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Abstract. We introduce a sheaf-theoretic formulation of Shimura’s theory of nearly holomorphic
Siegel modular forms and differential operators. We use it to define and study nearly overconvergent
Siegel modular forms and their p-adic families.
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1. Introduction

Shimura developed his theory of nearly holomorphic forms in his study on the algebraicity of
special L-values and Klingen Eisenstein series [Shi76,Shi00]. With the goal of combining this useful
tool with Hida and Coleman–Mazur theories for p-adic families of modular forms to study special L-
values and Selmer groups by using p-adic congruences and deformations, Urban [Urb14] introduced
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a sheaf-theoretic formulation of Shimura’s theory in the GL(2)/Q case. Such a formulation enables
him to define and study some basic properties of nearly overconvergent modular forms.

In this article we generalize Urban’s work to Siegel modular forms. In the construction of
automorphic sheaves over Siegel varieties equipped with integrable connections, we take a different
approach from [Urb14] by using a canonical Q-torsor over the Siegel variety and (g,Q)-modules.
Here g is the Lie algebra of the algebraic group G = GSp(2n)/Z and Q is the standard Siegel
parabolic subgroup of G. Compared to G-representations, (g,Q)-modules are more adaptive for
p-adic deformations. Combining the ideas and techniques in [AIP15] with our sheaf-theoretic
formulation of nearly holomorphic Siegel modular forms and differential operators, we introduce
the space of nearly overconvergent Siegel modular forms and their p-adic families.

One of the main motivations for considering differential operators and nearly holomorphic forms
and their p-adic theory is for arithmetic applications of various integral representations of L-
functions or L-values, the algebraicity results on special L-values and Klingen Eisenstein series
by the doubling method [ShE97, Shi00, Har97, Har07], the construction of p-adic L-functions by
evaluating Eisenstein series at CM points [Kat78] and by Rankin-Selberg method [Hid88], and
the study of p-adic regulators of Heegner cycles by the Waldspurger formula [BDP13], just to
name a few. The results in this article are applied in [Liu15] to construct p-adic L-functions for
ordinary families on symplectic groups using the doubling method, generalizing [BS00]. The con-
struction of p-adic L-functions for unitary groups by the doubling method has also been carried
out in [EW16,EHLS16].

As we know, the algebraicity of an automorphic representation is mainly related with its archimedean
component. When utilizing integral representations to study special L-values, differential opera-
tors and nearly holomophic forms naturally show up in the analysis of archimedean zeta integrals.
Over the field of complex numbers, roughly speaking, cuspidal nearly holomorphic forms are au-
tomorphic forms inside cuspidal automorphic representations whose archimedean components are
isomorphic to holomorphic discrete series. The holomorphic forms are those whose archimedean
components belong to the lowest K∞-types of the holomorphic discrete series. The Maass–Shimura
differential operators correspond to the Lie algebra action on the archimedean components. The
theory of nearly holomorphic forms and differential operators aims to introduce nice algebraic or
even integral structure to the complex vector space of nearly holomorphic forms and to the action
of the Lie algebra, as well as provide explicit formulas for evaluating archimedean zeta integrals.
Besides Shimura, the differential operators and nearly holomorphic forms have also been studied
in [Har86], [Nap92], [Böc85], [Ibu99] and [PSS15] through different approaches.

In Shiumra’s theory of nearly holomorphic Siegel modular forms, there are three main ingredients.
Let hn be the genus n Siegel upper half space, Γ ⊂ Sp(2n,Z) be a congruence subgroup, and (ρ,Wρ)
be an algebraic GL(n)-representation of finite rank. Shimura defined

(1) the space N r
ρ (hn,Γ) of Wρ(C)-valued nearly holomorphic forms on hn of level Γ and (non-

holomorphy) degree r, together with its algebraic structure defined by using CM points,
(2) the Maass–Shimura differential operator Dhn,ρ : N r

ρ (hn,Γ) → N r+1
ρ⊗τ (hn,Γ), where τ is the

symmetric square of the standard representation of GL(n),
(3) a holomorphic projection N r

κ(hn,Γ)→ N0
κ(hn,Γ) for a generic weight κ.

Both the differential operators and the holomorphic projection preserve the algebraic structure
in (1), and they play important roles in choosing desirable archimedean sections in arithmetic
applications of various integral representations of L-functions and L-values.

This paper consists of two parts. In the first part, we construct the automorphic quasi-coherent
sheaf Vρ over a smooth toroidal compactification of the Siegel modular variety Y of level Γ defined
over Z[1/N ] for some positive integer N . This automorphic sheaf Vρ has an increasing filtration Vrρ
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and we construct a connection

(1.0.1) Vrρ −→ Vr+1
ρ ⊗OX Ω1

X(log(X − Y )).

Composing this connection with the Kodaira–Spencer isomorphism, we get the differential operator
Dρ : Vrρ → Vr+1

ρ⊗τ . We show in §2.5 that Vrρ together with Dρ recovers the first two ingredients in
Shimura’s theory, and there is the commutative diagram

(1.0.2) H0(X◦C,Vrρ)
∼ //

Dρ
��

N r
ρ (hn,Γ)

Dhn,ρ

��

� � // C∞(Γ\G◦(R))

q+-action

��

H0(X◦C,V
r+1
ρ⊗τ )

∼ // N r+1
ρ⊗τ (hn,Γ) �

�
// C∞(Γ\G◦(R)),

where X◦C is a connected component of the base change of X to C, G◦ = Sp(2n), and q+ =(
In iIn
iIn In

)
(Lie Q)C

(
In iIn
iIn In

)−1

.

Automorphic sheaves are defined over X using algebraic Q-representations free of finite rank and
the canonical Q-torsor T×H = IsomX

(
O2n
X ,H1

dR(A/Y )can
)
, where A → Y is the principally polarized

universal abelian scheme, and the isomorphisms are required to respect the Hodge filtration and pre-
serve the symplectic pairing of H1

dR(A/Y )can up to similitude. Given an algebraic Q-representation

V , the associated automorphic sheaf is defined as the contracted product V = T×H ×Q V .
If one wants to consider automorphic sheaves further equipped with integrable connections that

induce Hecke equivariant maps on global sections, we show in §2.2 that the right objects to consider
are (g,Q)-modules. It is the g-module structure combined with the Gauss–Manin connection on
H1
dR(A/Y )can that gives rise to the desired connection. Then in order to construct the sheaves of

nearly holomorphic Siegel modular forms with differential operators, it remains to select suitable
(g,Q)-modules. In §2.3 we define, for each algebraic GL(n)-representation ρ locally free of finite
rank, a (g,Q)-module Vρ. As a Q-module Vρ has an increasing filtration V r

ρ , r ≥ 0 such that

g · V r
ρ ⊂ V r+1

ρ . We define the sheaf of nearly holomorphic forms of weight ρ and (non-holomorphy)

degree r as Vrρ = T×H ×Q V r
ρ . The general construction in §2.2 equips Vρ with the connection

(1.0.1). The construction of holomorphic projections is postponed to §3.7 where it is done in the
more general setting of nearly overconvergent families.

In the second part, combining the ideas and techniques in [AIP15] with our construction in the
first part, we define and study some basic properties of the space of nearly overconvergent forms
and p-adic families of nearly overconvergent forms. When replacing dominant algebraic weights by
general p-adic anaylitic weights, it is convenient to construct the corresponding representations of
the Lie algebra, which can be viewed as a p-adic deformation of the Lie algebra representations at-
tached to dominant algebraic weights. However, these Lie algebra representations do not integrate
to representations of the algebraic group, but only integrate to certain p-adic analytic representa-
tions of some rigid analytic subgroup of the rigid analytification of the algebraic group. In order to
construct sheaves of p-adic automorphic forms with p-adic analytic weights, one natural approach is
to modify the torsor of the algebraic group to a p-adic analytic torsor of its rigid analytic subgroup,
and form the contracted product of the p-adic analytic torsor with the representation of the rigid
analytic subgroup.

In [AIP15], for v, w ≥ 0 within a certain range, over the strict neighborhood XIw(v) of the
ordinary locus of the compactifed Iwahori-level Siegel variety XIw, an Iwahori-like space T ×F ,w(v)

inside the GL(n)an-torsor T×ω,an = IsomX (OnX , ω(A/Y )can)an is constructed by using canonical

subgroups. Here the subscript“an” means the rigid analytification. This T ×F ,w(v) can be viewed as

a torsor of a rigid analytic subgroup Iw inside GL(n)rig, the rigid analytic fibre of the completion of
GL(n) along its special fibre. For a w-analytic weight κ ∈ Homcont

(
(Z×p )n,C×p

)
, there corresponds a
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natural representation Wκ,w of Lie(GL(n)) which integrates to a representation of Iw. The Banach

sheaf ω†κ,w of overconvergent modular forms of the w-analytic weight κ over XIw(v) is obtained as
the contracted product of T ×F ,w(v) and Wκ,w.

Taking ρ to be the trivial representation and r = 1, the construction in §2 gives an automorphic
coherent sheaf J = V1

triv. The quick way to define the Banach sheaf of w-analytic weight κ degree r

nearly overconvergent forms is to set V†,rκ,w := ω†κ,w⊗Symr J (this is similar to the way of definingHrk,
HrU in [Urb14]). For the convenience of defining differential operators and holomorphic projections

as in §3.6, 3.7, we need a contracted product interpretation for V†,rκ,w. Associated to the p-adic
analytic weight κ, generalizing the previous Vρ, there is a natural g-module Vκ,w which integrates
to a (g,Qw)-module, where Qw ⊂ Qan is the rigid analytic group defined as the preimage of Iw of
the projection Qan → GL(n)an. We define the Qw-torsor T ×H,w(v) as the subspace of T×H,an whose

image under the projection T×H,an → T×ω,an lies inside T ×ω,w(v). Then T ×H,w(v) together with Vκ,w

gives the desired contracted product interpretation for the Banach sheaf V†,rκ,w.
Now let U be an affinoid subdomain of the weight space whose Cp-points are all w-analytic. The

construction above works for the universal weight as well and produces the Banach sheaf V†,rκun,w over

XIw(v)×U . In §3.5 we show that theA(U)-Banach moduleN †,rU ,w,v,cusp := H0
(
XIw(v)× U ,V†,rκun,w(−C)

)
is projective. §3.9 is devoted to defining the Up-operators and showing the compactness of the op-

erator Up = res ◦ Up,n ◦ · · · ◦ Up,1 acting on N †,rU ,w,v,cusp. Then the Coleman–Riesz–Serre spectral

theory is applied to give the slope decomposition of N †,∞U ,w,v,cusp :=
⋃
r≥0N

†,r
U ,w,v,cusp in §3.11.

The p-adic theory of differential operators and nearly holomorphic forms has also been considered
in [Eis12,EFMV] (unitary case) and [Ich15] (simplectic case). They define nearly holomorphic forms

as global sections of
(
H1
dR(A/Y )can

)⊗m
for some positive integer m, and the differential operators

are then the connections induced from the Gauss–Manin connection on H1
dR(A/Y )can. In order to

consider p-adic deformations, their method relies on unit root splitting of H1
dR(A/Y )can over the

ordinary locus and the q-expansion or Serre–Tate expansion principle, and does not extend to nearly
overconvergent forms. We believe that our method here works also for Shimura varieties for unitary
groups. In [HX14], a construction of the Gauss–Manin connections for nearly overconvergent forms
is given in the GL(2)/Q case, where they consider the action of GL(1) (the Levi subgroup of the
Siegel parabolic of GL(2)) instead of that of Lie(GL(2)). Note that besides constructing differential
operators acting on nearly overconvergent forms of general p-adic analytic weight, there is another
problem of taking the differential operator to a p-adic analytic power. This is easy for p-adic forms
over the ordinary locus by using the q-expansion principle, but for nearly overconvergent forms
there seems no obvious approach. Recently this problem has been addressed for families of nearly
overconvergent modular forms in [AI17]. It is expected that some ideas there extend to our case of
nearly overconvergent Siegel modular forms.

Acknowledgement. I am very grateful to my advisor Eric Urban for his guidance and insightful
suggestions. I would also like to thank Michael Harris, Vincent Pilloni for their helpful advice, and
Adrian Iovita, Johan de Jong, Ellen Eischen, Kai-Wen Lan, Liang Xiao for useful conversations.

Notation. Let G be the rank n symplectic similitude group

GSp(2n)/Z =

{
g ∈ GL(2n)/Z : tg

(
0 In
−In 0

)
g = ν(g)

(
0 In
−In 0

)}
with the multiplier character ν : G → Gm. Denote by Q the standard Siegel parabolic subgroup
of G consisting of matrices whose lower left n × n block is 0 and T the maximal torus consisting
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of diagonal matrices. Write Q = MnU with M and U as its Levi subgroup and unipotent

radical. Fix the embedding GL(n) ↪→ M sending a ∈ GL(n) to

(
a 0
0 ta−1

)
. Let G◦ = Sp(2n)/Z

be the kernel of the multiplier character ν with maximal torus T◦ ∼= Gn
m and standard Siegel

parabolic Q◦ = M◦nU. The embedding GL(n) ↪→ M gives an isomorphism of GL(n) onto
M◦. The maximal torus T◦ of Sp(2n) can also be regarded as a maximal torus of M◦ ∼= GL(n).
We use B to denote the Borel subgroup of M◦ corresponding to the subgroup of upper triangular
matrices in GL(n) and N to denote the unipotent radical of B. For an algebra E, let RepE Q (resp.
RepE,f GL(n)) stand for the category of algebraic representations of the group Q (resp. GL(n)) base
changed to E on locally free E-modules (resp. locally free E-modules of finite rank). The projection

Q → GL(n) mapping

(
a b
0 d

)
∈ Q to a ∈ GL(n) defines a functor RepE,f GL(n) → RepE Q and

we regard every object in RepE,f GL(n) also as a Q-representation. The congruence subgroup
{γ ∈ G◦(Z) : γ ≡ I2n mod N} of G◦(Z) is denoted by Γ(N).

2. Nearly holomorphic forms

2.1. Automorphic sheaves over Siegel varieties. Let Y = YG,Γ(N) be the Siegel variety
parametrizing principally polarized abelian schemes of relative dimension n with principal level
N structure with N ≥ 3 defined over Z[1/N ]. Over it there is the universal abelian scheme
p : A → Y . Take a smooth toroidal compactification X of Y with boundary C = X − Y . Then
p : A → Y extends to a semi-abelian scheme p : G → X. Let ω(G/X) be the pullback of
Ω1
G/X along the zero section of p. According to [Lan12, Proposition 6.9], the locally free sheaf

H1
dR(A/Y ) = R1p∗

(
Ω•A/Y

)
has a canonical extension H1

dR(A/Y )can ∼= H1
log -dR(G/X) which is a

locally free subsheaf of (Y → X)∗H1
dR(A/Y ). This canonical extension H1

dR(A/Y )can is endowed
with a symplectic pairing under which ω(G/X) is maximally isotropic. The Hodge filtration of
H1
dR(A/Y ) also extends to

0 // ω(G/X) // H1
dR(A/Y )can // Lie(tG/X) // 0

where tG/X is the dual semi-abelian scheme of G/X.
There is a standard way to construct, from a representation in RepZ Q, a quasi-coherent sheaf

over X whose global sections are equipped with Hecke actions. The free sheaf O2n
X can be equipped

with a two-step filtration with the first n copies as the subsheaf, and a symplectic pairing using the

matrix

(
0 In
−In 0

)
. Define the right Q-torsor over X

T×H = IsomX

(
O2n
X ,H1

dR(A/Y )can
)

to be the isomorphisms respecting the filtrations and the symplectic pairings up to similitude. The
right Q-action is given as

(b · φ) (v) = (φ ◦ b) (v) = φ(bv)

for any open subscheme U = Spec(R) ⊂ X, φ ∈ T×H (U), v ∈ R2n and b ∈ Q(R).
With this right Q-torsor, by forming contracted product, one can define the functor

E : RepZ Q −→ QCoh(X)

V 7−→ T×H ×
Q V

from the category of algebraic representations of Q on locally free Z-modules to that of quasi-
coherent sheaves over X. Let us give a more detailed description of E(V ) in local affine charts. Let
U = Spec(R) be an affine open subscheme of X such that H1

dR(A/Y )can(U) is free over R. We

identify elements in T×H (U) with ordered basis α = (α1, . . . , α2n) of H1
dR(A/Y )can(U), which gives
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rise to isomorphisms between R2n and H1
dR(A/Y )can(U) preserving both the Hodge filtration and

symplectic paring up to similitude. Then E(V )(U) is the set of maps v : T×H (U)→ V ⊗R such that

v(αg) = g−1 · v(α) for all g ∈ Q(R) and α ∈ T×H (U).
Moreover for all V ∈ RepZ Q the global sections of the associated quasi-coherent sheaf E(V ) come

with a Hecke action constructed via algebraic correspondence (cf. [FC90, §VII.3]). Such an E(V ) to-
gether with the Hecke action on its global sections is often called an automorphic sheaf. Morphisms
between algebraic Q-representations induce Hecke equivariant morphisms between global sections
of the corresponding quasi-coherent sheaves. The functor E is exact and faithful [Lan12, Definition
6.13]. Certainly this functor is not fully faithful (see Example 2.4.5). Let Vst be the standard
representation of G restricted to Q and Wst be the standard representation of GL(n) regarded
as a Q-representation. Then immediately from the definition we see E(Vst) ∼= H1

dR(A/Y )can and
E(Wst) ∼= ω(G/X).

The multiplier character ν : G → Gm can be seen as an algebraic representation of Q and we
denote its corresponding invertible sheaf over X by E(ν). As an invertible sheaf E(ν) is isomorphic
to the trivial structure sheaf OX . However the Hecke action differs by a Tate twist. For V ∈ RepZ Q
we define E(V )(i) to be E(V ⊗ νi) = E(V )⊗ E(ν)i.

Remark 2.1.1. The Hecke actions are only defined on global sections not on the quasi-coherent
sheaves. However in the following for simplicity we say a quasi-coherent sheaf with Hecke actions to
mean that Hecke operators act on its global sections, and a Hecke equivariant morphism between
quasi-coherent sheaves to mean that the induced map on global sections is Hecke equivariant. Also
by an isomorphism between two automorphic sheaves we mean a Hecke equivariant one unless
otherwise stated.

2.2. (g,Q)-modules and Gauss–Manin connection. Let g = Lie G, q = Lie Q be the Lie
algebras of G and its Siegel parobolic Q.

Definition 2.2.1. Let E be an algebra. A (g,Q)-module V over E is an algebraic representation
of Q and g base changed to E on locally free E-modules, such that the action of q ⊂ g on V is the
one induced from that of Q and for any g ∈ Q, X ∈ g and v ∈ V ,

g ·X · g−1 · v =
(

Ad(g)X
)
· v.

We denote the category of (g,Q)-modules over E by RepE(g,Q).

It is mentioned on [FC90, p.223] that G(C)-equivariant quasi-coherent D-modules over the com-
pact dual D∨ = G(C)/Q(C) correspond to (g,Q)-modules. We show below that for an object
V ∈ RepZ(g,Q), we can equip with its associated automorphic sheaf E(V ) an integrable connection
using the g-module structure on V . If a (g,Q)-module is of finite rank, then it comes from an
algebraic representation of G. However, the (g,Q)-module we will define in the next section is not
of finite rank, but contains sub-(g,Q)-modules of finite rank. Using those (g,Q)-modules makes
the theory parallel Shimura’s theory very well and gives nice formulas for the differential operators.
More importantly, the (g,Q)-module structure compared to G-representation is more convenient
for doing p-adic theory.

For the locally free sheaf H1
dR(A/Y ) = R1p∗

(
Ω•A/Y

)
over Y , a canonical integrable connection

called the Gauss–Manin connection can be constructed [KO68]. We record the following result on
the extension of the Gauss–Manin connection.

Theorem 2.2.2. ( [Lan12, Proposition 6.9]) The Gauss–Manin connection ∇ : H1
dR(A/Y ) −→

H1
dR(A/Y )⊗ Ω1

Y extends to an integrable connection with log poles along the boundary

∇ : H1
dR(A/Y )can −→ H1

dR(A/Y )can ⊗ Ω1
X(logC),

satisfying Griffith transversality and compatible with the symplectic pairing on H1
dR(A/Y )can.
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Let U , α be as in our description of the contracted product defining E(V ). Given D ∈ TX(U) =
DerZ[1/N ](R,R), a section of the tangent bundle of X over U , by Theorem 2.2.2 there exists
X(D,α) ∈ g(R) (in fact g(Frac(R)) with logarithm poles along the boundary if U intersects with
the boundary) such that

(2.2.1) ∇(D)(α) = α ·X(D,α).

For v ∈ E(V )(U) we define the operator ∇E(V )(D) acting on it as

(2.2.2)
(
∇E(V )(D)(v)

)
(α) := Dv(α) +X(D,α) · v(α).

Here D acts on v(α) ∈ V ⊗R through the action of DerZ[1/N ](R,R) on R, i.e. by coefficients. The
action of X(D,α) on v(α) is the action of the Lie algebra g on V .

Proposition 2.2.3. The above defined ∇E(V )(D)(v) belongs to E(V )(U) and the formula (2.2.2)
on local sections patches together to an integrable connection with log poles along the boundary

∇E(V ) : E(V ) −→ E(V )⊗ Ω1
X(logC).

Proof. What we need to show is that for any g ∈ Q(R)

(2.2.3)
(
∇E(V )(D)(v)

)
(α · g) = g−1 ·

(
∇E(V )(D)(v)

)
(α).

The Gauss–Manin connection ∇ satisfies that

∇(D)(α · g) = ∇(D)(α) · g + α ·Dg
= (α · g) · (g−1X(D,α)g + g−1Dg)

= (α · g) · (Ad(g−1)X(D,α) + g−1Dg)

i.e.

X(D,α · g) = Ad(g−1)X(D,α) + g−1Dg.

We compute the left hand side of (2.2.3) by definition,

LHS = D · v(α · g) +X(D,α · g) · v(α · g)

= D
(
g−1 · v(α)

)
+
(
Ad(g−1)X(D,α) + g−1Dg

)
· v(α · g)

=
(
(Dg−1)g

)
·
(
g−1 · v(α)

)
+ g−1 ·

(
Dv(α)

)
+
(

Ad(g−1)X(D,α) + g−1Dg
)
·
(
g−1 · v(α)

)
= −

(
g−1Dg

)
·
(
g−1 · v(α)

)
+ g−1 ·

(
Dv(α)

)
+
(
g−1 ·X(D,α) · g

)
·
(
g−1 · v(α)

)
+
(
g−1Dg

)
·
(
g−1 · v(α)

)
= g−1 ·

(
Dv(α) +X(D,α) · v(α)

)
,

which equals to the right hand side. The compatibility of the action of g and Q is used for the
fourth equality. The integrability of the Gauss–Manin connection implies that for D1, D2 ∈ TX(U)

X([D1, D2], α) = D1X(D2, α)−D2X(D1, α) +X(D1, α)X(D2, α)−X(D2, α)X(D1, α).

Also,

∇E(V )(D1)∇E(V )(D2) = D1D2v(α) + (D1X(D2, α)) · v(α) +X(D2, α) ·D1v(α)

+X(D1, α) ·D2v(α) +X(D1, α) ·X(D2, α) · v(α),

∇E(V )(D2)∇E(V )(D1) = D2D1v(α) + (D2X(D1, α)) · v(α) +X(D1, α) ·D2v(α)

+X(D2, α) ·D1v(α) +X(D2, α) ·X(D1, α) · v(α).
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Thus (
∇E(V )(D1)∇E(V )(D2)−∇E(V )(D2)∇E(V )(D1)

)
(α)

= [D1, D2]v(α) + (D1X(D2, α)−D2X(D1, α) + [X(D1, α), X(D2, α)]) · v(α)

=[D1, D2]v(α) +X([D1, D2], α) · v(α) = ∇E(V )([D1, D2]),

i.e. the connection ∇E(V ) is integrable. �

Remark 2.2.4. If the (g,Q)-module V can be constructed from the standard representation Vst

of G by taking tensor products, symmetric powers and wedge products, then applying the same
operations to H1

dR(A/Y )can = E(Vst) we get the locally free sheaf E(V ) attached to V , so the
Gauss–Manin connection on H1

dR(A/Y )can immediately induces a connection on E(V ). This is the
approach adopted in by E. Eischen in [Eis12]. The point of our construction here is that V does
not need to be a representation of G. The construction works for all (g,Q)-modules and therefore
can be easily adapted to deal with p-adic analytic weights and the universal weight (see §3.2, 3.4,
3.6). There is another construction for the connection ∇E(V ) in [Til11, §3.2] using Grothendieck’s
sheaves of differentials when V is a finite dimensional G-representation. That approach may be
modified to deal with the non-algebraic weight except that there might be some issue with taking
duality when infinite dimensional representations are involved.

2.3. The (g,Q)-module Vκ. Now in order to use the constructions in §2.1 and §2.2 to formulate
Shimura’s theory of nearly holomorphic forms in a sheaf-theoretic context, what we need is to define
a suitable (g,Q)-module for a given algebraic representation of GL(n).

Let (ρ,Wρ) ∈ RepZ,f GL(n) be an algebraic representation of GL(n) locally free of finite rank.
We define the (g,Q)-module Vρ as follows. For any algebra R, set

Vρ(R) := Wρ(R)⊗R R[Y ] = Wρ(R)⊗R R[Yij ]1≤i≤j≤n

where Y = (Yij)1≤i,j≤n is the symmetric n × n matrix with the indeterminate Yij = Yji in the

(i, j) entry. Elements in Vρ(R) can be regarded as polynomials in the n(n+1)
2 variables Yij with

coefficients in Wρ(R). Define the Q-action on Vρ by

(2.3.1) (g · P )(Y ) = a · P (a−1b+ a−1 Y d)

for g =

(
a b
0 d

)
∈ Q(R) and P (Y ) ∈ Vρ(R). In order to describe the g-action on Vρ, we first pick

the following basis of g

η0 = −
∑

1≤i≤n
Ei+n,i+n, ηij = Eij − Ej+n,i+n, 1 ≤ i, j ≤ n,

µ+
ii = Ei,i+n, µ−ii = Ei+n,i, 1 ≤ i ≤ n,
µ+
ij = Ei,j+n + Ej,i+n, µ−ij = Ei+n,j + Ej+n,i, 1 ≤ i < j ≤ n,

where Eij is the 2n× 2n matrix with 1 in the (i, j) entry and 0 elsewhere. Let q, m, u and u− be
the Lie algebras of Q, M, U and the opposite unipotent U−. For the q-action on Vρ we simply
take the one induced from the Q-action defined above. We make u− act by the formulas
(2.3.2)

(µ−ij · P )(Y ) =
∑

1≤k≤n
(Ykiεkj + Ykjεki) · P (Y )−

∑
1≤k≤l≤n

(YkiYjl + YkjYil)
∂

∂Ykl
P (Y ), i 6= j,

(µ−ii · P )(Y ) =
∑

1≤k≤n
Ykiεki · P (Y )−

∑
1≤k≤l≤n

YkiYil
∂

∂Ykl
P (Y ).
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where εij ∈ gl(n) is the n × n matrix with 1 in the (i, j) entry and 0 elsewhere, and it acts via
the gl(n)-action on the coefficient of P (Y ). It remains to show the compatibility of such defined
actions of Q and u−. This can be done by direct computation using the formulas. There is also a
more conceptual proof. To describe it we construct a representation of the group

IG(Zp) =

{(
a b
c d

)
∈ G(Zp)

∣∣∣∣ c ≡ 0 mod p

}
.

Let Q−(Zp) be the subgroup of IG(Zp) whose elements have 0 as the right upper n× n corner. we
make it act on Wρ(Qp) through its Levi part. Equip Wρ(Qp) with a p-adic norm by choosing a
basis of Wρ(Qp), and since it is finite dimensional all norms defined in this way are equivalent. We

consider the p-adic analytic induction Ind
IG(Zp)

Q−(Zp)
Wρ(Qp). Thanks to the Iwahori decomposition we

know

Ind
IG(Zp)

Q−(Zp)
Wρ(Qp) = Wρ(Qp) 〈Yij〉1≤i<j≤n = Wρ(Qp) 〈Y 〉 ,

with g ∈ IG(Zp) acting on P (Y ) ∈Wρ(Qp) 〈Y 〉 by

(2.3.3) (g · P )(Y ) = (a+ Y c) · P
(
(a+ Y c)−1(b+ Y d)

)
.

Here Wρ(Qp) 〈Y 〉 is the space of strictly convergent power series in Y (i.e. convergent on the closed
unit ball). Then the formulas (2.3.1) and (2.3.2) can be deduced from (2.3.3), and the compatibility
of the actions of Q and u− on Vρ follows.

Remark 2.3.1. One can check the formulas (2.3.1) (2.3.2) actually agree with the formulas
(2.11)(2.12) given in [JV79], so as g(C)-modules, the Vρ(C) defined here should agree with the

Of
(
G◦(R),KG◦(R),Wρ(C)

)
defined there, where KG◦(R)

∼= U(n,R) is the maximal compact sub-
group of G◦(R).

As a Q-representation, Vρ comes with an increasing filtration

(2.3.4) Filr Vρ = V r
ρ = Wρ[Y ]≤r,

where the subscript ≤ r means polynomials in Y of total degree less or equal to r. Filr Vρ can
also be characterized as the sum of generalized η0-eigenspaces with eigenvalues ≥ −r [FC90, p.230].
The eigenvalues of η0 are also called F -weights there. Regarding the GL(n)-representation Wρ as
a Q-representation we have V 0

ρ = Wρ. It follows from the definition formulas that

(2.3.5) g · V r
ρ ⊂ V r+1

ρ .

Let Vtriv be the (g,Q)-module constructed as above by taking ρ to be the trivial representation.
Denote by J the Q-representation V 1

triv. We note here the following useful isomorphism of Q-
representations

(2.3.6) V r
ρ
∼= V 0

ρ ⊗ Symr J = Wρ ⊗ Symr J.

For a dominant weight κ = (k1, . . . , k2) ∈ X(T◦)+ of GL(n) with respect to B. Set κ′ =
(−kn, . . . ,−k1). We define Wκ to be the algebraic GL(n)-representation

(2.3.7)

{
f : GL(n)→ A1

∣∣∣∣ morphism of schemes satisfying f(gb) = κ′(b)f(g)
for all g ∈ GL(n) and b ∈ B

}
with GL(n) acting by left inverse translation. Putting ρ = κ we get the (g,Q)-module Vκ and
Q-representations V r

κ , r ≥ 0. Denote by τ the symmetric square of the standard representation
of GL(n). Let τ∨ be dual representation of τ . In the following most GL(n)-representations we
consider are tensor products of some κ with symmetric powers of τ and τ∨.
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Remark 2.3.2. We can twist Vρ by the i-th power of of the multiplier character ν and denote the
resulting (g,Q)-module by Vρ(i). Such a twist will change the F -weights by −i and corresponds to
a Tate twist [FC90, p.222].

2.4. The sheaf Vrκ of nearly holomorphic forms. Let κ be a dominant weight of GL(n). With
preparations in previous sections we give the following definitions.

Definition 2.4.1. The locally free sheaf over X of weight κ, (non-holomorphy) degree r nearly
holomorphic forms is defined to be Vrκ = E(V r

κ ).

When r = 0, we also use ωκ to denote V0
κ which is the sheaf of weight κ holomorphic forms.

More generally for ρ ∈ RepZ,f GL(n) we define the locally free sheaves Vρ = E(Vρ), Vrρ = E(V r
ρ ) and

denote V0
ρ by ωρ. The nearly holomorphic forms are defined to be global sections of the sheaf Vrκ.

Definition 2.4.2. Let R be a Z[1/N ]-algebra. The space of nearly holomorphic forms (resp. cusp-
idal nearly holomorphic forms) over R of weight κ, principal level N and (non-holomorphy) degree
r is defined to be N r

κ(Γ(N), R) = H0
(
X/R,Vrκ

)
(resp. N r

κ,cusp(Γ(N), R) = H0
(
X/R,Vrκ(−C)

)
).

There is the moduli interpretation à la Katz for nearly holomorphic forms. Away from the cusps,
a nearly holomorphic form f over R of weight κ, principal level N and degree r is a rule assign-
ing to every quadruple (A/S , λ, ψN , α) an element f(A/S , λ, ψN , α) inside V r

κ (S) = Wκ(S)[Y ]≤r,
where S is an R-algebra, (A/S , λ) is a principally polarized dimension n abelian scheme, ψN is

a principal level N structure and α is a basis of H1
dR(A/S) respecting the Hodge filtration and

symplectic pairing up to similitude. Taking into account the definition of Wκ (2.3.7), by evaluating
f(A/S , λ, ψN , α) ∈Wκ(S)[Y ]≤r at the identity, one may also formulate Katz’s interpretation for f
as follows. The nearly holomorphic form f is a rule assigning to each quadruple (A/S , λ, ψN , α) an

element f sc(A/S , λ, ψN , α) ∈ S[Y ]≤r such that for each g =

(
a b
0 d

)
∈ Q with a belonging to B,

we have f sc(A/S , λ, ψN , α ◦ g) = κ′(a)f sc(A/S , λ, ψN , α).
It follows directly from Prop. 2.2.3 and (2.3.5) that the sheaves Vρ,Vrρ are equipped with the

integrable connections

∇ρ : Vρ −→ Vρ ⊗ Ω1
X(logC)

and

(2.4.1) ∇ρ : Vrρ −→ Vr+1
ρ ⊗ Ω1

X(logC).

The global sections of the differential sheaf Ω1
X has a natural Hecke action and the extended

Kodaira–Spencer isomorphism [Lan12, Proposition 6.9] says that there is the Hecke-equivariant
isomorphism

Ω1
X(logC) ∼= Sym2(ω(G/X))(−1) ∼= ωτ (−1).

There is a canonical isomorphism of locally free sheaves t+ : Vr+1
ρ⊗τ (−1)→ Vr+1

ρ⊗τ which is not Hecke
equivariant but commutes with Hecke actions up to a twist by the multiplier character. Composing
∇ρ with it we get the differential operator

Dρ : Vrρ
∇ρ−→ Vr+1

ρ ⊗ Ω1
X(logC)

KS−→ Vr+1
ρ⊗τ (−1)

t+−→ Vr+1
ρ⊗τ .

It commutes with Hecke actions up to a multiplier twist (cf. §3.10, [Urb14, §2.5.2, Proposition
3.3.7]).

Put J = E(J) and J ∨ to be its dual. By (2.3.6) we have

Proposition 2.4.3. Vrρ ∼= ωρ ⊗ Symr J as locally free sheaves over X with Hecke actions.
10



Remark 2.4.4. In [Urb13, §4.1.2, 4.3.1] Urban defined a locally free sheaf J ′ to be the one making
the diagram below commutative with bottom row exact.

0 // ω(G/X)⊗ Lie(tG/X)∨ // H1
dR(A/Y )can ⊗ Lie(tG/X)∨ // Lie(tG/X)⊗ Lie(tG/X)∨ // 0

0 // Sym2
(
ω(G/X)

)
(−1) //

?�

OO

J ′ //
?�

OO

OX //
?�

OO

0

After that he defined the sheaf of weight κ degree r nearly holomorphic forms to be ωκ⊗Symr J ′∨.
One can show that the sheaf J ∨ satisfies Urban’s condition for defining J ′. Hence J ∼= J ′∨ and
our definition of sheaves of nearly holomorphic forms agrees with his.

We end this section with an example showing that the locally free sheaves associated to two
non-isomorphic Q-representations can be isomorphic as locally free sheaves without considering
the Hecke actions. It also illustrates that the sheaf J may have splitting that does not come from
the Q-representation and such a splitting can give rise to holomorphic but non-Hecke equivariant
differential operators.

Example 2.4.5. Take n = 1, G = GL(2) and G◦ = SL(2). We show that the sheaf J ∨ =(
V1

triv

)∨
and the first jet sheaf P1(OX) are isomorphic in QCoh(X) but their corresponding Q-

representations are not isomorphic. Let V1, V2 be the Q-representations giving rise to J ∨, P1(OX)
respectively. Write Y = Y11. Then V ∨1 = triv⊗Z[Y ]≤1 with basis {Y, 1}, and the action of Q◦ is
given by (

a b
0 a−1

)
· P (Y ) = P (a−1b+ a−2Y ),

or in the matrix form (
a b
0 a−1

)
7→
(
a−2 0
a−1b 1

)
.

Clearly V1 is indecomposable as a Q-representation. On the other hand by [FC90, Proposition VI
5.1], V ∨2

∼= U1 (g◦) ⊗U(q◦) triv as a Q◦-representation, where g◦ = Lie G◦ = sl(2) = Span{h, x, y}

and q◦ = Span{h, x} with h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
. As a basis of V ∨2 we can take

{y ⊗ 1, 1⊗ 1}, and we have

(
a b
0 a−1

)
act on them by(

a b
0 a−1

)
· (y ⊗ 1) = a−2y ⊗ 1,

(
a b
0 a−1

)
· (1⊗ 1) = 1⊗ 1,

or in the matrix form (
a b
0 a−1

)
7→
(
a−2 0
0 1

)
.

This is saying that the Q-action on V2 splits. Hence V1 and V2 are not isomorphic as Q-representations.
However as coherent sheaves J ∨ and P1(OX) are indeed isomorphic, because the nearly holo-

morphic form E2 splits J ∨ ∼= ω(G/X)⊗2⊗J as locally free sheaves [Urb14, Remark 2.3.7]. Actually
this non-Hecke equivariant splitting gives rise to Serre’s ∂ operator that acts on a modular form f
of weight k by

∂f = 12θf − kPf,
where θ = q ddq and P is the holomorphic funciton on the upper half plane defined as P (q) =

1 − 24
∑

m≥1 σ1(n)qn with q = e2πiz (cf. [Kat73b, §A1.4]). Serre’s ∂ operator is a holomorphic
differential operator but not Hecke equivariant.
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2.5. Equivalence to Shimura’s nearly holomorphic forms and differential operators.
First recall Shimura’s definition of nearly holomorphic forms and Maass–Shimura differential op-
erators. Let hn = {z ∈ Mn(C) : tz = z, Im z > 0} be the genus n Siegel upper half space and

Γ ⊂ G◦(Z) = Sp(2n,Z) be a congruence subgroup. As usual γ =

(
aγ bγ
cγ dγ

)
∈ G(R) acts on hn by

γz = (aγz + bγ) · (cγz + dγ)−1. Put s(z) = (z − z̄)−1 and µ(γ, z) = cγz + dγ .
For an algebraic representation (ρ,Wρ) of GL(n) free of finite rank, Shimura defines [Shi00,

§13.11] the space of Wρ(C)-valued nearly holomorphic forms of degree r, denoted by N r
ρ (hn,Γ), to

be the set consisting of functions f ∈ C∞(hn,Wρ(C)) satisfying

(i) f(z) can be written as a degree ≤ r polynomial in the components of s(z) with coefficients
being holomorphic maps from hn to Wρ(C), and

(ii) f transforms under γ ∈ Γ by f(γz) = ρ(µ(γ, z))f(z).

When n = 1 the function f is also required to satisfy the cusp condition, i.e. for every γ ∈ SL(2,Z)
there exists ain ∈ C and M ∈ N such that

ρ(µ(γ, z))−1f(γz) =

r∑
i=0

(πIm z)−i
∞∑
n=0

aine
2πiz/M .

The Maass–Shimura differential operator Dhn,ρ is defined as [Shi00, §12.9]

(2.5.1)
Dhn,ρ : N r

ρ (hn,Γ) −→ N r+1
ρ⊗τ (hn,Γ)

f 7−→ ρ(s)
(
dz(ρ(s−1)f)

)
.

Now we show that N r
ρ (hn,Γ), together with the Maass–Shimura differential operator Dhn,ρ, is

nothing but the global sections over Γ\hn of the sheaf Vrρ equipped with the differential operator Dρ

defined in the previous sections. Let Y ◦C be a connected component of Y base changed to C. Then
Y ◦C
∼= Γ(N)\hn as complex manifolds and the universal abelian variety p : AC → Y ◦C is isomorphic

to p : Γ(N)\Cn× hn/Z2n → Γ(N)\hn. Here (m1,m2) ∈ Z2n and γ ∈ Γ(N) act on (w, z) ∈ Cn× hn
by

(w, z) · (m1,m2) = (w +m1z +m2, z),

γ · (w, z) = (wµ(γ, z)−1, γz).

Let q : hn → Γ(N)\hn be the quotient map and Ahn = Cn×hn/Z2n → hn be the pullback of AC via
q. For each z = (zij) ∈ hn the fibre Ahn,z

∼= Cn/Λz, where Λz is the lattice spanned by ei, the vector

with 1 as the i-th entry and 0 elsewhere, 1 ≤ i ≤ n, and zj = t(z1j , z2j , . . . , znj), 1 ≤ j ≤ n. Let λhn
(resp. ψhn,N ) be the polarization (principal level N structure) of Ahn such that its fibre at z is given

by the real Riemann form Ez : Cn × Cn → R, defined as Ez(w1, w2) = −Im
(

tw1(Im z)−1(iw2)
)

(resp. 1
N e1, . . . ,

1
N en,

1
N z1, . . . ,

1
N zn). The {ei, zj}1≤i,j≤n form a basis of H1(Ahn,z,Z). Over hn we

have a global basis (α, β) = (α1, . . . , αn, β1, . . . , βn) for the sheaf q∗H1
dR(AC/YC) = H1

dR(Ahn/hn)
defined as

αi

 n∑
j=1

m1,jzj +m2,jej

 = m2,i, βi

 n∑
j=1

m1,jzj +m2,jej

 = m1,i.

The basis (α, β) is horizontal with respect to the Gauss–Manin connection, i.e.

∇(αi) = ∇(βi) = 0, 1 ≤ i ≤ n.

After base changing to C∞(hn,C), the Hodge decomposition gives another basis of H1
dR(Ahn/hn)⊗

C∞(hn,C), denoted as (dw, dw̄) = (dw1, . . . , dwn, dw̄1, . . . , dw̄n).
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Neither (dw, dw̄) nor (α, β) gives rise to an element of
(
q∗T×H

)
(hn) ⊗ C∞(hn,C). The basis

(dw, dw̄) does not satisfy the pairing condition, while (α, β) is not compatible with the Hodge
filtration. Nevertheless (dw, β) (resp. (dw,−dw̄ · s)) does give an element of

(
q∗T×H

)
(hn) (resp.(

q∗T×H
)

(hn)⊗ C∞(hn,C)), and it is easily checked that

(2.5.2) (dw,−dw̄ · s) = (dw, β) ·
(

1 −s
0 1

)
.

By evaluating global sections of Vrρ over Y ◦C at the test object
(
Ahn/hn, λhn , ψhn,N , (dw,−dw̄ · s)

)
,

we define a map

(2.5.3)
φ : H0(Y ◦C ,Vrρ) −→ N r

ρ (hn,Γ(N))

f 7−→ f
(
Ahn , λhn , ψN,hn , (dw,−dw̄ · s)

)
|Y=0.

Proposition 2.5.1. φ is well defined and is an isomorphism.

Proof. We need to check that the above defined φ(f) does land inside N r
ρ (hn,Γ(N)). First look at

the evaluation of f at the test object
(
Ahn , λhn , ψhn,N , (dw, β)

)
. Since (dw, β) is holomorphic we

have

f
(
Ahn , λhn , ψhn,N , (dw, β)

)
= Pf (Y ),

a polynomial in Y of degree ≤ r with coefficients being holomorphic maps from hn to Wρ(C).
Combining (2.3.1) and (2.5.2) we get

φ(f) = f
(
Ahn , λhn , ψhn,N , (dw,−dw̄ · s)

)
|Y=0

= f

(
Ahn , λhn , ψhn,N , (dw, β) ·

(
1 −s
0 1

))∣∣∣∣
Y=0

=

(
1 s
0 1

)
· f
(
Ahn , λhn , ψhn,N , (dw, β)

)∣∣∣∣
Y=0

= Pf (Y + s)|Y=0

= Pf (s).

This shows that φ(f) satisfies condition (i) in the definition of N r
ρ (hn,Γ(N)). Under the isomor-

phism

γ : Ahn,z −→ Ahn,γz

w 7→ w · µ(γ, z)−1

for γ ∈ Γ(N) we have

γ∗(dw,−dw̄ · s) = (dw,−dw̄ · s)
(
µ(γ, z)−1 0

0 µ(γ, z)

)
,

from which we see that φ(f) also has the transformation property required in condition (ii). Finally
the bijectivity of φ can be seen from the fact that essentially it sends Pf (Y ) to Pf (s) and we can
recover one of them from the other. �

We continue to prove the compatibility of Dρ and Dhn,ρ under the map φ.

Proposition 2.5.2. Dhn,ρ ◦ φ = φ ◦Dρ

Proof. Let 〈 , 〉 be the canonical pairing between the sheaf of differentials Ω1
hn

and the tangent

bundle Thn . Take ∂/∂zij ∈ Thn and f ∈ H0(Y ◦C ,Vrρ). We show that 〈Dhn,ρ ◦ φ(f), ∂/∂zij〉 =
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〈φ ◦Dρ(f), ∂/∂zij〉. Assume i 6= j (the computation for the case i = j is the same and we omit it),
the Gauss–Manin connection acts on (dw, β) as

(2.5.4) ∇(∂/∂zij)(dw, β) = (dw, β) ·
(

0 0
Eij + Eji 0

)
= (dw, β) · µ−ij .

Let Pf (Y ) be as in the above proof. According to the definition of Dρ by (2.2.2),

〈φ ◦Dρ(f), ∂/∂zij〉 = 〈(Dρf)
(
Ahn , λhn , ψhn,N , (dw, β)

)
, ∂/∂zij〉

∣∣
Y=s

=
∂

∂zij
Pf (Y ) + (µ−ij · Pf )(Y )

∣∣∣∣
Y=s

=
∂

∂zij
Pf (Y ) +

∑
1≤k≤n

(Ykiεkj + Ykjεki) · Pf (Y )−
∑

1≤k≤l≤n
(YkiYjl + YkjYil)

∂

∂Ykl
Pf (Y )

∣∣∣∣∣∣
Y=s

=
∂

∂zij
Pf (Y )

∣∣∣∣
Y=s

+
∑

1≤k≤n
(skiεkj + skjεki) · Pf (s)−

∑
1≤k≤l≤n

(skisjl + skjsil)
∂

∂skl
Pf (s).

Using
∂skl
∂zij

= −
(
s

(
∂

∂zij
(z − z̄)

)
s

)
kl

= −(siksjl + silsjk),

we get

〈φ ◦Dρ(f), ∂/∂zij〉 =
∂

∂zij
Pf (Y )

∣∣∣∣
Y=s

+
∑

1≤k≤n
(skiεkj + skjεki) · Pf (s) +

∂skl
∂zij

∂

∂skl
Pf (s)

=
∂

∂zij

(
Pf (s)

)
+
∑

1≤k≤n
(skiεkj + skjεki) · Pf (s)

=
∂

∂zij
φ(f) +

∑
1≤k≤n

(skiεkj + skjεki) · φ(f).(2.5.5)

On the other hand according to the definition of Dhn,ρ (2.5.1)

〈Dhn,ρ ◦ φ(f), ∂/∂zij〉 = 〈ρ(s)
(
dz(ρ(s−1)φ(f))

)
, ∂/∂zij〉

= ρ(s)

(
∂

∂zij

(
ρ(s−1)φ(f)

))
=

∂

∂zij
φ(f) + ρ

(
s
∂s−1

∂zij

)
φ(f)

=
∂

∂zij
φ(f) +

(
n∑
k=1

skiεkj + skjεki

)
· φ(f).

Comparing with (2.5.5), we conclude. �

It is also explained in [Shi90, §7] [Shi00, Appendix A8] that the Maass–Shimura differential oper-
ators correspond to the action of the Lie algebra (Lie G)C on nearly holomorphic forms. Therefore
the sheaf-theoretic definition of the differential operators in §2.4 can be viewed as a geometric
interpretation of the Lie algebra action at the archimedean place on automorphic forms whose
corresponding automorphic representations have holomorphic discrete series as the archimedean
component, and we have the commutative diagram (1.0.2).
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2.6. Polynomial q-expansions. We first define the Mumford objects. Then using the moduli in-
terpretation of N r

κ(Γ(N), R) = H0
(
X/R,Vrκ

)
, we evaluate a nearly holomorphic form at a Mumford

object to get its polymonial q-expansion. We also include formulas for the action of differential
operators on the polynomial q-expansions.

Following [FC90, V.1], let L = Zn with fixed basis e1, . . . , en and L∗ be its dual. Put SL to
be the symmetric quotient of L × L and SL,≥0 to be the intersection of SL with the cone dual to
the cone inside S∗L ⊗Z R consisting of semi-positive definite forms. Take a basis s1, . . . , sn(n+1)/2

of SL lying inside SL,≥0, and set Z((SL,≥0)) = Z[[SL,≥0]][1/s1s2 · · · sn(n+1)/2]. For β ∈ SL,≥0, the

corresponding element in Z[[SL,≥0]] is sometimes written as qβ.
The natural map L → SL ⊗ L∗ defines a period group L ⊂ L∗ ⊗ Gm/Z((SL,≥0)), principally

polarized by the duality between L and L∗. Mumford’s construction [FC90] gives an abelian variety
A/Z((SL,≥0)) with a canonical polarization λcan and a canonical basis ωcan = (ω1,can, . . . , ωn,can) of

ω(A/Z((SL,≥0))). The exact sequence

0→ L∗ ⊗
∏
l

lim
←−
m

µlm →
∏
l

Tl(A)→ L⊗ Ẑ→ 0,

after base changing to Z((N−1SL,≥0))[ζN , 1/N ], gives rise to a principal level N structure ψN,can

for A/Z((SL,≥0)). Let Dij ∈ Der(Z((SL,≥0)),Z((SL,≥0))) be the element dual to ωi,canωj,can and

δi,can = ∇(Dii)ωi,can. For β ∈ SL,≥0 we have Dij(q
β) = (2 − δij)βijqβ with δij = 0 if i 6= j, and

1 if i = j. Then δcan = (δ1,can, . . . , δn,can) together with ωcan forms a basis of H1
dR(A/Z((SL,≥0)))

respecting both the Hodge filtration and the symplectic pairing.
Evaluating a nearly holomorphic form f ∈ N r

κ(Γ(N), R) at the test object

MumN (q) = (A/Z((N−1SL,≥0))[ζN ,1/Np], λcan, ψN,can, ωcan, δcan)

defines its polynomial q-expansion

(2.6.1)
N r
κ(Γ(N), R) −→ Z[ζN , 1/N ][[N−1SL,≥0]]⊗Wκ(R)[Y ]≤r

f 7−→ f(q, Y ) = f(MumN (q)).

Next we compute formulas of differential operators in terms of polynomial q-expansions. Let X =
(Xij)1≤i,j≤n be the symmetric matrix with the indeterminateXij = Xji as the ij-th and ji-th entries
for 1 ≤ i ≤ j ≤ n. The Xij ’s form a basis of the GL(n)-representation τ . An element a ∈ GL(n)
acts on X by a · X = taXa. Let X∨ij be the basis of τ∨ dual to Xij . Then under the trivialization

(ωcan, δcan), Xij corresponds to ωi,canωj,can and X∨ij corresponds to Dij . From the construction of

MumN (q) one can see that ∇(Dij)(ωcan, δcan) = (ωcan, δcan)µ−ij , i.e. X
(
Dij , (ωcan, δcan)

)
= µ−ij .

Proposition 2.6.1. Let f ∈ N r
κ(Γ(N), R) be a nearly holomorphic form with polynomial q-

expansion f(q, Y ) ∈ Z[ζN , 1/N ][[N−1SL,≥0]]⊗Wκ(R)[Y ]≤r. Then

(Dκf)(q, Y ) =
∑

1≤i≤j≤n

(
Dijf(q, Y ) + µ−ij · f(q, Y )

)
⊗Xij

Example 2.6.2. If we apply the above proposition to the n = 1 case where κ = k ∈ N, we recover
the formula given in [Urb14, Proposition 2.4.1] for Dk (denoted δk there). In this case the image of

the polynomial q-expansion belongs R[ζN , 1/N ][[q1/N ]][Y ]≤r and D11 = q ddq . Write Y = Y11. The
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representations κ and τ are both one-dimensional and we omit writing down their basis.

(Dκf)(q, Y ) = D11f(q, Y ) +

(
0 0
1 0

)
· f(q, Y )

= q
d

dq
f(q, Y ) + Y ε11 · f(q, Y )− Y 2 ∂

∂Y
f(q, Y )

= (q
d

dq
− Y 2 ∂

∂q
)f(q, Y ) + kY f(q, Y ).

2.7. Holomorphic differential operators. The purpose of this section is to explain Shimura’s
construction of holomorphic differential operators in the sheaf-theoretic context. Let G ↪→ H be
an embedding of reductive groups over Q, and we assume both G(R) and H(R) have holomorphic
discrete series. One of the motivations for studying nearly holomorphic forms is that they help
construct differential operators sending holomorphic forms on H of weight κ0 (often taken to be
a scalar weight) to holomorphic forms on G of a specified weight κ. Such holomorphic differential
operators have been considered and applied in many works on studying special L-values, e.g. [Shi00,
Har97,Har08,BS00,CP04,EHLS16,EW16], just to list a few.

Let G = G◦ = Sp(2n)/Q and H = Sp(4n)/Q with Siegel parabolic subgroups QG = Q◦ and QH .
The Shimura variety YG (resp. YH) of principal level N is defined over Q(ζN ) and is a connected
component of Y = YG,Γ(N) (resp. the Siegel variety parametrizing principally polarized abelian
schemes of relative dimension 2n with a principal level N structure). In the following, sheaves over
YH and (LieH,QH)-modules are denoted with a superscript H .

Let ι : YG × YG ↪→ YH be the embedding corresponding to

G × G ↪−→ H(
a1 b1
c1 d1

)
×

(
a2 b2
c2 d2

)
7−→


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 .

Denote by p1, p2 : YG × YG → YG the projection to the first and second factor.

Proposition 2.7.1. Let k be an positive integer (viewed as a scalar weight) and κ ∈ X(T◦)+ be a
generic weight such that the holomorphic projection Ak+κ : Vek+κ → ωk+κ (cf. [Shi00, Proposition
14.2], Proposition 3.7.1, Corollary 3.7.5) exists for e = |κ| =

∑n
i=1 κi. Then there exists a nonzero

morphism

Dk,k+κ : ι−1ωHk −→ p∗1ωk+κ ⊗ p∗2ωk+κ.

By taking global sections, Dk,k+κ induces a holomorphic differential operator sending Siegel modular
forms on Sp(4n) of scalar weight k to Siegel modular forms on Sp(2n)×Sp(2n) of weight (k+κ, k+
κ).

Proof. First, by our construction of differential operators, there is the map

De
k : ι−1ωHk −→ ι∗VH,e

k⊗Syme τH
,

so we consider the decomposition of the sheaf ι∗VH,e
k⊗Syme τH

, especially how ωk+κ appears in the

decomposition. Equivalently, we consider the decomposition of V H,e
k⊗Syme τH

as a (g◦×g◦, QG×QG)-

module.
Write

XH =

(
X1 X0

tX0 X2

)
, Y H =

(
Y 1 Y 0

tY 0 Y 2

)
16



in n× n blocks. The subspace

(X1, X2, Y 0)WH
k [XH , Y H ] ∩ WH

k [XH ]e[Y
H ] ⊂WH

k [XH ]e[Y
H ]

is stable under the action of g◦ × g◦ and QG × QG. Here the subscript e means polynomials of
degree equal to e. The quotient of WH

k [XH ]e[Y
H ] by this submodule is canonically isomorphic to

(2.7.1) Wk[X0]e[Y 1, Y 2]

with the induced (g◦ × g◦, QG ×QG)-action. Instead of looking at the decomposition of the whole

V H,e
k⊗Syme τH

∣∣∣
(g◦×g◦,QG×QG)

, we consider the decomposition of the quotient (2.7.1). First it is easy to

check that

(
a1 b1
0 ta−1

1

)
×
(
a2 b2
0 ta−1

2

)
∈ QG ×QG acts on P (X0, Y 1, Y 2) ∈Wk[X0]e[Y 1, Y 2] as(

a1 b1
0 ta−1

1

)
×
(
a2 b2
0 ta−1

2

)
·P (X0, Y 1, Y 2) = P (ta1X0 a2, a

−1
1 Y 1

ta−1
1 +a−1

1 b1, a
−1
2 Y 2

ta−1
2 +a−1

2 b2).

By [Shi00, Theorem 12.7] we know that as representations of QG ×QG,

(2.7.2) Wk[X0]e[Y 1, Y 2] =
⊕

κ∈X(T◦)+, |κ|=e

Vk+κ � Vk+κ.

By checking the formulas defining the g-actions, we see that this decomposition actually holds as
modules of (g◦ × g◦, QG ×QG). Moreover, for each κ appearing in the decomposition, the highest
weight vector inside V 0

k+κ � V
0
k+κ is given by

∏n
i=1 deti(X0)κi−κi+1 , where deti is the determinant

of the upper left i × i minor. Therefore, for κ ∈ X(T◦)+, |κ|=e, the (g◦ × g◦, QG × QG)-module

Vk+κ�Vk+κ appears as a quotient of V H
k⊗Syme τH

∣∣∣
(g◦×g◦,QG×QG)

and one can write down an explicit

map

V H
k⊗Syme τ ′

∣∣
(g◦×g◦,QG×QG

mod X1,X2, Y 0−−−−−−−−−−−→W ′k[X0]e[Y 1, Y 2] −→ Vk+κ � Vk+κ,

which induces a morphism of sheaves over YG × YG,

%k,κ : ι∗VHk⊗Syme τH −→ p∗1Vk+κ ⊗ p∗2Vk+κ.

When the holomorphic projection Ak+κ : Vek+κ → ωk+κ exists, We define the operator Dk,k+κ as
the composition

Dk,k+κ : ι−1ωHk
Dek−→ ι∗VH,e

k⊗Syme τH
%k,κ−→ p∗1Vek+κ ⊗ p∗2Vek+κ

Ak+κ−→ p∗1ωk+κ ⊗ p∗2ωk+κ.

It remains to show that such defined Dk,k+κ is nonzero. This can be done by some computation in
local coordinates.

Take an affine open subset UH = Spec(R′) ⊂ YH such that UH×YH (YG×YG) is of the form U×U
with U = Spec(R). Also we pick an ordered basis α = (α1, . . . , α4n) of H1

dR

(
A/UH

)
respecting

both the Hodge filtration and the symplectic pairing such that α(1) × α(2) ∈ T×H (U)× T×H (U) with

α(1) = (ι∗α1, . . . , ι
∗αn, ι

∗α2n+1, . . . , ι
∗α3n) and α(2) = (ι∗αn+1, . . . , ι

∗α2n, ι
∗α3n+1, . . . , ι

∗α4n). Then
ωHk (UH) ' R′, Ω1

YH
(UH) ' R′[XH ]1, Ω1

YG×YG(U ×U) ' R[X1]1⊗R[X2]1, and Ω1
YH/YG×YG(UH) '

R′[X0]1.
Let ∂Hij ∈ DerQ(ζN )(R

′, R′), 1 ≤ i ≤ j ≤ 2n, be the dual basis of XH
ij and write ∂H = (∂Hij ) in

n × n blocks as ∂H =

(
∂1 ∂0
t∂0 ∂2

)
. According to (2.2.2) there is a nonzero degree e homogeneous

polynomial Pκ(Tij) ∈ Q[Tij ]1≤i≤j≤n and a polynomial Q in X0, ∂0, Y 1, Y 2 whose degree in ∂0 is
strictly less than e such that

%k,κ ◦De
k = uι (Pκ(X0,ij∂0,ij) +Q(X0, ∂0, Y 1, Y 2)) ,
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where uι : R′ → R ⊗R is the quotient map corresponding to the embedding YG × YG ↪→ YH . The
holomorphic projection Ak+κ is purely defined on YG × YG, so does not involve any ∂0. Thus,

Dk,k+κ = Ak+κ ◦ uι (Pκ(X0,ij∂0,ij) +Q(X0, ∂0, Y 1, Y 2))

= uι

(
Pκ(X0,ij∂2,ij) + Q̃(X0, ∂0, ∂1, ∂2)

)
with Q̃ being a polynomial whose degree in ∂0 is still strictly less than e. This implies that the
differential operator Dk,k+κ 6= 0, and the coefficient for the highest weight vector

∏n
i=1 deti(X0) is∏n

i=1 deti(∂0)κi−κi+1 + c(∂0, ∂1, ∂2), where the total degree of the homogeneous polynomial of c is e
and every term involves either ∂1 or ∂2.

�

Remark 2.7.2. In the construction of Dk,k+κ, the increase of the weight is contributed by the co-
normal differential sheaf Ω1

YH/YG×YG . We do not consider the part Ω1
YG×YG because its contribution

will be killed by the holomophic projection.

Remark 2.7.3. Besides Shimura, holomorphic differential operators are also studied by Böcherer
[Böc85], Ibukiyama [Ibu99] uisng invariant pluri-harmonic polynomials and Harris [Har86] using
Grothendieck’s sheaves of differentials. Harris’ approach shows the uniqueness (up to scalars) of
holomorphic differential operators in many cases (including the case considered above). Therefore,
all the holomorphic differential operators constructed in different approaches must be the same up
to scalars. On the other hand, different approaches yield different descriptions of the holomorphic
differential operators, and have their own advantages in applications.

3. Overconvergent nearly holomorphic forms and their p-adic families

3.1. The weight space. Let p be an odd prime number. The weight spaceW is the rigid analytic
space defined over Qp associated to the noetherian complete algebra Zp[[T◦(Zp)]]. Its Cp-points
parametrize continuous homomorphisms from T◦(Zp) to C×p , i.e. W(Cp) = Homcont(T

◦(Zp),C×p ).
For κ ∈ W we can write it as κ = (κ1, κ2, . . . , κn) with κi being a continuous character of Gm(Zp) ∼=
Z×p such that κ(diag(a1, . . . , an)) =

∏n
i=1 κi(ai). If we fix a topological generator of 1 + pZp, say

1 + p, then W can be identified with the disjoint union of n-dimensional open unit balls indexed

by ̂T◦(Z/pZ), the character group of the torsion part T◦(Z/pZ) of the group T◦(Zp). Explicitly
we can write the isomorphism as

W −→ ̂T◦(Z/pZ)×
n∏
i=1

B(1, 1−)

κ 7−→ (κ|T◦(Z/pZ), κ1(1 + p), κ2(1 + p), . . . , κn(1 + p)).

Here B(1, 1−) is the 1-dimensional rigid open unit ball centered at 1. If U ⊂ W is an affinoid
subdomain we use A(U) to denote the affinoid algebra of analytic functions on U and A(U)◦ to
denote the subset of A(U) consisting of power bounded elements.

Given κ we say it is algebraic if κ(diag(a1, . . . , an)) = ak11 a
k2
2 . . . aknn with ki, 1 ≤ i ≤ n, being

integers, and it is arithmetic if it can be written as the product of an algebraic weight with a locally
constant character. If κ is arithmetic, we denote by κalg (resp. κf) its algebraic part (resp. locally
constant part).

Let µp−1 be the group of (p− 1)-th roots of unity. There is a universal character

κun :W ×T◦(Zp) −→ µp−1 × B(1, 1−).

Take L to be an extension of Qp inside Cp, complete with a valuation v such that v(p) = 1. Denote
by mL the maximal ideal of OL. For each w ∈ v(mL) we can define over L the rigid analytic group
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T ◦1,w ∼=
∏n
i=1 B(1, pw) with B(1, pw) being the 1-dimensional closed ball of radius pw centered at 1

and the rigid analytic group T ◦w = T ◦(Zp)T ◦1,w. For any affinoid subdomain U ⊂ W there exists

some w ∈ v(mL) such that the universal character κun|U×T◦(Zp) extends to a map between rigid
analytic spaces

κun : U × T ◦w −→ µp−1 × B(1, 1−).

For such U and w we say that the universal character κun over U is w-analytic. In order to see
the existence of such a w it suffices to look at the case where U is a closed ball inside the iden-
tity connected component W◦ of the weight space, i.e. U = W(t)◦ =

∏n
i=1 B(1, pt) for some

t ∈ v(mL). Let Y1, . . . , Yn (resp. S1, . . . , Sn) be the coordinates of W(t)◦ (resp. the neigh-
borhood a ·

∏n
i=1 B(1, pw) =

∏n
i=1 B(ai, p

w) of a = diag(a1, . . . , an) ∈ T◦(Zp)) with coordinate
ring A(W(t)◦) = L 〈Y1, . . . , Yn〉 (resp. L 〈S1, . . . , Sn〉). The universal character can be extended

to W(t)◦ × a ·
∏n
i+1 B(1, pw) as long as (1 + ptYi)

ai(1 + ptYi)
log(1+pwSi)

log(1+p) belongs to L 〈Yi, Si〉 for

all 1 ≤ i ≤ n. The factor (1 + ptYi)
ai =

∑∞
j=1

(
ai
j

)
ptjY j

i is always inside 1 + ptOL 〈Yi〉, and

the factor (1 + ptYi)
log(1+pwSi)

log(1+p) = exp
(

log(1 + ptYi) · log(1+pwSi)
log(1+p)

)
lies inside L 〈Yi, Si〉 if we choose

w large enough such that the supreme norm of the function log(1 + X) over B(0, pt) satisfies

| log(1 + X)|B(o,pt) < p
w− 1

p−1 . If the universal weight κun is w-analytic over U , then it is obvious

that any point κ ∈ U(L) is a w-analytic weight, i.e. the character κ : T◦(Zp)→ C×p extends to an

analytic map κ : T ◦w → µp−1 × B(1, 1−).

Let T◦1,w be the formal group defined by

(3.1.1) T◦1,w(R) = Ker
(
T◦(R) −→ T◦(R/pwR)

)
for all flat, p-adically completeOL-algebrasR. As a formal scheme T◦1,w is isomorphic to Spf(OL 〈S1, . . . , Sn〉).
The identity componentW(t)◦ ofW(t) has a natural formal model W(t)◦ isomorphic to Spf(OL 〈Y1, . . . , Yn〉).
Given an affinoid subdomain U ⊂ W(t)◦ and an open formal subscheme U of an admissible blow-up
of W(t)◦ such that U is the rigid fibre of U, the above discussion shows that for w ∈ v(mL) big
enough the formal universal character

κun : U× T◦1,w −→ Ĝm

can be defined and it specializes to a formal character κ : T◦1,w → Ĝm for each κ ∈ U(L).

3.2. The analytic (g,Qw)-modules Vκ,w and Vκun,w. This section is an analogue of §2.3 in the
p-adic analytic and formal setting. Fix the p-adic field L and w ∈ v(mL) as in the previous
section. Let AL be the category of L-affinoid algebras and AdmOL be the category of admissible
OL-algebras, i.e. the flat OL-algebras that are quotients of OL 〈X1, . . . , Xs〉 for some s ∈ N. First
we define several rigid analytic groups and formal groups. Like the formal torus T◦1,w we define the
formal groups M◦1,w and B1,w over OL by

M◦1,w(R) = Ker
(

GL(n,R) −→ GL(n,R/pwR)
)
,

B1,w(R) = Ker
(
B(R) −→ B(R/pwR)

)
for all R ∈ AdmOL . Define N1,w to be the unipotent part of B1,w. Let GL(n)an, Ban, Nan, T◦an,
Qan, Uan be the rigid analytic groups associated to the groups schemes GL(n), B, N, T◦, Q, U, and
GL(n)rig, Brig, T◦rig, Qrig be the generic fibre of the formal completion of GL(n), B, T◦, Q along p.
The rigid fibreM◦1,w, B1,w, T ◦1,w of the formal groups M◦1,w, B1,w, T◦1,w can be naturally regarded as

rigid analytic subgroups of GL(n)rig, Brig, T◦rig. Set I(Zp) = {g ∈ GL(n,Zp) : g mod p ∈ B(Z/pZ)}
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to be the Iwahori subgroup of GL(n,Zp) and N−(Zp) to be the unipotent subgroup of I(Zp) con-
sisting of lower triangular matrices with 1 on the diagonal. I(Zp) = N−(Zp) B(Zp) is the Iwahori
decomposition. We define the rigid analytic subgroup Iw of GL(n)rig by Iw = I(Zp) ·M◦1,w. Fixing

a set S of representatives in I(Zp) of I(Z/p[w]Z), the group Iw can be written as the disjoint union∐
γ∈S γ ·M◦1,w. Similarly we define Bw = B(Zp) · B1,w ⊂ Brig. The group T ◦w = T◦(Zp) · T ◦1,w ⊂ T◦rig

is already defined in last section. There is a projection π : Qan → GL(n)an sending

(
a b
0 d

)
to a.

We define the rigid analytic subgroup Qw ⊂ Qan as

(3.2.1) Qw = π−1(Iw)

Note that Qw is not contained inside Qrig.

Now take κ = (κ1, . . . , κn) ∈ W(Cp) to be a w-analytic weight and set κ′ = (−κn, . . . ,−κ1)
which is also w-analytic. Extend κ′ to a character of Bw through the quotient map Bw → T ◦w .
Define the w-analytic left Iw-module Wκ,w by

Wκ,w(R) = {f : Iw(R)→ R : f(xb) = κ′(b)f(x), for all b ∈ Bw(R), x ∈ Iw(R) and f is analytic}

for all R ∈ AL, with Iw acting through the left inverse translation. Because of the Iwahori decom-
position, Wκ,w consists of analytic functions on

N−(Z/p[w]Z)×


1 0 · · · 0

B(0, pw) 1 · · · 0
...

...
. . .

...
B(0, pw) B(0, pw) · · · 1

 .

Therefore as a module over R we see Wκ,w(R) = ⊕N−(Z/p[w]Z)R 〈Tij〉1≤j<i≤n, i.e. |N−(Z/p[w]Z)|
copies of strictly convergent power series in n(n− 1)/2 variables.

From this description we see that there is a natural formal model of Wκ,w, whose R-points are
⊕N−(Z/p[w]Z)R 〈Tij〉1≤j<i≤n for R ∈ AdmOL , equipped with a functorial action of I(Zp) and M◦1,w.

We denote the formal model still by Wκ,w.

With Wκ,w we define the w-analytic (g,Qw)-module Vκ,w in the same way as we define the
(g,Q)-module Vκ from the algebraic representation Wκ of GL(n) in §2.3. For all R ∈ AL

Vκ,w(R) = Wκ,w(R)⊗R R[Y ] = Wκ,w(R)⊗R R[Yij ]1≤i≤j≤n.

The action of g =

(
a b
0 d

)
∈ Qw and µ−ij ∈ u− on P (Y ) ∈ Vκ,w is given by the formulas

(3.2.2) (g · P )(Y ) = a · P (a−1b+ a−1 Y d),

(3.2.3)

(µ−ij · P )(Y ) =
∑

1≤k≤n
(Ykiεkj + Ykjεki) · P (Y )−

∑
1≤k≤l≤n

(YkiYjl + YkjYil)
∂

∂Ykl
P (Y ), i 6= j,

(µ−ii · P )(Y ) =
∑

1≤k≤n
Ykiεki · P (Y )−

∑
1≤k≤l≤n

YkiYil
∂

∂Ykl
P (Y ).

The compatibility is checked in the same way as in §2.3 and as Qw-representations there is the
filtration

Filr Vκ,w(R) = V r
κ,w(R) = Wκ,w(R)⊗R R[Y ]≤r
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satisfying g · V r
κ,w ⊂ V r+1

κ,w . By definition V 0
κ,w = Wκ,w as Qw-representations if we regard the Iw-

representation Wκ,w as a Qw-representation via the projection Qw → Iw. For i ∈ Z we can twist
Vκ,w by the i-th power of the multiplier ν and get the w-analytic (g,Qw)-module Vκ,w(i).

Recall that J is defined to be the algebraic representation V 1
triv of Q. It restricts to an analytic

Qw-representation and parallel to (2.3.6) we have

V r
κ,w
∼= V 0

κ,w ⊗ Symr J = Wκ,w ⊗ Symr J

as analytic Qw-representations.
A little more generally, given (ρ,Wρ) ∈ RepZ,f GL(n), an algebraic representation of GL(n) free

of finite rank, the tensor product Wκ⊗ρ,w = Wκ,w⊗Wρ is an analytic Iw-representation, and we can
define the corresponding analytic (g,Qw)-module Vκ⊗ρ,w and Qw-representation V r

κ⊗ρ,w for r ≥ 0.
All of the above constructions carry over to the universal w-analytic weight κun over an affinoid

subdomain U ⊂ W.

3.3. The Andreatta–Iovita–Pilloni construction. We briefly recall the constructions in [AIP15,
Chapter 3,4,5]. Let σ be the Frobenious endomorphism of OL/pOL. For any finite group scheme
H over OL we denote by HD its Cartier dual and ωH its sheaf of invariant differentials. Given
a Barsotti–Tate group G over OL of dimension n, the Hasse invariant Ha(G) ∈ det(ωG[p]D)⊗p−1

is defined to be the determinant of the σ-linear endomorphism on ωG[p]D induced by the relative

Frobenius. The Hodge height Hdg(G) ∈ [0, 1] is defined as the truncated valuation of Ha(G).
Let NAdmOL be subcategory of AdmOL consisting of those objects that are normal. Fix R ∈

NAdmOL and suppose that G is a rank n semi-abelian scheme over S = Spec(R) whose restriction
to an open dense subscheme of S is abelian. Take a positive integer m ∈ N>0 and v < 1

2pm−1 (resp.

v < 1
3pm−1 if p = 3) such that for any x ∈ Srig the Hodge height Hdg(x) := Hdg(Gx[p∞]) ≤ v.

Write Rw to denote R/pwR. We summarize, in the following theorem, some results about canonical
subgroups in families used in [AIP15].

Theorem 3.3.1. ( [AIP15, Proposition 4.1.3, Proposition 4.3.1]) There is a finite flat canonical
subgroup Hm ⊂ G[pm] of level m over S, which, at each point x ∈ Srig, specializes to the canonical
subgroup Hm,x ⊂ Gx[pm] as constructed in [Far11, Theorem 6] . Moreover, assuming HD

m(R[1/p]) '
(Z/pmZ)n, then there is a free sub-sheaf of R-modules F ⊂ ωG of rank n containing p

v
p−1ωG,

equipped with an isomorphism

HTw : HD
m(R[1/p])⊗Z Rw

∼−→ F ⊗R Rw,
induced from the Hodge–Tate map on HD

m , for all w ∈ (0,m− v pm

p−1 ] ∩ vp(OL).

Fix N ≥ 3 prime to p. Let K be a finite extension of Qp with valuation v such that v(p) = 1 and a
uniformizer $. Denote by Y the Siegel variety defined over OK parametrizing principally polarized
abelian schemes of dimension n with principal level N structure. Let X be a smooth toroidal
compactification. The universal abelian scheme A→ Y extends to a semi-abelian scheme G→ X.
Set X to be the formal scheme obtained by completing X along its special fibre. On the associated
rigid analytic space Xrig = Xan, we have the Hodge height function Hdg : Xrig → [0, 1]. For

v ∈ v(OK) we define the open subset X (v) = {x ∈ Xrig : Hdg(x) ≤ v}. Let X̃(v) be the admissible
blow-up of X along the ideal (Ha, pv), and X(v) be the p-adic completion of the normalization

of the largest open formal sub-scheme of X̃(v) where the ideal (Ha, pv) is generated by Ha. This
X(v) is a formal model of X (v). By construction the semi-abelian scheme G → X gives rise
to semi-abelian schemes over X (v) and X(v), which we still denote by G. For m ∈ N>0 and
v < 1

2pm−1 (resp. v < 1
3pm−1 if p = 3), there is the level m canonical subgroup Hm ⊂ G[pm].

Define X1(pm)(v) = IsomX (v)((Z/pmZ)n, HD
m) to be the finite étale cover of X (v) parametrizing

the trivializations ψ of the Cartier dual of Hm. The group GL(n,Z/pZ) acts on X1(p)(v). The
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quotient XIw(v) = X1(p)(v))/B(Z/pZ) by the Borel subgroup is still finite étale over X (v). As
formal models of X1(pm)(v), XIw(v), we take X1(pm)(v), XIw(v) to be the normalizations of X(v)
inside the corresponding rigid spaces. There is the chain of formal schemes

X1(pm)(v)
π1−→ XIw(v)

π0−→ X(v).

Let Y,Y(v),Y1(pm)(v),YIw(v) be the open formal subschemes of X,X(v),X1(pm)(v),XIw(v) that
are the complements of the boundary C. Although Y(v),Y1(pm)(v),YIw(v) are not moduli spaces,
they admit modular interpretations for R ∈ NAdm (cf. [AIP15, Proposition 5.2.1.1]). Let Yan be
the analytification of Y with the natural open immersion Yan ↪→ Xan. Set Y(v),Y1(pm)(v),YIw(v)
to be the fibre products of X (v),X1(pm)(v),XIw(v) with Yan over Xan.

By the construction of X1(pm)(v), we can apply Theorem 3.3.1 to construct a locally free sub-
sheaf F ⊂ ω

(
G/X1(pm)(v)

)
of rank n, equipped with the isomorphism

(3.3.1) HTw ◦ψ : (Z/pmZ)n ⊗Z OX1(pm)(v),w
∼−→ F ⊗OK OK,w

for w ∈ (0,m− v pm

p−1 ] ∩ v(OK).

From now on we assume w ∈ (m− 1 + v
p−1 ,m−

pmv
p−1 ]∩ v(OK), so m is determined by w. Define

the M◦1,w-torsor T×F ,w(v) over X1(pm)(v) by

T×F ,w(v) = IsomX1(pm)(v),ψ,w(OnX1(pm)(v),F),

where the subscript ψ,w means that we require the isomorphism to be w-compatible with (3.3.1)
as explained below. We always fix the canonical global basis of the n copies of the structure
sheaf OnX1(pm)(v) and the canonical basis of the Z/pmZ-module (Z/pmZ)n. Then locally over U =

Spf(R) ⊂ X1(pm)(v), an isomorphism α from Rn to F(U) corresponds to an ordered basis α1, . . . αn
of the free R-module F(U) and ψ gives rise to an ordered basis x1, . . . , xn of HD

m(R[1/p]). We say
that α is w-compatible with (3.3.1) if αi ≡ HTw(xi) mod pwR for all 1 ≤ i ≤ n. An element
a ∈ M◦1,w(R) acts on α by sending it to α ◦ a, or equivalently sending the corresponding basis

(α1, . . . , αn) to (α1, . . . , αn) · a. This action makes T×F ,w(v) a M◦1,w-torsor over X1(pm)(v).

For a w-analytic weight κ ∈ W(K) we can form the contracted product and get a locally free
formal sheaf

w̃†κ,w := T×F ,w(v)×M◦1,w Wκ,w

over X1(pm)(v). In particular this w̃†κ,w is a flat formal Banach sheaf in the sense of [AIP15,
Definition A.1.1.1]. Therefore we can apply the procedure worked out in [AIP15, A.2.2] to get

the associated Banach sheaf ω̃†κ,w over the rigid analytic fibre X1(pm)(v) (see [AIP15, Definition
A.2.1.2] for the definition of a Banach sheaf). For any affinoid subdomain U ⊂ X1(pm)(v) and an
admissible blow-up h : X′ → X1(pm)(v) such that U is the rigid fibre of an open formal subscheme

U of X′, the local sections of ω̃†κ,w over U are

ω̃†κ,w(U) = h∗w̃†κ,w(U)⊗OK K,

which is naturally equipped with a complete norm (independent of h up to equivalence) with

w̃†κ,w(U) being the unit ball.
The group I(Z/pmZ) acts on X1(pm)(v) with XIw(v) as the quotient. Under this action the

sheaf ω̃†κ,w is I(Z/pmZ)-equivariant. In order to see this we need to construct the isomorphism
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ϕω(γ̄) : ω†κ,w → γ̄∗ω†κ,w for each γ̄ ∈ I(Z/pmZ). Let γ̄∗T×F ,w(v) be the fibre product

γ̄∗T×F ,w(v) //

��

�

T×F ,w(v)

��

X1(pm)(v)
γ̄
// X1(pm)(v).

We have γ̄∗T×F ,w(v) ∼= IsomX1(pm)(v),ψ◦γ̄,w(OnX1(pm)(v), γ̄
∗F) and γ̄∗w̃†κ,w ∼= γ̄∗T×F ,w(v) ×M◦1,w Wκ,w.

The sheaf ω
(
G/X1(pm)(v)

)
is the pullback of ω

(
G/XIw(v)

)
and hence is naturally I(Z/pmZ)-

equivariant. By construction the sub-sheaf F ⊂ ω
(
G/XIw(v)

)
is an I(Z/pmZ)-equivariant subsheaf

of ω
(
G/X1(pm)(v)

)
so there is the isomorphism ϕF (γ̄) : F → γ̄∗F . Take an open formal sub-

scheme U = Spf(R) ⊂ X1(pm)(v) over which the sheaf F can be trivialized. Local sections of w̃†κ,w
over U are pairs (α, f) with α ∈ T×F ,w(v)(U) and f ∈ Wκ,w⊗̂R modulo the equivalence relations

(α ◦ a, f) ∼ (α, a · f), a ∈M◦1,w(R). Pick a lift γ ∈ I(Zp) of γ̄ and define

ϕw(γ̄) : T×F ,w(v)×M◦1,w Wκ,w(U) −→ γ̄∗T×F ,w(v)×M◦1,w Wκ,w(U)

(α, f) 7−→ (ϕF (γ̄) ◦ α ◦ γ, γ−1 · f).

The map ϕw(γ̄) is well defined, independent of the choice of the lift γ, and patches to an isomorphism

ϕw(γ̄) : w̃†κ,w → γ̄∗w̃†κ,w. Inverting p we get ϕω(γ̄) : ω̃†κ,w → γ̄∗ω̃†κ,w. Since I(Z/pmZ) is a finite

group, the I(Z/pmZ)-invariant of the pushforward π1,∗ω̃
†
κ,w is a Banach sheaf over XIw(v).

Definition 3.3.2. The Banach sheaf of w-analytic, v-overconvergent, weight κ Siegel modular
forms of principal level N is defined as

ω†κ,w :=
(
π1,∗ω̃

†
κ,w

)I(Z/pmZ)
.

We also want to associate to the Banach sheaf ω†κ,w a contracted product interpretation, which
will bring us some convenience when defining some morphisms. By taking the rigid fibre of the
M◦1,w-torsor T×F ,w(v) over X1(pm)(v), we get

T ×F ,w(v)
π2−→ X1(pm)(v)

π1−→ XIw(v).

The rigid analytic space T ×F ,w(v) is a M◦1,w-torsor over X1(pm)(v) and the cover π1 : X1(pm)(v)→
XIw(v) is finite étale. The group I(Zp) acts on T ×F ,w(v) over XIw(v) by sending α to ϕF (γ̄) ◦ α ◦ γ.

This I(Zp)-action together with the M◦1,w-torsor structure on T ×F ,w(v) makes it an Iw-torsor over

XIw(v). Let S be the category whose objects are affinoid subdomains of XIw(v) admitting local
sections of the projection π1 ◦ π2 with inclusions as morphisms. We can define a presheaf on S by
the contracted product

(3.3.2) T ×F ,w(v)×Iw Wκ,w.

It is isomorphic to the restriction of the sheaf ω†κ,w to S. We call (3.3.2) a contracted product inter-

pretation of ω†κ,w. Since the objects of S form a basis of the Grothendieck topology on X1(pm)(v), in
order to construct morphisms between the sheaves over XIw(v), it suffices to construct morphisms
between their restrictions to S. Therefore the contracted product interpretation T ×F ,w(v)×Iw Wκ,w

will be useful in constructing morphisms between sheaves that are related to ω†κ,w. By abuse of

notation we will write ω†κ,w = T ×F ,w(v)×Iw Wκ,w.

Define the OK schemes Tω = HomX

(
OnX , ω(G/X)

)
and T×ω = IsomX

(
OnX , ω(G/X)

)
over X. Let

Tω,an, T×ω,an be their rigid analytifications, and Tω, T×ω be their formal completions along the special
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fibres. Also take Tω,rig, T×ω,rig to be the rigid fibre of Tω, T×ω . Set Tω,an(v), T ×ω,an(v), Tω,rig(v), T ×ω,rig(v)

to be the corresponding base changes to XIw(v). Due to the requirement w ∈ (m − 1 + v
p−1 ,m −

v pm

p−1 ] ∩ v(OK), the argument of [AIP15, Proposition 5.3.1] shows that there is a natural open
immersion

T ×F ,w(v) ↪−→ Tω,rig(v) ∩ T ×ω,an(v).

Therefore local sections of the projection T ×F ,w(v) → XIw(v) correspond to local basis of the sheaf

ω(G/XIw(v)) satisfying w-compatibility conditions defined by the Hodge–Tate map HTw. Note that
T ×F ,w(v) does not lie inside T ×ω,rig(v). When κ is algebraic this open immersion induces a canonical

inclusion of ωκ|XIw(v) into ω†κ,w.
In [AIP15] another two formal schemes are introduced. They are defined as

IWw(v) = T×F ,w/B1,w, and IW+
w(v) = T×F ,w/N1,w,

with maps

IW+
w(v)

g−→ IWw(v)
π3−→ X1(pm)(v)

π1−→ XIw(v).

The group T◦1,w acts on IW+
w(v) over IWw(v), and so on the pushforward of the structure sheaf

g∗OIW+
w(v). Define the invertible sheaf Lκ = g∗OIW+

w(v)[κ
′] to be the κ′-invariant of the T◦1,w-

action on g∗OIW+
w(v). Take the rigid fibres IW+

w (v), IW+
w (v), Lκ. There is a B(Zp)-action on

IW+
w (v) over XIw(v) which, together with κ, makes π3,∗Lκ a B(Z/pmZ)-equivariant Banach sheaf

with respect to the natural B(Z/pmZ)-action on X1(pm)(v) over XIw(v). In [AIP15] the invariant

(π1,∗π3,∗Lκ)B(Z/pmZ) is defined to be the Banach sheaf of w-analytic, v-overconvergent, weight κ
Siegel modular forms. It is easy to see that the map Wκ,w → A1

K by evaluation at identity induces

an isomorphism between (π1,∗π3,∗Lκ)B(Z/pmZ) and the sheaf ω†κ,w in Definition 3.3.2 .
All the above constructions run parallelly for the w-analytic universal weight κun corresponding

to U ⊂ W, so that we can define the Banach sheaf ω†κun,w over XIw(v) × U and the flat formal

Banach sheaf w̃†κun,w over X1(pm)(v)× U.

3.4. Nearly overconvergent Siegel modular forms.

3.4.1. The Banach sheaf V†,rκ,w and its global sections. Recall that in §2.4 we defined the locally free
sheaf of finite rank J over X, and for ρ ∈ RepZ,f GL(n) we have Vrρ ∼= ωρ ⊗ Symr J as locally
free sheaves with Hecke actions. Take the rigid analytification of J and pull it back to XIw(v).
We denote the resulting coherent sheaf over XIw(v) still by J . Similarly let J be the locally free
formal sheaf of finite rank over XIw(v) obtained by completing J along the special fibre of X and
pulling it back. Symr J is the rigid fibre of Symr J. Since Symr J is locally free of finite rank and
XIw(v) is quasi-compact, it can be equipped with a Banach sheaf structure by choosing a cover and
local basis. All such structures are equivalent to the one given by the formal model Symr J. The
tensor product of Symr J with a Banach sheaf is still a Banach sheaf under the tensor product
semi-norm. The flatness of Symr J guarantees that the sheaf conditions of the Banach sheaf are
preserved under the operation of tensoring with Symr J . Also the spaces of local sections of the
tensor product sheaf is complete with respect to the tensor product semi-norm (i.e. there is no
need to take completed tensor product).

Definition 3.4.1. The Banach sheaf of w-analytic, v-overconvergent nearly holomorphic forms of
principal level N , weight κ (resp. universal weight κun over U ⊂ W) and (non-holomorphy) degree
r is defined as

V†,rκ,w := ω†κ,w ⊗ Symr J (resp. V†,rκun,w := ω†κun,w ⊗ Symr J ).
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The space of global sections of a Banach sheaf over a quasi-compact rigid analytic space can be
equipped with a norm by choosing a suitable admissible covering by affinoids. All such norms are
equivalent and the space of global sections are complete under these norms.

Definition 3.4.2. TheK-Banach space (resp. A(U)-Banach module) of w-analytic, v-overconvergent
nearly holomorphic forms of principal level N , weight κ (resp. universal weight κun over U ⊂ W)
and (non-holomorphy) degree r and the corresponding cuspidal part is defined as

N †,rκ,w,v := H0(XIw(v),V†,rκ,w) (resp. N †,rU ,w,v := H0(XIw(v)× U ,V†,rκun,w),

N †,rκ,w,v,cusp := H0(XIw(v),V†,rκ,w(−C)) (resp. N †,rU ,w,v,cusp := H0(XIw(v)× U ,V†,rκun,w(−C)).

Following [Urb14] we also call overconvergent nearly holomorphic forms nearly overconvergent
forms.

For later use we also define a locally free formal Banach sheaf Ṽ†,rκ,w over X1(pm)(v) by the tensor

product w̃†κ,w⊗Symr J. Let Ṽ†,rκ,w be its rigid fibre which is an I(Z/pmZ)-equivariant Banach sheaf.

Then we have V†,rκ,w =
(
π1,∗Ṽ†,rκ,w

)I(Z/pmZ)
.

3.4.2. The Qw-torsor T ×H,w(v) and contracted product interpretation of V†,rκ,w. The definition of the

Banach sheaf V†,rκ,w as ω†κ,w ⊗ Symr J is already convenient for constructing unramified Hecke op-
erators and Up-operators. However, for the construction of differential operators and holomorphic
projections, it is preferable to have a contracted product interpretation involving a Qw-torsor and
the Qw-submodule V r

κ,w of the (g,Qw)-module Vκ,w defined in §3.2.

The OK-scheme T×H = IsomX

(
O2n
X ,H1

dR(A/Y )can
)

is defined as in §2.1. Let T×H,an be its ana-

lytification and T ×H,an(v) be the base change to XIw(v). There is a natural projection

T ×H,an(v) −→ T ×ω,an(v).

We define the Qw-torsor T ×H,w over XIw(v) as

T ×H,w(v) := T ×H,an(v)×T ×ω,an(v) T
×
F ,w(v).

It is not difficult to see that the Banach sheaf V†,rκ,w admits the following contracted product inter-
pretation

V†,rκ,w = T ×H,w(v)×Qw V r
κ,w.

3.4.3. Summary. We record below several interpretations of the Banach sheaf V†,rκ,w over XIw(v) and
its global sections, which we will use later for convenience according to different purposes.

(i) V†,rκ,w = ω†κ,w ⊗ Symr J ,

(ii) V†,rκ,w = (π1,∗π3,∗Lκ)B(Z/pmZ) ⊗ Symr J , and for global sections

N †,rκ,w,v = H0
(
IWw(v),Lκ ⊗ (π1 ◦ π3)∗ Symr J

)B(Z/pmZ)
,

(iii) V†,rκ,w = (π1,∗Ṽ†,rκ,w)I(Z/p
mZ), and for global sections

N †,rκ,w,v = H0(X1(pm)(v), Ṽ†,rκ,w)I(Z/p
mZ)

=
(
H0(X1(pm)(v), w̃†κ,w ⊗ π∗1 Symr J)[1/p]

)I(Z/pmZ)
,

(iv) V†,rκ,w = T ×H,w(v)×Qw V r
κ,w.
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It is easy to see that in all the above constructions we can replace κ by the w-analytic universal

weight κun corresponding to U ⊂ W, and consider the Banach sheaf V†,rκun,w over XIw(v)×U as well

as the A(U)-Banach module N †,rU ,w,v := H0(XIw(v)× U ,V†,rκun,w).

In the following we need also to consider the Banach sheaf V†,rκ⊗ρ,w := ω†κ,w ⊗ ωρ ⊗ Symr J and

its global sections N †,rκ⊗ρ,w,v for some (ρ,Wρ) ∈ RepZ,f GL(n). Here ωρ is the base change to XIw(v)
of the analytification of the automorphic sheaf E(Wρ). From E(Wρ) one also gets the locally free

formal sheaf of finite rank wρ over XIw(v) whose rigid fibre is ωρ. When working with V†,rκ⊗ρ,w and

N †,rκ⊗ρ,w,v, we can replace Symr J and Symr J in (ii)(iii) by ωρ ⊗ Symr J ,wρ ⊗ Symr J, and V r
κ,w in

(iv) by V r
κ⊗ρ,w.

3.5. The Banach A(U)-module N †,rU ,w,v,cusp is projective. The goal of this section is to prove

the proposition below following the arguments in [AIP15, §8].

Proposition 3.5.1. N †,rU ,w,v,cusp is a projective Banach A(U)-module. For every κ ∈ U with the

corresponding maximal ideal mκ ⊂ A(U) we have N †,rU ,w,v,cusp ⊗A(U)/mκA(U)
∼→ N †,rκ,w,v,cusp.

Proof. We use the interpretation (iii) in §3.4.3 and the same proof works if we replace κun by κun⊗ρ
with ρ ∈ RepZ,f GL(n). Our case differs very little from that in [AIP15, §8]. Instead of repeating
the whole proof here, we just point out the main ingredients there and explain that their arguments

for the formal Banach sheaf w̃†κun,w(−C) are applicable to Ṽ†κun,w(−C) = w̃†κun,w ⊗ π∗1 Symr J(−C).
Below for simplicity we write π∗1 Symr J as Symr J.

We use the notation in [AIP15, §8.2]. Let X? be the minimal compactification of Y . There is
a proper morphism X → X?. Like X(v) one can define X?(v) to be the p-adic completion of the
normalization of the largest open formal subscheme of the blow-up of X? along the ideal (Ha, pv)
where it is generated by Ha. We have the projection η : X1(pm)(v) → X?(v). We may assume
that U lies inside the identity component W◦ and take U to be the open formal subscheme of
an admissible blow-up of W◦ whose rigid fibre is U . We use the subscript l to mean reduction

modulo $l. [AIP15, Corollary 8.1.6.2] shows that Ṽ†,rκun,w is a small formal Banach sheaf over
X1(pm)(v) with Symr J1 as the required coherent sheaf in the definition of small formal Banach
sheaves (cf. [AIP15, Definition A.1.2.1]).

First we claim that the proposition follows from the following base change property for Ṽ†κun,w(−C).
For all l ∈ N, considering the the diagram

X1(pm)(v)l × Ul
i //

ηl×1

��

X1(pm)(v)l+1 × Ul+1

ηl+1×1

��

X?(v)l × Ul
i′ // X?(v)l+1 × Ul+1

,

the base change property for Ṽ†κun,w(−C) is

(3.5.1) i′∗(ηl+1 × 1)∗Ṽ
†
κun,w,l+1(−C) = (ηl × 1)∗Ṽ

†
κun,w,l(−C).

Once this base change property is proved, we deduce that (η × 1)∗Ṽ
†
κun,w(−C) is a small formal

Banach sheaf with (η×1)∗ Symr J1 as the required coherent sheaf. Then applying [AIP15, Theorem
A.1.2.2] and the arguments in [AIP15, Corollary 8.2.3.1, 8.2.3.2], we conclude that the module

H0
(
X1(pm)(v)× U , Ṽ†κun,w(−C)

)
is a projective Banach A(U)-module and the map

H0
(
X1(pm)(v)× U , Ṽ†κun,w(−C)

)
⊗A(U)/mκA(U) −→ H0

(
X1(pm)(v), Ṽ†κ,w(−C)

)
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is an isomorphism. The statement of the proposition follows by taking the invariant of the finite
group In(Z/pmZ).

We are left to show the base change property (3.5.1). Let V ′ ⊂ V = Z⊕2n be an isotropic
direct factor of rank r′ and YV ′ be the V ′-stratum of X? with universal abelian scheme AV ′ →
YV ′ . We start by recalling the description of the localization of the projection from the toroidal
compactification to the minimal compactification at a point belonging to the stratum YV ′ of X?

given in [AIP15, §8.2]. There are the abelian scheme BV ′ → YV ′ parametrizing the extensions of

AV ′ by V ′ ⊗ Gm and an isogeny BV ′ → Ar
′
V ′ of degree a power of N . Over BV ′ lies MV ′ which

is a torsor under the torus with character group S∨V ′ , isogeneous to Hom(Sym2 V/V ′⊥,Gm). Set
MV ′ → MV ′,S to be torus embedding associated to a polyhedral decomposition S of the cone

C(V/V ′⊥) of symmetric semi-definite bilinear forms on V/V ′⊥. In the same manner as in §3.3 one
defines YV ′(v),Y1(pm)V ′(v),BV ′(v),MV ′,S(v). Put B1(pm)V ′(v) = BV ′(v)×Ar

V ′
(AV ′/Hm,V ′)

r and

M1(pm)V ′,S(v) = MV ′,S(v)×BV ′ (v) B1(pm)V ′(v). Take a geometric point x̄ ∈ X?(v)l and consider

the projection X1(pm)(v)l → X?(v)l localized at x̄. The completion ̂X1(pm)(v)l,x̄ is isomorphic to

a disjoint union of spaces ̂M1(pm)V ′,S(v)l,ȳ/Γ1(pm)V ′ with some geometric point ȳ ∈ Y1(pm)V ′(v)l.

The spaces fit into the diagram

(3.5.2) ̂M1(pm)V ′,S(v)l,ȳ

h1
��

h2 // ̂M1(pm)V ′,S(v)l,ȳ/Γ1(pm)V ′ //

��

̂X1(pm)(v)l,x̄

̂B1(pm)V ′(v)l,ȳ
// ̂Y1(pm)V ′(v)l,ȳ

.

Because of the exact sequence

0→ w̃†κ,w,1 ⊗ Symr J1(−C)
$l−1

→ w̃†κ,w,l ⊗ Symr Jl(−C)→ w̃†κ,w,l−1 ⊗ Symr Jl−1(−C)→ 0,

the base change property for Ṽ†κun,w(−C) will follow from the vanishing result

(3.5.3) H1
( ̂M1(pm)V ′,S(v)1,ȳ/Γ1(pm)V ′ , w̃

†
κ,w,1 ⊗ Symr J1(−C)

)
= 0

for all κ ∈ U . The coherent Symr J has a filtration with graded pieces being automorphic sheaves

attached to algebraic GL(n)-representations that are free of finite rank,and the sheaf w̃†κ,w,1 is

an inductive limit of iterated extensions of the trivial sheaf [AIP15, Corollary 8.1.6.2]. Therefore
(3.5.3) is a corollary of the general vanishing result: for all ρ ∈ RepZ,f GL(n) and i > 0,

(3.5.4) H i
( ̂M1(pm)V ′,S(v)1,ȳ/Γ1(pm)V ′ ,wρ,1(−C)

)
= 0,

where wρ,1 is the pullback to ̂M1(pm)V ′,S(v)1,ȳ/Γ1(pm)V ′ of the automorphic sheaf ωρ on X. The

proof of (3.5.4) is an adaption of [Lan17, §8.2] in the situation (3.5.2). It is enough to show

H i
(

Γ1(pm)V ′ , H
j
( ̂M1(pm)V ′,S(v)1,ȳ, h

∗
2wρ,1(−C)

))
= 0 if i+ j > 0.

Over BV ′ there is the universal semi-abelian scheme

0 −→ V ′ ⊗Gm −→ GV ′ −→ AV ′ −→ 0,

so using the GL(n)-torsor IsomBV ′
(
OnBV ′ , ω(GV ′/BV ′)

)
one constructs a locally free sheaf of finite

rank ωρ over BV ′ . Its pullback wρ,1 to ̂B1(pm)V ′(v)l,ȳ satisfies

h∗1wρ,1 = h∗2wρ,1.
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The action of Γ1(pm)V ′ on SV ′ factors through a quotient Γ′1(pm)V ′ whose action on the set{
λ ∈ SV ′ ∩ C(V/V ′⊥)∨ : λ > 0

}
is free. Take S0 to be a set of representatives of the orbits. Apply-

ing [Lan17, Lemma 8.2.3.12], [FC90, Theorem V.2.7] we get

H i
(

Γ1(pm)V ′ , H
j
( ̂M1(pm)V ′,S(v)1,ȳ, h

∗
2wρ,1(−C)

))
=H i

(
Γ1(pm)V ′ ,

∏
λ∈SV ′∩C(V/V ′⊥)∨,λ>0

Hj
( ̂B1(pm)V ′(v)l,ȳ,L(λ)⊗wρ,1

))

=

{∏
λ∈S0

Hj
( ̂B1(pm)V ′(v)l,ȳ,L(λ)⊗wρ,1

)
i = 0

0 i > 0
.

Here L(λ) is an ample invertible sheaf over the abelian scheme B1(pm)V ′(v) for λ ∈ S0 [FC90, p.
143]. We reduce to show

(3.5.5) Hj
( ̂B1(pm)V ′(v)l,ȳ,L(λ)⊗wρ,1

)
= 0 if j > 0.

One observation is that, over BV ′ , the sheaf of invariant differentials of the torus part and the
quotient abelian part of the semi-abelian scheme GV ′ can be trivialized. Hence the sheaf ωρ can
be constructed using a torsor of a unipotent subgroup NV ′ ⊂ GL(n) with the NV ′-representation
ρ|NV ′ . Then [Lan17, Lemma 8.2.4.16] says that ρ|NV ′ admits a filtration with NV ′ acting trivially
on each graded piece. Thus ωρ is an iterated extension of the trivial sheaf, and (3.5.5) follows from

the vanishing results for Hj
( ̂B1(pm)V ′(v)l,ȳ,L(λ)

)
, j > 0 [Mum70, §III.16]. �

3.6. The differential operators. Let Ω1
XIw(v) be the sheaf of differentials on XIw(v) defined as

in [FvdP04, Ex. 4.4.1]. Over XIw(v) we have the integrable Gauss–Manin connection

∇ : H1
dR(G/XIw(v))can → H1

dR(G/XIw(v))can ⊗ Ω1
XIw(v)(logC).

For a w-analytic weight κ ∈ W(Cp) and ρ ∈ RepZ,f GL(n), we defined in §3.2 the (g,Qw)-module

Vκ⊗ρ,w. The Banach sheaf V†,rκ⊗ρ,w = ω†κ,w ⊗ ωρ ⊗ Symr J on XIw(v) has the contracted product in-

terpretation T ×H,w(v)×Qw Vκ⊗ρ,w. Using this contracted product interpretation and the construction
in §2.2, we obtain a connection

∇κ⊗ρ,w : V†,rκ⊗ρ,w −→ V
†,r+1
κ⊗ρ,w ⊗ ΩXIw(v)(logC) ∼= V†,r+1

κ⊗ρ⊗τ,w(−1).

Recall that τ is the symmetric square of the standard representation of GL(n). Composing it with

t+ : V†,r+1
κ⊗ρ⊗τ,w(−1) → V†,r+1

κ⊗ρ⊗τ,w we get the following differential operator which can be thought of
as an p-adic analytic version of the Maass–Shimura differential operators

Dκ⊗ρ,w : V†,rκ⊗ρ,w −→ V
†,r+1
κ⊗ρ⊗τ,w.

Besides, there is the Shimura’s E-operator [Shi00, §12.9], whose construction relies only on the fact
that we have the morphism of Qw-representations

V r
κ⊗ρ,w/V

0
κ⊗ρ,w −→ V r−1

κ⊗ρ,w ⊗ V 0
τ∨(1) = V r−1

κ⊗ρ⊗τ∨,w(1).

To be explicit, let Z = (Zij)1≤i,j≤n be the basis of τ∨ with a ∈ GL(n) acting on Z by a−1Zta−1.

Then the morphism is given by
∑

1≤i≤j≤n
Zij

∂
∂Yij

. The r-th iteration divided by r! is an isomorphism

(3.6.1)
1

r!
(
∑

1≤i≤j≤n
Zij

∂

∂Yij
)r : V r

κ⊗ρ,w/V
r−1
κ⊗ρ,w

∼−→ V 0
κ⊗ρ⊗Symr τ∨,w(r).

We write the induced operator on the Banach sheaves as

εκ⊗ρ,w : V†,rκ⊗ρ,w −→ V
†,r−1
κ⊗ρ⊗τ∨,w(1),
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and its composition with t− : V†,r−1
κ⊗ρ⊗τ∨,w(1)→ V†,r−1

κ⊗ρ⊗τ∨,w as

Eκ⊗ρ,w : V†,rκ⊗ρ,w −→ V
†,r−1
κ⊗ρ⊗τ∨,w(1)

t−−→ V†,r−1
κ⊗ρ⊗τ∨,w.

We can also iterate the operators and obtain

De
κ⊗ρ,w : V†,rρ,w −→ V

†,r+e
κ⊗ρ⊗Syme τ,w,

Eeκ⊗ρ,w : V†,rρ,w −→ V
†,r−e
κ⊗ρ⊗Syme τ∨,w,

for e ∈ N. A section of the sheaf V†,rκ⊗ρ,w lies inside V†,r
′

κ⊗ρ,w for 0 ≤ r′ < r if and only is it is

annihilated by Er
′+1
κ⊗ρ,w.

3.7. The holomorphic projection. Besides the definition of the space of nearly holomorphic
forms, its algebraic structure and the Maass–Shimura differential operators, another main ingre-
dient in Shimura’s theory of nearly holomorphic forms is the holomorphic projection. Shimura’s
construction [Shi00, Proposition 14.2] can be adapted to our p-adic analytic context.

Define the functions Log1, . . . ,Logn on the weight space W by

Logi(κ) :=
logp(κi(1 + p)t)

logp((1 + p)t)
,

for κ = (κ1, . . . , κn) ∈ W and some t ∈ N sufficiently large. Let K(Log1, . . . ,Logn) be the the
fraction field of K[Log1, . . . ,Logn]. For an affinoid subdomain U ⊂ W such that κun|U is w-analytic,
we prove in this section the following proposition.

Proposition 3.7.1. There is an A(U)-linear continuous map

A : N †,rU ,w,v −→ N †,0U ,w,v ⊗K K(Log1, . . . ,Logn)

whose restriction to N †,0U ,w,v is the identity.

In order to simplify notation for the rest of this section we omit all the subscripts from the

differential operators and E-operators as well as the subscript w from V†,r
κun⊗Syme τ⊗Syme′ τ∨,w

.

Suppose Spm(R) ⊂ XIw(v) is an affinoid subdomain such that there exists a section α ∈
T ×H,w(v)(R), and we regard α as a basis (α1, . . . , α2n) of H1

dR(A/R) satisfying certain conditions.

Given D ∈ DerK(R,R) in order to decide the action of ∇(D) on sections of V†,rκun⊗ρ over Spm(R),
we need to consider the element X(D,α) ∈ g⊗R defined by

∇(D)α = α ·X(D,α).

Let X(D,α) denote the image of X(D,α) inside the quotient g/q ∼= u−. The Levi subgroup M

acts on u− by conjugation. Hence a ∈ GL(n,R) acts on X(D,α) by sending it to ta−1X(D,α)a−1.
This GL(n)-action is isomorphic to τ∨. Given α ∈ T ×H,w(v)(R) and a basis {ei}1≤i≤n(n+1)/2 of the

GL(n)-representation τ , the dual basis {e∨i }1≤i≤n(n+1)/2 gives rise to a basis
{
De∨i ,α

}
1≤i≤n(n+1)/2

of the tangent space DerK(R,R). One can check by definition that the element X(De∨i ,α
, α) inside

u− ⊗R is independent of the choice of α ∈ T ×H,w(v)(R), and we abbreviate it as X(e∨i ).

Lemma 3.7.2.
{
X(De∨i

)
}

1≤i≤n(n+1)/2
form a basis of u−⊗R ∼= τ∨(R), which is dual to the basis

{ei}1≤i≤n(n+1)/2.
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Proof. The statement is an equality statement and does not depend on the choice of {ei}1≤i≤n(n+1)/2.

Hence it suffices to prove it for the Siegel variety Y , and we can further reduce to the Siegel upper
half space hn and take α to be the holomorphic basis (dw, β) of H1

dR(Ahn/hn) constructed in §2.5.
Denote by KS the Kodaira–Spencer map. Explicit computation using (2.5.4) shows that

KS(dwidwj) = 2πi · dzij 1 ≤ i ≤ j ≤ n.(3.7.1)

Put X = (Xij) as in §2.6. Then (Xij)1≤i≤j≤n can be regarded as a basis spanning the representation
τ . It is dual to the basis µ−ij of u−. (3.7.1) shows that dzij corresponds to Xij under the basis

(dw, β) so ∂/∂zij = DX∨ij ,(dw,β). By (2.5.4) we have X(X∨ij) = µ−ij and the statement is proved. �

The morphism τ ⊗ τ∨ → triv of GL(n)-representations induces the contraction operator

θe : V†,rκun⊗Syme τ⊗Syme τ∨ −→ V
†,r
κun .

Lemma 3.7.3. The composition

EeθeDe : V†,0κun⊗Syme τ∨
De−→ V†,eκun⊗Syme τ∨⊗Syme τ

θe−→ V†,eκun
Ee−→ V†,0κun⊗Syme τ∨

is an OXIw(v)×U -linear morphism of Banach sheaves over XIw(v) ×U , induced by an endomorphism

of the Qw-representation V 0
κun⊗Syme τ∨.

Proof. There exists a contraction map θ̃e : V†,0κun⊗Syme τ∨⊗Syme τ⊗Syme τ∨ → V
†,0
κun⊗Syme τ∨ induced

from a morphism of the corresponding representations such that EeθeDe = θ̃eEeDe. Therefore it is

enough to show that the map EeDe : V†,0κun⊗Syme τ∨ −→ V
†,0
κun⊗Syme τ∨⊗Syme τ⊗Syme τ∨ is induced from

a morphism of Iw-representations. Still take X = (Xij) as a basis of τ and write Vκun,w = Wκun,w[Y ]
with Y = (Yij)1≤i≤j≤n as in §3.2. Locally over Spm(R) ⊂ XIw(v), we fix a section α ∈ T ×H,w(v)(R)

and let DX∨ij ,α
be the basis of DerK(R,R) associated to X∨ij and α. With these choices of local

coordinates the map EeDe can be written as

EeDe : T ×H,w(v)(R)×Qw(R) V 0
κun⊗Syme τ∨(R) −→ T ×H,w(v)(R)×Qw(R) V 0

κun⊗Syme τ∨⊗Syme τ⊗Syme τ∨(R)

(α, u) 7−→ (α, Pα,u,e(X, Y )),

with Pα,u,e(X, Y ) being a homogenous polynomial of degree e in X and degree e in Y whose
coefficients lie in V 0

κun⊗Syme τ∨(R). The claim that EeDe is induced from a morphism of Iw-
representations is equivalent to the equality

(3.7.2) a ·
(
Pα,u,e(X, Y )

)
= Pα·a,u,e(X, Y ),

for all a ∈ Iw(R) and u ∈ V 0
κun⊗Syme τ∨(R). Note that by (2.2.2) the operator Ee annihilates all

terms in De ((α, u)) involving derivations of the base ring R or the action of q ⊂ g, because they
do not increase the degree in Y . We get

Pα,u,e(X, Y ) =
∑

1≤i≤j≤n

(
X(X∨ij) · Pα,u,e−1(X, Y )

)
Xij ,
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where X(X∨ij)· is regarded as an element of u− through u− ∼= g/q. We show (3.7.2) by induction.
The e = 0 case is true by definition of the contracted product. Assuming it is true for e− 1, then

a · Pα,u,e(X, Y ) = a ·
∑

1≤i≤j≤n

(
X(X∨ij) · Pα,u,e−1(X, Y )

)
Xij

=
∑

1≤i≤j≤n

((
ta−1X(X∨ij)a

−1
)
·
(
a · Pα,u,e−1(X, Y )

))(
a ·Xij

)
=

∑
1≤i≤j≤n

(
X(X∨ij) ·

(
a · Pα,u,e−1(X, Y )

))
Xij

=
∑

1≤i≤j≤n

(
X(X∨ij) · Pα·a,u,e−1(X, Y )

)
Xij

= Pα·a,u,e(X, Y ).

The second equality uses the compatibility of the action of g and Iw and the third equality follows
from Lemma 3.7.2. �

Denote by ϕ(κun, e) the endomorphism of Wκun⊗Syme τ∨ = V 0
κun⊗Syme τ∨ giving rise to EeθeDe.

Lemma 3.7.4. There exists an element ϕ̃ ∈ End(Wκun⊗Syme τ∨,w) and a nonzero η ∈ K[Log1, . . . ,Logn]
such that ϕ̃ ◦ ϕ(κun, e) = ϕ(κun, e) ◦ ϕ̃ = η.

Proof. As an A(U)-Banach module, we have Wκun,w
∼= ⊕N−(Z/p[w]Z)A(U) 〈T〉, the direct sum of

|N−(Z/p[w]Z)| copies of strictly convergent power series in T with T = (Tij)1≤i<j≤n. Let W 0 =
A(U)[T ] be the polynomial part of one copy. Fix a basis Z = (Zij)1≤i,j≤n, Zij = Zji of τ∨ with
a ∈ GL(n) acting by a · Z = ta−1Za−1 . Then Wκun⊗Syme τ∨,w

∼= ⊕N−(Z/p[w]Z)A(U)[Z]e 〈T〉 where

the subscript e means homogenous polynomials of degree e. Like W 0, set W 0
e = W 0 ⊗ Syme τ∨ =

A(U)[Z]e[T ]. Both W 0 and W 0
e are closed under the action of gl(n). Only Lie algebra action is

involved in the differential operators, so ϕ(κun, e) restricts to an endomorphism of the gl(n)-module
W 0
e . We can write W 0

e as a direct sum of its weight spaces W 0
e = ⊕λW 0

e,λ and each W 0
e,λ is free of

finite rank generated by some monomials of the form
∏

1≤i<j≤n T
sij
ij ·

∏
1≤k≤l≤n Z

tkl
kl , sij , tkl ≥ 0,∑

tkl = e. The endomorphism ϕ(κun, e) restricts to an A(U)-linear map ϕλ : W 0
e,λ →W 0

e,λ for each
λ and the corresponding matrix, with respect to the basis consisting of monomials, has entries in
OK [Log1, . . . ,Logn]. The first claim is that the determinant of ϕλ in non-zero. For κ ∈ U write
ϕλ,κ to denote the specialization of ϕλ at κ. Fix an arbitrary κ = (κ1, . . . , κn) ∈ U and consider
κ + k = (κ1 + k, . . . , κn + k) with k varying in N. Set Q(k) to be the determinant of ϕλ,κ+k. It
is a polynomial in k and is non-zero as observed in [Shi00, (14.3)]. Hence the determinant of ϕλ
cannot be zero. Then in order to show the existence of the ϕ̃, it suffices to show that there exists
η ∈ OK [Log1, . . . ,Logn] such that the minimal polynomial Pλ of ϕλ divides η in OK [Log1, . . . ,Logn]
for all λ. Let L be the algebraic closure of the field K(Log1, . . . ,Logn). For a generic κ ∈ U , the
specialization W 0

κ of W 0 at κ is isomorphic to the irreducible Verma module with highest weight
κ. According to [BGG71, Lemma 5], for generic κ, the gl(n)-module W 0

e,κ = W 0
κ ⊗ Syme τ∨ admits

a Jordan-Hölder series with irreducible Verma modules as graded pieces and the length is finite,
independent of κ. Let l be this length. It follows that the subset of L, consisting all the eigenvalues
of ϕλ for all λ, is finite, and also for each vector u ∈ W 0

e,λ,κ with κ generic, the dimension of the

space Span{ϕmλ,κ(u) : m ∈ N} is bounded by l. Therefore as λ varies the degree of the minimal
polynomial Pλ is uniformly bounded and all the roots are contained in a finite set. This implies
the existence of the desired η ∈ OK [Log1, . . . ,Logn]. �
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Proof of Proposition 3.7.1. Let ϕ̃, η be as in the previous lemma for e = r. Then η−1ϕ̃ induces the
morphism

Φr : V†,0κun⊗Symr τ∨,w −→ V
†,0
κun⊗Symr τ∨,w ⊗K K(Log1, . . . ,Logn),

which is the inverse of ErθrDr. Set Ar = 1− θrDrΦrE
r. Then

ErAr = Er(1− θrDrΦrE
r) = Er − (ErθrDrΦr)E

r = Er − Er = 0,

showing that Ar sends N †,rU ,w,v into N †,r−1
U ,w,v ⊗K K(Log1, . . . ,Logn). Meanwhile Ar is identity on

N †,r−1
U ,w,v because Er annihilates N †,r−1

U ,w,v . By induction we obtain the desired A = A1◦A2◦· · ·◦Ar. �

Corollary 3.7.5. There exists a nonzero η ∈ K[Log1, . . . ,Logn] such that each F ∈ N †,rU ,w,v can be
written as

ηF = F0 + θDF1 + · · ·+ θrDrFr

with Fi ∈ N †,0U⊗Symi τ∨,w,v
.

3.8. Unramified Hecke operators. Let ` be a prime integer with (`,Np) = 1. For γ` ∈
GSp(2n,Z`)\GSp(2n,Q`)/GSp(2n,Z`), the action of the Hecke operator Tγ` on N †,rκ,w,v can be
defined in the standard way using algebraic correspondence of `-(quasi-)isogenies of type γ`. Let
YIw,K be the moduli scheme over K parametrizing principally polarized abelian schemes (A, λ) with
a principal level N structure and a self-dual full flag Fil•A[p]. Define Cγ` ⊂ YIw,K × YIw,K to be
the moduli space, whose R-points Cγ`(R) for any K-algebra R consists of (quasi-)isogenies

π : (A1, λ1, ψN,1,Fil•A1[p])→ (A2, λ2, ψN,2,Fil•A2[p])

of type γ` with degree being a power of `. Here for i = 1, 2, λi, ψN,i and Fil•Ai[p] need to satisfy
π∗λ2 = ν(γ`)λ1, π ◦ ψN,1 = ψN,2, π ◦ Fil•A1[p] = Fil•A2[p]. Being of type γ` means that under
certain Z`-basis of the Tate modules T`(Ai), the matrix of the morphism induced by π on Tate
modules is γ`. Denote by p1 (resp. p2) the projection of Cγ` to the first (resp. second) factor. Put
Cγ`(v) = Cγ`,an ×p1,YIw,K,an YIw(v). Then we have the picture

(3.8.1) Cγ`(v)
p1

zz

p2

$$

YIw(v) YIw(v).

Write p∗i T
×
H,w(v) = Cγ`(v)×pi,YIw(v)T ×H,w(v). Due to the functoriality of the Hodge–Tate map and the

canonical subgroups, the (quasi-)isogeny π induces an isomorphism π∗ : p∗2T
×
H,w(v)→ p∗1T

×
H,w(v) (cf.

[AIP15, Lemma 6.1.1]). Applying π∗ to the first factor of the contracted product p∗i T
×
H,w(v)×QwV r

κ,w

we obtain

π∗ : p∗2V†,rκ,w
∼−→ p∗1V†,rκ,w.

The Hecke operator Tγ` is defined as the composition

H0(YIw(v),V†,rκ,w)
p2∗−→ H0(Cγ`(v), p∗2V†,rκ,w)

π∗−→ H0(Cγ`(v), p∗1V†,rκ,w)
Tr p1−→ H0(YIw(v),V†,rκ,w).

Such defined Tγ` maps bounded functions to bounded functions so it defines an action on N †,rκ,w,v
by the discussion of [AIP15, §5.5]. Its action also preserves the cuspidal part (see Remark 3.9.5).
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3.9. The Up-operators. Let T+ = {diag(pa1 , . . . , pan , pa0−a1 , . . . , pa0−an) ∈ T(Q) : a1 ≤ · · · ≤
an, a0 ≥ 2an}. Set

(3.9.1) γp,i =


Ii 0 0 0
0 pIn−i 0 0
0 0 p2Ii 0
0 0 0 pIn−i

 1 ≤ i ≤ n− 1 and γp,n =

(
In 0
0 pIn

)
.

We want to attach a Hecke operator to each element of T+. All such operators will be called
Up-operators. An element γp ∈ T+ can be uniquely written as γp = ps0

∏n
j=1 γ

sj
p,j with s0 ∈ Z,

s1 . . . , sn ∈ N. We make the scalar p act on YIw,K by sending (A, λ, ψN ,Fil•A[p]) to (A, λ, ψN ◦
p,Fil•A[p]). This action is invertible and induces a map on the global sections of the sheaf V†,rκ,w,
which we take as the Hecke operator corresponding to p ∈ T+ and denote by 〈p〉. We define the
Hecke operator attached to ps0 as 〈p〉s0 for all s0 ∈ Z. It remains to define the operators Up,i
associated to γp,i for 1 ≤ i ≤ n.

3.9.1. The operator Up,n. Let Cn ⊂ YIw,K×YIw,K be the moduli space parametrizing the quintuples
(A, λ, ψN ,Fil•A[p], L), with (A, λ, ψN ,Fil•A[p]) being the moduli problem defining YIw,K and L ⊂
A[p] satisfying L ⊕ FilnA[p] = A[p]. Denote by π : A → A/L the universal isogeny. There
are two projections p1, p2 from Cn to YIw,K . The first one is by forgetting L, and the other
sends (A, λ, ψN ,Fil•A[p], L) to (A/L, λ′, π ◦ ψN ,Fil•A/L[p]), with λ′ defined by π∗λ′ = pλ and
FiliA/L[p] = π ◦ FiliA[p], 1 ≤ i ≤ n. Consider Cn(v) = Cn,an ×p1,YIw,K YIw(v) ⊂ YIw(v) × YIw(v),
which parametrizes (A, λ, ψN ,Fil•A[p], L) with Hdg(A[p∞]) ≤ v and FilnA[p] = H1, the level 1
canonical subgroup. According to [Far11, Theorem 8], there is the diagram

(3.9.2) Cn(v)

p1

{{

p2

%%

YIw(v) YIw(p)(vp).

The universal isogeny π induces an isomorphism π∗ : p∗2T
×
H,w(vp) → p∗1T

×
H,w(v) (cf. [AIP15, Lemma

6.2.1.2]) that gives rise to π∗ : p∗2V
†,r
κ,w

∼−→ p∗1V
†,r
κ,w. The operator Up,n is defined as the composition

(3.9.3)
H0(YIw(p)(

v

p
),V†,rκ,w)

p2∗−→ H0(Cn(v), p∗2V†,rκ,w)
π∗−→ H0(Cn(v), p∗1V†,rκ,w)

p−n(n+1)/2 Tr p1−→ H0(YIw(v),V†,rκ,w).

See §3.9.5 for the normalizer p−n(n+1)/2.

3.9.2. The operators Up,i, i = 1, . . . , n− 1. First for w = (wjk)1≤k<j≤n satisfying

(i) wjk = w or w − 1 for some w as before,
(ii) wj+1,k ≥ wj,k, and wj,k−1 ≥ wjk,

we introduce the w-analyticity, generalizing the w-analyticity for a scalar w. Recall N−(Zp) ⊂ I(Zp)
is the subgroup of lower triangular elements with 1 as diagonal entries. Let N−w be the rigid analytic
group

N−(Zp) ·


1 0 · · · 0

B(0, pw21) 1 · · · 0
...

...
. . .

...
B(0, pwn1) B(0, pwn2) · · · 1

 =


1 0 · · · 0

pZp + B(0, pw21) 1 · · · 0
...

...
. . .

...
pZp + B(0, pwn1) pZp + B(0, pwn2) · · · 1

 .
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Then I ′w = N−w T ◦w−1 Nan is a rigid analytic space with the group T ◦w−1 Nan acting by the right

multiplication. Due to the requirement (i)(ii) on w, the space I ′w is also stable under the left
multiplication by the group Iw. Like in §3.2 we define the Iw-module Wκ,w by

Wκ,w(R) =

{
f : I ′w(R)→ R, f |N−w is analytic and f(xtn) = κ′(t)f(x)

for all x ∈ I ′w(R), t ∈ T ◦w−1(R), n ∈ Nan(R)

}
for all R ∈ AL. The group Iw acts on it through the left inverse translation. We write w′ ≤ w if
w′jk ≤ wjk for all 1 ≤ k < j ≤ n. For w′ ≤ w the module Wκ,w′ is contained in Wκ,w, and elements

in Wκ,w′ satisfy stronger analyticity condition. By the same formulas as (3.2.2), (3.2.3) we define

Vκ,w. The contracted products T ×F ,w(v)×Iw Wκ,w and T ×H,w(v)×Qw Vκ,w define sub-Banach sheaves

ω†κ,w of ω†κ,w, and V†,rκ,w of V†,rκ,w.

Next we extend the action of Iw on Wκ,w to ∆−I,w = IwT ◦−Iw, where T ◦− = {diag(pb1 , . . . , pbn) ∈
GL(n,Q) : b1 ≥ · · · ≥ bn}. With this extension the Qw-action on V r

κ,w extends to ∆−Q,w = QwT−Qw
where T− = {diag(pb1 , . . . , pbn , pb0−b1 , . . . , pb0−bn) ∈ T(Q) : b1 ≥ · · · ≥ bn, b0 ≥ 2b1}. Given
h = h′thh

′′ with h′, h′′ ∈ Iw and th ∈ T ◦−, we make it act on f ∈Wκ,w by

(3.9.4) (f · h)(x) = f(h−1xth).

It can be checked that this is a well defined action and has norm less or equal to 1 with respect
to the supreme norm on Wκ,w . If th = diag(pb1 , . . . , pbn), then h sends Wκ,w into Wκ,w′ , with
w′jk = maxk≤t<s≤j{wst + bs − bt, wjk − 1} ≤ wjk, increasing the analyticity.

Now fix 1 ≤ i ≤ n−1 and consider the moduli scheme Ci overK parametrizing (A, λ, ψN ,Fil•A[p], L),
where (A, λ, ψN ,Fil•A[p]) is the moduli problem defining YIw, and L ⊂ A[p2] is a Lagrangian sub-
group such that L[p]⊕ FiliA[p] = A[p]. Denote by π : A→ A/L the universal isogeny. Define the
projection p1 : Ci → YIw,K by forgetting L, and p2 : Ci → YIw,K by sending (A, λ, ψN ,Fil•A[p], L)
to (A/L, λ′, π ◦ ψN ,Fil•A/L[p]). Here the polarization λ′ is defined by π∗λ′ = p2λ and Fil•A/L[p]
is defined as

Filj A/L[p] = π
(

Filj A[p]
)
, 1 ≤ j ≤ i,

Filj A/L[p] = π
(

Filj A[p] + p−1(Filj A[p] ∩ L)
)
, i < j ≤ n,

Filj A/L[p] =
(

Fil2n−j A/L[p]
)⊥
, n+ 1 ≤ j ≤ 2n.

For example if x1, . . . , xn, xn+1, . . . , x2n is a basis of A[p2] compatible with Fil•A[p] and the Weil
pairing, then L can be taken to be 〈pxi+1, . . . , pxn, pxn+1, . . . , px2n−i, x2n−i+1, . . . , x2n〉 and corre-
spondingly Fil•A/L[p] is

〈px̄1〉 ⊂ · · · ⊂ 〈px̄1, . . . , px̄i〉 ⊂ 〈px̄1, . . . , px̄i, x̄i+1〉 ⊂ · · · ⊂ 〈px̄1, . . . , px̄i, x̄i+1, . . . , x̄n〉 ⊂ · · ·

where x̄j stands for xj mod L.
Set Ci(v) = Ci,an ×p1,YIw,an YIw(v). In order to form a diagram analogous to (3.8.1), (3.9.2) we

need

Proposition 3.9.1. ( [AIP15, Proposition 6.2.2.1]) If Hdg(A[p∞]) < p−2
p(2p−2) and FilnA[p] is the

canonical subgroup of level 1, then Hdg(A[p∞]/L) ≤ Hdg(A[p∞]) and the FilnA/L[p] defined above
is the canonical subgroup of level 1 of A/L.
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Then we have the diagram

(3.9.5) Ci(v)
p1

zz

p2

$$

YIw(v) YIw(v).

Now the pullback π∗ : p∗2T
×
H,an(v)

∼→ p∗1T
×
H,an(v) does not send p∗2T

×
H,w(v) into p∗1T

×
H,w(v), but to

p∗1T ×H,w(v) ◦


pIn−i 0 0 0

0 Ii 0 0
0 0 pIn−i 0
0 0 0 p2Ii

Qw ⊂ p∗1T ×H,w(v) ◦∆−Q,w.

Given local section (α, u) of the contracted product p∗2T
×
H,w(v)×Qw V r

κ,w, there is a γα ∈ ∆−Q,w such

that (π∗α) ◦ γ−1
α lies inside p∗1T

×
H,w(v), and we can define

(3.9.6)
π̃∗ : p∗2T ×H,w(v)×Qw V r

κ,w −→ p∗1T ×H,w(v)×Qw V r
κ,w′

(α, u) 7−→
(
(π∗α) ◦ γ−1

α , γα · u
)
,

with w′jk =

{
max{wjk − 1, w − 1}, if 1 ≤ k ≤ n− i < j ≤ n,
wjk, otherwise

. It is easy to see that the right hand

side of (3.9.6) does not depend on the choice of γα and π̃∗ is well defined.
The operator Up,i is defined as the composition

(3.9.7)
H0(YIw(v),V†,rκ,w)

p2∗−→ H0(Ci(v), p∗2V†,rκ,w)
π̃∗−→ H0(Ci(v), p∗1V

†,r
κ,w′)

p−i(n+1) Tr p1−→ H0(YIw(v),V†,rκ,w′).

The normalizer p−i(n+1) is justified in §3.9.5.

3.9.3. A compact operator Up. From (3.9.3), (3.9.7) we see that the composition Up,n ◦ Up,n−1 ◦
· · · ◦ Up,1 maps N †,rκ,w,v continuously into N †,rκ,w−1,pv. Let res : N †,rκ,w−1,pv → N †,rκ,w,v be the natural
restriction map. Define the operator Up as

Up = res ◦ Up,n ◦ Up,n−1 ◦ · · · ◦ Up,1 : N †,rκ,w,v −→ N †,rκ,w,v.

In the following we show that the map res : N †,rκ,w−1,pv → N †,rκ,w,v is a compact morphism between

two K-Banach modules. To this end it will be convenient to use the interpretation (ii) of N †,rκ,w,v in
§3.4.3, i.e.

N †,rκ,w,v = H0(IWw(v),Lκ ⊗ (π1 ◦ π3)∗ Symr J )B(Z/pmZ).

Since the group B(Z/pmZ) is finite, there is a continuous projection from H0(IWw(v),Lκ ⊗ (π1 ◦
π3)∗ Symr J ) to its B(Z/pmZ)-invariant part. Thus it is enough to show the compactness of the
restriction

H0(IWw−1(pv),Lκ ⊗ (π1 ◦ π3)∗ Symr J ) −→ H0(IWw(v),Lκ ⊗ (π1 ◦ π3)∗ Symr J ).

Note that the sheaf Lκ ⊗ (π1 ◦ π3)∗ Symr J is coherent. Applying [KL05, Proposition 2.4.1] we
reduce to prove that IWw(v) is relatively compact inside IWw−1(pv) (relative to Spm(K)).

According to [KL05, Definition 2.1.1], given a quasi-compact rigid analytic space Z and V ⊂ Z, an
admissible open quasi-compact subset, V is called relatively compact inside Z (relative to Spm(K)),
written as V b Z, if there exists a formal model Z of Z together with an open sub-formal scheme
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V ⊂ Z with rigid fibre Vrig = V, such that the closure V0 of the reduction V0 inside Z0 is proper
(over Spec(k), k = OK/$).

Lemma 3.9.2. X1(pm)(v) is relatively compact inside X1(pm)(pv).

Proof. First note that X (pv) b X since X is proper. Then using [KL05, Proposiion 2.3.1] we get
X (v) b X (pv). Both of the projections X1(pm)(v) → X (v) and X1(pm)(pv) → X (pv) are finite.
The statement follows from [KL05, Lemma 2.1.8]. �

Proposition 3.9.3. IWw(v) is relatively compact inside IWw−1(pv).

Proof. By construction we have the formal model f : IWw−1(pv) → X1(pm)(pv). By the previ-
ous lemma we can take an admissible formal blow-up X1(pm)(pv)′ → X1(pm)(pv) with an open
formal subscheme X1(pm)(v)′ ⊂ X1(pm)(pv)′, such that X1(pm)(v)′rig = X1(pm)(v) and the closure

X1(pm)(v)′0 inside X1(pm)(pv)′0 is proper. Base changing f via the blow-up we get

IWw−1(v)′

�

� � //

��

IWw−1(pv)′

��

X1(pm)(v)′ �
�

// X1(pm)(pv)′

.

There is an open covering of X1(pm)(pv)′ by affine open subschemes such that over each member
Spf(R) of it, IWw−1(pv)′ ×X1(pm)(pv)′ Spf(R) is isomorphic to

Spf(R)×


1 0 · · · 0

pw−1B(0, 1) 1 · · · 0
...

...
. . .

...
pw−1B(0, 1) pw−1B(0, 1) · · · 1

 ∼= Spf(R)×B(0, 1)n(n−1)/2

∼= Spf
(
R 〈Tij〉1≤j<i≤n

)
.

Over IWw−1(pv)′×X1(pm)(pv)′ Spf(R) one can define the ideal sheaf attached to the ideal generated
by p and Tij , 1 ≤ j < i ≤ n, which is independent of the choice of the coordinate Tij . Such locally
defined ideal sheaves glue together to an ideal sheaf I over IWw−1(pv)′. Let IWw−1(pv)′′ be
the blow-up of IWw−1(pv)′ along I , and take IWw(pv)′′ to be its open sub-formal scheme where
the ideal sheaf I is generated by p. From the local description of I , we know that the closure
IWw(pv)′′0 of IWw(pv)′′0 inside IWw−1(pv)′′0 is proper over the base X1(pm)(pv)′0. Take IWw(v)′′ to
be the inverse image of X1(pm)(v)′ under the projection IWw(pv)′′ → X1(pm)(pv)′. Then IWw(v)′′

is an open sub-formal scheme of IWw−1(pv)′′ with rigid fibre equal to IWw(v). Now we have the
picture

IWw(v)′′0
� � //

��

Z0
� � //

g

��
�

IWw(pv)′′0
� � //

h

��

IWw−1(pv)′′0

ww

X1(pm)(v)′0
� � // X1(pm)(v)′0

� � // X1(pm)(pv)′0

with the vertical map h being proper. Due to the properness of the scheme X1(pm)(v)′0 and the map
g (implied by that of h), the scheme Z0 is proper. Then the closure of IWw(v)′′0 inside IWw−1(pv)′′0
must be proper since it is contained in Z. �

All the arguments apply to the universal weight case by working relatively over U ⊂ W as well
as the cuspidal case by replacing Symr J with Symr J (−C). We record the following corollary.
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Corollary 3.9.4. The operators Up : N †,rκ,w,v → N †,rκ,w,v and Up : N †,rκ,w,v,cusp → N †,rκ,w,v,cusp (resp.

Up : N †,rU ,w,v → N †,rU ,w,v and Up : N †,rU ,w,v,cusp → N †,rU ,w,v,cusp) are compact operators of K-Banach

spaces (resp. A(U)-Banach modules).

3.9.4. Tensoring with τ, τ∨. We consider the algebraic GL(n)-representations (ρalg,Wρalg) that are
obtained by taking tensor products of symmetric powers Syme1 τalg and Syme2 τ∨alg with e1, e2 ∈ N.

Here we add the subscript to indicate that the action of ∆−I,w is the one given by the algebraic

action of GL(n). The notation ρ, τ, τ∨ will be saved for the ∆−I,w-modules which are obtained from
the algebraic ones by a renormalization explained below.

First we define two characters χ1, χ2 on the semi-group ∆−I,w. Given h = h′thh
′′ with h′, h′′ ∈ Iw

and th = diag(pb1 , . . . , pbn) ∈ T ◦−, put

χ1(h) = p−2bn , χ2(h) = p2b1 .

We define the ∆−I,w-modules τ, τ∨ as

τ := τalg ⊗ χ1, τ∨ := τ∨alg ⊗ χ2.

Then by taking tensor products of τ, τ∨, we associate to each ρalg the renormalized ∆−I,w-module

ρ. The reason we consider this renormalization of ρalg is that it makes the action of ∆−Q,w on V r
ρ

integral.

Then all the Up-operators can be constructed for N †,rκ⊗ρ,w,v in exactly the same way as when ρ

is trivial and Corollary 3.9.4 holds for the action of Up on N †,rκ⊗ρ,w,v and N †,rκ⊗ρ,w,v,cusp. There is

no need to distinguish ρ and ρalg when constructing of V†,rκ⊗ρ,w. Their difference only concerns the
action of Up-operators.

3.9.5. The normalizations of the Up-operators. We show in this section that by our choice of the
normalizations of the Up-operators, all the eigenvalues of the compactor operator Up acting on

N †,rκ⊗ρ,w,v are p-adically integral for all w-analytic κ. Since Vrκ⊗ρ,w has a filtration with V0
κ⊗ρ⊗Syme τ∨,w

as graded pieces, it is enough to consider the case r = 0.
For a positive integer l ∈ N, let Yl be the Siegel variety modulo pl and Yl[1/Ha] be the ordi-

nary locus. Denote by S(pm)l the finite étale cover of Yl[1/Ha] parametrizing, the quintuples
(A, λ, ψN ,Fil•

tA[pm]ét, (φj)1≤j≤n), where (A, λ, ψN ) is a principally polarized ordinary abelian

scheme of relative dimension n with principal level N structure defined over an OK/pl-algebra,
and Fil•

tA[pm]ét is a complete flag of the free Z/pmZ-module tA[pm]ét with trivializations of graded
pieces φj : Z/pmZ ' Filj /Filj+1

tA[pm]ét. Put S(p∞) = lim−→
l

lim←−
m

S(pm)l. The Hodge–Tate map gives

rise to the embedding

(3.9.8) S(p∞) �
�

//

%%

IW+
w(v)

��

XIw(v)

,

which induces an injective map

(3.9.9) res : N †,rκ⊗ρ,w,v → H0(S(p∞),Vr
ρ)[1/p],

where Vr
ρ is the pullback to S(p∞) of the locally free sheaf Vrρ of finite rank over X. In the

following we define Up-operators acting on H0(S(p∞),Vr
ρ) such that res is Up-equivariant. Then

the integrality of the Up-eigenvalues on N †,rκ⊗ρ,w,v follows. We deal with the case of the operator Up,i
for 1 ≤ i ≤ n− 1. Other cases are basically the same.
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First we construct the correspondence analogous to (3.9.5)

Ci,m,l(0)
p1

yy

p2

&&

S(pm)l S(pm−1)l

,

where Ci,m,l(0) parametrizes the sextuples (A, λ, ψN ,Fil•
tA[pm]ét, (φj)1≤j≤n, L) whose first five

components form the quintuple defining S(pm)l. The flag Fil•
tA[pm]ét gives a self-dual flag of

Fil•A[p] and L ⊂ A[p2] is the one used in defining Ci. The projection p1 is forgetting L. The
universal isogeny π : A → A′ = A/L induces a map tπ : tA′[pm]ét → tA[pm]ét and a well-defined
map p·tπ−1 : tA[pm]ét → tA′[pm]ét. Set Filj

tA′[pm−1]ét = p·tπ−1(Filj
tA[pm]ét)∩tA′[pm−1]ét and φ′j ={

p2 · tπ−1 ◦ φj , if 1 ≤ j ≤ n− i,
p · tπ−1 ◦ φj , if n− i+ 1 ≤ j ≤ n.

The projection p2 sends (A, λ, ψN ,Fil•
tA[pm]ét, (φj)1≤j≤n, L)

to (A′, λ′, π ◦ ψN ,Fil•
tA′[pm−1]ét, (φ′j)1≤j≤n). Taking the inverse limit with respect to m followed

by the direct limit with respect to l, we get Ci,∞(0) = lim−→
l

lim←−
m

Ci,m,l(0) and the correspondence

Ci,∞(0)
p1

yy

p2

%%

S(p∞) S(p∞).

By our choice of the normalization of the ∆−I,w-action on V r
ρ in the previous section, the group

I(Zp)T ◦−I(Zp) acts on it integrally. This guarantees that the map π̃∗ : p∗2Vρ → p∗1Vρ can be defined

in a manner similar to (3.9.6). Once we have checked that Im (Tr p1) ⊂ pi(n+1)H0(S(p∞),Vr
ρ), we

can define the operator Up,i as

H0(S(p∞),Vr
ρ)

p2∗−→ H0(Ci,∞(0), p∗2V
r
ρ)

π̃∗−→ H0(Ci,∞(0), p∗1V
r
ρ)

p−i(n+1) Tr p1−→ H0(S(p∞),Vr
ρ).

It is not difficult to see that with such defined Up-operators on H0(S(p∞),wρ), the map res is
Up-equivariant.

In the rest of this section we show the inclusion

Im (Tr p1) ⊂ pi(n+1)H0(S(p∞),Vr
ρ).

Essentially this containment reflects the fact that the projection p1 is ramified and pi(n+1) is its
pure inseparability degree. Thanks to the projection formula we have

p1,∗p
∗
1V

r
ρ = p1,∗OCi,∞(0) ⊗Vr

ρ.

Therefore it suffices to show

(3.9.10) Tr p1(p1,∗OCi,∞(0)) ⊂ pi(n+1)OS(p∞).

Let S(p∞)0 be the reduction of S(p∞) and take y0 ∈ S(p∞)0, y′0 ∈ p2(p−1
1 (y0)) . We show

(3.9.10) in the formal neighborhoods Ŝ(p∞)y0 , Ĉi,∞(0)(y0,y′0). We explicate the projection p1 using

the Serre–Tate coordinates [Hid04, §8.2, 8.3]. The formal neighborhood Ŝ(p∞)y0 is isomorphic to

Homsym(TpA
ét
y0 × Tp

tAét
y0 , Ĝm). A point z ∈ Ŝ(p∞)y0 corresponds to a bilinear map q : TpA

ét
y0 ×

Tp
tAét
y0 → Ĝm that is symmetric if we identify tAét

y0 with Aét
y0 via the polarization. Given any

basis x1, . . . , xn of TpA
ét
y0 , let tx1, . . . ,

txn be its image under the polarization, which is a basis of
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tAét
y0 . Write q(xi,

txj) = 1 + Tjk, 1 ≤ j, k ≤ n. We know that Tjk = Tkj . The {Tjk}1≤j≤k≤n
is a Serre–Tate coordinate of Ŝ(p∞)y0 . Similarly for Ŝ(p∞)y′0

with a given basis x′1, . . . , x
′
n of

TpA
ét
y′0

we get a corresponding Serre–Tate coordinate
{
T ′jk

}
1≤j≤k≤n

. The isogeny π : Ay0 →

Ay′0 induces a map on the Tate modules. Now fix basis x1, . . . , xn and x′1, . . . , x
′
n of TpA

ét
y0 and

TpA
ét
y′0

, such that with respect to them the matrix for the map π : TpA
ét
y0 → TpA

ét
y′0

is given by(
pIn−i 0

0 p2Ii

)
. Then under the basis tx1, . . . ,

txn and tx′1, . . . ,
tx′n of Tp

tAét
y0 and Tp

tAét
y′0

, obtained

from x1, . . . , xn and x′1, . . . , x
′
n by the polarization, the matrix for tπ : Tp

tAét
y′0
→ Tp

tAét
y0 is given by(

pIn−i 0
0 Ii

)
. For each (z, z′) ∈ Ĉi,∞(0)(y0,y′0) ⊂ Ŝ(p∞)y0 × Ŝ(p∞)y′0

, let q : TpA
ét
y0 × Tp

tAét
y0 → Ĝm

(resp. q′ : TpA
ét
y′0
× TptAét

y′0
→ Ĝm) be the corresponding bilinear map for z (resp. z′). We have

q
(
xj ,

tπ(x′k)
)

= q′
(
π(xj), x

′
k

)
. Translating to the coordinates Tjk and T ′jk, we see that T ′jk can be

taken to be the local coordinates of Ĉi,∞(0)(y0,y′0), and the projection p1 : Ĉi,∞(0)(y0,y′0) → Ŝ(p∞)y0
is given by

OK [[Tjk]] −→ OK [[T ′jk]]

Tjk 7−→ T ′jk if 1 ≤ j ≤ k ≤ n− i,
Tjk 7−→ (T ′jk + 1)p − 1 if 1 ≤ j ≤ n− i < k ≤ n,

Tjk 7−→ (T ′jk + 1)p
2 − 1 if n− i+ 1 ≤ j ≤ k ≤ n.

An easy computation shows that the pure inseparability degree of p1 is pi(n+1) and Im (Tr p1) ⊂
pi(n+1)OK [[Tjk]].

Before ending this section we include the following remark concerning the Hecke actions preserv-
ing the cuspidality.

Remark 3.9.5. The injection (3.9.9) is equivariant under the action of both unramified Hecke
operators and Up-operators. It is also easy to check that

N †,rκ⊗ρ,w,v,cusp = N †,rκ⊗ρ,w,v ∩H0(S(p∞),Vr
ρ(−C))[1/p].

Hence it is enough to notice that the space H0(S(p∞),Vr
ρ(−C)) is preserved under those op-

erators. This follows from the fact that classical cuspidal nearly homomorphic forms are stable
under Hecke actions, and that the classical cuspidal nearly homomorphic forms are dense inside
H0(S(p∞),Vr

ρ(−C)).

3.10. Interchanging the Hecke and differential operators. Let ρ be as in §3.9.4. In this
section we discuss the commutator of the Up-operators and unramified Hecke operators, with the

operators Dκ⊗ρ,w and Eκ⊗ρ,w acting on N †,rκ⊗ρ,w,v. Recall that the operators Dκ⊗ρ,w and Eκ⊗ρ,w are
defined as the compositions

Dκ⊗ρ,w : Vrκ⊗ρ,w,v
∇κ⊗ρ,w−→ Vr+1

κ⊗ρ⊗τalg,w,v(−1)
t+−→ Vr+1

κ⊗ρ⊗τ,w,v,

Eκ⊗ρ,w : Vrκ⊗ρ,w,v
εκ⊗ρ,w−→ Vr−1

κ⊗ρ⊗τ∨alg,w,v
(1)

t−−→ Vr−1
κ⊗ρ⊗τ∨,w,v.

We first show that the Up-operators and unramified Hecke operators commute with the connection
∇κ⊗ρ,w and the operator εκ⊗ρ,w, and then see how interchanging the order of the Up-operators and
the maps t+, t− leads to a certain power of p.
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Lemma 3.10.1. The Up-operators and unramified Hecke operators commute with the connection
∇κ⊗ρ,w and the operator εκ⊗ρ,w.

Proof. The Q-representation J admits a filtration 0 → triv → J → τ∨alg(1) → 0. The operator

εκ⊗ρ,w by definition is induced from the quotient morphism J → τ∨alg(1), and is easily seen to
commute with all Up-operators as well as unramified Hecke operators.

The commutativity of the connection ∇κ⊗ρ,w with all the Hecke operators is a result of the
functoriality of the Gauss–Manin connection, which says that for any map of abelian schemes

A
ϕ
//

��

	

A′

��

S
f
// R

,

we have

f∗H1
dR(A′/R)

f∗∇
//

ϕ∗

��

f∗H1
dR(A′/R)⊗ f∗Ω1

R
//

	

f∗H1
dR(A′/R)⊗ Ω1

S

ϕ∗⊗1
��

H1
dR(A/S)

∇ // H1
dR(A/S)⊗ Ω1

S

.

Let π be the universal isogeny A → A′ = A/L over Ci(v). By the definition of the operator Up,i,
1 ≤ i ≤ n − 1, in order to prove that it commutes with the connection ∇κ⊗ρ,w, we only need to
show the following diagram commutes.

p∗2V
†,r
κ⊗ρ,w

π̃∗ //

p∗2∇κ⊗ρ,w
��

p∗1V
†,r
κ⊗ρ,w

p∗1∇κ⊗ρ,w
��

p∗2V
†,r+1
κ⊗ρ,w ⊗ Ω1

Ci(v)

π̃∗⊗1
// p∗1V

†,r+1
κ⊗ρ,w ⊗ Ω1

Ci(v)

Write a local section of p∗2V
†,r+1
κ⊗ρ,w = p∗2T

×
H,w(v) ×Qw V r

κ⊗ρ,w as (α, u), with u ∈ V r
κ⊗ρ,w and α a

w-compatible local basis of p∗2H1
dR(A/YIw(v)). For any g ∈ Qw, (α, u) = (α ◦ g, g−1 · u). Take

γ ∈ ∆−Q,w such that π∗α ◦ γ−1 ∈ p∗1T
×
H,w(v). If D is a local section of the tangent bundle of Ci(v)

then (
p∗1∇ρ,w(D) ◦ π̃∗

)
(α, v) = p∗1∇ρ,w(D)

(
(π∗α ◦ γ−1, γ · v)

)
=
(
π∗α ◦ γ−1, D(γ · v) +X(D,π∗α ◦ γ−1) · γ · v

)
=
(
π∗α ◦ γ−1, D(γ · v) +X(D,α ◦ γ−1) · γ · v

)
= π̃∗

(
α, γ−1 ·D(γ · v) + γ−1 ·X(D,α ◦ γ−1) · γ · v

)
= π̃∗

(
α, Dv +

(
γ−1Dγ + Ad(γ−1)X(D,α ◦ γ)

)
· v
)

= π̃∗
(
α, Dv +X(D,α) · v

)
=
(
π̃∗ ◦ p∗2∇ρ,w(D)

)
(α, v),

where the third equality follows from the functoriality of the Gauss–Manin connection. The com-
mutativity of ∇κ⊗ρ,w with other Hecke operators are shown similarly. �

Define two characters νp,D, νp,E from T+ to Q× , sending t = diag(pa1 , . . . , pan , pa0−a1 , . . . , pa0−an)
to νp,D(t) = pa0−2a1 , νp,E(t) = pa0−2an , where a1 ≤ · · · ≤ an, a0 ≥ 2an. Both νp,D and νp,E are
trivial on scalar matrices. Evaluated at γp,i ∈ T+ defined as (3.9.1), we have νp,D(γp,i) = p2,
νp,E(γp,i) = 1 for 1 ≤ i ≤ n − 1, and νp,D(γp,n) = νp,E(γp,n) = p. Let ` be an unramified prime.
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Define the character ν` : GSp(2n,Z`)\GSp(2n,Q`)/GSp(2n,Z`) → Q×, sending γ` to |ν(γ`)|−1
`

where ν is the multiplier character.

Lemma 3.10.2.

(i) νp,D(γp) · t+Uγp = Uγpt
+, t−Uγp = νp,E(γp) · Uγpt−,

(ii) ν`(γ`) · t+Tγ` = Tγ`t
+, t−Tγ` = ν`(γ`) · Tγ`t

−.

Proof. (ii) is obvious since the corresponding representations differ by a twist of the multiplier
character. (i) is basically the same as (ii), but when defining the Up-operators, we renormalized
the algebraic representations τalg, τ∨alg to the ∆−I,w-modules τ , τ∨ by twisting the characters χ1,

χ2 to ensure the integrality. Therefore given γp = diag(pa1 , . . . , pan , pa0−a1 , . . . , pa0−an) ∈ T+,
the commutators of Uγp with t+, t− should involve the similitude νp(γp), as well as the character

χ1(γ◦p) = p−2a1 , χ2(γ◦p) = p2an with γ◦p = diag(pan , . . . , pa1). Explicitly the commutators are

νp,D(γp) = νp(γp) · p−2a1 = νp(γp) · χ1(γ◦p), and νp,E(γp) = νp(γp) · p−2an = νp(γp) · χ2(γ◦p)−1. �

Corollary 3.10.3.

(i) νp,D(γp) ·Dκ⊗ρUγp = UγpDκ⊗ρ, Eκ⊗ρUγp = νp,E(γp) · UγpEκ⊗ρ,
(ii) ν`(γ`) ·Dκ⊗ρTγ` = Tγ`Dκ⊗ρ, Eκ⊗ρTγ` = ν`(γ`) · Tγ`Eκ⊗ρ.

In particular, for the compact operator Up we have

p2n−1 ·Dκ⊗ρUp = UpDκ⊗ρ, Eκ⊗ρUp = p · UpEκ⊗ρ.

3.11. The slope decomposition. We consider the slope decomposition of the operator Up acting

on N †,∞U ,w,v,cusp :=
⋃
r≥0N

†,r
U ,w,v,cusp. We have seen that each N †,rU ,w,v,cusp is a projective A(U)-Banach

module with the action of Up being compact. Applying the Coleman–Riesz–Serre theory on the
spectrum of compact operators as developed in [Buz07], one can define the Fredohlm determinant

Pr(T ) = det

(
1− TUp|N†,rU,w,v,cusp

)
, which belongs to A(U){{T}}, the A(U)-algebra of power se-

ries with convergence radius being infinity. Because of the integrality of the operator Up, all the
coefficients of Pr(T ) are power bounded, i.e. Pr(T ) ∈ A(U)◦{{T}}.

Proposition 3.11.1. The sequence

(3.11.1) 0 −→ N †,r−1
κ,w,v,cusp −→ N †,rκ,w,v cusp

1
r!
Erκ,w−→ N †,0κ⊗Symr τ∨,w,v cusp −→ 0

is exact.

Proof. Let η : X1(pm)(v) → X?(v) be as in §3.5. Combining the vanishing result (3.5.3) there and
(3.6.1), we get the exact sequence of small formal Banach sheaves over X?(v)

0 −→ η∗Ṽ
†,r−1
κ,w (−C) −→ η∗Ṽ

†,r
κ,w(−C)

1
r!
Erκ,w−→ η∗Ṽ

†,0
κ⊗Symr τ∨,w(−C) −→ 0.

Due to the smallness we know that the augmented Cěch complexes of the above sheaves are exact
after inverting p [AIP15, Theorem A.1.2.2]. Thus we deduce the exactness of the sequence

0 −→ H0
(
X1(pm)(v), Ṽ†,r−1

κ,w (−C)
)
−→H0

(
X1(pm)(v), Ṽ†,rκ,w(−C)

)
1
r!
Erκ,w−→ H0

(
X1(pm)(v), Ṽ†,0κ⊗Symr τ∨,w(−C)

)
−→ 0.

The proposition follows by taking the invariants of I(Z/pmZ). �
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Combining (3.11.1) and the equality

Erκ,wUp = prUpE
r
κ,w,

we see that there exist Cr(T ) ∈ A(U)◦{{T}} such that

Pr(T ) = Pr−1(T )Cr(p
rT ).

Therefore we can define P∞(T ) ∈ A(U)◦{{T}} as the limit

P∞(T ) := lim
r→∞

Pr(T ).

Given Q(T ) ∈ A(U)[T ] dividing P∞(T ) one checks by definition [Col97, p.434-435] that for suffi-
ciently large r, the resultant Res

(
Q(T ), P∞(T )/Pr(T )

)
is a unit in A(U), so Q(T ) divides Pr(T ).

Now take Q(T ) ∈ A(U)[T ] whose constant term is 1 and the leading coefficient is a unit of A(U),
such that P∞(T ) = Q(T )S(T ) with S(T ) relatively prime to Q(T ). We call such a Q(T ) admissible

for N †,∞U ,w,v,cusp. If r ≥ 0 we can apply [Buz07, Thm.3.3] to get the slope decomposition

(3.11.2) N †,rU ,w,v,cusp = N r
Q,U ,cusp ⊕ F rQ,U ,

satisfying

(i) the direct summand N r
Q,U ,cusp is a projective A(U)-Banach module of finite rank, and also we

have det
(

1− TUp|Nr
Q,U,cusp

)
= Q(T ),

(ii) the operator Q∗(Up) is invertible on F rQ,U , where Q∗(T ) = T degQQ(1/T ).

Since Q(T ) is of finite degree and is picked such that Res
(
Q(T ), P∞(T )/Pr(T )

)
is a unit in A(U)

for r � 0, the module N r
Q,U ,cusp stops increasing after r is sufficiently large. We define NQ,U ,cusp as

N r
Q,U ,cusp for r � 0. The subscripts w, v are omitted since all eigenvalues of Up acting on NQ,U ,cusp

are nonzero, and it follows from the property of increasing analyticity and overconvergence of the
operator Up, that the module does not depend on w, v. Elements in the finite rank projective A(U)-
Banach module NQ,U ,cusp are Q-finite slope families of cuspidal nearly overconvergnent forms, and
we have the Q-finite slope projection

eQ,U : N †,∞U ,w,v,cusp −→ NQ,U ,cusp.

3.12. p-adic splitting of V†,rκ,w over ordinary locus. Let Y , X, X, X(v), XIw(v), X = Xrig,
X (v), XIw(v) be defined as in §3.3. Over X (resp. Y ) there is the semi-abelian scheme p : G → X
(resp. the universal abelian scheme p : A → Y ). Denote by p : G0 → X0 (resp. p : A0 → Y0) the
reduction modulo $. Set X0,ord, Y0,ord to be the ordinary locus of X0, Y0. Fix a lift σ : OK → OK
of the Frobenius of the residue field k = OK/$. Let F : X0,ord → X0,ord be the absolute Frobenius
and consider the commutative diagram

X0,ord

F

��

� � // X(0) //

u

��

Spf(OK)

σ

��

X0,ord
� � // X(0) // Spf(OK)

,

where u is the lift of the absolute Frobenius defined by sending an ordinary semi-abelian scheme
G to its quotient by G[p]o, the connected part of G[p], and composing with the base change by σ.
The isogeny A → A/A[p]o induces, by pullback, a morphism

Φ : u∗H1
dR(A/Y(0))can −→ H1

dR(A/Y(0))can

of formal coherent sheaves over X(0). By [Kat73a, Theorem 4.1], the locally free formal sheaf
H1
dR(A/Y(0))can of rank 2n has a unique Φ-stable locally free formal sub-sheaf UH of rank n, over
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which Φ restricts to an isomorphism. This UH gives rise to a splitting, called the unit-root splitting,
of the Hodge filtration:

H1
dR(A/Y(0))can = ω(G/X(0))⊕ UH.

Moreover UH is stable under the Gauss–Manin connection. The unit-root splitting pulls back to
XIw(p)(0), and induces a projection J→ OXIw(p)(0). Taking the generic fibre we get the projection

(3.12.1) H0(XIw(0),V†,rκ,w) = H0(XIw(0), ω†κ,w ⊗ Symr J ) −→ H0(XIw(0), ω†κ,w).

The Igusa tower S(p∞) defined in §3.9.5 is étale over XIw(0) with the group T◦(Zp) acting on it.
The space of p-adic forms of weight κ consists of functions on S(p∞) that are κ′-invariant under
the action of T◦(Zp), i.e.

Mp-adic
κ = H0(S(p∞),OS(p∞))[κ

′].

Composing (3.9.9) with r = 0 and (3.12.1) we obtain the map

ξp : N †,rκ,w,v −→Mp-adic
κ [1/p],

sending nearly overconvergent forms to p-adic forms.

Let κ ∈ W(K) be an arithmetic weight with algebraic part κalg and finite order κf . Set

Γ1(N, pm) =

{(
a b
c d

)
∈ Γ(N) : c ≡ 0 mod pm, a mod pm ∈ N(Z/pmZ)

}
.

Denote by N r
κ(Γ1(N, pm),K) the space of weight κalg, degree r classical nearly holomorphic Siegel

modular forms of level Γ1(N, pm) with nebentype κf at p.

Proposition 3.12.1. The following restriction of ξp to classical nearly holomorphic Siegel modular
forms

ξp,cl : N r
κ(Γ1(N, pm),K) ↪−→ N †,rκ,w,v

ξp−→Mp-adic
κ [1/p]

is injective.

Proof. Take f ∈ Ker ξp,cl. Under the map φ : N r
κ(Γ1(N, pm),K)⊗KC→ N r

κ(hn,Γ1(N, pm)) defined
as (2.5.3), the image φ(f) of f is a polynomial in (Im z)−1 with coefficients being holomorphic maps
from the upper half space hn to Wκalg(C). By definition φ is equivalent to the projection from Vrκ to

V0
κ through the C∞ splitting, given by the Hodge decomposition of H1

dR(Ahn/hn)⊗C∞(hn,C). Let
S ⊂ hn be the subset consisting of ordinary CM points. It is analytically dense inside hn. At each
point of S, the unit-root splitting agrees with the C∞ splitting [Kat78, Lemma 5.1.27]. Therefore
f ∈ Ker ξp,cl implies that φ(f) = 0 and f=0. �

In general it is conjectured that for all w-analytic weight κ, the map ξp is injective. The injectivity
is proved in the n = 1 case.

Proposition 3.12.2. ( [Urb14, Proposition 3.2.4]) When n = 1, G = GL(2)/Q, the map

ξp : N †,rκ,w,v →Mp-adic
κ [1/p]

is injective.

Below we replicate the proof given in [Urb14] with more details.

Proof. Suppose that there exists a nonzero f ∈ Ker ξp. In the GL(2) case, we can identify YIw(v)
with the open subset Y(v) of Y. Let {Ui} be an admissible cover of Y(v), such that each Ui
is an affinoid subdomain, and there is a basis (αi, βi) of H1

dR(A/Ui) giving rise to a section of

T ×H,w(v) → Y(v) over Ui. Denote by UH the rigid fibre of the formal invertible sheaf UH. After

a refinement of {Ui} if necessary, we can assume that over Ui,ord = Ui ∩ Y(0) there is a section
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β′i of UH such that (αi, β
′
i) gives a section of T ×H,w(v) → Y(v) over Ui,ord. Then there exists

λi ∈ A(Ui,ord) such that (αi, β
′
i) = (αi, βi)

(
1 λi
0 1

)
. Evaluating f at (A/Ui, (αi, βi)), we get

Pf,i(Y ) ∈ A(Ui)[Y ]≤r. Then ξp(f) = 0 implies that Pf,i(λi) = 0, i.e. λi is algebraic over the
function field of Ui for all i. Applying [BDR80, Theorem 1] we know that there is 0 < v′ < v such
that λi ∈ A(Ui ∩Y(v′)) for all i. It follows that there is an invertible subsheaf U ′H ⊂ H1

dR(A/Y(v′))
extending UH ⊂ H1

dR(A/Y(0)). By the rigidity of analytic functions, one deduces that U ′H is stable
under the Gauss–Manin connection ∇. Now consider the convergent F -isocrystal R1prig,∗(A/Y)
over Y0/(OK , σ), and we use E to denote its restriction to Y0,ord/(OK , σ). By definition E is an
overconvergent F -isocrystal over (Y0,ord, Y0)/(OK , σ). The inclusions Y0 ↪→ Y(v′), Y0 ↪→ Y(v′/p)
are both closed embeddings and fit into the following commutative diagram

Y0,ord

F

��

� � // Y0

F

��

� � // Y(v′/p) //

u

��

Spf(OK)

σ

��

Y0,ord
� � // Y0

� � // Y(v′) // Spf(OK)

,

where u is the map defined by sending an abelian scheme A to A/H1, its quotient by the level 1
canonical subgroup, and composing with the base change by σ. The isogeny A → A/H1 induces,
by pullback, a morphism

Φ : u∗H1
dR(A/Y(pv′)) −→ H1

dR(A/Y(v′)).

The triple (H1
dR(A/Y(v′)),∇,Φ) is a Y(v′) realization of the overconvergent F -isocrystal E (cf.

[Ber96, §2.3.2]). The unit-root splitting UH corresponds to a convergent sub-F -isocrystal E ′ of E
over Y0/(OK , σ). The extension U ′H of UH over Y(v′), stable under ∇, makes E ′ an overconvergent
isocrystal over (Y0,ord, Y0)/OK . By the discussion at the end of [Ber96, §2.3.9], E ′ is actually a
unit-root overconvergent F -isocrystal over (Y0,ord, Y0)/(OK , σ). Then [Cre87, Theorem 4.12] (cf.
also Remark 4.15 there) says that the representation ρE ′ : π1(Yord,0) → Z×p associated to E ′ has
finite local monodromy. However according to a theorem of Igusa [Kat73b, Theorem 4.3], the image
of ρE ′ of the inertia group at each supersingular point of Y0 surjects onto Z×p . �

3.13. Polynomial q-expansions and p-adic q-expansions. The embedding (3.9.8) induces, by
restriction, the injective map

(3.13.1) N †,rκ,w,v −→ H0(S(p∞), Symr J)[1/p].

For each geometrically connected component S(p∞)◦, with the Mumford object constructed in
§2.6, one can define a map

ι : Spf(OK [1/t][[N−1SL,≥0]]) −→ S(p∞)◦.

The canonical basis (ωcan, δcan) induces an isomorphism ι∗ Symr J ' OK [1/t][[N−1SL,≥0]][Y ]≤r,
which, together with (3.13.1), defines a p-adic polymonial q-expansion map

ει,q,poly : N †,rκ,w,v −→ OK [[N−1SL,≥0]][Y ]≤r[1/p].

Remark 3.13.1. Note that the image of ει,q,poly are polynomials in Y with scalar coefficients, while
the polynomial q-expansion f(q, Y ), defined as (2.6.1) for a classical nearly holomorphic form f of
an arithmetic weight κ, is a polynomial in Y with coefficients inside the representation Wκ. To
obtain the polynomial q-expansion here from the polymonial q-expansion in (2.6.1), one simply
applies the canonical map ecan : Wκalg → A1, defined as the evaluation at the identity matrix in
GL(n).
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If c is the number of geometrically connected components of Y1(p∞)(0), we can choose ι1, . . . , ιc
such that ιj maps MumN (q) to the j-th component . We define the polynomial q-expansion map
εq,poly as

⊕c
j=1 ειj ,q,poly. Then it follows from the irreduciblity of the Igusa tower S(p∞) [Hid04,

Corollary 8.17], that the map εq,poly is injective. Similarly we can define the polynomial q-expansion
map for families of nearly overconvergent forms which is again injective.

Proposition 3.13.2. The polynomial q-expansion maps

εq,poly : N †,∞κ,w,v −→
(
OK [[N−1SL,≥0]][Y ][1/p]

)⊕c
,

εq,poly : N †,∞U ,w,v −→
(
A(U)◦[[N−1SL,≥0]][Y ][1/p]

)⊕c
are injective.

In §3.12 we defined a map ξp : N †,rκ,w,v −→Mp-adic
κ [1/p] using the unit root splitting. Composing

ξp with the q-expansion map for p-adic forms, we get the map

εq : N †,∞κ,w,v −→Mp-adic
κ [1/p] −→

(
OK [[N−1SL,≥0]][1/p]

)⊕c
,

and call it the p-adic q-expansion of nearly overconvergent forms. Recall that in the construction
of MumN (q) we defined a basis (ωcan, δcan) . The locally free sheaf spanned by the δcan is exactly
the unit-root part. Therefore εq,p-adic is nothing but εq,poly|Y=0. In the case when the map ξp is
injective, the p-adic q-expansion εq,p-adic will also be injective. For families we define the p-adic
q-expansion simply as εq,poly|Y=0.

Proposition 3.13.3. Suppose that the subdomain U ⊂ W is a closed ball centered at an arithmetic

point and Q(T ) ∈ A(U)[T ] is admissible for N †,∞U ,w,v,cusp. Then after being restricted to NQ,U ,cusp,
the p-adic q-expansion map

εq,p-adic : NQ,U ,cusp −→
(
A(U)◦[[N−1SL,≥0]][1/p]

)⊕c
is injective.

Proof. Take F ∈ NQ,U ,cusp with εq,p-adic(F ) = 0. Then Proposition 3.12.1 implies that for each

arithmetic weight κ ∈ U(Qp) such that the specialization Fκ is a classical nearly holomorphic form,

we have Fκ = 0. We reduce to show that the subset of U(Qp) consisting of points κ with Fκ being
classical is Zariski dense inside U . By the construction of NQ,U ,cusp, we know that F ∈ N r

Q,U ,cusp

for some r ∈ N. Then F can be written as (Corollary 3.7.5)

ηF = F0 + θDF1 + · · ·+ θrDrFr

with Fi ∈ N †,0U⊗Symi τ∨,w,v
and η ∈ K[Log1, . . . ,Logn] nonzero. By Corollary 3.10.3 there is a

bound, depending on Q and r, on the slopes of F0, F1, . . . , Fn. Therefore if an arithmetic weight
κ ∈ U(Qp) is outside the zeroes of η with κalg dominant and sufficiently regular with respect to
that bound on slopes, then the classicity of F0,κ, . . . , Fn,κ can be deduced from [AIP15, Proposition
7.3.1] and [BPS16], from which the classicity of Fκ follows. Since U is a closed ball centered at an
arithmetic point, such arithmetic points outside the zeroes of η with algebraic parts dominant and
sufficiently regular are Zariski dense in U . �

3.14. Families by q-expansions. Keep the assumption on U , Q as in Prop. 3.13.3. Let Σ ⊂ U(Qp)

be a Zariski dense subset consisting of arithmetic points. Define NΣ,poly
Q,U ,cusp (resp. NΣ

Q,U ,cusp) to be the

sub-A(U)-module of
(
A◦(U)[[N−1SL,≥0]][Y ][1/p]

)⊕c
(resp.

(
A◦(U)[[N−1SL,≥0]][1/p]

)⊕c
) consisting

of those elements whose specialization at almost all κ ∈ Σ is contained in εq,poly(NQκ,κ,cusp) (resp.
εq,p-adic(NQκ,κ,cusp)).
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Proposition 3.14.1. With U , Q as in Proposition 3.13.3, the polynomial q-expansion map induces

an isomorphism from NQ,U ,cusp to NΣ,poly
Q,U ,cusp.

Proof. We follow the argument of [Wil88, Theorem 1.2.2], [Hid93, Theorem 7.3.1]. Abbreviate

A(U), NQ,U cusp, NQκ,κ,cusp, NΣ,poly
Q,U ,cusp, as A, N , Nκ, NΣ,poly. Let I be the set consisting of mono-

mials qβi
∏
Y
ajk
jk , where ajk ∈ N, 1 ≤ j ≤ k ≤ n, and βi ∈ N−1SL,≥0 with the subscript 1 ≤ i ≤ c

meaning the i-th connected component. By taking coefficients there is a natural embedding of(
A(U)◦[[N−1SL,≥0]][Y ][1/p]

)⊕c
into the direct product AI . Denote by K(A) the fraction field of

A. The A-module N is finite projective. Let d = rankA(N) = dimK(A)(N ⊗ K(A)) < ∞, and

pick F1, . . . , Fd ∈ N such that they span N ⊗ K(A) over K(A). Write their images inside AI
under the polynomial q-expansion map as

(
a(Fj , i)

)
i∈I , 1 ≤ j ≤ d. Thanks to the injectivity of

the map εq,poly, we can choose i1, . . . , id such that D = det
(
a(Fj , it)

)
1≤j,t≤d 6= 0. We claim that

DNΣ,poly ⊂ εq,poly(N). Otherwise there exists G =
(
a(G, i)

)
i∈I ∈ DN

Σ,poly\εq,poly(N). Subtract-

ing from G a linear combination of the εq,poly(Fj)’s, we get a nonzero G′ ∈ NΣ,poly with a(G, it) = 0
for all 1 ≤ t ≤ d. Since Σ is Zariski dense there exists some κ ∈ Σ, such that specializing at κ, the
vectors εq,poly(F1)κ, . . . , εq,poly(Fd)κ and G′κ are Qp-linearly independent and G′κ = εq,poly(f) for
some f ∈ Nκ. The injectivity of εq,poly shows that F1,κ, . . . , Fd,κ, f are linearly independent inside

Nκ which is impossible. Therefore NΣ,poly = εq,poly(N)⊗K(A)∩AI . We also deduce that NΣ,poly

is a finitely generated A-module because A is noetherian. In fact A is a noetherian UFD and a
Jacobson ring [BGR84, §5.2.6 Theorem 1, 3]. Now take an arbitrary G′′ ∈ εq,poly(N)⊗K(A)∩AI ,
we want to prove that G′′ actually lies inside εq,poly(N). Since A is a UFD we can take some
η ∈ A such that ηG′′ ∈ εq,poly(N) and for any η′ strictly divides η, we have η′G′′ /∈ εq,poly(N).
Take F ∈ N such that ηG′′ = εq,poly(F ). If m is a maximal ideal of A containing η, then the
polynomial q-expansion εq,poly(Fκm) = η(κm)G′′κm = 0, which implies that Fκm = 0 and F ∈ mN
by Proposition 3.5.1. This shows that F ∈

⋂
η∈mmN . The A-module N is finite projective so

there exists a1, . . . , al ∈ A such that each localization Nai is free of finite rank over Aai which
is still a noetherian UFD [Mat80, Lemma (19.B)] and a Jacobson ring [Sta15, Tag 00G6]. Let
η1, . . . , ηb be all the prime factors of η. Each ηjAai is a prime ideal that is the intersection of all
maximal ideals in Aai containing ηj . It follows that

√
ηAai =

⋂
j ηjAai =

⋂
η∈m,m∈Max(Aai )

mAai
and
√
ηNai =

⋂
η∈m,m∈Max(Aai )

mNai . Then from F ∈
⋂
η∈mmN , we deduce that F ∈ √ηNai for all

i, and hence F ∈ √ηN . By our choice of η this implies that η is a unit in A. �

If we apply the same argument to NΣ
Q,U ,cusp, due to the lack of injectivity of the map εq,p-adic at

all points in U , we only get a weaker result.

Proposition 3.14.2. With U , Q as in Proposition 3.13.3, there exists a nonzero η ∈ A(U) such
that ηNΣ

Q,U ,cusp belongs to εq,p-adic(NQ,U ,cusp).
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