (s, ηχ) is the section attached to our

chosen section fτ,κ(s) ∈ IQH′ (s, ηχ) and a cuspidal Siegel modular ϕ ∈ π as in (2.2.2). It follows
from [MgW94, II.1.7] that
(3.3.2)

EKl(
β 0
0 0

) (g′,Φ(s, ξ)
)

=

∫
Sym(n,Q\A)

(
Φ(s, ξ) +MPG′ (s, ξ)Φ(s, ξ)

)((
1n+1

(
ς 0
0 0

)
0 1n+1

)
g′
)

eA (−Trβς) dς.

The proof of Theorem 3.6.1 reduces to computing the right hand side of (3.3.2) for g′ = g′Ng
′
z′,∞

and Φ(s, ξ) = Φfτ,κ(s),ϕ as above.

3.4. The vanishing of the first term in (3.3.2).

Proposition 3.4.1. By our choice of fτ,κ(s) ∈ IQH′ (s, ηχ), for g′N ∈
∏
v|N G

′(Qv) and z′ ∈ Hn+1,∫
Sym(n,Q\A)

Φfτ,κ(s),ϕ

((
1n+1

(
ς 0
0 0

)
0 1n+1

)
g′Ng

′
z′,∞

)
eA (−Trβς) dς = 0.

Proof. It suffices to show that the projection to G′(Qp) of the support of Φfτ,κ(s),ϕ intersects trivially

with QG′(Qp), and this will be implied by that the support of fτ,κ,p(s) intersects trivially with

S−1
H′ · ιH′ (G(Qp)×QG′(Qp)) because

Φfτ,κ(s),ϕ(g′) =

∫
G(Q)\G(A)

fτ,κ(s)
(
S−1
H′ ιH′(g, g

′)
)
ϕ(g) dg.

The lower left (2n+ 1)× (2n+ 1) block of

S−1
H′ (ιH′(g, g

′)) =


a 0 b 0
0 a 0 b
c ( 1n 0 ) a d ( 1n 0 ) b(

1n
0

)
a 0

(
1n
0

)
b d

 , g =

(
a b
c d

)
g′ =

(
a a
0 d

)
,

is not invertible. By definition the support of fτ,κ,p(s) lies inside the “big cell”, so its intersection

with S−1
H′ · ιH′ (G(Qp)×QG′(Qp)) is empty. �

3.5. Computing MPG′ (s, ηχ)Φfτ,κ(s),ϕ.

3.5.1. The unramified places. At v - Np∞, we have chosen fτ,κ,v(s) ∈ IQH′ (s, ηχ) to be the standard
unramified section and we assume that ϕ ∈ π is fixed by G(Zv). Hence Φfτ,κ(s),ϕ is spherical at

v - Np∞.
Before moving on, we introduce some notation. For f(s, ξ) ∈ IQH′ ,v(s, ξ) and g′v ∈ G′(Qv), we

define the operator T
MPG′
fv(s,ξ),g′v

: A0(G(Q)\G(A)) −→ A0(G(Q)\G(A) as

(3.5.1)
(
T
MPG′
fv(s,ξ),g′v

ϕ
)

(g1) =

∫
UPG′

(Qv)

∫
G(Qv)

f♦v (s, ξ)
(
ιH′(gv, wPG′ug

′
v)
)
ϕ(g1gv) dgv du,
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which can be viewed as a combination of the doubling zeta integral and the intertwining operator.
Similarly as (2.4.2), we define

bH,v(s, ξ) = Lv

(
s+

2n+ 1

2
, ξ

) n∏
j=1

Lv
(
2s+ 2n+ 1− 2j, ξ2

)
,

and it is easily checked that bH,v(s+ 1
2 , ξ) = bH′,v(s, ξ).

Proposition 3.5.1. For g′N = ⊗g′v ∈
∏
v|N G

′(Qv) and g1 ∈ G(A), we have(
MPG′ (s, ηχ)Φfτ,κ(s),ϕ

)
(g1 g

′
N ) = bNp∞H (s+

1

2
, ηχ)−1LNp∞(s, π × ηχ)

×

TMPG′
fτ,κ,∞(s),12n+2

T
MPG′
fτ,κ,p(s),12n+2

∏
v|N

T
MPG′
fτ,κ,v(s),g′v

ϕ

 (gϑ1 ).

Here gϑ1 =

(
1n

1n

)
g1

(
1n

1n

)
is the MVW involution of g1 ∈ G(A).

Proof. It follows from the doubling method [Gar84,PSR87] that for g1, g
Np∞gNp∞ ∈ G(A),∫

G(ANp∞)
f♦τ,κ(s, ηχ)

(
ιH′(g

Np∞gNp∞, g1g
′
N )
)
ϕ(g) dgNp∞

= f♦τ,κ,Np∞(s, ηχ)
(
ιH′(gNp∞, g

′
N )
) ∫

G(ANp∞)

∏
v-Np∞

fur,♦
H,v (s+

1

2
, ηχ)

(
ιH(gNp∞,12n)

)
ϕ(gϑ1 g) dg

= bNp∞H (s+
1

2
, ηχ)−1LNp∞(s+ 1, π × ηχ) · f♦τ,κ,Np∞(s, ηχ)

(
ιH′(gNp∞, g

′
N )
)
ϕ(gϑ1 ),

Then by the definition of Φfτ,κ(s),ϕ ∈ IPG′ (s, ηχ) as in (2.2.2), we get

(3.5.2)

Φfτ,κ(s),ϕ(g1g
′
N ) = bNp∞H (s+

1

2
, ηχ)−1LNp∞(s+1, π×ηχ)

∫
G(ANp∞)

f♦τ,κ,Np∞(s, ηχ)
(
ιH′(g, g

′
N )
)
ϕ(gϑ1 g) dg

Next, by [Sha10, Proposition 4.3.1] we have(
MNp∞
PG′

(s, ηχ)Φfτ,κ(s),ϕ

)
(g1g

′
N ) =

LNp∞(s, π × ηχ)

LNp∞(s+ 1, π × ηχ)
Φfτ,κ(s),ϕ(g1g

′
N ),

which combining with (3.5.2) proves the proposition. �

3.5.2. The archimedean place.

Proposition 3.5.2. Assumed that π ∼= Dt and ϕ ∈ π is holomorphic of weight t. Then

T
MPG′
fτ,κ,∞(s),12n+2

ϕ
∣∣∣
s=n+1−k

=

√
−1

(2n+1)k
2(2n+1)(k−n)π(n+1)(2n+1)

Γ2n+1(n+ 1)

×
√
−1

2nk+n2−n
2 2−

∑
tj+

n2−n
2

dim(GL(n), t)
E−∞(n+ 1− k, π × ηχ)ϕ,

where dim(GL(n), t) is the dimension of the irreducible algebraic representation of GL(n) of highest
weight t, and E−∞(s, π×ηχ) is the modified archimedean Euler factor conjectured by Coates–Perrin-
Riou for p-adic interpolations [Coa91].
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Remark 3.5.3. According to [Coa91], the modified archimedean Euler factor for p-adic interpolation
of critical values of L(s, π × ηχ) to the left (resp. right) of the center is

E−∞(s, π × ηχ) = e(1−s)π
√
−1

2

n∏
j=1

ΓC(s+ tj − j)

(resp. E+
∞(s, π × ηχ) = es

π
√
−1

2
ΓR(s)

ΓR(1− s)

n∏
j=1

ΓC(s+ tj − j)),

where ΓC(s) = 2(2π)−sΓ(s), ΓR = π−s/2Γ
(
s
2

)
.

Before starting proving this proposition, we show a proposition in the flavor of functional equa-
tions. For fv(s, ξ) ∈ IQH′ ,v(s, ξ) and g′v ∈ G′(Qv), define the operator

Tfv(s,ξ),g′v
: A0(G(Q)\G(A)) −→ A0(G(Q)\G(A))

ϕ 7−→
(
Tfv(s,ξ),g′v

ϕ
)

(g1) =

∫
G(Qv)

f♦v (s, ξ)
(
ιH′(gv, g

′
v)
)
ϕ(g1gv) dgv.

Proposition 3.5.4. For ϕ ∈ π and a place v, we have

T
MPG′
fv(s,ξ),g′v

ϕ = Γv

(
s− 1

2
, π × ξ

)−1

TMQH′ ,v
(s,ξ)fv(s,ξ),g′v

ϕ,

where

(3.5.3) Γv

(
s− 1

2
, π, ξ

)
= πv(−1) γv (s, π × ξ)

γv (s− n, ξ)
n∏
j=1

γv
(
2s− 2n− 1 + 2j, ξ2

)−1

.

Proof. We first show that for all h′ ∈ H ′(Qv), the function

(3.5.4)

H(Qv) −→ C

h 7−→
∫
UPG′

(Qv)
f♦v (s, ξ)

(
ιH′(12n, wPG′u)SH′hh

′) du
belongs to IQH ,v(s − 1

2 , ξ). For u =

(
1n 0 0 y
tx 1 ty z+txy
0 0 1n −x
0 0 0 1

)
∈ UPG′ (Qv) and qH =

(
A B
0 tA−1

)
∈ QH(Qv),

we have

S−1
H′ ιH′(12n, wPG′u)SH′ =


1n 0 0 0 0 0
0 1n 0 0 0 y
0 0 0 0 0 −1
0 0 0 1n 0 −y
0 0 0 0 1n −x
ty tx 1 0 ty z + txy



=


1n 0 0 0 0 0
0 1n −y 0 0 0
0 0 1 0 0 0
0 0 0 1n 0 0
0 0 0 0 1n 0
0 0 0 0 ty 1




1n 0 0 0 0 0
0 1n 0 0 0 0
0 0 0 0 0 −1
0 0 0 1n 0 −y
0 0 0 0 1n −x
ty tx 1 0 0 z + txy + tyx

 ,
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and

S−1
H′ ιH′(12n, wPG′u)SH′qH =


1n 0 0 0 0 0
0 1n −y 0 0 0
0 0 1 0 0 0
0 0 0 1n 0 0
0 0 0 0 1n 0
0 0 0 0 ty 1




A −AB ( yx ) B 0
0 1 0 0
0 0 tA−1 0
0 0 ( ty tx )B 1



×


12n 0 0 0
0 0 0 −1
0 0 12n −tA ( xy )

( ty tx )A 1 0 z + txy + tyx+ ( ty tx ) tBtA ( yx )

 .

Therefore, ∫
UPG′

(Qv)
f♦v (s, ξ)

(
ιH′(12n, wPG′u)SH′qHh

′) du
= ξ(detA)|detA|s+n+1−1

∫
UPG′

(Qv)
f♦v (s, ξ)

(
ιH′(12n, wPG′u)SH′h

′) du,
and the function (3.5.4) belongs to IQH ,v(s − 1

2 , ξ). Now applying the functional equation for the
local doubling zeta integrals [LR05, (19)(25)], we get
(3.5.5)

Γv

(
s− 1

2
, π, ξ

) (
T
MPG′
fv(s,ξ),g′v

ϕ
)

(g1)

=

∫
G(Qv)

∫
UH(Qv)

∫
UPG′

(Qv)
f♦v (s, ξ)

(
ιH′(12n, wPG′u) · SH′wQHu1S

−1
H′ · ιH′(gv, g

′
v)
)
ϕ(g1gv) du du1 dgv

=

∫
G(Qv)

∫
UH(Qv)

∫
UPG′

(Qv)
fv(s, ξ)

(
ιH′(12n, wPG′ )wQH · w

−1
QH
S−1
H′ ιH′(12n, u)SH′wQHu1 · S−1

H′ ιH′(gv, g
′
v)
)

ϕ(g1gv) du du1 dgv.

The formula (3.5.3) for Γv
(
s− 1

2 , π, ξ
)

is given in [LR05, (14)(19)(25)], where for determining the
factor cv(s, ξ, A), one can use the formulas in [Swe95, Proposition 4.8] for finite places and compute
by definition with formulas in [Shi82] for the archimedean place.

Since

w−1
QH
S−1
H′


1n 0 0 0 0 0
0 1n 0 0 0 y
0 tx 1 0 ty z + txy
0 0 0 1n 0 0
0 0 0 0 1n −x
0 0 0 0 0 1

SH′wQH =


1n 0 0 0 0 y
0 1n 0 0 0 x
0 −ty 1 ty tx z + txy
0 0 0 1n 0 0
0 0 0 0 1n y
0 0 0 0 0 1

 ,

we obtain

(3.5.5) =

∫
G(Qv)

∫
UH′ (Qv)

fv(s, ξ)
(
wQH′u

′ · S−1
H′ ιH′(gv, g

′
v)
)
ϕ(g1gv) du

′dgv

=

∫
G(Qv)

(
MQH′ ,v(s, ξ)fv(s, ξ)

)♦ (
ιH′(gv, g

′
v)
)
ϕ(g1gv) dgv

=
(
TMQH′ ,v

(s,ξ)fv(s,ξ),g′v
ϕ
)

(g1).

25



�

Proof of Proposition 3.5.2. First we observe that T
MPG′
fτ,κ,∞(s),g′

z′,∞
ϕ is a multiple of ϕ, because it lies

inside π, and by definition of fτ,κ,∞, it is of the same weight as ϕ. Hence it suffices to compute the

inner product

〈
T
MPG′
fτ,κ,∞(s),g′

z′,∞
ϕ,ϕ

〉
.

It follows from [Shi82, (1.31)(4.34K)] and the definition of fτ,κ,∞(s) ∈ IQH′ (s, sgnk) that

(3.5.6) MQH′ ,∞(s, sgnk)fτ,κ,∞(s) = cH′,k(s) fτ,κ,∞(−s)

with
(3.5.7)

cH′,k(s) =
√
−1

(2n+1)k
2(2n+1)(1−s) π(n+1)(2n+1) Γ2n+1(s)

Γ2n+1

(
1
2(s+ n+ 1) + k

2

)
Γ2n+1

(
1
2(s+ n+ 1)− k

2

) .
By Proposition 3.5.4,

(3.5.8)

〈
T
MPG′
fτ,κ,∞(s),12n+2

ϕ,ϕ
〉

〈ϕ,ϕ〉
= Γ∞

(
s− 1

2
, π × ηχ

)−1

〈
TMQH′ ,∞

(s,sgnk)fτ,κ,∞(s),12n+2
ϕ,ϕ

〉
〈ϕ,ϕ〉

= Γ∞

(
s− 1

2
, π × ηχ

)−1

cH′,k(s)

〈
Tfτ,κ,∞(−s),12n+2

ϕ,ϕ
〉

〈ϕ,ϕ〉

= Γ∞

(
s− 1

2
, π × ηχ

)−1

cH′,k(s)

〈
TfHτ,κ,∞(−s+ 1

2
)ϕ,ϕ

〉
〈ϕ,ϕ〉

= Γ∞

(
s− 1

2
, π × ηχ

)−1

cH′,k(s)
Z∞

(
fHτ,κ,∞(−s+ 1

2), vt, v
∨
t

)〈
v∨t , vt

〉 ,

where the operator TfHτ,κ,∞(−s) is defined as in [Liu16, §4.1] and its connection with the standard

doubling zeta integral Z∞ (with definition recalled loc. cit) is obvious by definition. Plugging the
formula for Z∞ [Liu19, Theorem 2.4.1] into (3.5.8) proves the proposition.

�

3.5.3. The places dividing N . For a finite place v, we consider the “big cell” (with respect to the
Klingen parabolic) in G′,

(3.5.9) PG′wP ′GUPG′ =


g′ =

n 1 n 1


a1 a2 b1 b2 n
a3 a4 b3 b4 1
c1 c2 d1 d2 n
c3 c4 d3 d4 1

∈ G′ : c4 ∈ GL(1)


.
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By the decomposition

g′ =


a1 − a2c

−1
4 c3 0 b1 − a2c

−1
4 d3 0

0 1 0 0
c1 − c2c

−1
4 c3 0 d1 − c2c

−1
4 d3 0

0 0 0 1




1n 0 0 (tb3 − td3
tc−1

4
ta4)c4

a3 − a4c
−1
4 c3

tc−1
4 b3 − a4c

−1
4 d3 a4

0 0 1n (−ta3 + tc3
tc−1

4
ta4)c4

0 0 0 c4



×


1n 0 0 0
0 0 0 −1
0 0 1n 0
0 1 0 0




1n 0 0 td3
tc−1

4

c−1
4 c3 1 c−1

4 d3 c−1
4 d4

0 0 1n −tc3
tc−1

4
0 0 0 1

 ,

we define the map
(3.5.10)

(pG, pGL(1), pU ) : PG′wP ′GUPG′ −→ G×GL(1)× UP ′G

g′ 7−→

( a1−a2c
−1
4 c3 b1−a2c

−1
4 d3

c1−c2c−1
4 c3 d1−c2c−1

4 d3

)
, c4,

 1n 0 0 td3
tc−1

4

c−1
4 c3 1 c−1

4 d3 c−1
4 d4

0 0 1n −tc3tc−1
4

0 0 0 1

 .

Proposition 3.5.5. For v | N and g′v ∈ G′(Qv), we have

• If g′v belongs to the “big cell” with pU (g′v) ∈ UPG′ (Zv), pU (g′v) ≡
(

1n 0 0 0
∗ 1 0 0
0 0 1n ∗
0 0 0 1

)
mod N , then

(
T
MPG′
fτ,κ,v(s),g′v

ϕ
)
(g1) =(ηχ)−1

v

(
pGL(1)(g

′
v)
)
|pGL(1)(g

′
v)|s−n−1

v

× πv(−1)(ηχ)v(−1)nvol (ΓG,1(N)v) γv(s, π × ηχ)−1 · ϕ
(
g1pG(g′v)

ϑ
)
.

• If g′v does not satisfy the conditions above, then

T
MPG′
fτ,κ,v(s),g′v

ϕ = 0.

Proof. According to Proposition 3.5.4,

T
MPG′
fτ,κ,v(s),g′v

ϕ =πv(−1) · γv(s, π × ηχ)−1

× γv(s− n, ηχ)
n∏
j=1

γv(2s− 2n− 1 + 2j, η2χ2) · TMQH′ ,v
(s,ηχ)fτ,κ,v(s),g′v

ϕ.

By the definition of fτ,κ,v, we have

(3.5.11) γv(s− n, ηχ)

n∏
j=1

γv(2s− 2n− 1 + 2j, η2χ2)MQH′ ,v(s, ηχ)fτ,κ,v(s) = fα
vol
v (−s, η−1χ−1).

Thus,

T
MPG′
fτ,κ,v(s),g′v

ϕ = πv(−1) γv(s, π × ηχ)−1 T
fα

vol
v (−s,η−1χ−1),g′v

ϕ,

and we need to compute

(3.5.12)
(
T
fα

vol
v (−s,η−1χ−1),g′v

ϕ
)

(g1) =

∫
G(Qv)

fα
vol
v (−s, η−1χ−1)

(
S−1
H′ ιH′(gv, g

′
v)
)
ϕ(g1gv) dgv.
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For gv =

(
a b
c d

)
∈ G(Qv) and g′v ∈ G′(Qv) written in blocks as in (3.5.9),

S−1
H′ ιH′(gv, g

′
v) =


a 0 0 b 0 0
0 a1 a2 0 b1 b2

0 a3 a4 0 b3 b4

c −a1 −a2 d −b1 −b2

−a c1 c2 −b d1 d2

0 c3 c4 0 d3 d4

 .

The support of fα
vol
v (−s, η−1χ−1) contains S−1

H′ ιH′(gv, g
′
v) only if

( c −a1 −a2
−a c1 c2
0 c3 c4

)−1
(

d −b1 −b2
−b d1 d2
0 d3 d4

)
=

(
1n

tba1−tdc1
tba2−tdc2

0 −taa1+tcc1 −taa2+tcc2
0 c3 c4

)−1(
0 tbb1−tdd1

tbb2−tdd2

1n −tab1+tcd1 −tab2+tcd2
0 d3 d4

)
belongs to Sym(2n+ 1,Zv) and is congruent to



∗ ∗ · · · ∗ −1 ∗ · · · ∗ ∗
∗ ∗ · · · ∗ 0 −1 · · · ∗ ∗
...

...
. . .

...
...

...
. . .

...
...

∗ ∗ · · · ∗ 0 0 · · · −1 ∗
−1 0 · · · 0 0 0 · · · 0 0
∗ −1 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
∗ ∗ · · · −1 0 0 · · · 0 0
∗ ∗ · · · ∗ 0 0 · · · 0 0


mod N,

so only if
(
c3 c4

)
6= 0 and there exists a ∈ GL(n,Zv), a ≡

(
1 ··· ∗
. . .

...
1

)
modN , x ∈ M1,n(Zv) and(

y11 y12

y21 y22

)
∈ Sym(n+ 1,Zv) such that

1n ∗ ∗
0 ∗ ∗
0 c3 c4

 ∗ ∗ ∗
−ta Ny11 Ny12

x Ny21 Nx22

 =

 0 ∗ ∗
1n ∗ ∗
0 d3 d4

 .

From

a ∈ GL(n,Zv),
(
c3 c4

)
6= 0, c3

ta = c4x, d3 = N(c3y11 + c4y21), d4 = N(c3y21 + c4y22),

we deduce that the necessary conditions for fα
vol
v (−s, η−1χ−1)

(
S−1
H′ ιH′(gv, g

′
v)
)
6= 0 include

(3.5.13) c4 6= 0, and c−1
4

(
c3 d3 d4

)
∈M1,n(Zv)×M1,n+1(NZv).

This proves the vanishing statement in the proposition.
Now suppose that (3.5.13) is satisfied. Then

(3.5.12) = |pGL(1)(g
′
v)|s−n−1

v ηvχv
(
pGL(1)(g

′
v)
) ∫

G(Qv)
fα

vol
v (−s, η−1χ−1)

(
S−1
H′ ιH′(gv, pG(g′v)wPG′ )

)
ϕ(g1gv) dgv

= |pGL(1)(g
′
v)|s−n−1

v ηvχv
(
pGL(1)(g

′
v)
) ∫

G(Qv)
fα

vol
v (−s, η−1χ−1)

(
S−1
H′ ιH′(gv, wPG′ )

)
ϕ
(
g1pG(g′v)

ϑgv

)
dgv.
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Meanwhile, since

S−1
H′ ιH′(gv, wPG′ ) =


a 0 0 b 0 0
0 1n 0 0 0 0
0 0 0 0 0 −1
c −1n 0 d 0 0
−a 0 0 −b 1n 0
0 0 1 0 0 0

 and
(

c −1n 0
−a 0 0
0 0 1

)−1 ( d 0 0
−b 1n 0
0 0 0

)
=

(
a−1b −a−1 0
−ta−1 ca−1 0

0 0 0

)
,

we see that fα
vol
v (−s, η−1χ−1)

(
S−1
H′ ιH′(gv, wPG′ )

)
6= 0 if and only if gv ∈ ΓG,1(N)v. Therefore,

(3.5.12) = |pGL(1)(g
′
v)|s−n−1

v ηvχv
(
pGL(1)(g

′
v)
)
· ηvχv(−1)nvol (ΓG,1(N)v) · ϕ

(
g1pG(g′v)

ϑ
)
.

�

3.5.4. The place p. In order to obtain information on Pdeg

(
EKl
C

)
, one needs to consider (3.3.1) with

the action of Up-operators being taken into account. In this subsection, we compute the p-adic
limit

lim
m→∞

(
T
MPG′

(Um!
p,G×U

m!
p,G′ )fτ,κ,p(s),12n+2

ϕ

∣∣∣∣
s=n+1−k

)
,

where Up,G (resp. Up,G′) is the adelic Up-operator attached to (n, n−1, . . . , 1) (resp. (n+1, n, . . . , 1))
normalized by weight t (resp. (t, k)). (The formula for its action is given in §2.6.2).

In the same way as defining the “big cell” section in §2.3.3, one can define the “big cell” section
associated to a Schwartz function αHv on Sym(2n,Qv) inside IQH (s, ξ) as

fα
H
v (s, ξ)

((
A B
C D

))
=

{
ξ−1(detC)|detC|−(s+ 2n+1

2
)αv(C

−1D), if detC 6= 0,

0, if detC = 0.

Proposition 3.5.6. For a = (a1, . . . , an) ∈ Zn and b′ = (b1, . . . , bn, bn+1) ∈ Zn+1 with a1 ≥ · · · ≥
an ≥ 0 and b1 ≥ · · · ≥ bn+1 ≥ 0,

(3.5.14)

(
T
MPG′
(Up,a×Up,b′ )fτ,κ,p(s),12n+2

ϕ
)

(g1) = ηp(p)
−bn+1−

∑n
j=1 aj+bj p(s−(n+1−k))bn+1

×
(
T

(Up,a×Up,b)f
αHτ,κ,p (s− 1

2
)
ϕ

)
(g1),

where b = (b1, . . . , bn) and the Schwartz function α̂Hτ,κ,p on Sym(n,Qp) is defined as

αHτ,κ,p(ς) = ατ,κ,

(
ς 0
0 0

)
,

and the normalization of Up,a, Up,b (resp. Up,b′) is with respect to weight t (resp. (t, k)).

Proof. For uB ∈ UBG(Zp), u′B ∈ UBG′ (Zp) and u′P ∈ UPG′ (Qp), we write

uB =
(
u−1

1 σ1
tu1

0 tu1

)
, u′B =

(
u−1

2 0 σ2
tu2 0

0 1 0 0
0 0 tu2 0
0 0 0 1

)(
1n −m −mtv v−mw
0 1 tv w
0 0 1n 0
0 0 tm 1

)
, u′P =

(
1n 0 0 y
tx 1 ty z+txy
0 0 1n −x
0 0 0 1

)
with u1, u2 ∈ Bn(Zp), σ1, σ2 ∈ Sym(n,Zp), m, v ∈ Znp , w ∈ Zp, x, y ∈ Qn

p , z ∈ Qp. By definition,
the left hand side of (3.5.14) equals
(3.5.15)

p〈t+2ρG,c,a〉+〈(t,k)+2ρG′,c,b
′〉
∫
UPG′

(Qp)

∫
G(Qp)

∫
UBG (Zp)×UBG′ (Zp)

fτ,κ,p(s)

(
S−1
H′ ιH′

(
g1uB

(
pa

p−a

)
, wP ′Gu

′
Pu
′
B

(
pb
′

p−b
′

)))
ϕ(g1) duBdu

′
B dg1 du

′
P .
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Let

g1 =

(
a b
c d

)
, h′ =

(
A B
C D

)
= S−1

H′ ιH′

(
g1uB

(
pa

p−a

)
, wP ′Gu

′
Pu
′
B

(
pb
′

p−b
′

))
.

We consider the integration of (3.5.15) over UPG′ (Qp) × UBG(Zp) × UBG′ (Zp). (Interchanging the
integration order for g1 and u′P can be justified when s� 0.) We have

C−1D =

p−a u1

p−b u2

1

 −a−1b+ σ1 −a−1 0
ta−1 −ca−1 + σ2 0

0 0 0

tu1p
−a

tu2p
−b

1



+

p−ap−b
p−bn+1




0 u1a
−1xtm u1a

−1x

mtxta−1tu1

mtytu2 + u2y
tm+

mtxca−1u2 + u2ca
−1xtm

+mztm−mtxca−1xtm

v + u2(y + ca−1x)
+m(z − txca−1x)

txta−1tu1

tv + (ty + txca−1)tu2

+(z − txca−1x)tm
w + z − txca−1x


p−ap−b

p−bn+1

 .

Applying the change of variables x̃ = u1a
−1x, ỹ = u2(my+ ca−1x) +m(z− txca−1), z̃ = z− txca−1,

we obtain

C−1D =

p−ap−b
p−bn+1



u1(−a−1b+ σ1)tu1 −u1a

−1tu2 + x̃tm x̃

u2
ta−1tu1 +mtx̃

u2(−ca−1 + σ2)tu2+
mtỹ + ỹtm−mz̃tm

ỹ + w

tx̃ tỹ + tw z̃ + v


p−ap−b

p−bn+1

 .
If C−1D lies inside the support of ατ,κ,p, then (p−b ỹp−bn+1 , p−2bn+1 z̃) ∈ Znp×Zp, so mtỹ+ỹtm−mz̃tm

belongs to Sym(n,Zp) and we can apply the change of variable σ̃2 = σ2+u−1
2 (mtỹ+ỹtm−mz̃tm)tu−1

2 .
Setting (ηχ)v,s = (ηχ)v | · |sv, we have
(3.5.16)

p〈t+2ρG,c,a〉+〈(t,k)+2ρG′,c,b
′〉 fτ,κ,p(s)(h′)

= p〈t+2ρG,c,a+b〉+∑n
j=1 bj+(k−n)bn+1(ηχ)−1

p,s+n+1

(
det(−a) pbn+1+

∑n
j=1 aj+bj

)
· ατ,κ,p(C

−1D)

= ηp(p)
−bn+1p〈t+2ρG,c,a+b〉+∑n

j=1 bj+(k+s+1)bn+1(ηχ)−1
p,s+n+1

(
det(−a) p

∑n
j=1 aj+bj

)
· ατ,κ,p(C

−1D).

Integrating (3.5.16) with respect to v, w, ỹ, z̃, we obtain

(3.5.17)

ηp(p)
−bn+1−

∑n
j=1 aj+bj · p〈t+2ρG,c,a+b〉 (ηχ)−1

p,s+n

(
det(−a) p

∑n
j=1 aj+bj

)
× αHτ,κ,p,up-left

(
p−a u1(−a−1b+ σ1)tu1p

−a) αHτ,κ,p,low-right

(
p−b u2(−ca−1 + σ2)tu2p

−b
)

× p(k−n−1+s)bn+1+
∑n
j=1 aj+bj αHτ,κ,p,off-diag

(
p−a(−u1a

−1tu2 + x̃tm)p−b
)
1Znp (p−ax̃p−bn+1).

Next we integrate (3.5.17) over x̃,m.
(3.5.18)∫

Qnp

∫
Znp
αHτ,κ,p,off-diag

(
p−a(−u1a

−1tu2 + x̃tm)p−b
)
1Znp (p−ax̃p−bn+1) dmdx̃

=

∫
Znp×Qnp×Sym(n,Zp)

α̂Hτ,κ,p,off-diag(ς)1Znp (p−ax̃p−bn+1) ep

(
Tr(−ςp−au1a

−1tu2p
−b + ςp−ax̃tmp−b)

)
dmdx̃ dς.
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After another change of variable ˜̃x = ςp−ax̃ and integrating with respect to m,

(3.5.18) = p−
∑n
j=1 aj

∫
Qnp×Sym(n,Zp)

α̂Hτ,κ,p,off-diag(ς)1Znp (ς−1˜̃xp−bn+1)1Znp (p−b ˜̃x)

ep(−Tr ςp−au1a
−1tu2p

−b) d˜̃x dς.
By our definition of α̂Hτ,κ,p,off-diag (§2.3.4), it is supported on GL(n,Zp) and for ς ∈ GL(n,Zp), we

have 1Znp (ς−1˜̃xp−bn+1) = 1Znp (˜̃xp−bn+1). Hence

(3.5.18) = p−
∑n
j=1 aj+bj αHτ,κ,p,off-diag(p−au1a

−1tu2p
−b).

Plugging this into (3.5.17), we obtain∫
UPG′

(Qp)

∫
UBG (Zp)×UBG′ (Zp)

(3.5.16) duB du
′
B du

′
P

= ηp(p)
−bn+1−

∑n
j=1 aj+bj p(k−n−1+s)bn+1 · p〈t+2ρG,c,a+b〉

∫
UBG (Zp)×UBG (Zp)

(ηχ)−1
p,s+n

(
det(−a) p

∑n
j=1 aj+bj

)
× αHτ,κ,p,off-diag

((
p−a u1

p−b u2

)(
−a−1b+ σ1 a−1

ta−1 −ca−1 + σ2

)(
tu1p

−a
tu2p

−b

))
dσ1du1 dσ2du2

= ηp(p)
−bn+1−

∑n
j=1 aj+bj p(k−n−1+s)bn+1 ·

(
Up,a × Up,b

)
fHτ,κ,p(s−

1

2
)(g1),

which combined with (3.5.15) proves the proposition. �

Now combining the above proposition and [LR18, §2.8], we deduce

Proposition 3.5.7. Suppose that ϕ ∈ π is an ordinary adelic holomorphic Siegel modular form of

weight t and nebentypus ε invariant under Γ̂G,1(N)p. Then

lim
m→∞

(
T
MPG′

(Um!
p,G×U

m!
p,G′ )fτ,κ,p(s),12n+2

ϕ

∣∣∣∣
s=n+1−k

)ϑ
= p2n2

(p− 1)vvol(ΓG,1(p)p)χ(−1)nE−p (n+ 1− k, π × ηχ) · eGW (ϕ)

where the operator W : π → π is defined as

(3.5.19) W (ϕ)(g) =

∫
UBG (Zp)

ϕϑ(gu) du, g ∈ G(A),

and the factor E−p (s, π × ηχ) is the modified Euler factor at p for p-adic interpolation as defined
in [Coa91].

Remark 3.5.8. For the convenience of the reader, we briefly describe the modified Euler factor at p
in our case. The condition in the above proposition implies that there exist continuous characters

θ1, . . . , θn : Q×p → C× such that valp (θj(p)) = −tj+j, θj |Z×p = ε−1
j and πp ↪→ Ind

G(Qp)
BG(Qp) (θ1, . . . , θn).

Then for p-adically interpolating the critical values to the left (resp. right) of the center, the
modified Euler factor is given as

E−p (s, π × ηχ) =

n∏
j=1

γp (s, θjηpχp)
−1 , (resp . E+

p (s, π × ηχ) = γp(s, ηpχp)
−1

n∏
j=1

γp (s, θjηpχp)
−1).

We refer to [LR18, §2.3] for more details.
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3.6. The image of EKl
C under the Siegel operator and the p-adic L-function for C. For

all L ∈ CV′/ΓG′(N), as in §3.2, we can choose a basis of L⊥/L and use it to define the (p-adic)
q-expansion map for M0

L,ord. The basis gives an element γ′L ∈ G′(Z). (Whether γ′L belongs to the

“big cell”, the image pG(γ′L) ∈ G(Q) and the image pU (γ′L) ∈ UPG′ (Q) up to UPG′ (NZ) do not
depend the choice.)

By the doubling method (Theorem 2.2.1), the coefficient indexed by (β1, β2) ∈ Sym(n,N−1Z)∗⊕2
>0

in the p-adic q-expansion of Pdeg,L

(
EKl
C

)
at the cusp (γN,1, γN,2) equals (up to necessary normaliza-

tions) the product of ε
γN,1
q-exp (β1, ϕ) and

bNp∞H (s+
1

2
, ηχ) eG′E

Kl(
β2 0
0 0

) (γ′LγN,2g′z′,∞,Φfτ,κ(s),ϕ

)∣∣∣∣
s=n+1−k

= lim
m→∞

LNp∞(s, π × ηχ)

TMPG′
fτ,κ,∞(s),12n+2

T
MPG′

(Um!
p,G×U

m!
p,G′ )fτ,κ,p(s),12n+2

∏
v|N

T
MPG′
fτ,κ,v(s),γ′LγN,2

ϕ

ϑ

β2

∣∣∣∣∣∣∣
s=n+1−k

.

Recall that (3.3.2) says that the left hand side is computed by the sum Φfτ,κ(s),ϕ+MPG′ (s, ηχ)Φfτ,κ(s),ϕ,

Proposition 3.4.1 says that the first term vanishes at γ′LγN,2g
′
z′,∞ due to our choice of fτ,κ,p(s), and

Proposition 3.5.1 says that the contribution from second term is the right hand side, which is
computed in Proposition 3.5.2, 3.5.5, 3.5.6.

Theorem 3.6.1. Given L ∈ CV′/ΓG′(N) of rank 1, γN,1, γN,2 ∈ G(Z/N) and β1, β2 ∈ N−1 Sym(n,Z)∗>0,

the meromorphic function ε
γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
inside IC[[Z×p ]]⊗IC FC satisfies the follow-

ing interpolation properties.
Let x : IC → Qp be an Qp-point of CP . Suppose that the weight projection Λn → TNord is étale at

x and maps x to an admissible point τ ∈ Homcont

(
Tn(Zp),Q

×
p

)
. For κ ∈ Homcont

(
Z×p ,Q

×
p

)
such

that (τ, κ) is admissible, we have

• If ηκ(−1) = 1 and γ′L belongs to the “big cell” with pU (γ′L) ∈ UpG′ (Zv), congruent to(
1n 0 0 0
∗ 1 0 0
0 0 1n ∗
0 0 0 1

)
modulo N for all v | N (see (3.5.10) for the definition of the map (pG, pGL(1), pU ) :

PG′wPG′UPG′ → G×GL(1)× UPG′ ), then

ε
γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
(x, κ)

= p2n2
(p− 1)n vol(Γ̂G,1(Np)) (ηκ)N

(
pGL(1)(γ

′
L)
) n∏
j=1

τj(−1)
∏
v|N

γv(n+ 1− k, π × ηχ)−1

×
√
−1

n2−n
2 2−

∑
ti+

n2−n
2

dim (GL(n), tx)

∑
ϕ∈sx

ε
γN,1
q-exp (β1, ϕ) ε

pG(γ′L),γN,2
q-exp (β2, eGW (ϕ))

〈ϕ,ϕ〉

× E−p (n+ 1− k, π × ηχ)E−∞(n+ 1− k, π × ηχ)LNp∞(n+ 1− k, π × ηχ).

• Otherwise,

ε
γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
(x, κ) = 0.

Here (ηκ)N (pGL(1)(γ
′
L)) =

∏
v|N

(
ηχ)v(pGL(1)(γ

′
L)
)
|pGL(1)(γ

′
L|−kv and sx is a finite set consisting of an

orthogonal basis of the eigenspace for the Hecke eigensystem parameterized by x inside the space of
ordinary cuspidal Siegel modular form of genus g, weight t, p-nebentypus ε and tame level ΓG,1(N).
If sx is empty, then the evaluation is 0.

32



Remark 3.6.2. By applying the functional equation for the L-function L(s, π×ηχ) [LR05, (33)], we
can also write the formula on ε

γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
(x, κ) in terms of the critical L-values

to the right of the center, i.e.

ε
γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
(x, κ)

= p2n2
(p− 1)n vol

(
Γ̂G,1(pN)

)
(ηκ)N

(
pGL(1)(γ

′
L)
)

×
√
−1

n2−n
2 2−

∑
ti+

n2−n
2

dim (GL(n), tx)

∑
ϕ∈sx

ε
γN,1
q-exp (β1, ϕ) ε

pG(γ′L),γN,2
q-exp (β2, eGW (ϕ))

〈ϕ,ϕ〉

× E+
p (k − n, π × η−1χ−1)E+

∞(k − n, π × η−1χ−1)LNp∞(k − n, π × η−1χ−1).

The interpolation properties of ε
γN,1,γN,2
q-exp

(
β1, β2, Pdeg,L

(
EKl
C

))
(x, κ) justify that it can be viewed

as the p-adic L-function attached to C. The theorem essentially says that the image of our con-
structed family EKl

C of Klingen Eisenstein series under the Siegel operator

Pdeg :M0
G,ord⊗OF JTn(Zp)KM1

G′,ord −→
⊕

L∈CV′/ΓG′ (N)
rkL=1

M0
G,ord⊗OF JTn(Zp)KM0

L,ord⊗OF JTn(Zp)KOF JTn(Zp)×Z×p K

is given by the p-adic L-functions attached to C.

4. Non-degenerate Fourier coefficients of the Klingen Eisenstein family

In order to relate the “constant term” Pdeg

(
EKl
C

)
to the congruence ideal associated to the

Hecke eigensystem of EKl
C , one needs to verify the primitivity of the Klingen Eisenstein family EKl

C .
One strategy (as used in [Urb06, SU14]) is to show the coprimeness of the non-degenerate Fourier
coefficients and (the Fourier coefficients of) Pdeg

(
EKl
C

)
.

In this section, we study the non-degenerate coefficients ε
1,γ′N
q-exp

(
β, β′, EKl

C

)
. More precisely, we

compute the Fourier coefficients
(4.0.1)

(eG′E
Kl)β′

(
m(af )g′z′,∞,Φfτ,κ,ϕ

)
=

∫
Sym(n+1,Q\A)

eG′E
Kl
((

1n+1 ς
0 1n+1

)
m(af )g′z′,∞,Φfτ,κ,ϕ

)
eA(−Trβ′ς) dς

for a certain collection of β′ ∈ Sym(n+ 1,Q)>0 and af ∈ GL(n+ 1,Af ). The results are recorded
in Theorem 2.6.2, which expresses (4.0.1) as the Petersson inner product of ϕ with the product of a

Siegel Eisenstein series and a theta series. For the purpose of further studying of ε1,1
q-exp

(
β, β′, EKl

C

)
and verifying the primitivity of EKl

C , it is crucial to obtain precise formulas for the local sections
giving rise to the Seigel Eisenstein series and the Schwartz functions giving rise to the theta series.

We compute (4.0.1) by first computing

ESi
∣∣
G×G′,β′

(
g,m(af )g′z′,∞, (U

m
p,G × Ump,G′)fκ,τ(s)

)
=

∫
Sym(n+1,Q\A)

ESi
(
ιH′
(
g,
(

1n+1 ς
0 1n+1

)
m(af )g′z′)

)
, (Ump,G × Ump,G′)fκ,τ(s)

)
eA(−Trβ′ς) dς,

and then pairing it with ϕ.
Compared to the analogous computation for unitary groups in [Wan15], one major improvement

of our computation pertains to the computation at the place p. By handling the intertwining
operator in a more effective way, we do not need to assume the condition that the nebentypus
is sufficiently ramified. This is important especially when one cannot identify the non-degenerate
coefficients in the q-expansion of the family with a known p-adic L-function. Moreover, we include
a discussion of expressing the local FJβ′,v’s by using the Siegel–Weil sections, which on one hand
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can be useful for considering the seesaw diagram, and on the other hand allows us to obtain a better
expression for the place 2 when n is even and deal with the vector weight case for the archimedean
place. (Only the scalar weight case is computed in [Wan15].)

4.1. The unfolding. Define the parabolic subgroup PH′ of H ′ as the subgroup consisting of ele-
ments of the following form

n n+ 1 n n+ 1


A 0 B ∗ n
∗ A ∗ ∗ n+ 1
C 0 D ∗ n
0 0 0 tA−1 n+ 1

∈ H ′,
(
A B
C D

)
∈ G, A ∈ GL(n+ 1).

It is not difficult to check that the image of WQG′\WG′/WQG′ under ιH′ constitutes a set of repre-
sentatives of WQH′\WH′/WPH′ . Given f(s, ξ) ∈ IQH′ (s, ξ) and β′ ∈ Sym(n+ 1,Q)>0,

ESi
∣∣
G×G′,β′ (g, g

′, f(s, ξ))

=

∫
Sym(n+1,Q\A)

∑
γ∈(QH′\H′)(Q)

f(s, ξ)
(
γιH′

(
g,
(

1n+1 ς
0 1n+1

)
g′
))

eA(−Trβ′ς) dς

=

∫
Sym(n+1,Q\A)

∑
w∈WQH′

\WH′/WPH′

∑
γ∈(Qw

H′∩PH′\PH′)(Q)

f(s, ξ)
(
wγιH′

(
g,
(

1n+1 ς
0 1n+1

)
g′
))

eA(−Trβ′ς) dς

=

∫
Sym(n+1,Q\A)

∑
w∈WQG′

\WG′/WQG′

∑
γ∈(Qw

H′∩PH′\PH′)(Q)

f(s, ξ)
(
ιH′
(

1, w
(

1n+1 ς
0 1n+1

))
γιH′(g, g

′)
)

eA(−Trβ′ς) dς,

where for w ∈ WH′ (resp. w ∈ WG′), Q
w
H′ = w−1QH′w (resp. QwH′ = ιH′(1, w)−1QH′ιH′(1, w)).

Because of the non-degeneracy of β′, the only nonvanishing term in the sum over WQG′\WG′/WQG′

is the one attached to wQ′G =

(
0 −1n+1

1n+1 0

)
. Hence,

ESi
∣∣
G×G′,β′ (g, g

′, f(s, ξ)) =
∑

γ∈QG(Q)\G(Q)

∑
x∈Mn,n+1(Q)

∫
Sym(n+1,A)

f(s, ξ)

(
ιH′(12n, wQG′ )

(
1n 0 0 0
tx 1n+1 0 0
0 0 1n −x
0 0 0 1n+1

)
ιH′
(
γg,
(

1n+1 ς
0 1n+1

)
g′
))

eA(−Trβ′ς) dς.

Denoting the term in the summand as FJβ′ (γg, g
′, x, f(s, ξ)), the above identity is written as

(4.1.1) ESi
∣∣
G×G′,β′ (g, g

′, f(s, ξ)) =
∑

γ∈QG(Q)\G(Q)

∑
x∈Mn,n+1(Q)

FJβ′
(
γg, g′, x, f(s, ξ)

)
.

If fv(s, ξ) factorizes, then FJβ′ (g, g
′, x, f(s, ξ)) =

∏
v
FJβ′,v (g, g′, x, fv(s, ξ)) with

(4.1.2)
FJβ′,v

(
g, g′, x, fv(s, ξ)

)
=

∫
Sym(n+1,Qv)

fv(s, ξ)

(
ιH′(12n, wQG′ )

(
1n 0 0 0
tx 1n+1 0 0
0 0 1n −x
0 0 0 1n+1

)
ιH′
(
g,
(

1n+1 ς
0 1n+1

)
g′
))

ev(−Trβ′ς) dς.
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By the functional equation for Siegel Eisenstein series, we also have

(4.1.3) ESi
∣∣
G×G′,β′ (g, g

′, f(s, ξ)) =
∑

γ∈QG(Q)\G(Q)

∑
x∈Mn,n+1(Q)

FJβ′
(
γg, g′, x,MQH′ (s, ξ)f(s, ξ)

)
.

In the following we will work with (4.1.3) rather than (4.1.1)

4.2. Some remarks on FJβ′,v and its computation. The next few sections are devoted to

computing FJβ′,v
(
g, g′, x,MQH′ (s, ξ)fτ,κ,v(s)

)
place by place. Before launching the involved com-

putation, we give a rough description on how it should look like and in what format we would like
to express it.

It is not very difficult to observe that as a function on (g, x) ∈ G(Qv) ×Mn,n+1(Qv), the term
FJβ′,v

(
g, g′, x,MQH′ (s, ξ)fτ,κ,v(s)

)
takes the form of (a linear combination of) the product

(4.2.1) (∗) · f
G̃,v

(
−s, (ξvλ̃2β′,v)

−1
)

(g, ε) · ω2β′(g, ε)φv(x),

where (∗) is a constant independent of g, x, the pair (g, ε) with ε ∈ {±1} denotes an element inside

the metaplectic group G̃(Qv) = S̃p(2n,Qv), fG̃,v is a section inside the degenerate principal series

on G̃(Qv), and ω2β′(g, ε)φv is the action of (g, ε) on the Schwartz function φv ∈ S(Mn,n+1(Qv),C)
via the Weil representation (with respect to the symmetric form 2β′).

Therefore, as a function on g ∈ G(Q)\G(A), the above ESi
∣∣
G×G′,β′ (g, g

′, f(s, ξ)) is a (linear

combination of) product of a Siegel Eisenstein series and a theta series associated to the orthogonal
group O(2β′). The β′-th Fourier coefficient of the Klingen Eisenstein series EKl

(
·,Φfτ,κ,ϕ

)
is (a

linear combination of) the Petersson inner product of ϕ ∈ π with the product of a Siegel Eisenstein
series and a theta series associated to O(2β′). Right now it is not clear if this Petersson inner
product is related to an integral representation of certain L-functions (unless when n = 1 it is the
usual integral representation of Rankin-Selberg L-function).

When evaluated at s = n + 1 − k, if ξv is a quadratic character, by applying the Siegel–Weil
formula, one may write the (linear combination of) (4.2.1) in terms of theta lifts from an orthogonal
group of size 2k, and attempt to transfer the Petersson inner product on G(Q)\G(A) to an integral
on orthogonal groups via a seesaw diagram. This is discussed in §4.9. In fact the main reason
that we choose to compute FJβ′,v

(
g, g′, x,MQH′ (s, ξ)fτ,κ,v(s)

)
instead of FJβ′,v

(
g, g′, x, fτ,κ,v(s)

)
is that when evaluated at s = n+ 1− k with k relatively small, their images in IQG,v(−s, ξ) under
the intertwining operator are more conveniently related to Siegel–Weil sections associated to an
orthogonal group of size 2k − n− 1.

4.3. Basics on Weil representation. We recall some basic facts about the Weil representation
of metaplectic groups, which will be needed in our upcoming computation. Let K = Qv, V =
V ⊗ K and W be a finite dimensional symmetric space. Fix a polarization V = X ⊕ Y with
X = spanK{e1, . . . , en} and Y = spanK{f1, . . . , fn} .

4.3.1. The metaplectic group. Let S̃p(V ) = Sp(V ) n {±1} be the metaplectic group. The group
law is given by

(g1, ε1) · (g2, ε2) = (g1g2, ε1ε2c(g1, g1)),

where c( , ) is a 2-cocycle on Sp(V ) valued in {±1}. The covering splits uniquely over UQX which

can be viewed canonically as a subgroup of S̃p(V ). Let QX ⊂ Sp(V ) be the Siegel parabolic

subgroup preserving X ⊂ V and Q̃X be the inverse image of QX in S̃p(V ). Then Q̃X admits the
Levi decomposition

Q̃X = M̃X n UQX ,
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with M̃X = GL(X) n {±1} equipped with the group law

(a1, ε1) · (a2, ε2) = (a1a2, ε1ε2(det a1,det a2)K) ,

where (·, ·)K is the Hilbert symbol of K.

4.3.2. Formulas for the Weil representation of S̃p(V )×O(W ). Denote by S(Y ⊗KW ) the space of
Schwartz functions on Y ⊗KW . The symmetric bilinear form on W and the skew-symmetric form
on V induces a skew-symmetric form on W⊗K V which we denote by 〈·, ·〉. The Weil representation
depends on the choice of an additive character of K = Qv. We fix our choice as ev.

Define the characters

λW,v : K× −→ C×

(t, z) 7−→
(
t, (−1)

dimW (dimW−1)
2 detW

)
K
,

and

(4.3.1)

λ̃W,v : K× × C× −→ C×

(t, z) 7−→ λW,v(t) ·
{

1, if dimW is even,
z · γF (t, ev)

−1, if dimW is odd.

Denote by ωV,W the Weil representation of S̃p(V )×O(W ) on S(Y ⊗KW ). Then for φ ∈ S(Y ⊗KW ),
the action of O(W ) is by inverse translation on W , and the action of Sp(V ) is by

• ωV,W
((

a bta−1

0 ta−1

)
, ε

)
φ(y) = λ̃W (det a, ε)|det a|

dimV
2

v ev
(

1
2 〈y, by〉

)
φ(tay),

• ωV,W
((

0 −1n
1n 0

)
, 1

)
φ(y) = γ(ev ◦W )− dimV

∫
X⊗KV φ(x) ev(〈y, x〉) dx.

Here we identify functions on X ⊗K W and Y ⊗K W via our fixed basis. The Haar measure on
X ⊗K W is the unique one such that the above formulas define a group action. The constant
γ(ev ◦W ) is the Weil index associated to ev and W .

4.4. The unramified places. First we define some notation. Given a section f
G̃,v

(s, ξλ̃2β′,v) ∈
IQ

G̃
,v(s, ξλ̃2β′,v) and a Schwartz function φ2β′,v ∈ S (Mn,n+1(Qv),C), we define the following func-

tion on G(Qv)×Mn,n+1(Qv),

(4.4.1) S
(
g, x; f

G̃,v
(s, ξλ̃2β′,v), φ2β′v

)
= f

G̃,v
(s, ξλ̃2β′,v)(g, ε) · ω2β′,v(g, ε)φ2β′,v(x),

where the right hand side does not depend on the choice of ε ∈ {±1}. Like bH′,v(s, ξ) (defined in
(2.4.2)), define

bG′,v(s, ξ) = Lv

(
s+

n+ 1

2
, ξ

) [n+1
2 ]∏
j=1

Lv
(
2s+ n+ 1− 2j, ξ2

)
.

Proposition 4.4.1. Let v be a finite place where ξv is unramified. For given β′ ∈ Sym(n + 1,Q)
and av ∈ GL(n+ 1,Qv) such that tavβ

′av ∈ Sym(n+ 1,Zv)∗ and 2tavβ
′av ∈ GL(n+ 1,Zv), we have

FJβ′,v (g,m(av), x, f
ur
v (s, ξ)) = ξ(det av)

−1| det av|−s+1
v bG′,v

(
s+

n

2
, ξ
)−1

{
1 n even

Lv
(
s+ n+1

2 , ξλ2β′
)

n odd

× S
(
g, x; fur

G̃,v
(s, ξλ̃−1

2β′), R(ta−1
v )1Mn,n+1(Zv)

)
,
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and

bH′,v(s, ξ)FJβ′,v
(
g,m(av), x,MQH′ (s, ξ)f

ur
v (s, ξ)

)
= ξ(det av)|det av|s+1

v γv(s− n, ξ)−1

[n+1
2 ]∏
j=1

γv
(
2s− 2n− 1 + 2j, ξ2

)−1
n∏

j=[n+1
2 ]+1

Lv(2s− 2n− 1 + 2j, ξ2)

×

{
1 n even

Lv
(
−s+ n+1

2 , ξ−1λ2β′
)

n odd
· S
(
g, x; fur

G̃,v
(−s, ξλ̃−1

2β′), R(ta−1
v )1Mn,n+1(Zv)

)
,

where R(ta−1
v ) denotes the right translation by ta−1

v .

Remark 4.4.2. Note that when n is even and v = 2, one cannot find positive definite β′ and av such
that the conditions in the above proposition is satisfied. In this case the FJβ′,v cannot be written
as a simple product as (4.4.1). Instead, it is a linear combination of such products. See §4.9 for
more discussion.

Proof. The function g 7→ FJβ′,v (g,m(av), x, f
ur
v (s, ξ)) is invariant under the right translation by

G(Zv). Meanwhile, the conditions in the above proposition imply the existence of an unramified

section inside the degenerate principal series on G̃(Qv) attached to the character ξvλ̃2β′ , as well

as the invariance of the Schwartz function 1Mn,n+1(Zv) under the action of G̃(Zv) by the Weil

representation. Thus it suffices to check the identities in the proposition for g =

(
a bta−1

0 ta−1

)
∈

QG(Qv). The left hand side is computed as follows.

FJβ′,v

((
a bta−1

0 ta−1

)
,m(av), x, f

ur
v (s, ξ)

)
=

∫
Sym(n+1,Qv)

fur
v (s, ξ)

((
1n 0 0 0
0 0 0 −1n+1

0 0 1n 0
0 1n+1 0 0

)(
1n 0 0 0
tx 1n+1 0 0
0 0 1n −x
0 0 0 1n+1

)(
a 0 bta−1 0
0 av 0 ςta−1

v

0 0 ta−1 0
0 0 0 ta−1

v

))
ev(−Trβ′ς) dς

=

∫
Sym(n+1,Qv)

fur
v (s, ξ)

 a −tbxta−1
v bta−1 0

0 ta−1
v 0 0

0 0 ta−1 0
0 0 xbta−1 av

( 1n 0 0 0
0 0 0 −1n+1

0 0 1n −taxta−1
v

a−1
v

txa 1n+1 0 a−1
v ςta−1

v +a−1
v

txbxta−1
v

) ev(−Trβ′ς) dς

= ξ(det a)| det a|s+n+1
v ev

(
Trβ′txbx

)
ξ(det av)

−1| det av|−s+1
v

×
∫

Sym(n+1,Qv)
fur
v (s, ξ)

(( 1n 0 0 0
0 1n+1 0 0

0 taxta−1
v 1n 0

a−1
v

txa ς 0 1n+1

))
ev(Trtavβ

′avς) dς.

Put

φ2tavβ′av ,v (x) =

∫
Sym(n+1,Qv)

fur
v (s, ξ)

((
1n 0 0 0
0 1n+1 0 0
0 x 1n 0
tx ς 0 1n+1

))
ev(Trtavβ

′avς) dς.

Then by the formulas of Weil representations recalled in last section,

FJβ′,v

((
a bta−1

0 ta−1

)
,m(av), x, f

ur
v (s, ξ)

)
= ξ(det av)

−1|det av|−s+1
v · fur

G̃,v
(s, ξλ̃−1

2β′,v)
((

a bta−1

0 ta−1

))
× ω2β′

(((
a bta−1

0 ta−1

)
, 1

))
R(ta−1

v ) · φ2tavβ′av ,v(x).

Therefore, the desired identity follows from the following proposition.
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Proposition 4.4.3. Let v be a finite place where ξv is unramified and β′v be an element inside
Sym(n+ 1,Zv)∗ such that valv(det 2β′v) ≤ 1. Then

φ2β′v ,v(x) =

∫
Sym(n+1,Qv)

fur
v (s, ξ)

((
1n 0 0 0
0 1n+1 0 0
0 x 1n 0
tx ς 0 1n+1

))
ev(Trβ′vς) dς

= Wβ′v ,v

(
1n+1, f

ur
G′,v(s+

n

2
, ξ)
)
· 1Mn,n+1(Zv)(x),

where fur
G′,v(s+ n

2 , ξ) ∈ IQG′ ,v(s+ n
2 , ξ) is the standard unramified section in the degenerate principal

series IQG′ ,v(s, ξ) on G′(Qv), and Wβ′v ,v is the local Fourier coefficient for IQG′ ,v(s, ξ) defined as

Wβ′v ,v

(
g, fG′,v(s, ξ)

)
=

∫
Sym(n+1,Qv)

fG′,v(s, ξ)
((

1n+1 0
ς 1n+1

))
ev(Trβ′vς) dς.

Moreover, by [Shi97, Theorem 13.6, Proposition 14.9], we have

Wβ′v ,v

(
1n+1, f

ur
G′,v(s, ξ)

)
= gtavβ′av

(
ξ(qv)q

−(s+n+1)
v

)
bG′,v (s)−1

{
1, n even

Lv
(
s+ 1

2 , ξλ2β′v

)
n odd

,

with gtavβ′av(T ) ∈ Z[T ] of degree less or equal to 4n · valv(det 2β′v) and constant term 1.

Proof. Given ς ∈Mn,n+1(Qv), pick a ∈ GL(n+ 1,Zv) and a′ ∈ GL(n+ 1,Zv) such that

(4.4.2) axta′ =

r n+ 1− r( )
q
−m
v 0 r
0 ∗ n− r

=


q−m1
v

. . .

q−mrv

∗


with m = (m1, . . . ,mr) ∈ Zr>0 and ∗ ∈Mn−r,n+1−r(Zv). Then

(4.4.3)

φ2β′v ,v(x) =

∫
Sym(n+1,Qv)

fur
v (s, ξ)


1n 0 0 0
0 1n+1 0 0

0
(

q−m
v 0
0 ∗

)
1n 0(

q−m
v 0

0 t∗

)
a′ςta′ 0 1n+1

ev(Trβ′vς) dς

=

∫
Sym(n+1,Qv)

fur
v (s, ξ)


1n 0 0 0
0 1n+1 0 0

0
(

q−m
v 0
0 0

)
1n 0(

q−m
v 0
0 0

)
ς 0 1n+1

ev(Trta′−1β′va
′−1ς) dς.

Write

ς =

r n+ 1− r( )
ς11 ς12 r
ς21 ς22 n+ 1− r

.
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Then
1n 0 0 0
0 1n+1 0 0

0
(

q−m
v 0
0 0

)
1n 0(

q−m
v 0
0 0

)
ς 0 1n+1

 =



q
m
v 0 q

m
v ς11q

m
v −qmv ς12 0 0 1r 0

0 1n−r 0 0 0 0 0 0
0 0 q

m
v 0 1r 0 0 0

0 0 0 1n+1−r 0 0 0 0

0 0 0 0 q
−m
v 0 0 0

0 0 0 0 0 1n−r 0 0

0 0 0 0 ς11 0 q
−m
v 0

0 0 0 0 ς21 0 0 1n+1−r



×



1r 0 0 0 0 0 0 0
0 1n−r 0 0 0 0 0 0

0 0 1r 0 0 0 0 0

0 0 0 1n+1−r 0 0 0 0

0 0 0 0 1r 0 0 0

0 0 0 0 0 1n−r 0 0
0 0 q

m
v ς11q

m
v q

m
v ς12 0 0 1r 0

0 0 ς21q
m
v ς22 0 0 0 1n+1−r





0 0 0 0 0 0 −1r 0
0 1n−r 0 0 0 0 0 0

0 0 0 0 −1r 0 0 0

0 0 0 1n+1−r 0 0 0 0

0 0 1r 0 q
m
v 0 0 0

0 0 0 0 0 1n−r 0 0
1r 0 0 0 0 0 q

m
v 0

0 0 0 0 0 0 0 1n+1−r

 .

Therefore, by change of variable ς 7→
(
q
−m
v 0
0 1n+1−r

)
ς
(
q
−m
v 0
0 1n+1−r

)
,

(4.4.3) = ξ(det qmv )2|det qmv |2s+n

×
∫

Sym(n+1,Qv)
fur
v (s, ξ)

((
1n 0 0 0
0 1n+1 0 0
0 0 1n 0
0 ς 0 1n+1

))
ev

(
Tr
(
q
−m
v 0
0 1n+1−r

)
ta′−1β̃′a′−1

(
q
−m
v 0
0 1n+1−r

)
ς
)
dς.

This integral vanishes unless

(4.4.4)

(
q
−m
v 0
0 1n+1−r

)
ta′−1β′va

′−1

(
q
−m
v 0
0 1n+1−r

)
∈ Sym(n+ 1,Zv)∗.

Meanwhile, if valv(2 detβ′v) ≤ 1, then 2

(
q
−m
v 0
0 1n+1−r

)
ta′−1β′va

′−1

(
q
−m
v 0
0 1n+1−r

)
cannot be

integral unless m = 0 and r = 0, i.e. (4.4.4) holds only if m = 0 and r = 0. Hence by (4.4.2),
φ(x) 6= 0 only if x ∈Mn,n+1(Zv). For x ∈Mn,n+1(Zv), we have

φ(x) =

∫
Sym(n+1,Qv)

fur
v (s, ξ)

((
1n 0 0 0
0 1n+1 0 0
0 0 1n 0
0 ς 0 1n+1

))
ev(Trβ′vς) dς

=

∫
Sym(n+1,Qv)

fur
G′,v(s+

n

2
, ξ)
((

1n+1 0
ς 1n+1

))
ev(Trβ′vς) dς = Wβ′v

(
1n+1, f

ur
G′,v(s+

n

2
, ξ)
)
.

The proposition is proved. �

�

4.5. The archimedean place. In this section, we compute FJβ′,∞ evaluated at s = n+ 1− k for
the special case t = (k, . . . , k). The general case will be discussed in §4.9.5.

Denote by s̃gnk−
n+1

2 the character on R××C× attached to a positive definite symmetric quadratic

form on Rn by (4.3.1). Let h : S̃p(2n,R)×Hn → C× be the automorphy factor for metaplectic group
defined as in [Shi00, Theorem A2.4]. We know that for g =

(
a b
c d

)
, h((g, ε), z)2 equals det(cz+d) up

to root of unity. We define the canonical section f
k−n+1

2

G̃,∞
(s, s̃gnk−

n+1
2 ) in IQ

G̃
,∞(s, s̃gnk−

n+1
2 ) and

the Gaussian function G2β′,∞ on Mn,n+1(R) as

(4.5.1) f
k−n+1

2

G̃,∞
(s, s̃gnk−

n+1
2 )(g, ε) =h

(
(g, ε),

√
−11n+1

)−2k+n+1
, G2β′,∞(x) = e−πTrxβ′tx.
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Proposition 4.5.1. Let β′ ∈ Sym(n+ 1,Q)>0 and k be an integer. Then

FJβ′,∞

(
g, g′z′ , x,MQH′ (s, sgnk)fk∞(s, sgnk)

)∣∣∣
s=n+1−k

=

√
−1

(2−n)k
2(2n+1)k− 5n2

2
− 3n

2 π(n+1)(2n+1+k)

Γ2n+1(n+ 1)Γn+1 (k)

× (det 2β′)k−
n+2

2 (det Imz′)
k
2 e∞(Trβ′z′) · S

(
g, x; f

k−n+1
2

G̃,∞
(s, s̃gnk−

n+1
2 ), G2β′,∞

)
.

Proof. The right translation by the maximal compact subgroup of G(R) on both sides of the identity
is by j(·,

√
−1)−k, so it suffices to check the identity for g = gz, z ∈ Hn. Let

Z ′ = X ′ +
√
−1Y ′ =

n n+ 1( )
z z0 n

tz0 z′ n+ 1
∈ H2n+1, h′Z′ =

(√
Y ′ X ′

t√
Y ′
−1

0
t√
Y ′
−1

)
∈ H ′(R).

The evaluation at z = z0 of the integral
(4.5.2)

FJβ′,∞

(
h′Z′ , x, f

k
∞(s, sgnk)

)
=

∫
Sym(n+1,R)

fk∞(s, sgnk)

(
ιH′(1, wQG′ )

(
1n 0 0 0
tx 1n+1 0 0
0 0 1n −x
0 0 0 1n+1

)
ιH′
(
1n,
(

1n+1 ς
0 1n+1

))
h′Z′

)
e∞(−Trβ′ς) dς

gives FJβ′,∞
(
gz, g

′
z′ , x, f

k
∞(s, sgnk)

)
. Because

ιH′(1, wQG′ )

(
1n 0 0 0
tx 1n+1 0 0
0 0 1n −x
0 0 0 1n+1

)
ιH′
(
1n,
(

1n+1 ς
0 1n+1

))
h′Z′ =

[
∗ ∗(

0 0
tx 1n+1

)√
Y ′
(

0 0
tx 1n+1

)
X ′

t√
Y ′
−1

+
(
1n −x
0 ς

) t√
Y ′
−1

]
,

√
−1
(

0 0
tx 1n+1

)√
Y ′ +

((
0 0
tx 1n+1

)
X ′

t√
Y ′
−1

+
(
1n −x
0 ς

) t√
Y ′
−1
)

=
(

1n 0
txz+tz0 1n+1

)(
1n −x
0 txzx+tz0x+txz0+z′+ς

)√
Y ′
−1
,

the integrand in (4.5.2) equals

det
(

txzx+ tz0x+ txz0 + z′ + ς
)−k ∣∣det

(
txzx+ tz0x+ txz0 + z′ + ς

)∣∣k−(s+n+1)
(detY ′)

s+n+1
2 e∞(−Trβ′ςZ).

Writing z = u +
√
−1v, z′ = u′ +

√
−1v′, z0 = u0 +

√
−1v0 with u, v ∈ Sym(n,R), u′, v′ ∈

Sym(n+ 1,R), u0, v0 ∈Mn,n+1(R), we have

(4.5.2) = (detY ′)
s+n+1

2

∫
Symn+1(R)

det
(√
−1(txvx+ tv0x+ txv0 + v′) + (txux+ tu0x+ txu0 + u′ + ς)

)−k
×
∣∣det

(√
−1(txvx+ tv0x+ txv0 + v′) + (txux+ tu0x+ txu0 + u′ + ς)

)∣∣k−(s+n+1)
e∞(−Trβ′ς) dς

= (detY ′)
s+n+1

2 e∞
(
Trβ′(txux+ tu0x+ txu0 + u′)

) ∫
Sym(n+1,R)

det
(√
−1(txvx+ tv0x+ txv0 + v′) + ς

)−k
× | det

(
−
√
−1(txvx+ tv0x+ txv0 + v′) + ς

)
|k−(s+n+1)e∞(−Trβ′ς) dς.

By [Shi82, (4.34K)(4.35K)],

(4.5.2)|s=k−n−1 =(detY ′)
s+n+1

2 e∞
(
Trβ′(txux+ tu0x+ txu0 + u′)

)
× ξn+1

(
txvx+ tv0x+ txv0 + v′, β′;

k

2
+
s+ n+ 1

2
,−k

2
+
s+ n+ 1

2

)∣∣∣∣
k−n−1

=

√
−1

(n+1)k
2−

(n+1)n
2 π(n+1)k

Γn+1 (k)
· (det 2β′)k−

n+2
2 · (detY ′)

k
2 e∞

(
Trβ′(txzx+ tz0x+ txz0 + z′)

)
.
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Combining with the formulas (3.5.6)(3.5.7) for the intertwining operator acting on fk∞(s, sgnk), we
get the desired identity.

�

4.6. Places dividing N . Assume v | N . By (3.5.11), for av ∈ GL(n+1,Qv), g =

(
a b
c d

)
∈ G(Qv)

and β′ ∈ Sym(n+ 1,Q), we have

FJβ′,v
(
g,m(av), x,MQH′ ,v(s, ηχ)fτ,κ,v(s)

)
= FJβ′,v

(
g,m(av), x, f

αvol
v (−s, η−1χ−1)

)
.

We compute the right hand side for “big cell” sections with more general Schwartz function αv.
Before stating the result, we introduce the following operator acting on smooth functions on

G(Qv),

(4.6.1) UQG,v =

∫
Sym(n,Zv)

R

((
1n σ
0 1n

)(
qv1n 0

0 q−1
v 1n

))
dσ.

This operator resembles the Up-operator Up,(1,1,...,1), but there is no normalization factor here and
it is purely local.

For the metaplectic group G̃, we can also associate to a Schwartz function αn,v on Sym(n,Qv) a

“big cell” section f
αn,v

G̃,v
(s, ξλ̃2β′) inside the degenerate principal series IQ

G̃
,v(s, ξλ̃2β′,v) as

(4.6.2) f
αn,v

G̃,v

(
s, ξλ̃−1

2β′)
)(

g =

(
a b
c d

)
, ε

)
= ξ−1

v (det c)λ̃2β′,v(det c−1, ε)−1 · αn,v(c−1d).

Proposition 4.6.1. Suppose that the Schwartz function αv on Sym(2n + 1,Qv) can be written

as αv =

(
αv,up-left αv,off-diag

tαv,off-diag αv,low-right

)
(where the notation is as in §2.3.3) and αv,up-left = 1Sym(n,Zv).

Then for r � 0,

FJβ′,v (g,m(av), x, f
αv(s, ξ)) = ξ−1

v (det av)|det av|−s+n+1
v α̂v,low-right(

tavβ
′av) γ(ev ◦ 2β′)−n

× ξv(qv)rn|qv|rn(s+n+1)
v U rQG,v · S

(
g, x; f

αv,up-left

G̃

(
s, ξvλ̃

−1
2β′

)
, R(−q−rv · 2β′av) α̂v,off-diag

)
Remark 4.6.2. The formula here shows that in general FJβ′,v is not a simple product of a sec-

tion on G̃(Qv) for Siegel Eisenstein series and a Schwartz function acted on by G̃(Qv) via Weil
representation, but a linear combination of such products.

Proof.

FJβ′,v (g,m(av), x, f
αv(s, ξ)) =

∫
Sym(n+1,Qv)

fαv(s, ξ)

 a 0 b 0
0 0 0 −ta−1

v

c 0 d −xta−1
v

txa av txb ςta−1
v

 ev
(
−Trβ′ς

)
dς

= ξ−1
v (det av det c)|det av det c|−(s+n+1)

v

∫
Sym(n+1,Qv)

αv

((
c−1d −c−1xta−1

v

−a−1
v

txtc−1 a−1
v

txac−1xta−1
v +a−1

v ςta−1
v

))
ev
(
−Trβ′ς

)
dς

= ξ−1
v (det av)| det av|−s+1

v α̂v,low-right(
tavβ

′av) · ξvλ̃2β′,v(det c−1, 1)−1|det c|−s−
n+1

2
v αv,up-left(c

−1d)

× λ̃2β′,v(det c−1, 1)|det c|−
n+1

2
v ev

(
Tr ac−1xβ′tx

)
αvol
v,off-diag(c−1xta−1

v )
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Since g =

(
a b
c d

)
=

(
1n −c−1d
0 1n

)(
0 1n
−1n 0

)(
tc−1 a

0 c

)
, we have

λ̃2β′,v(det c−1, 1)| det c|−
n+1

2
v ev

(
Tr ac−1xβ′tx

)
αv,off-diag(c−1xta−1

v )

=ω2β′ ((g, 1))ω2β′

(((
1n −c−1d
0 1n

) (
0 1n
−1n 0

)
, 1
))

R(ta−1
v )αv,off-diag(x)

= γ(ev ◦ 2β′)−n|det av|nv · ω2β′

(
g
(

1n −c−1d
0 1n

)
, 1
)
R(−2β′av) α̂v,off-diag(x).

Plugging this into the above equation,
(4.6.3)

FJβ′,v (g,m(av), x, f
αv(s, ξ)) = ξ−1

v (det av)| det av|−s+n+1
v α̂v,low-right(

tavβ
′av) · γ(ev ◦ 2β′)−n

× fαv,up-left

G̃

(
s, ξvλ̃

−1
2β′,v

)
(g, 1) · ω2β′

(
g
(

1n −c−1d
0 1n

)
, 1
)
R(−2β′av) α̂v,off-diag(x).

If we assume conditions on av and β′ such that tavβ
′av, c

−1d, x · 2β′av belong to the support of
α̂vol
v,low-right, α

vol
v,up-left, α̂

vol
v,off-diag only if c−1d · xβ′tx ∈ Sym(n,Zv)∗, then we can simply get rid of the

term

(
1n −c−1d
0 1n

)
in the above equation and obtain a nice formula for FJβ′,v (g,m(av), x, f

αv(s, ξ))

without introducing the operator UQG,v. However, such such conditions on av and β′ can be incon-
venient for potential applications, so we need to do a little bit more work.

Recall that the proposition assumes that αv,up-left = 1Sym(n,Zv). When β′, av, αv,off-diag are fixed,
for sufficiently large r, the action of

1Sym(n,Zv)(c
−1d) · ω2β′

(
g
(

1n −c−1d
0 1n

)
, 1
)

=
∑

σ∈Sym(n,Z/q2r
v )

1Sym(n,Zv)

(
c−1d+ σ

q2r
v

)
· ω2β′

(
g
(

1n −c−1d
0 1n

)
, 1
)

on R(−2β′av) α̂v,off-diag is the same as that of∑
σ∈Sym(n,Z/q2r

v )

1Sym(n,Zv)

(
c−1d+ σ

q2r
v

)
· ω2β′

(
g
(
1n σ
0 1n

)
, 1
)
.

Therefore,

(4.6.3) = ξ−1
v (det av)| det av|−s+n+1

v α̂v,low-right(
tavβ

′av) · γ(ev ◦ 2β′)−n

× ξv(qv)rn|qv|rnsv

∑
σ∈Sym(n,Z/q2r

v )

f
αv,up-left

G̃

(
s, ξvλ̃

−1
2β′,v

)(
g
(
1n σ
0 1n

) ( qrv1n 0

0 q−rv 1n

)
, 1
)

× ω2β′

(
g
(
1n σ
0 1n

) ( qrv1n 0

0 q−rv 1n

)
, 1
)
R(−2q−rv · β′av)α̂v,off-diag(x)

= ξ−1
v (det av)| det av|−s+n+1

v α̂v,low-right(
tavβ

′av) · γ(ev ◦ 2β′)−n

× ξv(qv)rn|qv|rn(s+n+1)
v U rG,v · S

(
g, x; f

αv,up-left

G̃

(
s, ξvλ̃

−1
2β′,v

)
, R(−q−rv · 2β′av)α̂v,off-diag

)
.

�

4.7. The place p. Like in the previous section, we work with a general “big cell” section fαv(s, ξ) ∈
IQH′ ,v(s, ξ) with αv,up-left = 1Sym(n,Zv).

Proposition 4.7.1. Suppose that αv,up-left = 1Sym(n,Zv). Then for av ∈ GL(n+ 1,Qv) and r � 0,

FJβ′,v
(
g,m(av), x,MQH′ (s, ξ)f

αv(s, ξ)
)

= ξv(det av)
−1|det av|−s+n+1

v α̂v,low-right(
tavβ

′av) · cv
(
s− n

2
, ξ, β′

)
· λ2β′,v(−1)n+1

× ξv(qv)rn|qv|rn(s+n+1)
v U rQG,v · S

(
g, x;MQ

G̃
(s, ξvλ̃2β′)f

αv,up-left

G̃
(s, ξvλ̃2β′,v), R(−q−rv · 2β′av)α̂v,off-diag

)
,
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where the factor cv
(
s− n

2 , ξ, β
′) is given as

(4.7.1)

cv

(
s− n

2
, ξ, β′

)
= γ(det 2β′, ev)

n

hQv(2β′)γQv(ev)
n2+2n

2 , n even

γQv(ev)
(n+1)2

2 · γv
(
s− n−1

2 , ξλ2β′
)
, n odd

× ξv(det 2β′)−1| det 2β′|−s+
n
2

v γv(s− n, ξ)−1

[n+1
2 ]∏
j=1

γv
(
2s− 2n− 1 + 2j, ξ2

)−1
.

Proof. First it is easy to check that for av ∈ GL(n+ 1,Qv),

FJβ′,v
(
g,m(av), x,MQH′ (s, ξ)f

αv(s, ξ)
)

= ξv(det av)| det av|s+1
v FJtavβ′av ,v

(
g,12n+2, x

ta−1
v ,MQH′ (s, ξ)f

αv(s, ξ)
)
,

so it suffices to prove the identity for av = 1n+1. Let(
A(g, x, τ, ς) B(g, x, τ, ς)
C(g, x, τ, ς) D(g, x, τ, ς)

)

=wQH′

(
12n+1 τ

0 12n+1

)
ιH′(12n, wQG′ )


1n 0 0 0
tx 1n+1 0 0
0 0 1n −x
0 0 0 1n+1

 ιH′

(
g,

(
1n+1 ς

0 1n+1

))
.

Then

FJβ′,v
(
g,12n+2, x,MQH′ (s, ξ)f

αv(s, ξ)
)

=

∫
Sym(n+1,Qv)

∫
Sym(2n+1,Qv)

fαv(s, ξ)

(
A(g, x, τ, ς) B(g, x, τ, ς)
C(g, x, τ, ς) D(g, x, τ, ς)

)
ev
(
−Trβ′ς

)
dτ dς

=

∫
Sym(n+1,Qv)

∫
Sym(2n+1,Qv)

ξv (C(g, x, τ, ς))−1 |C(g, x, τ, ς)|−(s+n+1)

× αv
(
C(g, x, τ, ς)−1D(g, x, τ, ς)

)
ev
(
−Trβ′ς

)
dτ dς.

Write g =

(
a b
c d

)
and τ =

n n+ 1( )
τ1 τ2 n
tτ2 τ4 n+ 1

. We have

C(g, x, τ, ς) =

(
a+ τ1c+ τ2

txa τ2
tτ2c+ τ4

txa τ4

)
=

(
1n τ2τ

−1
4

0 1n+1

)(
a+ τ ′1c 0

tτ2c τ4

)(
1n 0
txa 1n+1

)
,

D(g, x, τ, ς) =

(
b+ τ1d+ τ2

txb −τ1x+ τ2ς
tτ2d+ τ4

txb −tτ2x+ τ4ς − 1n+1

)
=

(
1n τ2τ

−1
4

0 1n+1

)(
b+ τ ′1d −τ ′1x+ τ2τ

−1
4

tτ2d+ τ4
txb −tτ2x+ τ4ς − 1n+1

)
,

with τ ′1 = τ1 − τ2τ
−1
4

tτ2. Direct computation shows

C(g, x, τ, ς)−1D(g, x, τ, ς) =

 (a+ τ ′1c)
−1(b+ τ ′1d) (a+ τ ′1c)

−1(−τ ′1x+ τ2τ
−1
4 )

t
(−τ ′1x+ τ2τ

−1
4 )

t
(a+ τ ′1c)

−1 − τ−1
4

tτ2c(a+ τ ′1c)
−1(−τ ′1x+ τ2τ

−1
4 )− τ−1

4 τ2x

+ ς − τ−1
4 − txa(a+ τ ′1c)

−1(−τ ′1x+ τ2τ
−1
4 )


=

 (a+ τ ′1c)
−1(b+ τ ′1d) τ ′2

tτ ′2
ς − τ−1

4 − txτ ′1x−
t
τ ′2

t
(a+ τ ′1c)cτ

′
2

− t
τ ′2

t
(a+ τ ′1c)x− tx(a+ τ ′1c)τ

′
2
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with τ ′2 = (a+ τ ′1c)
−1(−τ ′1x+ τ2τ

−1
4 ). By change of variable, we get

(4.7.2)
FJβ′,v

(
g,12n+2, x,MQH′ ,v(s, ξ)f

αv(s, ξ)
)

=

∫
Sym(n+1,Qv)

∫
Sym(2n+1,Qv)

ξ−1
v (det(τ4(a+ τ1c)))| det τ4|−s−1

v | det(a+ τ1c))|−sv αv

(
(a+ τ1c)

−1(b+ τ1d) τ2
tτ2 ς

)
× ev

(
−Trβ′(ς + τ−1

4 + txτ1x+ tτ2
t(a+ τ1c)cτ2 + tτ2

t(a+ τ1c)x+ tx(a+ τ1c)τ2)
)
dτ dς

Suppose αv =

(
αv,up-left αv,off-diag

tαv,off-diag αv,low-right

)
. Then

(4.7.3) FJβ′,v
(
g,12n+2, x,MQH′ ,v(s, ξ)f

αv(s, ξ)
)

= α̂v,low-right(β
′) · I1(s, ξ) · I2(s, ξv, αv).

with

I1(s, ξv, β
′) =

∫
Sym(n+1,Qv)

ξ−1
v (det τ4)|det τ4|−s−1

v ev(−Trβ′τ−1
4 ) dτ4,

I2(s, ξv, αv, β
′) =

∫
Sym(n,Qv)

ξ−1
v (det(a+ τ1c))| det(a+ τ1c)|−sv αv,up-left

(
(a+ τ1c)

−1(b+ τ1d)
)
ev(−Trβ′txτ1x)

×
∫
Mn,n+1(Qv)

αv,off-diag(τ2)ev
(
−Trβ′(tτ2

t(a+ τ1c)cτ2 + tτ2
t(a+ τ1c)x+ tx(a+ τ1c)τ2)

)
dτ2 dτ1

The proof of Proposition 4.7.1 reduces to computing I1(s, ξv, β
′) and I2(s, ξv, αv).

Proposition 4.7.2.

α̂v,low-right(β
′) · I1(s, ξv, β

′) = cv

(
s− n

2
, ξ, β′

)
· α̂v,low-right(β

′),

with the factor cv
(
s− n

2 , ξ, β
′) given by (4.7.1).

Proof. First observe that

Wβ′,v

(
12n+2,MQG′ ,v

(
s− n

2
, ξ
)
f
αv,low-right

G′,v

(
s− n

2
, ξ
))

=

∫
Sym(n+1,Qv)

∫
Sym(n+1,Qv)

f
αv,low-right

G′,v

(
s− n

2
, ξ
)(

wG′

(
1n+1 τ4

0 1n+1

)
wG′

(
1n+1 σ

0 1n+1

))
ev
(
−Trβ′σ

)
dτ4 dσ

=

∫
Sym(n+1,Qv)

∫
Sym(n+1,Qv)

ξ−1
v (det τ4)|det τ4|−s−1

v αv,low-right(σ − τ−1
4 )ev(−Trβ′σ) dτ4 dσ

=

∫
Sym(n+1,Qv)

ξ−1
v (det τ4)| det τ4|−s−1

v ev
(
−Trβ′τ−1

4

)
dτ4∫

Sym(n+1,Qv)
αv,low-right(σ − τ−1

4 )ev
(
−Trβ′(σ − τ−1

4 )
)
dσ

= α̂v,low-right(β
′) · I1(s, ξv, β

′).

On the other hand, by the functional equation for Wβ′,v [LR05, (14)], we have

Wβ′,v

(
12n+2,MQG′ ,v

(
s− n

2
, ξ
)
f
αv,low-right

G′,v

(
s− n

2
, ξ
))

= cv

(
s− n

2
, ξ, β′

)
·Wβ′,v

(
12n+2, f

αv,low-right

G′,v

(
s− n

2
, ξ
))

= cv

(
s− n

2
, ξ, β′

)
· α̂v,low-right(β

′).

The formulas for the cv(s, ξ, β
′) are given in [Swe95, Proposition 4.8]. �

44



Proposition 4.7.3. For r � 0,

I2(s, ξv, αv, β
′) =λ2β′,v(−1)n+1 · ξv(qv)rn|qv|rn(s+n+1)

v

× U rQG,v · S
(
g, x;MQ

G̃
(s, ξvλ̃2β′,v)f

αv,up-left

G̃
(s, ξvλ̃2β′,v), R(−q−rv · 2β′) α̂v,off-diag

)
Proof. We can write the interior integral of I2(s, ξv, αv, β

′) as∫
Mn,n+1(Qv)

αv,off-diag(τ2) ev
(
−Trβ′(tτ2

t(a+ τ1c)cτ2 + tτ2
t(a+ τ1c)x+ tx(a+ τ1c)τ2)

)
dτ2

= λ̃2β′,v(det(−a− τ1c), 1)−1|det(a+ τ1c)|−
n+1

2 γ(ev ◦ 2β′)n+1ω2β′′

((
0 −(a+τ1c)

t(a+τ1c)−1 −c

)
, 1
)
αv,off-diag(x).

Plugging it into the expression of I2(s, ξ, αv, β
′), we get

I2(s, ξ, αv, β
′) = γ(ev ◦ 2β′)n+1

∫
Sym(n,Qv)

λ̃2β′,v(det(−a− τ1c, 1))−1ξ−1
v (det(a+ τ1c))|det(a+ τ1c)|−(s+n+1

2
)

× αv,up-left

(
(a+ τ1c)

−1(b+ τ1d)
)
· ω2β′

((
1n −τ1
0 1n

) ( 0 −(a+τ1c)
t(a+τ1c)−1 −c

)
, 1
)
αv,off-diag(x) dτ1.

Then since(
1n −τ1

0 1n

)(
0 −(a+ τ1c)

t(a+ τ1c)
−1 −c

)
=

(
a b
c d

)(
1n −(a+ τ1c)

−1(b+ τ1d)
0 1n

)(
0 −1n
1n 0

)
,

we get

I2(s, ξ, αv, β
′) =λ2β′,v(−1)n+1

∫
Sym(n,Qv)

λ̃2β′,v(det(a+ τ1c), 1)−1ξ−1
v (det(a+ τ1c))| det(a+ τ1c)|−(s+n+1

2
)

× αv,up-left

(
(a+ τ1c)

−1(b+ τ1d)
)
· ω2β′

(
g
(

1n −(a+τ1c)−1(b+τ1d)
0 1n

)
, 1
)
R(2β′) α̂v,off-diag(x) dτ1.

By a similar manipulation as in Proposition 4.6.1 (recall that αv,up-left = 1Sym(n,Zv) is still assumed),
for r � 0 we get

I2(s, ξ, αv, β
′)

=λ2β′,v(−1)n+1ξv(qv)
−rn|qv|−rnsv

∑
σ∈Sym(n,Z/q2r

v )

∫
Sym(n,Qv)

f
αv,up-left

G̃

(
s, ξvλ̃2β′,v

)((
0 −1n
1n τ1

)
g
(
qrv1n q

−r
v 1nσ

0 q−rv

))
× ω2β′

(
g
(
qrv1n q−rv σ

0 q−rv 1n

)
, 1
)
R(−q−rv · 2β′) α̂v,off-diag(x) dτ1,

and the proposition follows. �

Finally, combining (4.7.3) with Propositions 4.7.2, 4.7.3 proves Proposition (4.7.1).
�

4.8. Summary. We summarize the computation in the last few sections on the non-degenerate
Fourier coefficients of the specializations of the family Eord on G × G′ constructed in Proposi-
tion 2.6.1.
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Theorem 4.8.1. Assume that tavβ
′av ∈ Sym(n+1,Zv)∗ and 2taβ′a ∈ GL(n+1,Zv) for all v - Np∞.

Eord(τ, κ)β′
(
·,m(af )g′z′

)
=

√
−1
−(3n−1)k

2−
n(n+1)

2 π(n+1)k

Γn+1(k)
ηχ(det af )−1| det af |kAf

∏
v|N

|det av|n+1
v

×
∏
v-p∞

ηvχv(det 2tavβ
′av)| det 2tavβ

′av|
−k+n+2

2
v

∏
v|Np

α̂τ,κ,v,low-right(
tavβ

′av) ·
(
Imz′

) k
2 e∞

(
Trβ′z′

)
×
(
ck,ηχ

∏
v|Np

UQG,v

)r
·
(
A(s, ηχ, 2β′)ESi

(
·, f

G̃,τ,κ
(−s)

)
θ2β′

(
·, φr2β′,a,τ,κ

))∣∣∣
s=n+1−k

.

Here

ck,ηχ = ηpχp(p)
n pn(k−2n−2)

∏
v|N

ηvχv(qv)
−n|qv|nkv ,

A(s, ηχ, 2β′) =
∏
v|N∞

(
γv(s− n, ηχ)

[n+1
2 ]∏
j=1

γv(2s− 2n− 1 + 2j, η2χ2)

) n∏
j=[n+1

2 ]

LNp∞(2s− 2n− 1 + 2j, η2χ2)

×

{
hQp(2β

′) n even

LNp∞
(
−s+ n+1

2 , η−1χ−1λ2β′
)
γp
(
s− n−1

2 , ηχλ2β′
)

n odd
.

The section f
G̃,τ,κ

(−s) ∈ IQG
(
−s, η−1χ−1λ̃−1

2β′

)
is the factorizable with local factors given as

f
G̃,τ,κ,v

(−s) =



fur
G̃,v

(−s, η−1χ−1λ̃−1
2β′), if v - Np∞,

f
k−n+1

2

G̃,∞
(−s, s̃gnk−

n+1
2 ), if v =∞,

f
ατ,κ,v,up-left

G̃,v
(−s, η−1χ−1λ̃−1

2β′), if v|N,
MQ

G̃
(s, ηχλ̃2β′) f

ατ,κ,v,up-left

G̃,v
(s, ηχλ̃2β′), if v = p,

,

and the Schwartz function φr2β′,av ,τ,κ ∈ S(Mn,n+1(A,C) for the theta series is the product of the

local ones given as

φr2β′,a,τ,κ,v =


R(ta−1

v )1Mn,n+1(Zv), if v - Np∞
G2β′,∞, if v =∞
R(−qrv · 2β′av) α̂τ,κ,v,off-diag, if v|N
R(−qrv · 2β′av) α̂τ,κ,v,off-diag, if v = p.

See (4.5.1) (resp. (4.6.2)) for the definition of the canonical archimedean section f
k−n+1

2

G̃,∞
(s, s̃gnk−

n+1
2 )

and the Gaussian function G2β′,∞ (resp. the “big cell” sections on G̃). The local operator UQG,v is
defined in (4.6.1).

4.9. Expressing FJβ′,v by using Siegel–Weil sections. Suppose that η is the quadratic char-
acter ηv = (·, dη)v for some dη ∈ Q×, and that the finite part χ (resp. the algebraic part k) of the

arithmetic κ is trivial (resp. has the parity (−1)k = sgn dη). Then inside the degenerate principal

series IQ
G̃
,v

(
k − n− 1, η−1λ̃−1

2β′

)
there are a special type of sections called the Siegel–Weil sections,

which come from the theta lift of the trivial representation on O(2β∗)(Qv) for a quadratic form 2β∗
of dimension 2k − n − 1 and determinant (−1)k(dη det 2β′)−1. They are sections inside the image
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of the map

(4.9.1)
S(Mn,2k−n−1(Qv),C) −→ IQ

G̃
,v(k − n− 1, λ̃2β∗)

φ 7−→
(
(g, ε) 7→ ω2β∗(g, ε) · φ (0)

)
.

We denote the image as R
G̃,v

(2β∗).

In this section, we discuss expressing FJβ′,v(g,m(av), x, fτ,κ,v) as

(4.9.2) ω( 2β′ 0
0 2β∗

)(g) · φβ′,β∗,τ,κ,v(x, 0)

with suitable β∗ and φβ′,β∗,τ,κ,v ∈ S(Mn,2k(Qv),C). We make a few remarks here:

(1) It is not always possible to express FJβ′,v(g,m(av), x, fτ,κ,v) in this way because the Siegel–
Weil sections attached to a single 2β∗ do not always span the degenerate principal series.

(2) The map (4.9.1) is not injective. In general the trivial representation is a quotient but not
necessarily a natural sub-representation of the Weil representation.

(3) One motivation for trying to express the FJβ′,v(g,m(av), x, fτ,κ,v) as (4.9.2) is because it
will be useful if one studies the Fourier coefficient via the seesaw diagram

(4.9.3)

theta series

S̃p(2n) ×
Siegel Eis series

S̃p(2n)

θ(π)

O
(

2β′ 0
0 2β∗

)

Sp(2n)

π

O(2β′)×O(2β∗)

triv

.

(4) Another motivation is that it helps deal with the cases excluded from Theorem 4.8.1, i.e.
vector weights at the archimedean place and the place v = 2 when n is even.

4.9.1. Assumptions. From now on, we only consider β′’s satisfying the following conditions:

• At v - 2Np∞, there exists av ∈ GL(n+ 1,Qv) such that
tavβ

′av ∈ Sym(n+ 1,Zv)∗ ∩GL(n+ 1,Zv).
• At the place v = 2, there exists, av ∈ GL(n+ 1,Qv) such that

2tavβ
′av =



(
0 1n+1

2

1n+1
2

0

)
, if n is odd, 0 1n

2
0

1n
2

0 0

0 0 2

 , if n is even.

• At v =∞, β′ is positive definite.

We also fix an av at each v - Np∞ appearing in the above conditions. (For almost all places we
can choose av = 1n+1.)

We assume that the arithmetic character κ, the quadratic character η = (·, dη), dη ∈ Q× and the
auxiliary quadratic form β∗ ∈ Sym(2k − n− 1,Q) satisfy

det 2β∗ = (−1)k(dη det 2β′)−1, 2β∗ > 0,

dη ∈ Z×v , εv(2β∗) = 1, for all v - 2Np∞, (−1)kdη ∈ (Q×2 )2, ε2(2β∗) = (−1)
[k−n2 ]([k−n2 ]−1)

2 ,

where εv(·) denotes the Hasse invariant of a quadratic form over Qv.
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4.9.2. The unramified places not dividing 2. From our assumption on β′ and β∗, the Weil represen-

tations of G̃(Qv) corresponding to 2β′ and 2β∗ both contain G(Zv)-fixed vectors, and it is easy to
see that we have

Proposition 4.9.1. For v - 2Np∞, suppose that β′, β∗, av, η, κ are given as in §4.9.1. Pick sv ∈
GL(2k − n− 1,Qv) such that tsvβ∗sv ∈ Sym(2k − n− 1,Zv)∗ ∩GL(2k − n− 1,Zv). Then

bH′,v (s, η) · FJβ′,v
(
g,m(av), x,MQH′ ,v(s, η)fτ,κ,v(s)

)∣∣
s=n+1−k

is given by Proposition 4.4.1 with ξ = η, s = n+ 1− k and

S
(
g, x; fur

G̃,v
(s, ηλ̃−1

2β′), R(ta−1
v )1Mn,n+1(Zv)

)∣∣∣
s=n+1−k

= ω( 2β′ 0
0 2β∗

)(g)R
(

ta−1
v 0

0 ts−1
v

)
· 1Mn,2k(Zv)(x, 0).

4.9.3. The place 2. The case when n is odd is the same as the previous subsection.

Proposition 4.9.2. Suppose that n is odd, v = 2 and β′, β∗, av, η, κ are given as in §4.9.1. Pick

s2 ∈ GL(2k − n − 1,Qv) such that 2ts2β∗s2 =

(
0 1k−n−1

2

1k−n−1
2

0

)
. Then the same formula in

Proposition 4.9.1 holds.

Now we look at the case when n is even. In this case, the Weil representation of G̃(Qv) associated

to 2β′ or 2β∗ does not contain unramified vector, but the one associated to

(
2β′ 0
0 2β∗

)
does.

Proposition 4.9.3. Suppose n that is even, v = 2 and β′, β∗, av, η, κ are given as in §4.9.1. Pick

s2 ∈ GL(2k−n− 1,Qv) such that 2ts2β∗s2 =

−2 0 0
0 0 1k−n

2

0 1k−n
2

0

. Put Υ2 =

(
1n

1 1
1 −1

12k−n−2

)
.

Then

bH′,2 (s, η) · FJβ′,2
(
g,m(av), x,MQH′ ,2(s, η)fτ,k,2(s)

)∣∣
s=n+1−k

= η2(det a2)| det a2|n+2−k · γv(s− n, η)−1

n
2∏
j=1

γv (2s− 2n− 1 + 2j, triv)−1
n∏

j=n
2

+1

Lv(2s− 2n− 1 + 2j, triv)

× ω( 2β′ 0
0 2β∗

)
,2

(g)R
(

Υ2

(
ta−1

2 0

0 ts−1
2

))
· 1Mn,2k(Z2)(x, 0)

Note that when n is even, FJβ′,2 is not a simple product of local sections for Siegel Eisenstein

series and theta series, and the Schwartz function R
(

Υ2

(
ta−1

2 0

0 ts−1
2

))
· 1Mn,2k(Z2) is not a simple

product of Schwartz functions on Mn,n+1(Z2) and Mn,2k−n−1(Z2).

4.9.4. Pluri-harmonic polynomials and holomorphic differential operators. Before discussing FJβ′,∞
evaluated at s = n + 1 − k for general weight t, we first introduce the notion of pluri-harmonic
polynomials and define a pluri-harmonic polynomial Pt,k on M2n+1,2k.

Let C[Mm,l] be the space of polynomials on m× l matrices. For 1 ≤ i, j ≤ m, define the operator
∆ij as

∆ijP (x) =
l∑

r=0

∂2

∂xir∂xjr
P (x), P (x) ∈ C[Mm,l].

As in [KV78], a polynomial in C[Mm,l] is called pluri-harmonic if it is annihilated by ∆ij for all
1 ≤ i, j ≤ m. The subspace of pluri-harmonic polynomials in C[Mm,l] is denoted as Hm,l. Pluri-
harmonic polynomials are introduced loc. cit to study the Weil representation of Sp(2m,R)×O(l,R)

48



when l is even. (In this section, by writing O(l,R) we mean the definite orthogonal group for the
quadratic form given by 1l.)

There is a natural embedding of C[Mm,l] into the space of Schwartz functions on Mm,l(R),

Im,l : C[Mm,l] ↪−→ S (Mm,l(R),C)

P 7−→
(
x 7→ P (x) · e∞

(√
−1

2
Trxtx

))
.

This embedding relates the action of ∆ij on the left hand side to the Lie algebra action of u−Sp(2m) ⊂
Lie Sp(2m) on the right hand side. More precisely,

Im,l (∆ijP ) = −4π
√
−1L−ij Im,l(P ), for all 1 ≤ i, j ≤ m and P ∈ C[Mm,l],

where

L−ij = J

(
0 0

Eij + Eji 0

)
J−1 ∈ u−Sp(2m), J =

1√
2

(
1m i1m
i1m 1m

)
.

Thus, pluri-harmonic polynomials correspond to vectors in the Weil representation killed by u−Sp(2m),

i.e. elements inside the lowest K∞-types of holomorphic discrete series of Sp(2m) appearing in the
Weil representation.

Specializing to our situation, we define the following two conditions on polynomials on M2n+1,2k.

((n, n+ 1)-ph) A polynomial P ∈ C[M2n+1,2k] is called pluri-harmonic with respect to Sp(2n)×
Sp(2n+ 1) ↪→ Sp(4n+ 2) if ∆ijP = 0 for all 1 ≤ i, j ≤ n or n+ 1 ≤ i, j ≤ 2n+ 1.

(O-inv)
A polynomial P ∈ C[M2n+1,2k] is called O-invariant if there exists a polynomial
QP ∈ C[Sym(2n+ 1)] such that P (x) = QP (xtx).

Proposition 4.9.4. For k ≥ n and a dominant weight t with t1 ≥ · · · ≥ tn ≥ k, there exists a
unique polynomial Pt,k ∈ C[M2n+1,2k] satisfying the conditions ((n, n+ 1)-ph), (O-inv) and
(4.9.4)

Pt,k(x) ≡
n−1∏
j=1

detj(2x1
tx2)tj−tj+1detn(2x1

tx2)tn−k mod (x1
tx1, x2

tx2)C[x], for x =

2k( )
x1 n
x2 n+ 1

,

where (x1
tx1, x2

tx2)C[x] denotes the ideal in C[M2n+1,2k] generated by entries of x1
tx1, x2

tx2.

We will see from the proof that the Schwartz function I2n+1,k(Pt,k) is the highest weight vector
inside the lowest K∞-type of the summand isomorphic to Dt �D(t,k) of the Weil representation of

Lie (Sp(2n,R)× Sp(2n+ 2,R)) on S(M2n+1,2k(R))O(2k,R).

Proof. Let µQH′ be the (2n + 1) × (2n + 1) matrix with the (i, j)-th entry being
(

0 Eij+Eji
0 0

)
. Its

entries constitute a basis of uQH′ , the Lie algebra of the unipotent radical of QH′ . Then

Q

(
µQH′

2π
√
−1

)
· e∞

(√
−1

2
Trxtx

)
= Q(xtx) e∞

(√
−1

2
Trxtx

)
, Q ∈ C[Sym(2n+ 1)].

Inside the Weil representation,

(4.9.5) U(LieH ′)(R) · e∞
(√
−1

2
Trxtx

)
= U(uQH′ )(R) · e∞

(√
−1

2
Trxtx

)
.
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Hence, I2n+1,2k induces a bijection between (4.9.5) and C[Sym(2n + 1)]. By [JV79, Proposition
2.2, Corollary 2.3], there is a multiplicity free decomposition

(4.9.6) (4.9.5)|(LieG×LieG′)(R)
∼=

⊕
a1≥···≥an≥0

Da1+k,...,an+k �Da1+k,...,an+k,k.

Therefore, there exists a polynomial Qt,k ∈ C[Sym(2n+ 1)] such that Qt,k(µQH′ ) · e∞
(√
−1
2 Trxtx

)
spans the highest weight space inside the lowest K∞-type of Dt�Dt,k. Moreover, from the discussion
in [Liu16, §3.4], after rescaling we have

Qt,k(µQH′ ) ≡
n−1∏
j=1

detj(µ̂
+
0 )tj−tj−1detn(µ̂+

0 )tn−k ≡
n−1∏
j=1

detj(µQH′ ,0)tj−tj−1detn(µQH′ ,0)tn−k

Define Pt,k ∈ C[M2n+1,k] by Pt,k(x) = Qt,k(x
tx). Then Pt,k satisfies the conditions ((n, n+ 1)-ph),

(O-inv) and (4.9.4). If there exists another P ′t,k satisfying ((n, n+ 1)-ph), (O-inv) and (4.9.4), then

the first two conditions imply that QP ′t,k(µH′) sends the Gaussian function to the space spanned by

lowest K∞-types (with respect to G(R)×G′(R)), and the condition (4.9.4) further implies that the
K∞-type is t � (t, k) and the weight is t, (t, k). By the multiplicity freeness of the decomposition
(4.9.6), we know that P ′t,k = Pt,k. �

4.9.5. The archimedean place. With the polynomials Pt,k ∈ C[M2n+1,2k] and Qt,k ∈ C[Sym(2n+1)]
as defined in Proposition 4.9.4, we express FJβ′,∞ evaluated at s = n+ 1− k for general weight t
as follows.

Proposition 4.9.5. Keep the setting of Proposition 4.5.1. For t1 ≥ · · · ≥ tn ≥ k ≥ n, let

Dt,k = Qt,k

(
µQH′

4π
√
−1

)
∈ U(LieH ′). Then

FJβ′,∞

(
g, g′z′ , x,MQH′ (s, sgnk)Dt,kf

k
∞(s, sgnk)

)∣∣∣
s=n+1−k

=

√
−1

(2−n)k
2(2n+1)k− 5n2

2
− 3n

2 π(n+1)(2n+1+k)

Γ2n+1(n+ 1)Γn+1 (2k)

× (det 2β′)k−
n+2

2 (det Imz′)
k
2 e∞(Trβ′z′) · ω( 2β′ 0

0 2·12k−n−1

)(g)φt,k,2β′,∞(z′; (x, 0)),

where the Schwartz function φt,k,2β′,∞(z; ·) on Mn,n+1(R)×Mn,2k−n−1(R) is defined as

φt,k,2β′,∞(z′; (x, y)) = Pt,k

(
x
√
β′ y√

Imz′
√
β′ 0

)
e∞
(√
−1Tr(xβ′tx+ yty)

)
.

Remark 4.9.6. The archimedean section Dt,kf
k
∞(s, sgnk) gives rise to holomorphic forms when

evaluated at s = n + 1 − k, and differs from the section fτ,κ,∞(s) we choose in §2.3.2. However,
after ordinary projection on G×G′, the corresponding Siegel modular forms are the same.

Proof. Let Ak =
√
−1

(2−n)k
2(2n+1)k− 5n2

2 −
3n
2 π(n+1)(2n+1+k)

Γ2n+1(n+1)Γn+1(2k) . By the computation in §4.5,

FJβ′,∞

(
h′, x, fk∞(s, sgnk)

)
= Ak det(2β′)k−

n+2
2 · ω( 2β′ 0

0 212k−n−1

)(h′)G( 2β′ 0
0 2 cot12k−n−1

)( x 0
1n+1 0

)
.

The Gaussian function here is defined as

G( 2β′ 0
0 2·12k−n−1

)(X) = e∞

(
Tr
√
−1X

(
β′ 0
0 12k−n−1

)
tX

)
, X ∈M2n+1,2k(R).
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Hence

FJβ′,∞

(
h′, x,Dt,kf

k
∞(s, sgnk)

)
=Ak det(2β′)k−

n+2
2 · ω( 2β′ 0

0 2·12k−n−1

)(h′)φt,k,2β′,∞

(
x 0

1n+1 0

)
,

φt,k,2β′,∞(X) =Qt,k

(
X

(
β′ 0
0 12k−n−1

)
tX

)
G( 2β′ 0

0 2·12k−n−1

)(X),

and the proposition follows. �

4.9.6. The places with “big cell” sections. The discussion in this subsection and the next is mainly
based on results in [KR92, Swe]. We consider FJβ′,v

(
g,m(av), x, f

αv(−s, η−1)
)∣∣
s=n+1−k for a

Schwartz function αv =

(
αv,up-left αv,off-diag

tαv,off-diag αv,low-right

)
on Sym(2n+1,Qv) with αv,up-left = 1Sym(n+1,Zv).

By Proposition 4.6.1, we need to examine when the “big cell” section f
1Sym(n,Zv)

G̃,v

(
k − n− 1, λ̃2β∗,v

)
belongs to the image of the map (4.9.1). First, when 2β∗ admits sufficiently large isotropic subspace,
we have the easy proposition below.

Proposition 4.9.7. Suppose v 6= 2, β′, β∗, av, η, κ are given as in §4.9.1, and αv,up-left = 1Sym(n+1,Zv).
If there exists sv ∈ GL(2k − n− 1,Qv) such that

2tsvβ∗sv =

n n 2k − 3n− 1( )
0 1n 0 n
1n 0 0 n
0 0 ∗ 2k − 3n− 1

∈ Sym(2k − n− 1,Zv),

then

FJβ′,v
(
g,m(av), x, f

αv(−s, η−1)
)∣∣
s=n+1−k

is given by the formula in Proposition 4.6.1 with ξ = η−1, s = k − n− 1 and

S
(
g, x; f

αv,up-left

G̃

(
s, η−1λ̃−1

2β′

)
, R(−q−rv · 2β′av)α̂v,off-diag

)∣∣∣
s=k−n−1

=ω( 2β′ 0
0 2β∗

)(g)R

(
−qrv · 2β′av 0

0 ts−1
v

)
·
(
α̂v,off-diag,1GL(n,Zv),1Mn,2k−n−1(Zv)

)
(x, 0)

The condition on 2β∗ in the above proposition is always satisfied if k ≥ 3n+5
2 , i.e. the size of 2β∗

is larger or equal to 2n + 4, which is exactly the range where the map (4.9.1) is surjective for all
2β∗ according to [KR92,Swe]. Also, it is obvious that the size of 2β∗ must be at least 2n in order
for the condition to be satisfied. Thus, when the condition is satisfied, the corresponding critical
point for L(s, π × η) is far from the center (unless n = 1).

When the condition on 2β∗ in Proposition 4.9.7 is not satisfied, the image of the map (4.9.1) for
a single 2β∗ is a proper subspace of the degenerate principal series, and in general does not contain
the “big cell” sections. Let 2β±∗ ∈ Sym(2k−n−1,Q) be a quadratic form of dimension 2k−n−1 and
determinant (−1)k(dη det 2β′)−1 with Hasse invariant (over Qv) equal to ±1. Denote by R(2β±∗ )
the image of the map (4.9.1) associated to 2β±∗ (if 2β−∗ does not exist then we set R(2β−∗ ) = 0).

Theorem 4.9.8 ( [KR92,Swe]). R(2β+
∗ )+R(2β−∗ ) = IQ

G̃
,v(k−n−1, λ̃2β+

∗
) if and only if k−n−1 ≥ 0.

It follows that when k ≥ n + 1 but the condition in Proposition 4.9.7 is not satisfied, one can
still express FJβ′,v

(
g,m(av), x, f

αv(−s, η−1)
)∣∣
s=n+1−k by using Siegel–Weil sections but one needs

to take a linear combination over 2β+
∗ and 2β−∗ .
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If k < n+ 1, then according to Theorem 4.9.8 one does not expect the “big cell” section to be a
Siegel–Weil section. (There are some reasons to think of “big cell” sections as unlikely to lie inside
a proper sub-representation.)

4.9.7. The places with intertwining operator applied to “big cell” sections.

Theorem 4.9.9 ( [KR92,Swe]). Let 2β+
∗ , 2β

−
∗ be as in Theorem 4.9.8. Then

R(2β+
∗ ) +R(2β−∗ ) = MQ

G̃

(
n+ 1− k, (λ̃2β+

∗
)−1
)
IQ

G̃
,v

(
n+ 1− k, (λ̃2β+

∗ ,v
)−1
)

if and only if 0 ≤ k ≤ n+ 1.

Therefore, when k < n+1, the “big cell” section f
1Sym(n,Zv)

G̃,v

(
k − n− 1, λ̃2β+

∗

)
is not a Siegel–Weil

section, but the section MQ
G̃

(
n+ 1− k, λ̃−1

2β+
∗

)
f
1Sym(n,Zv)

G̃,v

(
n+ 1− k, λ̃−1

2β+
∗

)
can be written as sum

of Siegel–Weil sections.
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