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Abstract. We construct the p-adic standard L-functions for ordinary families of Hecke eigen-
systems of the symplectic group Sp(2n)/Q using the doubling method. We explain a clear and
simple strategy of choosing the local sections for the Siegel Eisenstein series on the doubling group
Sp(4n)/Q, which guarantees the nonvanishing of local zeta integrals and allows us to p-adically
interpolate the restrictions of the Siegel Eisenstein series to Sp(2n)/Q × Sp(2n)/Q.
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1. Introduction

The goal of this article is to construct the p-adic standard L-functions for ordinary families of
Hecke eigen-systems of symplectic groups. Let G = Sp(2n)/Q and π ⊂ A0(G(Q)\G(A)) be an
irreducible cuspidal automorphic representation of G(A). Take S to be a finite set of places of
Q containing the archimedean place and all the finite places where πv is ramified. Suppose ξ is
a primitive Dirichlet character unramified outside S. Consider the partial standard L-function
LS(s, π × ξ) =

∏
v/∈S

Lv(s, π × ξ) with the unramified local L-factor defined as

Lv(s, π × ξ) = (1− ξ(qv)q−sv )−1
n∏
i=1

(1− ξ(qv)αv,iq−sv )−1(1− ξ(qv)α−1
v,i q
−s
v )−1,

where qv is the cardinality of the residue field and α±1
v,1, · · · , α±1

v,n are the Satake parameters of πv.

The Euler product converges absolutely for Re (s)� 0 and has a meromorphic continuation to the
whole complex plane with at most simple poles [PSR87,KR90b].

Assume π∞ ∼= Dt, the holomorphic discrete series of weight t = (t1, · · · , tn) (so t1 ≥ · · · ≥ tn ≥
n+ 1). The right half critical set of LS(s, π × ξ) consists of points

s0 ∈ Z, 1 ≤ s0 ≤ tn − n and (−1)s0+n = ξ(−1).

At these critical points it is known that LS(s, π× ξ) has no poles and the critical values divided by
certain automorphic periods (depending on π and s0, but independent of ξ) are algebraic numbers
[Har81,Shi00,BS00].

Fix an odd prime p, an embedding of Q into C and an isomorphism between C and Qp. We

study the p-adic interpolation (up to an explicit factor) of the critical L-values LS(s0, π× ξ), as the
p-part of ξ varies among all finite order characters of Z×p , the point s0 varies in the right half critical
set, and moreover the Hecke eigen-system associated to π varies in an ordinary p-adic family.

First for the automorphic representation π, we define the modified Euler factor at p for p-adic
interpolation, under the ordinarity assumption on π, i.e. there exist (a1, · · · , an) ∈ (O×Qp)

n and

ϕ ∈ π such the Up-operator Up,a acts on ϕ by
∏n
j=1 a

aj
j for all a = (a1, · · · , an) ∈ Zn, a1 ≥

a2 ≥ · · · ≥ an ≥ 0 (see §2.5 for the definition of Up,a, especially the normalization which depends
on the KG,∞-type of the automorphic form it acts on). As shown in §5.5, for a fixed π, if such

an (a1, · · · , an) ∈ (O×Qp)
n exists, then it must be unique, and the corresponding ϕ must be an

eigenvector for the action of TG(Zp), where TG is the standard maximal torus of G. Furthermore,
the ordinarity condition on π implies that the local factor πp can be embedded into the principal

series Ind
G(Qp)
BG(Qp)(θ1, · · · , θn). Here BG is the the standard Borel subgroup of G. The character θj

of Q×p , 1 ≤ j ≤ n, is defined as θj(p) = αj = p−(tj−j)aj , and θj |Z×p = ψj where ψ = (ψ1, · · · , ψn) is

the character of TG(Zp) through which it acts on ϕ.
Let N ≥ 3 be a positive integer prime to p and φ be a Dirichlet character whose conductor

divides N . Let χ be a Dirichlet character whose conductor is a power of p. For π, φ, χ, define the
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modified Euler factor at p as

(1.0.1)

Ep(s, π × φ−1χ−1) =

(
1− χ◦(p) · φ(p)ps−1

)∏n
j=1

(
1− (χψj)

◦(p) · φ(p)α−1
j ps−1

)
(1− χ◦(p) · φ(p)−1p−s)

∏n
j=1 (1− (χψj)◦(p) · φ(p)−1αjp−s)

×
(
φ(p)ps−1

)cχ
G(χ)

n∏
j=1

(
φ(p)α−1

j ps−1
)cχψj

G(χψj).

Here G(χ) is the Gauss sum of χ. The integer cχ is defined such that the conductor of χ is pcχ ,
and χ◦ takes the value 0 at p, unless cχ = 0 in which case χ◦(p) = 1. Similarly we define G(χψj),
cχψj and (χψj)

◦, 1 ≤ j ≤ n. The Ep(s, π × φ−1χ−1) defined above agrees with Coates’ definition
in [Coa91, §6] of the modified Euler factor at p for the Weil–Deligne representation associated to
πp twisted by the character φ−1χ−1 (note that the definition does not depend on the monodromy
operator).

Let F be a finite extension of Qp containing all N -th roots of unity. Denote by Tn the standard
maximal torus of GL(n), which can be identified with TG by the diagonal emdedding of GL(n) into
G. Denote by ΓTn the p-profinite subgroup of Tn(Zp) and set Λn = OF [[ΓTn ]]. The OF [[Tn(Zp)]]-
algebra TNord, consisting of unramified Hecke operators and Up-operators acting on Hida families of

tame principal level N , is finite and torsion free over Λn [Hid02,Pil12b]. A point x ∈ Spec(TNord)(Qp)
corresponds to an eigen-system of the unramified Hecke operators and Up-operators. If that eigen-
system comes from an irreducible cuspidal automorphic representation π ∈ A0(G(Q)\G(A)), then it
completely determines the isomorphism class of πv for all v - N and we write πNx for the isomorphism
class of the G(AN )-representation

⊗′
v-N πv.

Given a point (κ, τ) inside Homcont(Z×p ×Tn(Zp),Q
×
p ), we say it is arithmetic if it can be written

as the product of an algebraic character with a finite order character, and we write its algebraic
part (resp. finite part) as κalg = k, τalg = t = (t1, · · · , tn) (resp. κf = χ, τf = ψ = (ψ1, · · · , ψn)). A
point is called admissible if it is arithmetic with t1 ≥ · · · ≥ tn ≥ k ≥ n+ 1. Given a geometrically
irreducible component C of Spec(TNord ⊗OF F ) with function field FC , our main result is

Theorem 1.0.1. For every Dirichlet character φ with conductor dividing N such that φ2 is non-
trivial, and a pair (β1, β2) of positive definite symmetric n×n matrices with rational entries, there
exists a p-adic measure µC,φ,β1,β2 ∈ M eas(Z×p ,Λn)⊗ΛnFC with the following interpolation properties.

Suppose that the weight projection map Spec(TNord) → Spec(OF [[Tn(Zp)]]) is étale at x ∈ C(Qp).

Let τ ∈ Homcont(Tn(Zp),Q
×
p ) be the projection of x into the weight space. If (κ, τ) is admissible,

then the evaluation of µC,φ,β1,β2 at κ, x is

(1.0.2)

(∫
Z×p
κ dµC,φ,β1,β2

)
(x) =φ(−1)nvol

(
Γ̂(N)

) pn
2
(p− 1)n∏n

l=1(p2l − 1)
· Γ(k − n)Γ2n(k)

2k+n−1(πi)2nk+k−n

×
Z∞(fκ,τ,∞, v

∨
t , vt)

〈v∨t , vt〉
·
∑
ϕ∈sx

c(ϕ, β1)c(eW (ϕ), β2)

〈ϕ,ϕ〉

× Ep(k − n, πNx × φ−1χ−1) · LNp∞(k − n, πNx × φ−1χ−1),

if φχ(−1) = (−1)k, and otherwise the evaluation is 0. Here

• For a positive integer m the Gamma function Γm(s) is defined as π
m(m−1)

4
∏m−1
j=0 Γ(s− j

2).

• Z∞(fκ,τ,∞, v
∨
t , vt) is the archimedean zeta integral for the doubling method with vt being the highest

weight vector inside the lowest KG,∞-type of Dt. Our choice of the archimedean section fκ,τ,∞ in

§4.3 guarantees its nonvanishing. When φχ(−1) = (−1)k the section fκ,τ,∞ depends only on the
algebraic part (k, t) of (κ, τ).
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• The finite set sx = {ϕ1, · · · , ϕd} consists of an orthogonal basis of the space spanned by cuspi-
dal holomorphic forms on G(A) of weight t and tame principal level N belonging to the Hecke
eigenspace parametrized by x. In this article we use the bi-C-linear Petersson inner product with
respect to the Haar measure of G(A) specified in Notation. By being orthogonal we mean the
basis satisfies 〈ϕi, ϕj〉 = 0 if i 6= j.

• c(·, βi) is the βi-th Fourier coefficient for i = 1, 2. The measure depends on the choice of the
indices β1, β2, and in general there is no canonical choice for them due to the lack of a canonical
nonvanishing Fourier coefficient for Siegel modular eigenforms, which can be regarded as the
analogue of the first Fourier coefficient in the case of modular forms.

• The operator W : π → π is defined as

W (ϕ)(g) :=

∫
NG(Zp)

ϕϑ (gu) du,

where the form ϕϑ is the MVW involution of ϕ, i.e. the conjugation of ϕ by ϑ =

(
0 In
In 0

)
, and

NG is the unipotent radical of BG. Proposition 5.7.2 shows that the ordinary projection eW (ϕ) is
nonzero if ϕ is ordinary . The operator W can be viewed as an analogue of the operator sending

a modular form f of level Γ0(Nf ) to f c|
(

0 −1
Nf 0

)
.

Remark 1.0.2. The condition φ2 6= 1 is used to make sure that the p-adic Dirichlet L-functions
which appear in our construction have no poles. Without this condition we can pick a prime
number ` coprime to p, and get a measure µC,`,φ,β1,β2 ∈ M eas(Z×p ,Λn)⊗Λn FC with almost the same
interpolation properties as described above, with the only difference that we need to add the factor
1− χ(`)−1`−k+n on the RHS of (1.0.2).

When π is fixed with t being a scalar weight and ψ1 = · · · = ψn, the one-variable p-adic L-function
is constructed in [BS00,CP04] with a weaker ordinarity condition only requiring the eigenvalue of
the operator Up,n to be a p-adic unit. The computations there are done with the Siegel upper half
space.

Our work in the construction of µC,φ,β1,β2 can also be viewed as a first step towards the Iwasawa–
Greenberg Main Conjecture for Sp(2n) generalizing [Urb06, SU14]. Our focus here is not only to
show the existence of the measure µC,φ,β1,β2 with the interpolation properties described above, but
also to show that in the construction all section selections of the doubling method are completely
natural, by illustrating how differential operators show up in p-adic applications of the doubling
method, how representation theory at the archimedean place guides the selection of suitable dif-
ferential operators, employing the ideas in [Har86, Har08], and how section selections at the place
p and the archimedean place are related for p-adic interpolation purposes. The strategy of section
selections here should generalize to many other cases where differential operators are involved.

It is well known that the doubling method reduces the study of analytic properties of L-functions,
as well as, algebraicity and p-adic interpolation of special L-values to that of the Siegel Eisenstein
series on the corresponding doubling group. SetH = Sp(4n)/Q and fix the (holomorphic) embedding
ι : G ×G ↪→ H. Let PH ⊂ H be the doubling Siegel parabolic. Pick a factorizable section f(s, ξ)

from the normalized induction IPH (s, ξ) = Ind
H(A)
PH(A)(ξ| · |

s ◦ det). Let E(·, f(s, ξ)) be the Siegel

Eisenstein series and E∗(·, f(s, ξ)) be the normalization of E(·, f(s, ξ)) by multiplying the product
of Dirichlet L-functions dS(s, ξ) (see §3 for precise definitions). Given ϕ1, ϕ2 ∈ π with factorizable
images under π ∼=

⊗′
v πv and assuming all data outside S are unramified, the doubling method
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formula [PSR87,Gar84,Shi00] reads

(1.0.3)
〈
E∗(ι(·, ·), f(s, ξ)), ϕ1 ⊗ ϕϑ2

〉
= LS(s+

1

2
, π × ξ) ·

∏
v∈S

Zv(fv(s, ξ), ϕ1,v, ϕ2,v)〈
ϕ1,v, ϕ2,v

〉
v

· 〈ϕ1, ϕ2〉 .

From (1.0.3) one sees that a key point in applying the doubling method to attain various results
about the L-function is to select suitable local sections fv(s, ξ) for v ∈ S, such that one can get
a good handle on both the resulting normalized Siegel Eisenstein series on the left hand side, and
the local zeta integrals on the right hand side of the formula.

The proof of Theorem 1.0.1 consists of two main steps. The first step is to pick suitable local

sections fκ,τ,v ∈ IPH ,v(k− 2n+1
2 , φ−1χ−1) for all admissible points (κ, τ) inside Hom(Z×p ×T (Zp),Q

×
p ),

and to compute the Fourier coefficients of the resulting Siegel Eisenstein series as well as the
corresponding local zeta integrals. Away from Np∞ we always set fκ,τ,v to be the unramified
section. The two major criteria for selecting fκ,τ,v for v | Np∞ are the nonvanishing and p-adic
interpolation conditions, i.e.

(1) the local zeta integral Zv(fκ,τ,v, ϕ1,v, ϕ2,v) does not vanish identically for ϕ1, ϕ2 ∈ sx if the

projection of the point x ∈ Spec(TNord)(Qp) to the weight space is τ, and

(2) the resulting E∗(·, fκ,τ)
∣∣
G×G after a further normalization is algebraic and its q-expansion

admits p-adic interpolation.

For v | N , a very simple choice is the so-called “volume section” (see §4.2).
Regarding the selection for v = p,∞, one observation is that if at p we consider sections supported

on the “big cell” then, due to the p-adic interpolation condition on q-expansions, the archimedean
section fκ,τ,∞ almost determines the p-adic section fκ,τ,p and vice versa. Our strategy is to make
choices for the archimedean sections incorporating both representation theory results and p-adic
considerations.

In §5, with all local sections selected, we interpolate the q-expansions of the restriction to G×G
of the corresponding Siegel Eisenstein series to the p-adic measure µE,q-exp on Z×p × T (Zp) valued

in OF [[N−1 Sym(n,Z)∗⊕2
>0 ]]. It serves as the input for applying the machinery of Hida theory in the

next step. The second part of that section is devoted to the calculation of local zeta integrals at
p, where an important observation of Böcherer–Schmidt (see §5.3) helps simplify the computation.
The calculation results for all local zeta integrals are summarized in Proposition 5.2.3, which give
the interpolation properties of the p-adic L-function we will finally construct.

In the second step we apply Hida theory to produce, from the q-expansion-valued measure
µE,q-exp, a p-adic measure on Z×p valued in cuspidal ordinary families of p-adic Siegel modular forms
on G×G. Combining it with a p-adic analogue of the Petersson inner product, constructed from the
geometrically irreducible component C of Spec(TNord⊗OF F ), we get the measure in Theorem 1.0.1.

For unitary groups there are also works done towards the construction of p-adic L-functions
[HLS06, EHLS16, Eis15, Eis14, Eis16, EW16] and Klingen Eisenstein families [Wan15]. The pa-
per [EHLS16] where the construction is completed was not yet available at the time this paper
was written. Their results are not used in our construction. The computations of the factors at p
done in [Wan15] assume restrictive conditions on the conductors of the nebentypes. The general
cases are treated in [EHLS16] with an innovative use of the Godement–Jacquet local functional
equation. It is claimed in [Eis16] that the method for section selections there also works for sym-
plectic groups. We expect the sections chosen by that method (although the expressions seem
more complicated) to be no different from ours here because, as we have pointed out, the choice of
archimedean sections imposes sections at p via p-adic interpolation considerations, and based on
the ideas in [Har86], the choice of archimedean sections here is quite canonical as explained in the
proof of Proposition 4.3.1. The nonvanishing of the archimedean zeta integral is not particularly
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discussed in [Eis16], but should follow from the arguments in [Har08].

Notation. We fix an odd prime p and a positive integer N ≥ 3 prime to p. We also fix an
embedding of Q into C and an isomorphism between Qp and C.

For a Dirichlet character ξ we write ξ◦ to denote the primitive one associated to it. We denote
by Cξ the conductor of ξ◦ and by G(ξ) the Gauss sum of ξ◦. If the conductor Cξ is a power of p we
define the integer cξ such that Cξ = pcξ . The Dirichlet characters we consider in the following will
be almost all primitive with only one exception. For a finite order character inside Hom(Z×p , ζp∞)
when we regard it as a Dirichlet character we require it to take value 0 at p.

Let Ln be the free Z-module of rank 2n spanned by the basis e1, · · · , en, f1, · · · , fn. We will
always use this basis to write related objects in matrix form. Equip Ln with the symplectic pairing

given by

(
0 In
−In 0

)
. Then e1, · · · , en (resp. f1, · · · , fn) span a maximal isotropic subspace Ln

(resp. L∗n) and we have the polarization Ln = Ln ⊕ L∗n. We use G to denote the reductive group
G(Ln) = Sp(2n) defined over Z. In matrix form it is{

g ∈ GL(2n) : tg

(
0 In
−In 0

)
g =

(
0 In
−In 0

)}
.

Let QG be the standard Siegel parabolic subgroup of G preserving Ln. We identify its Levi subgroup

with GL(n) via the map p : QG → GL(n) sending

(
a b
0 ta−1

)
to a. Denote byBn the Borel subgroup

of GL(n) of upper triangular matrices, and by Nn, Tn its unipotent radical and maximal torus
respectively. We fix the isomorphism of Gn

m with Tn which sends (a1, · · · , an) to diag(a1, · · · , an).
The inverse image under p of Bn constitutes the standard Borel subgroup BG of G with unipotent
radical NG and maximal torus TG. The tori Tn and TG are identified via the map p.

Let g (resp. qG) be the Lie algebra of G (resp. QG). We use Eij to denote the matrix with 1 in
the (i, j) entry and 0 elsewhere, whose size will be clear from the context. Fix the following basis
of g

ηij = Eij − Ej+n,i+n, 1 ≤ i, j ≤ n,
µ+
ii = Ei,i+n, µ−ii = Ei+n,i, 1 ≤ i ≤ n,
µ+
ij = Ei,j+n + Ej,i+n, µ−ij = Ei+n,j + Ej+n,i, 1 ≤ i < j ≤ n.

For a positive integer m and an algebra R, denote by Sym(m,R) the set of m ×m symmetric
matrices with entries in R.

Consider the connected Shimura datum (G, u) with

u : U(1,R)→ Gad(R)

eiθ 7→
(

cos θ · In sin θ · In
− sin θ · In cos θ · In

)
.

The group G(R) acts on u by conjugation. The centralizer

KG,∞ =

{(
a b
−b a

)
: a+ bi ∈ U(n,R)

}
is a maximal compact subgroup of G(R), and the conjugacy class of u is G(R)/KG,∞, which is
isomorphic to the Siegel upper half space

Hn =
{
z ∈Mn(C) : tz = z, Im z > 0

}
.
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The group G(R) acts on Hn by g · z = (az + b)(cz + d)−1 for g =

(
a b
c d

)
∈ G(R), z ∈ Hn, and we

put µ(g, z) = cz + d.
Fix the standard additive character eA =

⊗
v ev : Q\A → C× with local component ev defined

as ev(x) =

{
e−2πi{x}v , v 6=∞
e2πix, v =∞

where {x}v is the fractional part of x.

For a finite place v we fix the Haar measure on Qv (resp. G(Qv)) with Zv (resp. G(Zv)) having
volume 1. For the archimedean place we take the usual Lebesgue measure for R. For the group
G(R) we take the product measure where the one on KG,∞ has total volume 1 and the one on
the Hn is det(y)−n−1

∏
1≤i≤j≤n

dxij dyij . The Haar measures on A and G(A) are obtained by taking

products of the local ones. For the unipotent group NG(Qv) (resp. UG(Qv)), we always take the
Haar measure that gives the open compact subgroup NG(Zv) (resp. UG(Zv)) volume 1 if v is finite,

and the Haar measure d∞u(x) =
∏

1≤i≤j≤n
dxij for the archimedean place, where u(x) =

(
In x
0 In

)
for x ∈ Sym(n,R).

Similarly we have all the above definitions for H = Sp(4n).

Acknowledgements. I am grateful to my advisor Eric Urban for suggesting this problem to me and
for the inspirational discussions as well as his constant encouragement. I thank Michael Harris for
explaining to me how the results in [JV79] are used in his construction of holomorphic differen-
tial operators and their applications in studying the algebraicity of special L-values through the
doubling method. I also thank Ellen Eischen, Christopher Skinner, Binyong Sun and Xin Wan for
helpful conversations.

2. Nearly holomorphic Siegel modular forms

As a preparation for our following constructions we introduce the space of nearly holomor-
phic Siegel modular forms and the Maass–Shimura differential operators. With our choice of
archimedean sections in §4.3 the Siegel Eisenstein series on H and their restrictions to G × G
are in general not holomorphic but nearly holomorphic. The action of q+

G (see §2.4 for definition)

will be applied for choosing the archimedean sections. We show how to translate the q+
G-action on

A(G(Q)\G(A)) to the Maass–Shimura differential operators (defined by Shimura) acting on smooth
functions on the Siegel upper half space, and to the Gauss–Manin connections associated to the
automorphic sheaves of nearly holomorphic forms.

Besides we define q-expansions, Up-operators and ordinary projections for nearly holomorphic
forms. The Up-operators are defined both geometrically and adelically. One crucial aspect for the
definition of the Up-operators is the normalization.

For more detailed treatment see [Liu15]. We formulate the theory for G and it is clear that
everything applies to H and G×G.

2.1. Siegel modular variety and automorphic sheaves. Let G = GSp(2n) with the mul-
tiplier character ν : G → Gm and Q be its standard Siegel parabolic subgroup consisting of
matrices whose lower left n × n blocks are zero. Set Γ = Γ1(N, pm) to be the congruence sub-
group {γ ∈ Sp(2n,Z) : γ ≡ I2n mod N, γ mod pm ∈ NG(Z/pmZ)}. Denote by YG,Γ the Siegel
modular variety parametrizing principally polarized abelian schemes of dimension n with level Γ
structure defined over Q. Over it there is the universal abelian scheme (A, λ, ψN ,fil+pm) where λ

is a principal polarization, ψN is an isomorphism Ln⊗Z/NZ ∼→ A[N ] respecting the Weil pairing
up to similitude, and fil+pm is a full flag with trivialization of graded pieces of an isotropic free
Z/pmZ-submodule of A[pm] of rank n.
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Take XG,Γ to be a smooth toroidal compactification of YG,Γ with boundary C (see [FC90,Lan12]).
The universal abelian scheme A extends to a semi-abelian scheme p : G → XG,Γ with a canonical
section e. Let ω(G/XG,Γ) = e∗Ω1

G/XG,Γ
be the sheaf of invariant differentials, which is locally free

of rank n. The sheaf H1
dR(A/YG,Γ) = R1p∗(Ω

•
A/YG,Γ) has a canonical extension H1

dR(A/YG,Γ)can,

which is a locally free sheaf over XG,Γ of rank 2n equipped with the Hodge filtration

(2.1.1) 0 −→ ω(G/XG,Γ) −→ H1
dR(A/YG,Γ)can −→ Lie(tG/XG,Γ)→ 0,

and a symplectic pairing such that ω(G/XG,Γ) is maximally isotropic. The Gauss–Manin connection
on H1

dR(A/YG,Γ) also extends to an integrable connection on H1
dR(A/YG,Γ)can with log poles along

the boundary

∇ : H1
dR(A/YG,Γ)can −→ H1

dR(A/YG,Γ)can ⊗OXG,Γ
Ω1
XG,Γ

(logC).

There is a standard way to attach an automorphic sheaf to an object in RepQ Q, the category
of algebraic representations of Q over Q-vector spaces. Over XG,Γ we have the right Q-torsor

T×H = IsomXG,Γ

(
Ln⊗ZOXG,Γ

,H1
dR(A/YG,Γ)can

)
,

where the isomorphisms are required to respect the Hodge filtration and the symplectic pairing up
to similitude. Using the contracted product one defines the functor

E : RepQ Q −→ QCoh(XG,Γ)

V 7−→ T×H ×
Q V

sending a Q-representation to a locally free sheaf over XG,Γ. We will also write E(V ) as V. For
a prime number ` with (`,Np) = 1 and γ` ∈ G(Z`)\G(Q`)/G(Z`) the Hecke action of Tγ` on
H0(XG,Γ,V) can be defined in the standard way using algebraic correspondence. We call such a
V, together with the Hecke actions on its global sections, an automorphic sheaf over XG,Γ. The
multiplier character ν is a character of Q and so gives an invertible automorphic sheaf E(ν). As
a coherent sheaf, E(ν) is isomorphic to the structure sheaf but the Hecke actions differ by a Tate
twist. We use V(i) to denote V ⊗ E(ν)⊗i.

Let XG,Γ be a connected component of the base change of XG,Γ to Q(ζN ). Here we do all the
constructions over XG,Γ. For applications later we restrict everything to XG,Γ. What we need to
be careful about is the Hecke operators. For v - N , over XG,Γ we consider operators corresponding
to elements inside G(Qv), while over the connected component XG,Γ we only consider those inside
G(Qv).

2.2. Nearly holomorphic forms and differential operators. If we want to consider auto-
morphic sheaves further endowed with an integrable connection, the right objects to consider are
(Lie G,Q)-modules. A (Lie G,Q)-module V is an object in RepQ Q with an extra action of Lie G
such that its restriction to Lie Q agrees with the one induced from the action of Q, and the com-
patibility condition

g ·X · g−1 · v =
(
Ad(g)X

)
· v

holds for all v ∈ V , X ∈ Lie G and g ∈ Q. Denote by RepQ(Lie G,Q) the category of (Lie G,Q)-
modules.

Suppose V is a (Lie G,Q)-module. It follows from [Liu15, Proposition 2.2.3] that there is the
Gauss–Manin connection for the locally free sheaf E(V ),

∇ : E(V ) −→ E(V )⊗OXG,Γ
Ω1
XG,Γ

(logC)

which induces Hecke equivariant maps on global sections. Its construction uses the Gauss–Manin
connection (2.1.1) and the Lie G-module structure of V .

8



Now let (σ,Wσ) be a finite dimensional algebraic representation of GL(n). We define the
(Lie G,Q)-module Vσ as follows. Let Y = (Yij)1≤i,j≤n the symmetric n × n matrix with the
(i, j) and (j, i) entries being the indeterminate Yij = Yji. As a Q-vector space Vσ = Wσ[Y ], the
space of polynomials in Yij with coefficients in Wσ. The action of Q is defined as(

a b
0 d

)
· P (Y ) = a · P (a−1b+ a−1 Y d)

for

(
a b
0 d

)
∈ Q and P (Y ) ∈ Vσ. The element µ−ij acts on P (Y ) by

(µ−ij · P )(Y ) =
∑

1≤k≤n
(Ykiηkj + Ykjηki) · P (Y )−

∑
1≤k≤l≤n

(YkiYjl + YkjYil)
∂

∂Ykl
P (Y ) i 6= j,

(µ−ii · P )(Y ) =
∑

1≤k≤n
Ykip(ηki) · P (Y )−

∑
1≤k≤l≤n

YkiYil
∂

∂Ykl
P (Y ).

It is easy to check that the above formulas define a (Lie G,Q)-module structure on Vσ.
As a Q-representation, Vσ admits an increasing filtration V r

σ := Wσ[Y ]≤r, r ≥ 0, where the
subscript ≤ r means polynomials in Yij , 1 ≤ i, j ≤ n with total degree less or equal to r. We have
g · V r

σ ⊂ V r+1
σ .

The locally free sheaf over XG,Γ of (nonholomorphy) degree r nearly holomorphic forms valued
in Wσ is defined to be Vrσ = E(V r

σ ). The connection on Vσ restricts to

∇σ : Vrσ −→ Vr+1
σ ⊗OXG,Γ

Ω1
XG,Γ

(logC).

Let τn be the symmetric square of the standard representation of GL(n). Combining the connection
with the Kodaira–Spencer isomorphism we get the differential operator

Dσ : Vrσ
∇σ−→ Vr+1

σ ⊗XG,Γ
Ω1
XG,Γ

(logC)
KS−→ Vr+1

σ⊗τn(−1) −→ Vr+1
σ⊗τn .

The map on global sections induced by Dσ fails to be Hecke equivariant by a Tate twist because of
the last morphism above. By iteration one can define the differential operatorDe

σ : Vrσ → Vr+eσ⊗Syme τn
.

Given a dominant weight t = (t1, · · · , tn) ∈ X(Tn)+ with respect to Bn, set t′ = (−tn, · · · ,−t1)
and define

Wt :=
{
f : GL(n)/Nn → A1 : f(gx) = t′(x)f(g) for all x ∈ Tn

}
with g ∈ GL(n) acting by left inverse translation. Then Wt is an irreducible finite dimensional
representation of GL(n) with highest weight t. Evaluation at In gives a canonical element in its
dual representation and we denote it by ecan. From Wt one constructs the (Lie G,Q)-module Vt
and its sub-Q-representations V r

t .

Definition 2.2.1. The automorphic sheaf over XG,Γ of weight t, (non-holomorphy) degree r nearly
holomorphic forms is defined to be Vrt = E(V r

t ).

Put ωt = V0
t . It is the sheaf of holomorphic Siegel modular forms of weight t.

Denote by τ∗n the dual representation of τn. The natural Q-representation morphism V r
σ →

V r
σ /V

0
σ ↪→ V r−1

σ⊗τ∗n(−1) induces an OXG,Γ
-linear operator

(2.2.1) Eσ : Vrσ −→ Vr−1
σ⊗τ∗n(−1) −→ Vr−1

σ⊗τ∗n ,

whose induced map on global sections fails to commute with Hecke actions by a Tate twist. Given
a σ-valued nearly holomorphic Siegel modular form, it is holomorphic if and only if it is annihilated
by the operator Eσ.
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2.3. Equivalence to Shimura’s theory on Siegel upper half space. Let us recall Shimura’s
definition of nearly holomorphic forms and Maass–Shimura differential operators [Shi00]. Let
C∞σ (Hn,Γ) be the C-vector space of smooth functions f : Hn → Wσ(C) satisfying the transfor-
mation property f(γ · z) = σ

(
µ(γ, z)

)
f(z). Shimura defines the space N r

σ(Hn,Γ) of σ-valued,
degree r and level Γ nearly holomorphic Siegel modular forms to be the subspace of C∞σ (Hn,Γ)
consisting of those functions that can be written as a polynomial in the entries of (Im z)−1 of degree
less or equal to r with coefficients being holomorphic maps from Hn to Wσ(C) (if n = 1 a growth
condition at ∞ is also needed).

The Maass–Shimura differential operator is defined as

Dσ,Hn : C∞σ (Hn,Γ) −→ C∞σ⊗τn(Hn,Γ)

f 7−→ σ(Im z)−1dz
(
σ(Im z)f

)
,

where dz stands for
∑

1≤i≤j≤n dzij ·
∂
∂zij

. It restricts to Dσ,Hn : N r
σ(Hn,Γ)→ N r+1

σ⊗τn(Hn,Γ).

The base change of A → YG,Γ to the field of complex numbers is isomorphic to Γ\Cn×Hn/Z2n →
Γ\Hn. Here (m1,m2) ∈ Z2n and γ ∈ Γ act on (w, z) ∈ Cn ×Hn by

(w, z) · (m1,m2) = (w +m1z +m2, z),

γ · (w, z) = (wµ(γ, z)−1, γ · z).

Over Hn there is the principally polarized abelian scheme AHn = Cn×Hn/Z2n with a canonical basis
dw1, · · · , dwn for the sheaf of invariant differentials ω(AHn/Hn). The Kodaira–Spencer isomorphism
identifies dwidwj with 2πi ·dzij . As in [Liu15, §2.5] a canonical test object can be constructed from
AHn . Using the modular interpretation à la Katz for the global sections of automorphic sheaves, the
evaluation of the sheaf-theoretically defined nearly holomorphic forms at that test object defines
the map

(2.3.1) H0(XG,Γ,Vrσ)⊗Q(ζN ) C→ N r
σ(Hn,Γ).

We summarize the results there in the proposition below.

Proposition 2.3.1. The map (2.3.1) is an isomorphism and the diagram below commutes.

H0(XG,Γ,Vrσ)⊗Q(ζN ) C
∼ //

Dσ
��

N r
ρ (Hn,Γ)

Dσ,Hn
��

H0(XG,Γ,Vr+1
σ⊗τn)⊗Q(ζN ) C

∼ // N r+1
ρ⊗τn(Hn,Γ)

2.4. Equivalence to the action of q+
G. Let C∞(Γ\G(R)) be the C-vector space of smooth func-

tions on G(R) that are invariant under the left translation by Γ. Let W ∗σ be the dual representation
of Wσ(C) and 〈, 〉 : Wσ ×W ∗σ → A1 be the canonical pairing. For each w∗ ∈ W ∗σ (C) there is the
embedding

(2.4.1) ϕG(·, w∗) : C∞σ (Hn,Γ)→ C∞(Γ\G(R)),

defined as

ϕG(f, w∗)(g) =
〈
σ (µ(g, i))−1 f(g · i), w∗

〉
for f ∈ C∞σ (Hn,Γ) and g ∈ G(R). The maximal compact subgroup KG,∞ acts on Wσ(C), W ∗σ (C)
via the isomorphism KG,∞ ∼= U(n,R) ⊂ GL(n,C). One can check that for k ∈ KG,∞ we have

ϕG(f, w∗)(gk) = ϕG(f, tk−1 · w∗)(g).

Therefore if we put Vf = {ϕG(f, w∗) : w∗ ∈ W ∗σ (C)} then it is a subspace of C∞(Γ\G(R)) closed
under the action of KG,∞ and is isomorphic to Wσ(C) as a KG,∞-representation.
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The torus C× acts on G(R) by

(x+ iy) · g =

(
xIn yIn
−yIn xIn

)
g

(
xIn yIn
−yIn xIn

)−1

,

inducing an action of C× on gC. Let ga,bC be the subspace of gC on which z ∈ C× acts by the scalar

z−az−b. Then gC decomposes as g−1,1
C ⊕ g0,0

C ⊕ g1,−1
C . We have g0,0

C = kG,C, the complexified Lie

algebra of KG,∞. Set q+
G = g−1,1

C and q−G = g1,−1
C . The aim of this section is to show that the

q+
G-action on C∞(Γ, G(R)) translates to the Maass–Shimura differential operators on C∞σ (Hn,Γ)

under the embedding (2.4.1). This is explained in [Shi00, A.8] but we include a proof here for the
convenience of our later application.

Fix a basis X = (Xij)1≤i,j≤n, Xij = Xji of τn with a ∈ GL(n) acting on it by taXa. We will
assume that under the trivialization of ω(AHn/Hn) by the basis dw1, · · · , dwn, the element Xij

corresponds to dwidwj = 2πi · dzij . Denote by X∗ = (X∗ij)1≤i,j≤n, X∗ij = X∗ji the basis of τ∗n dual
to X.

Let c = 1√
2

(
In iIn
iIn In

)
and µ̂+

ij = cµijc
−1. Then µ̂+

ij , 1 ≤ i ≤ j ≤ n, span q+
G.

Proposition 2.4.1. The diagram

C∞σ (Hn,Γ)
ϕG(·,w∗)

//

4πi·Dσ,Hn
��

C∞(Γ\G(R))

µ̂+
ij

��

C∞σ⊗τn(Hn,Γ)
ϕG(·,w∗⊗X∗ij)

// C∞(Γ\G(R))

commutes.

Proof. We need to show the identity

(2.4.2) 4πi · ϕG(Dσ,Hnf, w
∗ ⊗X∗ij)(g) = µ̂+

ijϕG(f, w∗)(g)

for all f ∈ C∞σ (Hn,Γ), g ∈ G(R) and 1 ≤ i ≤ j ≤ n. Notice that for all k ∈ KG,∞ we have

ϕG(Dσ,Hnf, w
∗ ⊗X∗ij)(gk) = ϕG(Dσ,Hnf,

tk−1 · (w∗ ⊗X∗ij))(g),

and
µ̂+
ijϕG(f, w∗)(gk) =

(
Ad(k)µ̂+

ij

)
ϕG(f, tk−1 · w∗)(g).

Thus it is enough to show (2.4.2) for g ∈ QG(R).

Write elements in QG(R) as g =

(
a xta−1

0 ta−1

)
with a ∈ GL(n,R) and x an n × n symmetric

matrix with real coefficients. Put y = ata which is positive definite symmetric. Then z = x + iy
belongs to Hn, and by definition

ϕG(Dσ,Hnf, w
∗ ⊗ µ(g, i)−1 ·X∗ij)(g) =

〈
σ ⊗ τn

(
µ(g, i)−1

)
σ(y)−1dz

(
σ(y)f(z)

)
, w∗ ⊗ µ(g, i)−1 ·X∗ij

〉
=
〈
σ (µ(g, i))−1 σ(y)−1dz

(
σ(y)f(z)

)
, w∗ ⊗X∗ij

〉
=

1

2πi

〈
σ(a)−1 ∂

∂zij

(
σ(y)f(z)

)
, w∗

〉
.

Given α ∈ GL(n,C) we define α · µ̂+
ij to be c

(
tα−1 0

0 α

)
µ+
ij

(
tα 0
0 α−1

)
c−1. It is easy to see that

under this definition if α · µ̂+
ij =

∑
1≤i≤j≤n

cijµ̂
+
ij with cij ∈ C, then α ·X∗ij =

∑
1≤i≤j≤n

cijX
∗
ij .
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Let εij , 1 ≤ i ≤ j ≤ n be variables and we write ε to mean the n × n symmetric matrix whose
(i, j) and (j, i) entries are εij . Then we have

µ(g, i)−1 ·
∑

1≤i≤j≤n
εijµ̂

+
ij = − i

2

(
a−1εta−1 0

0 −a−1εta−1

)
+

1

2

(
0 a−1εta−1

a−1εta−1 0

)
.

Now we compute(
µ(g, i)−1 · µ̂+

ij

)
ϕG(f, w∗)(g)

= − i
2

∂

∂εij
ϕG(f, w∗)

((
a xta−1

0 ta−1

)
exp

(
a−1εta−1 0

0 −a−1εta−1

))∣∣∣∣
ε=0

+
1

2

∂

∂εij
ϕG(f, w∗)

((
a xta−1

0 ta−1

)
exp

(
0 a−1εta−1

a−1εta−1 0

))∣∣∣∣
ε=0

= − i

2

∂

∂εij

〈
σ(a)−1σ(y + ε)f(z + 2iε), w∗

〉∣∣∣∣
ε=0

+
1

2

∂

∂εij

〈
σ(a)−1σ(y − iε)f(z + 2ε), w∗

〉∣∣∣∣
ε=0

= − i

2

〈
σ(a)−1 ∂

∂y′ij
σ(y′)f(z), w∗

〉∣∣∣∣∣
y′=y

− i
〈
σ(a)−1σ(y)

∂

∂yij
f(z), w∗

〉

− i

2

〈
σ(a)−1 ∂

∂y′ij
σ(y′)f(z), w∗

〉∣∣∣∣∣
y′=y

+

〈
σ(a)−1σ(y)

∂

∂xij
f(z), w∗

〉

= 2

〈
σ(a)−1

(
1

2

∂

∂x′ij
− i

2

∂

∂y′ij

)
σ(y′)f(z), w∗

〉∣∣∣∣∣
z′=z

+ 2

〈
σ(a)−1σ(y)

(
1

2

∂

∂xij
− i

2

∂

∂yij

)
f(z), w∗

〉
= 2

〈
σ(a)−1 ∂

∂zij

(
σ(y)f(z)

)
, w∗

〉
.

Therefore for a given g ∈ Q(R) we have the identity

4πi · ϕG(Dσ,Hnf, w
∗ ⊗ µ(g, i)−1 ·X∗ij)(g) =

(
µ(g, i)−1 · µ̂+

ij

)
ϕG(f, w∗)(g)

for all 1 ≤ i ≤ j ≤ n, from which (2.4.2) follows. �

Remark 2.4.2. A similar computation as above shows that for the action of q−G on C∞(Γ\G(R)) we
have (

µ̂−ijϕG(f, w∗)
)

1≤i,j≤n
= µ(g, i)−1

(
ϕG(

∂f

∂zij
, w∗)

)
1≤i,j≤n

t
µ(g, i)−1.

Up to scalars the action of q−G on C∞(Γ\G(R)) corresponds to the operator

Eσ,Hn : C∞σ (Hn,Γ) −→ C∞σ⊗τ∗n(Hn,Γ)

f 7−→ dz̄f,

which translates to the operator Eσ defined as (2.2.1) by the map (2.3.1).

Let Γ̂ be the completion of Γ inside G(Af). The strong approximation implies that

G(Q)\G(A)/Γ̂ ∼= Γ\G(R).

Let A(G(Q)\G(A)/Γ̂) be the space of automorphic forms on G(A) that are invariant under the

right translation of Γ̂. For t ∈ X(Tn)+ we use A(G(Q)\G(A)/Γ̂)t to denote its t-isotypic part as a
KG,∞-representation. The composition of (2.3.1) with (2.4.1) gives the map

(2.4.3) ϕG(·, ecan) : H0(XG,Γ,Vrt )⊗Q(ζN ) C −→ N r
t (Hn,Γ)

ϕG(·,ecan)−→ A(G(Q)\G(A)/Γ̂)t.
12



In §4.3 we use operators in q+
H to construct the archimedean sections. The corresponding adelic

Eisenstein series are obtained from the scalar weight holomorphic Eisenstein series by applying the
action of q+

H . Propositions 2.3.1, 2.4.1 make it clear how to translate the adelic picture to the
geometric picture.

2.5. Up-operators. For each a ∈ Zn we define ∆a := (a1 − a2, · · · , an−1 − an, an) and pa :=
diag(pa1 , · · · , pan , p−a1 , · · · , p−an) ∈ G(Q). Denote by C+

n be the subset of Zn consisting of a
such that ∆a ≥ 0. We construct operators Up,a for all a ∈ C+

n acting on H0(XG,Γ,Vrt ) and

A(G(Q)\G(A)/Γ̂)t, such that the map (2.4.3) is Up,a-equivariant. All such operators will be called
Up-operators. What we need to be careful about is the normalization. In §6.2.1 we show that
nearly holomorphic forms embed into the space of p-adic Siegel modular forms. The normalization
should make the Up-operators here compatible with those defined for the space of p-adic Siegel
modular forms, for which there is a canonical optimal normalization that preserves its natural in-
tegral structure.

First we look at the geometric picture. Set

(2.5.1)

γp,i =


Ii 0 0 0
0 pIn−i 0 0
0 0 p2Ii 0
0 0 0 pIn−i

 1 ≤ i ≤ n− 1,

γp,n =

(
In 0
0 pIn

)
and γp,0 = pI2n.

We associate to γp,i an operator Uγp,i acting on H0(XG,Γ,Vrt ) for each 0 ≤ i ≤ n, and define Up,a

as U−a1
γp,0 U

2an
γp,n

n−1∏
i=1

U
ai−ai+1
γp,i . It will be clear that Up,a induces an endomorphism of H0(XG,Γ,Vrt ).

We make γp,0 act invertibly on YG,Γ by sending the quadruple (A, λ, ψN , fil+pm) to (A, λ, ψN ◦
p,fil+pm). The canonical isomorphism between H1

dR(A/YG,Γ) and γ∗p,0H1
dR(A/YG,Γ) gives an isomor-

phism between Vrt and γ∗p,0Vrt . The operator Uγp,0 is defined to be the composition

H0(YG,Γ,Vrt )
γ∗p,0−→ H0(YG,Γ, γ

∗
p,0Vrt ) −→ H0(YG,Γ,Vrt ),

and its action is easily seen to be invertible.
For γp,i, 1 ≤ i ≤ n, consider the moduli scheme Ci parametrizing the quintuple (A, λ, ψN ,fil+pm , L)

with L being a Lagrangian subgroup of A[p2] (resp. A[p]) if 1 ≤ i ≤ n− 1 (resp. i = n) satisfying
L[p]⊕pm−1 fil+pm,i = A[p]. There are two projections p1, p2 : Ci → YG,Γ. The projection p1 is simply

forgetting L. Let π : A→ A/L be the universal isogeny. The projection p2 sends (A, λ, ψN ,fil+pm , L)

to (A/L, λ′, π ◦ ψN , fil+′pm). Here the polarization is defined by π∗λ′ = p2λ (resp. π∗λ′ = pλ) for

1 ≤ i ≤ n−1 (resp. i = n). If x1, · · · , xn ∈ A[pm] represents fil+pm with pm−1xj ∈ L for i+1 ≤ j ≤ n,

we put fil+′pm to be the filtration represented by π(x1), · · · , π(xi), π(p−1xi+1), · · · , π(p−1xn). Since

p is inverted the pullback gives the morphism π∗ : p∗2T
×
H → p∗1T

×
H which induces π∗ : p∗2Vrt → p∗1Vrt .

The operator Uγp,i is the composition

H0(YG,Γ,Vrt )
p∗2−→ H0(Ci, p

∗
2Vrt )

π∗−→ H0(Ci, p
∗
1Vrt )

p−ui Tr p1−→ H0(YG,Γ,Vrt ),

where the normalization factor ui is defined as

ui =

{
i(n+ 1) + (ti+1 + · · ·+ tn) if 1 ≤ i ≤ n− 1,
n(n+ 1)/2 if i = n.
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The normalization factor is picked in order to make the definition compatible with the Up-operators
defined for (integral) p-adic Siegel modular forms. Considerations in two aspects make contribu-
tions. The part involving t appears because when working with p-adic Siegel modular forms the
action of pa on Wt needs to be renormalized to preserve integrality optimally. The part indepen-
dent of t is the pure inseparability degree of the map p1 restricted to the ordinary locus. If more
generally we consider the operator Uγp,i on the space H0(XG,Γ,Vrt⊗Syme τ∗n

), one can check that the

optimal normalization that makes all eigenvalues p-adically integral is p−ui+2e if 1 ≤ i ≤ n− 1 and
p−un if i = n.

Adelically for a ∈ C+
n we define the operator Up,a acting on A(G(Q)\G(A))t as

(2.5.2) Up,a := p〈t+2ρG,c, a〉
∫
NG(Zp)

Rp(up
a) du,

where Rp(g) is the right translation by g ∈ G(Qp), and the measure of NG(Zp) is its Haar measure
with total volume 1. We use ρG,c (resp. ρG, ρG,nc) to denote the half sum of positive compact
(resp. positive, positive noncompact) roots of g with respect to BG. If Kp ⊂ G(Zp) is an open

compact subgroup containingNG(Zp), then as an action on π
Kp
p , the above defined Up,a equals, up to

scalar, the usual Hecke operator associated to the characteristic function of the compact open subset
Kpp

aKp of G(Qp). Set NG(a) to be the set of representatives of the quotient NG(Zp)/paNG(Zp)p−a.
Then the action of Up,a on A(G(Q)\G(A)/Γ̂)t can also be written as be

(2.5.3) Up,a = p〈t−2ρG,nc, a〉 ∑
u∈NG(a)

Rp(up
a).

It is easy to check that with the above definitions of the operator Up,a on H0(XG,Γ,Vrt ) and

A(G(Q)\G(A)/Γ̂)t, the map (2.4.3) is Up-equivariant.

Remark 2.5.1. Note that although up to a scalar one may think of the adelic operator Up,a as
defined locally at the place p, the correct normalization for studying p-adic properties of these
operators essentially depends on the KG,∞-type. This illustrates a common phenomenon in the
study of p-adic automorphic forms that the place p and the archimedean place are closely related.

Proposition 2.5.2. Given a weight t nearly holomorphic form ϕ ∈ A(G(Q)\G(A))t (for ex-
ample an automorphic form of KG,∞-type t inside a cuspidal automorphic representation whose
archimedean component is a holomorphic discrete series), let Up(ϕ) be the finite dimensional C-

vector space (viewed also as a Qp-vector space by our fixed isomorphism between C and Qp) spanned

by Up,aϕ, a ∈ C+
n . Then by our normalization for the Up-operators, for each Up,a all of its eigen-

values on Up(ϕ) are p-adic integers.

Proof. This results follows from two facts. One is that the space of nearly holomorphic forms can
be embedded, Up-equivariantly, into the space of p-adic forms (see §6.2.1). The other is that the
natural p-adic integral structure of the space of p-adic forms are preserved by the Up-operators (the
normalization of Up-operators is optimal for preserving the integral structure) [Hid04, §8.3] [Liu15,
§2.9.5]. �

For 1 ≤ j ≤ n, we define the operator Up,j to be the one that corresponds to the element
diag(pIj , In−j , p

−1Ij , In−j) inside G(Q), and Up =
∏n
j=1 Up,j . Equivalently we can define Up =

Up,ρG , the operator associated to ρG = (n, n− 1, · · · , 1) ∈ C+
n . The above proposition tells us that,

for a nearly holomorphic form ϕ, the limit

(2.5.4) lim
r→∞

U r!p ϕ,
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with respect to the usual p-adic topology of the finite dimensional Qp-vector spaces Up(ϕ), is well
defined. We denote by eϕ this limit, which is called the ordinary projection of ϕ, because it is
the projection of ϕ to the direct sum of the generalized eigenspaces of the Up-operators associ-
ated to eigenvalues that are all p-adic units. Although in the uniform definition (2.5.4) a limit
with respect to the p-adic topology is involved, in each specific cases the ordinary projector is a C-
linear endomorphism of a finite dimensional vector space that can be written as a polynomial of Up.

The following proposition proved in [Liu15, Corollary 3.10.3] will be used later. It shows that
ordinary nearly holomorphic forms must be holomorphic.

Proposition 2.5.3. As maps from H0(XG,Γ,Vrt ) to H0(XG,Γ,Vr−1
t⊗τ∗n), we have

(2.5.5) EσUp = p2 · UpEσ.

2.6. q-expansions of nearly holomorphic forms. We have fixed the rank 2n lattice Ln =
Ln ⊕ L∗n with a symplectic pairing where Ln, L∗n are both maximal isotropic and are dual to each
other. Let SLn be the symmetric quotient of Ln × Ln and SLn,≥0 be the intersection of SLn with
the cone dual to the cone inside S∗Ln ⊗Z R consisting of semi-positive definite forms. Take a basis
s1, · · · , sn(n+1)/2 of SLn lying inside SLn,≥0, and set Z((SLn,≥0)) = Z[[SLn,≥0]][1/s1s2 · · · sn(n+1)/2].

For β ∈ SLn,≥0, the corresponding element in Z[[SLn,≥0]] is sometimes written as qβ.
The natural map Ln → SLn ⊗ L∗n defines a period group Ln ⊂ L∗n ⊗ Gm/Z((SLn,≥0)), principally

polarized by the duality between Ln and L∗n. Mumford’s construction [FC90] gives an abelian variety
A/Z((SLn,≥0)) with a canonical polarization λcan and a canonical basis ωcan = (ω1,can, · · · , ωn,can) of

ω(A/Z((SLn,≥0))). From the exact sequence

0→ L∗n ⊗
∏
l

lim
←−
m

µlm →
∏
l

Tl(A)→ Ln ⊗ Ẑ→ 0

one can define the level structure ψN,can and fil+pm,can after base changing to Z((N−1SLn,≥0))[ζN , 1/Np].
LetDij ∈ Der(Z((SLn,≥0)),Z((SLn,≥0))) be the element dual to ωi,canωj,can and δi,can = ∇(Dii)ωi,can.

For β ∈ SLn,≥0 we have Dij(q
β) = (2 − δij)βijq

β with δij = 0 if i 6= j, and 1 if i = j. Then
δcan = (δ1,can, · · · , δn,can) together with ωcan forms a basis of H1

dR(A/Z((SLn,≥0))) respecting both
the Hodge filtration and the symplectic pairing.

Let F be a number field containing Q(ζN ). Evaluating a nearly holomorphic form f inside
H0(XG,Γ,Vrσ)⊗Q(ζN ) F at the test object (A/Z((N−1SLn,≥0))[ζN ,1/Np], λcan, ψN,can, fil+pm,can, ωcan, δcan)

defines its polynomial q-expansion which we denote by f(q, Y ). It lies inside Z[[N−1SLn,≥0]] ⊗Z
Wσ(F )[Y ]≤r. For a dominant weight t, applying ecan to the polynomial q-expansion of a weight t
nearly holomorphic form and putting Y = 0 gives the (p-adic) q-expansion map

(2.6.1) εq,p-adic : H0(XG,Γ,Vrσ)⊗Q(ζN ) F → Z[[N−1SLn,≥0]]⊗Z F.

This q-expansion map is injective and can be used to give an integral structure on the space of
nearly holomorphic forms. We call it p-adic because it agrees with the one obtained by viewing
nearly holomorphic forms as p-adic forms and applying the q-expansion map for p-adic forms to
them (see §6.2.1).

Let Sym(n,Z)∗ be the subset of Sym(n,Q) consisting of elements α such that Trαa ∈ Z for all a ∈
Sym(n,Z). Using our fixed basis of Ln, we identify SLn,≥0 with Sym(n,Z)∗≥0, and Z[[N−1SLn,≥0]]

with Z[[N−1 Sym(n,Z)∗≥0]].

We record here [Liu15, Proposition 2.6.1] the formulas of differential operators in terms of poly-
nomial q-expansions. Recall that we have fixed a basis X of the GL(n)-representation τn.
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Proposition 2.6.1. Let f ∈ H0(XG,Γ,Vrσ)⊗Q(ζN ) F be a nearly holomorphic form with polynomial
q-expansion f(q, Y ). Then

(Dσf)(q, Y ) =
∑

1≤i≤j≤n

(
Dijf(q, Y ) + µ−ij · f(q, Y )

)
⊗Xij .

3. Siegel Eisenstein series and their Fourier coefficients

Let k be an integer larger or equal to n + 1 and ξ be a primitive Dirichlet character with
conductor dividing Np∞ such that the parity condition ξ(−1) = (−1)k holds. We record here some
computation results of Shimura [Shi82, Shi97] on the Fourier coefficients of certain holomorphic
Siegel Eisenstein series of weight k, and put the formulas into a form that is ready for p-adic
interpolation.

3.1. Siegel Eisenstein series on H. Take a primitive Dirichlet character ξ whose conductor
divides Np∞. For a complex number s we denote by ξs = ξ| · |s ◦ det the character of QH(A)

sending

(
A B
0 tA−1

)
to ξ(detA)|detA|s. Let IQH (s, ξ) = Ind

H(A)
QH(A) ξs be the normalized induction

consisting of smooth functions f on H(A) that satisfy f(qh) = ξs(q)δ
1/2
QH

(q)f(h) for all h ∈ H(A)

and q ∈ QH(A). Here the modulus character δQH takes value |detA|
2n+1

2 at

(
A B
0 tA−1

)
. Similarly

we define the local degenerate principal series IQH ,v(s, ξ) for all places of Q.
Given a section f(s, ξ) ∈ IQH (s, ξ), its associated Siegel Eisenstein series is defined as

E(h, f(s, ξ)) =
∑

γ∈QH(Q)\H(Q)

f(s, ξ)(γh).

The sum is absolutely convergent for Re (s) sufficiently large and admits a meromorphic continua-
tion.

We have already fixed an additive character eA of Q\A and a Haar measure on A. If x ∈

Sym(2n,A) set u(x) to be the element

(
I2n x
0 I2n

)
of the unipotent radical UH(A) ⊂ QH(A). For

β ∈ Sym(2n,Q) the β-th Fourier coefficient for E
(
·, f(s, ξ)

)
is defined as

Eβ(h, f(s, ξ)) :=

∫
Sym(2n,Q)\ Sym(2n,A)

E(u(x)h, f(s, ξ))eA(−Trβx) dx.

If det(β) 6= 0 and f(s, ξ) = ⊗vfv(s, ξ) is factorizable, then

(3.1.1) Eβ(h, f(s, ξ)) =
∏
v

Wβ,v(h, f(s, ξ))

with

Wβ,v(h, fv(s, ξ)) =

∫
Sym(2n,Qv)

fv(s, ξ)(wHu(ς)h)ev(−Trβς) dvς

where wH =

(
0 −I2n

I2n 0

)
.

Let Sf be the set of finite places of Q dividing Np and S be the union of Sf with {∞}. In the
following, for v /∈ S we always take fv(s, ξ) to be the unique section fur

v (s, ξ) ∈ IQH ,v(s, ξ) that takes
value 1 on H(Zv) (the uniqueness is due to the Iwasawa decomposition H(Qv) = QH(Qv)H(Zv)).
For v ∈ Sf the section fv(s, ξ) we will consider is supported on the so-called “big cell” inside H(Qv),

i.e. QH(Qv)wHUH(Qv). An element

(
A B
C D

)
∈ H(Qv) belongs to the “big cell” if and only if
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detC 6= 0. Given z = x+ iy ∈ H2n we put hz = 1f ·
(√

y x
√
y−1

0
√
y−1

)
∞

. With h = hz and at least

one local section supported on the “big cell”, (3.1.1) holds for all β. Next we compute formulas for
Wβ,v(h, fv(s, ξ)) place by place.

3.2. The ramified places. Let αv be a compactly supported smooth function on Sym(2n,Qv).
We define the section fαvv (s, ξ) ∈ IQH ,v(s, ξ) as

(3.2.1) fαvv (s, ξ)

((
A B
C D

))
=

{
ξ−1(detC)| detC|−(s+ 2n+1

2
)αv(C

−1D) if detC 6= 0,

0 if detC = 0.

An easy computation shows that

(3.2.2) Wβ,v(1v, f
αv
v (s, ξ)) =

∫
Sym(2n,Qv)

αv(ς)ev(−Trβς) dvς = α̂v(β).

Since the Fourier transform is an isomorphism on the space of compactly supported smooth func-
tions on Sym(2n,Qv), the above formula gives us adequate flexibility in arranging, for our purpose
of p-adic interpolation, the contribution of ramified places to the Fourier coefficients of the Siegel
Eisenstein series. Later when choosing sections at p we will first decide what α̂p should be and then
get the corresponding f

αp
p (s, ξ). Notice also that for such “big cell” sections, Wβ,v(1v, f

αv
v (s, ξ)) is

independent of s and ξ.
In the following we always require the α̂p to be supported on the following compact set

(3.2.3)

{
b =

(
b1 b0
tb0 b2

)
∈ Sym(2n,Zp) : b1 ≡ 0 mod p2, b0 ∈ GL(n,Zp)

}
.

In particular under this requirement the Fourier coefficient Eβ(hz, f(s, ξ)) vanishes for all degen-
erate β.

3.3. The unramified places. For v /∈ S we record here Shimura’s calculation ofWβ,v(1v, f
ur
v (s, ξ))

in the case when β is nondegenerate. Let valv be the valuation of Qv taking value 1 at the
uniformizer and qv be the cardinality of the residue field. Denote by Sym(2n,Zv)∗ the set of
symmetric matrices η ∈ Sym(2n,Qv) such that Tr ης ∈ Zv for all ς ∈ Sym(2n,Zv). Define

dv(s, ξ) := Lv(s+
2n+ 1

2
, ξ)

n∏
j=1

Lv(2s+ 2n+ 1− 2j, ξ2).

With all data unramified at v we have

Theorem 3.3.1 ( [Shi97, Theorem 13.6, Proposition 14.9]). The Fourier coefficient Wβ,v(1v, f
ur
v (s, ξ))

vanishes unless β lies inside the intersection of Sym(2n,Q) with Sym(2n,Zv)∗. When it is nonva-
nishing, we have

(3.3.1) Wβ,v(1v, f
ur
v (s, ξ)) = dv(s, ξ)

−1Lv(s+
1

2
, ξλβ) · gβ,v

(
ξ(qv)q

−(s+ 2n+1
2

)
v

)
.

Here λβ(qv) :=
(

(−1)n det(2β)
qv

)
and gβ,v(t) is a polynomial with coefficients in Z whose constant

term is 1 and degree is at most 4n · valv
(

det(2β)
)
. In particular gβ,v(t) = 1 if det(2β) ∈ Z×v .

What is relevant to us is the evaluation of E(·, f(s, ξ)) at s0 = k− 2n+1
2 with ξ(−1) = (−1)k and

k ≥ n+1. In that case we have the parity (−1)k−n = ξλβ(−1) so the special value L(s0 + 1
2 , ξλβ) =

L(k − n, ξλβ) belongs to the set of interpolation points of the p-adic Dirichlet L-function.
17



3.4. The archimedean place. For an integer k ≥ n+ 1 satisfying ξ(−1) = (−1)k we consider the
canonical section fk∞(s, ξ) ∈ IQH ,∞(s, ξ) defined as

fk∞(s, ξ)(h) = j(h, i)−k|j(h, i)|k−(s+ 2n+1
2

)

where j(h, i) = det (µ(h, i)) = det(Ci + D) for h =

(
A B
C D

)
. It gives rise to a Siegel Eisenstein

series of scalar weight k. Then

Wβ,∞(hz, f
k
∞(s, ξ))

=

∫
Sym(2n,R)

det
(√
yi+ (x+ ς)

√
y−1)−k ∣∣∣det

(√
yi+ (x+ ς)

√
y−1)∣∣∣k−(s+ 2n+1

2
)
e∞(−Trβς) dς

= e∞(Trβx)(dety)
1
2

(s+ 2n+1
2

)ξ2n

(
y,β;

1

2
(s+

2n+ 1

2
) +

k

2
,
1

2
(s+

2n+ 1

2
)− k

2

)
,

where for h1, h2 ∈ Sym(2n,R) and s1, s2 ∈ C the function ξ2n is defined as

ξ2n(h1, h2; s1, s2) :=

∫
Sym(2n,R)

det(ς + ih1)−s1 det(ς − ih1)−s2e∞(Trh2ς)dς.

The function ξ2n(h1, h2; s1, s2) is studied by Shimura in full generality [Shi82]. Before stating the
result we define the Gamma function

Γm(s) := π
m(m−1)

4

m−1∏
j=0

Γ(s− j

2
).

Theorem 3.4.1 (Theorem 4.2, loc. cit). Let r+ (resp. r−) be the number of positive (resp.
negative) eigenvalues of β and r = 2n− r+ − r−. Set δ+(βy) (resp. δ−(βy)) to be the product of
all positive eigenvalues (resp. absolute values of negative eigenvalues) of βy.

ξ2n(y,β; s1, s2) = 22n+
r+r−

2
+2s1(r+−n)+2s2(r−−n)+

r(2n+1)
2 eπi·n(s1−s2)πr+s1+r−s2−

r+r−
2

+
r(r+1)

2

× (dety)
2n+1

2
−(s1+s2)δ+(βy)s1−

2n+1
2

+
r−
4 δ−(βy)s2−

2n+1
2

+
r+
4

×
Γr(s1 + s2 − 2n+1

2 )

Γ2n−r−(s1)Γ2n−r+(s2)
ω(2πy,β; s1, s2)

Here ω(2πy,β; s1, s2) is a holomorphic function in s1, s2, and if β is strictly positive definite

ω(2πy,β; s1, 0) = 2−n(2n+1)e∞(iTrβy).

The value Wβ,∞(hz, f
k
∞(s, ξ)) we are interested in is at s0 = k − 2n+1

2 , which corresponds to

the evaluation of ξ2n(y,β; s1, s2) at s1 = k, s2 = 0. Look at the term
Γr(s1+s2− 2n+1

2
)

Γ2n−r− (s1)Γ2n−r+ (s2) . By

our requirement on α̂p only nondegenerate β’s need to be considered, for which r = 0 and the
numerator is 1. Meanwhile the function Γ2n−r+(s2) in the denominator has a pole at s2 = 0 unless

r+ = 2n. Hence for nondegenerate β the value Wβ,∞(hz, f
k
∞(k − 2n+1

2 , ξ)) is nonvanishing only if
β is strictly positive definite. For those β’s we have

Wβ,∞(hz, f
k
∞(k − 2n+ 1

2
, ξ)) = (−1)nk

22n

Γ2n(k)
π2nk(det 2β)k−

2n+1
2 (dety)

k
2 e∞(Trβz).
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3.5. Summary. Let dS(s, ξ) =
∏
v/∈S

dv(s, ξ) and we normalize the Siegel Eisenstein series as

E∗(h, f(s, ξ)) = dS(s, ξ)E(h, f(s, ξ)).

Let Sym(2n,Q)>0 be the subset of Sym(2n,Q) consisting of (strictly) positive definite elements,
and Σp,+ be the subset of Sym(2n,Q)>0 consisting of elements that belong to both the set (3.2.3)
and Sym(2n,Zv)∗ for all v /∈ S. Use αSf

to denote the collection of the Schwartz functions αv on
Sym(2n,Qv) for v ∈ Sf with α̂p always assumed to be supported on the set (3.2.3). Put

(3.5.1) fk,αSf (k− 2n+ 1

2
, ξ) =

⊗
v/∈S

fur
v (k− 2n+ 1

2
, ξ)⊗

⊗
v∈Sf

fαvv (k− 2n+ 1

2
, ξ)⊗fk∞(k− 2n+ 1

2
, ξ),

which is a section inside IQH (k − 2n+1
2 , ξ).

Combining results from the previous three sections we know that the normalized Siegel Eisenstein
series E∗(·, fk,αSf ) on H(A) is holomorphic of weight k with Fourier coefficients supported on Σp,+.

Put gSβ(k, ξ−1) =
∏
v/∈S

gβ,v(ξ(qv)q
−k
v ). For β ∈ Σp,+ there is the formula

(3.5.2)

E∗β

(
hz, f

k,αSf (k − 2n+ 1

2
, ξ)

)
= (−1)nk

22n

Γ2n(k)
π2nkLS(k − n, λβξ)gSβ(k, ξ−1)

∏
v∈Sf

α̂v(β)(det 2β)k−
2n+1

2 (dety)
k
2 e∞(Trβz).

Implementing the q-expansion principle, with suitable αSf
, one can deduce the algebraicity of

E∗(·, fk,αSf (k − 2n+1
2 , ξ)), i.e. up to an explicit normalization factor it lies inside the image under

the map (2.4.3) of algebraic global sections.
We modify (3.5.2) into a form that is more convenient for later p-adic interpolation. Under our

parity condition on k and ξ, the functional equation for Dirichlet L-functions indicates

(3.5.3) L(k − n, λβξ) =
(2πi)k−n

2Γ(k − n)Ck−n−1
λβξ

G(λ−1
β ξ−1)

L(1− k + n, λ−1
β ξ−1).

Now write ξ as the product φ−1χ◦−1 of two primitive characters, where the conductor of φ (resp.
χ◦) divides N (is a power of p). We write χ to mean the character associated to χ◦ taking value
0 at p. When there is no need to emphasize the primitivity of χ◦ we also simply write χ. Set
φβ = λ−1

β φ whose conductor is prime to p. Using the relation G(φβχ) = φβ(Cχ)χ(Cφβ)G(φβ)G(χ)

and (3.5.3) we get from (3.5.2)

E∗β

(
hz, f

k,αSf (k − 2n+ 1

2
, φ−1χ◦−1)

)
=

2k+n−1(πi)2nk+k−n

Γ(k − n)Γ2n(k)φ(Cχ)Ck−n−1
χ G(χ)

·
λβ(Cχ)Lp(1− k + n, φβχ

◦)

Lp(k − n, φ−1
β χ◦−1)

× det(2β)1/2

G(φβ)
· χ−1(Cφβ)C−k+n+1

φβ
· LN (k − n, φ−1

β χ−1)−1 · Lp(1− k + n, φβχ)

× gSβ(k, φχ) ·
∏
v∈Sf

α̂v(β) det(2β)k−n−1 · (dety)
k
2 e∞(Trβz).

For readers who are familiar with p-adic interpolation, it is noticeable that the above formula has
been grouped into factors each of which is ready for p-adic interpolation with respect to k and χ,

with the possible exception of the term
Lp(1−k+n,φβχ

◦)

λβ(Cχ)Lp(k−n,φ−1
β χ◦−1)

, especially the term λβ(Cχ). This
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term depends both on k, χ and β and in general does not admit p-adic interpolation. However

by our requirement on α̂p, it suffices to consider only β =

(
β1 β0
tβ0 β2

)
that lies inside Σp,+. For

such a β it is easy to see that detβ is a p-adic integer and detβ ≡ (−1)n(detβ0)2 mod p. Thus
λβ(p) = 1. Let cχ be the integer such that Cχ = pcχ . Define

(3.5.4) An,φ,k,χ :=
2k+n−1(πi)2nk+k−n

Γ(k − n)Γ2n(k)
· Lp(1− k + n, φχ◦)

Lp(k − n, φ−1χ◦−1)

((
φ(p)pk−n−1

)cχ
G(χ)

)−1
.

Proposition 3.5.1. For β ∈ Σp,+ we have

E∗β

(
hz, f

k,αSf (k − 2n+ 1

2
, φ−1χ◦−1)

)
=An,φ,k,χ ·

det(2β)1/2

G(φβ)
· χ−1(Cφβ)C−k+n+1

φβ
· LN (k − n, φ−1

β χ−1)−1 · Lp(1− k + n, φβχ)

× gSβ(k, φχ) ·
∏
v∈Sf

α̂v(β) det(2β)k−n−1 · (dety)
k
2 e∞(Trβz).

One can observe that on the RHS of the equality, the term An,φ,k,χ is independent of β and other
terms admit p-adic interpolations with respect to k, χ for suitably chosen αSf

(c.f. §5.2).

4. Sections away from p and their local zeta integrals

Let (κ, τ) be an arithmetic point of Homcont(Z×p × Tn(Zp),Q
×
p ), i.e. it can be written as the

product of an algebraic character (κalg, τalg) and a finite order character (κf , τf). We write κalg = k,
τalg = t = (t1, · · · , tn) with k, t1, · · · , tn being integers, and κf = χ, τf = ψ = (ψ1, · · · , ψn) with

χ, ψ1, · · · , ψn being characters of Z×p of finite order. We call an arithmetic point (κ, τ) admissible
if t1 ≥ · · · ≥ tn ≥ k ≥ n+ 1.

From now on we fix a primitive Dirichlet character φ whose conductor divides N , and we will
sometimes omit N and φ from some notation that actually depends on them. Proposition 3.5.1
basically gives us a one-variable family of Siegel Eisenstein series on H where the variable is κ.
What we want is an (n+ 1)-variable cuspidal family on G×G, whose members are the restrictions
to G×G of Siegel Eisenstein series on H, and its pairing with an n-variable family on G×G will
give the desired (n+ 1)-variable p-adic L-function. Constructing this (n+ 1)-variable family boils
down to selecting sections fκ,τ inside IQH (k − 2n+1

2 , φ−1χ◦−1) for each admissible (κ, τ). It is no

surprise that for all v /∈ S we set fκ,τ,v to be the unramified section fur
v (k − 2n+1

2 , φ−1χ◦−1). For
v ∈ Sf we consider the “big cell” sections. Thus what we need to select is the collection of Schwartz
functions ακ,τ,Sf

and the archimedean section fκ,τ,∞.
In this section we make the choices for ακ,τ,N and fκ,τ,∞. With our choices we compute the local

zeta integrals for the doubling method for v | N , and show the nonvanishing of the archimedean zeta
integral. In the next section we treat the place p. Based on the two criteria in the introduction,
i.e. nonvanishing local zeta integrals and p-adically interpolatable q-expansions, all choices are
completely natural.

4.1. Doubling method for symplectic groups. Let us first briefly recall the formulas of the
doubling method. We have fixed the rank 2n free Z-module Ln with a symplectic pairing and G =
G(Ln). Let Vn = Vn⊕V ∗n be the polarized symplectic space over Q with basis e1, · · · , en, f1, · · · , fn
obtained from Ln by tensoring with Q. Take another copy of Vn with basis e′1, · · · , e′n, f ′1, · · · , f ′n,
and put V2n = Vn⊕Vn with the induced symplectic pairing. Elements in H = G(V2n) will be
written in matrix form with respect to the basis e1, · · · , en, e′1, · · · , e′n, f1, · · · , fn, f ′1, · · · , f ′n. Then
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there is the (holomorphic) embedding ι of G×G into H given by

ι : G×G ↪−→ H

(
a b
c d

)
×
(
a′ b′

c′ d′

)
7−→


a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

 .

Fix the map ϑ from Vn into itself whose matrix is

(
0 In
In 0

)
with respect to our fixed basis. It

does not preserve the symplectic pairing but has the similitude −1. Let Vd
2n = {(v, ϑ(v)) : v ∈ Vn}

and V2n,d = {(v,−ϑ(v)) : v ∈ Vn} which are both maximal isotropic subspaces of V2n. The

doubling Siegel parabolic PH is defined to be the stabilizer of Vd
2n. The standard Siegel parabolic

QH is the stabilizer of the maximal isotropic subspace Vn ⊕ Vn and we have

PH = SQHS−1 with S =


In 0 0 0
0 In 0 0
0 In In 0
In 0 0 In

 .

For each section f(s, ξ) ∈ IQH (s, ξ) we set

(4.1.1) fd(s, ξ)(h) = f(s, ξ)(S−1h)

for h ∈ H(A). Then fd(s, ξ) lies inside IPH (s, ξ) and E(·, f(s, ξ)) = E(·, fd(s, ξ)). For an element
g ∈ G we define gϑ to be ϑgϑ ∈ G. This conjugation by ϑ is called the MVW involution. The MVW
involution of an irreducible smooth representation of G(Qv) is isomorphic to its contragredient
[MVW87, p. 91].

Given an irreducible cuspidal automorphic representation π ⊂ A0(G(Q)\G(A)) of G(A) and
its complex conjugation π ⊂ A0(G(Q)\G(A)), which is isomorphic to the contragredient of π, we
fix isomorphisms π ∼=

⊗′
v πv and π ∼=

⊗′
v π̃v such that for factorizable ϕ1, ϕ2 ∈ π with images⊗

v ϕ1,v ∈
⊗′

v πv and
⊗

v ϕ2,v ∈
⊗′

v π̃v, we have

〈ϕ1, ϕ2〉 =
∏
v

〈
ϕ1,v, ϕ2,v

〉
v
,

where the pairing on the left hand side is the bi-C-linear Petersson inner product with respect
to our fixed Haar measure on G(A) and the pairing on the right hand side is the natural pairing
between πv and its contragredient π̃v.

For ϕ ∈ π we define its MVW involution ϕϑ by ϕϑ(g) = ϕ(gϑ), and we know that ϕϑ lies inside
π due to the multiplicity one theorem [Art13].

For a local section fv(s, ξ) ∈ IQH ,v(s, ξ) we define the operator

Tfv(s,ξ) : π −→ π

ϕ 7−→
(
Tfv(s,ξ)ϕ

)
(g) =

∫
G(Qv)

fdv (s, ξ)(ι(g′v, 1))ϕ(gg′v)dvg
′
v.

Certainly in order for Tfv(s,ξ) to be well defined we must address convergence issues. The absolute
convergence can be proved for s ∈ C with Re (s) sufficiently large. In our applications a meromor-
phic continuation always exists and we use it to define Tfv(s,ξ) for general s ∈ C. In fact when v | N
or when v = p and χψ1, · · · , χψn are all nontrivial, by our choices the function fdκ,τ,v(ι(·, 1)) on

G(Qv) is compactly supported. When v = ∞ the absolute convergence follows from the fact that
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π∞ is a discrete series as discussed in [Li90]. The only place we need to be careful with the conver-
gence issue is the computation in §5.7, i.e. the local zeta integral at p with some of χψ1, · · · , χψn
being trivial.

The doubling local zeta integral is defined as (purely locally)

Zv(fv(s, ξ), ·, ·) : πv × π̃v −→ C

(v1, ṽ2) 7−→ Zv(fv(s, ξ), v1, ṽ2) =

∫
G(Qv)

fdv (s, ξ)(ι(gv, 1)) 〈πv(gv)v1, ṽ2〉v dvgv.(4.1.2)

As a pairing between IQH ,v(s, ξ) and πv × π̃v, the doubling local zeta integral has the equivariance
property that for (g1, g2) ∈ G(Qv)×G(Qv),

(4.1.3) Zv

(
Rv(ι(g1, g

ϑ
2 ))f(s, ξ), πv(g1)v1, π̃v(g2)ṽ2

)
= Zv(fv(s, ξ), v1, ṽ2).

Remark 4.1.1. The standard notation for the zeta integral should be written as Zv(f
d
v (s, ξ), v1, ṽ2).

In our construction we always use fv(s, ξ) for computing the Fourier coefficients of E∗(·, fv(s, ξ)) =
E∗(·, fdv (s, ξ)) while the zeta integral is always computed with fdv (s, ξ). The notation in (4.1.2) is
more convenient for us here, and should cause no confusion.

Theorem 4.1.2 ( [PSR87, Gar84, Shi00]). Suppose f(s, ξ) =
⊗

s/∈S f
ur
v (s, ξ) ⊗

⊗
v∈S fv(s, ξ) is a

section inside to IQH (s, ξ). If ϕ ∈ πKS
G with KS

G =
∏
v/∈S G(Zv), then

〈E∗ (ι(·, g), f(s, ξ)) , ϕ〉 = LS(s+
1

2
, π × ξ) ·

(∏
v∈S

Tfv(s,ξ)ϕ

)
(gϑ).

Equivalently for all factorizable ϕ1, ϕ2 ∈ πK
S
G,〈

E∗(·, f(s, ξ))|G×G, ϕ1 ⊗ ϕϑ2
〉

= LS(s+
1

2
, π × ξ) ·

∏
v∈S

Zv(fv(s, ξ), ϕ1,v, ϕ2,v)〈
ϕ1,v, ϕ2,v

〉
v

〈ϕ1, ϕ2〉 .

Remark 4.1.3. Our formulation of the doubling method aligns with those of [Gar84, Shi00] where
if the Siegel Eisenstein series on H is holomorphic its restriction to G × G is still holomorphic on
both factors, because the embedding ι : G × G ↪→ H corresponds to the holomorphic embedding

of the Siegel upper half spaces Hn × Hn ↪→ H2n sending (z1, z2) to

(
z1 0
0 z2

)
. However it differs

from the standard formulation in the study of the doubling method from the point of view of theta
correspondence, where the embedding is equivalent to ι with a conjugation by ϑ on the second
factor. The translation from the standard formulation to ours here depends on the choice of the
map ϑ from Vn to itself with similitude −1.

4.2. The “volume sections” at places dividing N . For a place v | N we pick a very simple
so-called “volume section” that gives simple Fourier coefficients and easily computed local zeta
integrals. Moreover it makes the restriction of the resulting Siegel Eisenstein series to G × G
cuspidal when the archimedean section is taken to be fk∞. The cuspidality fact is crucial for us to
apply Hida theory on G.

Define the Schwartz function αvol
v : Sym(2n,Qv) → C to be the characteristic function of the

compact open subset −
(

0 In
In 0

)
+ N Sym(2n,Zv) of Sym(2n,Qv). The “volume section” inside

IQH ,v(s, ξ) is defined as fvol
v (s, ξ) = f

αvol
v

v (s, ξ). It gives the Fourier coefficient

Wβ,v(1v, f
vol
v (s, ξ)) = α̂vol

v (β) = |N |n(2n+1)
v ev(2 Trβ0) · 1N−1 Sym(2n,Zv)∗(β)
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for β =

(
β1 β0
tβ0 β2

)
, where 1N−1 Sym(2n,Zv)∗ is the characteristic function of the setN−1 Sym(2n,Zv)∗.

The “volume section” fvol
κ,τ,v is independent of τ and its corresponding Fourier coefficient is a p-adic

integer independent of both κ and τ.
Next we compute the local zeta integral. Let Γ(N)v be the open compact subgroup of G(Qv)

consisting of elements in G(Zv) whose reduction modulo N is 1.

Proposition 4.2.1. Suppose ϕ ∈ π is invariant under right translation by Γ(N)v. Then

Tfvol
v (s,ξ)ϕ = ξv(−1)nvol(Γ(N)v) · ϕ.

Proof. For g =

(
a b
c d

)
∈ G(Qv) we have

(4.2.1) S−1ι(g, 1) =


In 0 0 0
0 In 0 0
0 −In In 0
−In 0 0 In



a 0 b 0
0 In 0 0
c 0 d 0
0 0 0 In

 =


a 0 b 0
0 In 0 0
c −In d 0
−a 0 −b In

 .

It belongs to the support of fvol
v (s, ξ) if and only if det

(
c −In
−a 0

)
6= 0 and

(
c −In
−a 0

)−1(
d 0
−b In

)
=(

a−1b −a−1

−d+ ca−1b −ca−1

)
belongs to −

(
0 In
In 0

)
+N Sym(2n,Zv). Therefore

fd,vol
v (s, ξ)(ι(g, 1)) =

{
ξv(−1)n if g ∈ Γ(N)v,

0 otherwise,

and the proposition follows. �

For an admissible (κ, τ) we set fκ,τ,v = fvol
κ,τ,v = fvol

v (k− 2n+1
2 , φ−1χ◦−1) and use fvol

κ,τ,N to denote

the product of local sections
⊗

v|N f
vol
κ,τ,v. We also put α̂vol

N =
∏
v|N α̂

vol
v .

Before moving to the archimedean place, we record here the following theorem due to Garrett
concerning the cuspidality of the restriction to G×G of the Siegel Eisenstein series.

Theorem 4.2.2 ( [Gar92, p. 465-473]). Let f(s, ξ) be a factorizable section inside IQH (s, ξ) with

fv(s, ξ) = fvol
v (s, ξ) for some finite place v and f∞(s, ξ) = fk∞(s, ξ), k > 2n+1. Then the evaluation

at s = k − 2n+1
2 of the restriction of the Siegel Eisenstein series E(·, f(s, ξ))|G×G is a cuspidal

holomorphic Siegel modular form of scalar weight k on G×G.

4.3. The archimedean sections. We select a section fκ,τ,∞ from IQH ,∞(k − 2n+1
2 , φ−1χ◦−1) for

each admissible (κ, τ) = (k ·χ, t ·ψ) with κ satisfying the parity condition φχ(−1) = (−1)k. Denote
by Dt the holomorphic discrete series (g,KG,∞)-module whose lowest KG,∞-type is of highest weight

t, and by Dt(t) the lowest KG,∞-type inside Dt. Let D̃t be the contragredient of Dt and D̃t(−t) be
its highest KG,∞-type.

In our application of the doubling method formula, the cuspidal automorphic forms ϕ on G(A)
we consider are those coming from global sections of the automorphic sheaf ωt = V0

t over Shimura

varieties of certain level through the map (2.4.3). Thus the archimedean factor π∞ is a holomorphic
discrete series and ϕ∞ lies inside its lowest KG,∞-type. The nonvanishing condition we put on
fκ,τ,∞ is that for all such ϕ, the (−t)-isotypic part of Tfκ,τ,∞ϕ is nontrivial, or equivalently the map

Z∞(fκ,τ,∞, ·, ·) : D̃t(−t)×Dt(t)→ C is nonzero.

For the case t1 = · · · = tn = k the very canonical choice for the archimedean section is fk∞.
The corresponding local zeta integral is computed in [Shi95] and the results clearly imply the
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nonvanishing. From Proposition 3.5.1 one sees that fk∞ also satisfies the condition that after
dividing an explicit scalar, its Fourier coefficients are all algebraic.

In order for E∗(·, fκ,τ) to be algebraic it is natural to consider sections obtained by applying

operators constructed from q+
H to fk∞, because then our discussion in §2 shows that the resulting

Siegel Eisenstein series can be obtained by applying the (geometrically defined) differential operators

to E∗(·, fk,αSf ), and the differential operators have an algebraic structure as well as formulas on
q-expansions.

Recall that we have fixed a basis µ̂+
ij , 1 ≤ i ≤ j ≤ 2n for the Lie algebra q+

H . Putting µ̂+
ij = µ̂+

ji for

i > j, we let µ̂+
H be the symmetric 2n×2n matrix whose (i, j) entry is µ̂+

ij . Write µ̂+
H =

(
µ̂+

1 µ̂+
0

tµ̂+
0 µ̂+

2

)
in n× n blocks.

Inspired by [Har86], we define the following archimedean section

(4.3.1) fκ,τ,∞ =

n∏
l=1

detl

(
1

4πi
µ̂+

0

)tl−tl+1

· fk∞,

where we put tn+1 = k and for a matrix A we use detl(A) to denote the determinant of its upper
left l× l minor. The rest of this section is devoted to proving the following proposition stating that
this fκ,τ,∞ satisfies the nonvanishing condition. The strategy for making this selection will manifest
in the proof.

Proposition 4.3.1. With fκ,τ,∞ defined as in (4.3.1), the map

(4.3.2) Z∞(fκ,τ,∞, ·, ·) : D̃t(−t)×Dt(t) −→ C

is nonzero. Let vt ∈ Dt(t) be a nonzero vector of highest weight and v∨t ∈ D̃t(−t) be its dual vector.

Then the number
Z∞(fκ,τ,∞,v∨t ,vt)

〈v∨t ,vt〉
is nonzero

Proof. Let U(hC) · fd,k∞ be the sub-(hR,KH,∞)-module of IPH ,∞(k − 2n+1
2 , φ−1χ◦−1) generated by

fd,k∞ . As explained above due to the algebraicity consideration we want to pick our fdκ,τ,∞ from

U(hC) · fd,k∞ . Regarding U(hC) · fd,k∞ as a representation of the compact group KG,∞ ×KG,∞, we

prove that in the decomposition of U(hC) · fd,k∞ |KG,∞×KG,∞ , there is a unique piece σk,t which pairs

nontrivially with D̃t(−t)×Dt(t) under the zeta integral. Then we finish the proof by showing that

fdκ,τ,∞ has a nonzero projection into σk,t.

We start by introducing several unitarizable irreducible (hR,KH,∞)-modules whose KH,∞-finite

parts are isomorphic to U(hC) · fd,k∞ or its contragradient when the parameters are within the range
relevant to us here. Let (σ,Wσ) be a finite dimensional algebraic representation of GL(2n). Then
Wσ(C) is a KH,∞-representation. Define the H(R)-representation

O(H(R),KH,∞, σ) =


analytic functions f : H(R) → Wσ(C) that are annihilated
by the action of q−H on the right, and f(hk) = σ−1(k)f(g)
for all k ∈ KH,∞, h ∈ H(R)


with H(R) acting by left inverse translation. Let Of(H(R),KH,∞, σ) be the (hR,KH,∞)-module
which is the subspace of O(H(R),KH,∞, σ) spanned by KH,∞-finite vectors. Let O(H2n, σ) be

the space of Wσ-valued holomorphic functions on H2n with h =

(
A B
C D

)−1

∈ H(R) acting on

f ∈ O(H2n, σ) via

(h · f)(z) = σ
(t(Cz +D)

)
f
(
(Az +B)(Cz +D)−1

)
.
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It is easily seen that O(H(R),KH,∞, σ) is isomorphic to O(H2n, σ) (c.f. Remark 2.4.2). One can

also check that the hC-module Of(H(R),KH,∞, σ) is isomorphic to the base change to C of the h-
module Vσ defined in §2.2, and that the formulas there show that it has a unique highest KH,∞-type
σ which is contained inside every sub-representation.

Let W2k,0 be the real vector space of dimension 2k with a positive definite symmetric pairing and
O(2k, 0) be the associated orthogonal group. The action of O(2k, 0) × H(R) on the Schrödinger
model S(W2k,0⊗V2n,d,R), the space of Schwartz functions on W2k,0⊗V2n,d,R, of its Weil represen-

tation with respect to the polarization V2n = Vd
2n⊕V2n,d is given by

(ω(a)s)(x) = s(tax), a ∈ O(2k, 0),

(ω(m)s)(x) = det
(
m|V d2n,R

)k
s(tmx), m ∈ P (Vd

2n,R) ∩ P (V2n,d,R),

(ω(u)s)(x) = e∞(〈−u(x), x〉 /2)s(x), u ∈ N(Vd
2n,R),

(ω(w)s)(x) = i2nk
∫
W2k,0⊗V2n,d,R

e∞(〈y, wx〉)s(y)dy.

Here for an isotropic subspace V , P (V ) is the stabilizer of V and N(V ) is the unipotent radical
of P (V ). The element w in H(R) is the one sending (v, ϑ(v)) to (v,−ϑ(v)) and (v,−ϑ(v)) to
−(v, ϑ(v)) for v ∈ Vn.

Let Θ2k,0(0) = S(W2k,0 ⊗ V2n,d,R)O(2k,0) be the theta lift of the trivial representation from
O(2k, 0) to H(R). The morphism

Φ : S(W2k,0 ⊗V2n,d,R) −→ IPH ,∞(k − 2n+ 1

2
,Signk)

s 7−→ Φ(s)(g) := (ω(g)s)(0)

embeds Θ2k,0(0) into the degenerate principal series [KR90a, Theorem 3]. We denote by Rd2k,0
the image of Θ2k,0(0) inside IPH ,∞(k − 2n+1

2 ,Signk) and R2k,0 be the sub-H(R)-representation of

IQH ,∞(k − 2n+1
2 , Signk), which corresponds to Rd2k,0 via (4.1.1).

The representation Θ2k,0(0) is unitary and embeds into O(H2n,−k) through the map

s 7−→
∫
W2k,0⊗V2n,d,R

e∞(Trxtxz)s(x)dx.

Therefore Θ2k,0(0) is irreducible. If k ≥ n (we have always assumed k ≥ n + 1) the image is

dense [KV78, p. 3]. It follows that Of(H(R),KH,∞,−k) is irreducible, so isomorphic to the Verma

module U(hC)⊗U(kH,C⊕q+
H) det−k of highest weight −k.

We use the superscript MVW to denote the MVW-involution, i.e. conjugation by ϑ, of the
above defined representations. In our case, thanks to the irreducibility, the MVW-involution is
isomorphic to the contragredient representation. By using −W2k,0 we define Θ0,2k(0) and R0,2k ⊂
IPH ,∞(k − 2n+1

2 ,Signk). It is easily seen that Θ0,2k(0) ∼= Θ2k,0(0)MVW. The KH,∞-finite part of

R0,2k will be denoted as Rf
0,2k.

The degenerate principal IQH ,∞(k−2n+1
2 ,Signk) isKH,∞-multiplicity free [Gui80]. Both U(hC) · fd,k∞

and Rf
0,2k are irreducible hC-submodules of the degenerate principal series and contain the KH,∞-

type of scalar weight k. Hence they must be equal to each other, and we are reduced to studying
the hC-module Rf

0,2k, which by the above discussion is isomorphic to Of(H(R),KH,∞,−k)MVW and

the Verma module Mk = U(hC)⊗U(kH,C⊕q−H) detk of lowest weight k. Regarding its decomposition

as a gC × gC-module there is the following theorem.
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Theorem 4.3.2 ( [JV79, Proposition 2.2, Corollary 2.3]). If k ≥ n+ 1, then

Of(H(R),KH,∞,−k)|gC×gC =

∞⊕
r=0

Of
(
G(R)×G(R),KG,∞ ×KG,∞, det−k ⊗ Symr(q−H/q

−
G × q−G)

)
.

Applying the decomposition results on algebraic GL(n)-representations [Shi84, Theorem 2.A],
we have

Symr(q+
H/q

+
G × q+

G) ∼=
⊕

a1≥···≥an≥0
|a|=r

Wa(C) �Wa(C)

as KG,∞ × KG,∞-representations, where |a| = a1 + · · · + an. Let a′ = (−an, · · · ,−a1). When

tn ≥ n + 1 the (gR,KG,∞)-module Of(Hn, a
′)MVW gives the holomorphic discrete series Da of

lowest KG,∞-type a. Since we have always assumed k ≥ n + 1 we obtain the the multiplicity free
decomposition

(4.3.3) R0,2k|gC×gC ∼=
⊕

a1≥···≥an≥k
Da �Da.

Let σk,t be the unique KG,∞ ×KG,∞-sub-representation of R0,2k that corresponds to Dt(t)�Dt(t)
under the above isomorphism. Now due to the equivariance property (4.1.3) it is clear that the
zeta integral pairing

(4.3.4) Z∞ : R0,2k ×
(
D̃t(−t)×Dt(t)

)
−→ C

factors through σk,t.

Lemma 4.3.3. The pairing (4.3.4) is nontrivial.

Proof. Since the representation of G(R) we are considering is discrete series, the arguments in [Li90]
demonstrates the equivalence between the nontriviality of (4.3.4) and the nonvanishing of the theta
lift of Dt from G(R) to O(0, 2k). The nonvanishing of this theta lift is easily seen from [KV78,
Theorem (6.13)] or from (4.3.3) plus the doubling seesaw. �

Thus a section inside R0,2k pairs nontrivially with D̃t(−t)×Dt(t) by the zeta integral if and only

if its projection to σk,t is nontrivial. Once we know that the projection of fdκ,τ,∞ to σk,t is nonzero,

we can deduce the nonvanishing of the map (4.3.2), as well as that of the number
Z∞(fκ,τ,∞,v∨t ,vt)

〈v∨t ,vt〉
in the statement of Proposition 4.3.1 since by [Shi84, Theorem 2.A] and the definition of fdκ,τ,∞, its
projection to σk,t is the highest weight vector on both factors. Therefore the last step is to prove
the following lemma.

Lemma 4.3.4. The section fdκ,τ,∞ projects nontrivially onto σk,t.

Proof. Let vk be the lowest weight vector of the Verma module Mk = U(hC) ⊗U(kH,C⊕q−H) detk.

Under the isomorphism between R0,2k and Mk the section fd,k∞ corresponds to vk. Therefore by

the definition of fdκ,τ,∞, what we need to show is that
∏n
l=1 detl

(
µ̂+

0

)tl−tl+1 · vk has a nontrivial

projection onto the lowest kG,C × kG,C-type of the Dt � Dt-isotypic component of Mk|gC×gC . The
universal enveloping algebra U(hC) comes with a natural grading

⋃
r≥0 Ur(hC), where Ur(hC) is

spanned by elements that can be written as a product of no more than r vectors in hC. Viewing Mk

as a gC×gC module, it has the natural filtration
⋃
r≥0Mk,r, with Mk,r being the module generated

by vk under the action of U(gC × gC) and Ur(hC). Let q+
i be the Lie subalgebra of the abelian Lie
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algebra of q+
H spanned by entries of µ̂+

i , for i = 0, 1, 2. Consider the morphism of C-vector spaces

(4.3.5)
U(q+

1 ⊕ q+
2 )⊗C Ur(q

+
0 ) −→Mk,r

α⊗ β 7−→ αβ · vk.

It is injective by the PBW theorem, and the image contains Ur(hC) ·vk. From the relation [[(kG,C⊕
q−G)× (kG,C⊕ q−G), q+

0 ], q+
0 ] ⊂ q+

H we see that
(
(kG,C ⊕ q−G)× (kG,C ⊕ q−G)

)
·Ur(q+

0 ) · vk is contained in

U(q+
1 ⊕ q+

2 )Ur(q
+
0 ) · vk. Therefore the image of (4.3.5) is stable under the action of (kG,C ⊕ q−G) ×

(kG,C ⊕ q−G), and (4.3.5) is a bijection, which implies that

(4.3.6)
n∏
l=1

detl
(
µ̂+

0

)tl−tl+1 · vk /∈Mk,|t|−nk−1.

At the same time the bijection (4.3.5) gives

(4.3.7)

Mk,r/Mk,r−1
∼= U(gC × gC)⊗U((kG,C⊕q−G)×(kG,C⊕q−G))

(
Symr(q+

H/q
+
G × q+

G)⊗ detk
)

∼=
⊕

a1≥···≥an≥0
|a|=r

(
U(gC)⊗U(kG,C⊕q−G) Wa+k

)
�
(
U(gC)⊗U(kG,C⊕q−G) Wa+k

)
∼=

⊕
a1≥···≥an≥0
|a|=r

Da+k �Da+k.

The vector
∏n
l=1 detl

(
µ̂+

0

)tl−tl+1 ·vk belongs to the t×t-isotypic part of Mk|kG,C×kG,C , so its image in
Mk,|t|−nk/Mk,|t|−nk−1, which is nonzero by (4.3.6), lands inside Dt(t)�Dt(t) under the isomorphism

(4.3.7). Now we can conclude that
∏n
l=1 detl

(
µ̂+

0

)tl−tl+1 · vk projects nontrivially to the lowest
kG,C × kG,C-type of the Dt �Dt-isotypic component of Mk|gC×gC . �

�

4.4. The q-expansions. For a Schwartz function αp on Sym(2n,Qp) whose Fourier transform is
supported on the compact set (3.2.3) and takes values inside a number field on Sym(2n,Q), set

f
αp
κ,τ =

⊗
v/∈S

fur
v (k − 2n+ 1

2
, φ−1χ◦−1)⊗ fvol

κ,τ,N ⊗ f
αp
p (k − 2n+ 1

2
, φ−1χ◦−1)⊗ fκ,τ,∞.

From the discussion in §2 we see that the Siegel Eisenstein series E∗(·, fαpκ,τ) on H and its restriction
to G × G are both nearly holomorphic of degree less or equal to |t| − nk. Since the archimedean
section fκ,τ,∞ belongs to the t�t-isotypic component of IQH ,∞(k− 2n+1

2 , Signk)|KG,∞×KG,∞ and is of

weight (t, t), we know that the form A−1
n,φ,k,χ ·E

∗(·, fαpκ,τ)|G×G lies inside the image of the embedding

H0(XG,Γ ×XG,Γ,V |t|−nkt � V |t|−nkt )⊗Q(ζN ) F
ϕG×G(·,ecan)−−−−−−−−→ A(G(Q)×G(Q)\G(A)×G(A)/Γ̂× Γ̂)t�t,

where Γ = Γ1(N, pm) with m sufficiently large, and F is a sufficiently large number field . We

denote by Eαpκ,τ the global section of V |t|−nkt �V |t|−nkt over XG,Γ×XG,Γ which is mapped to A−1
n,φ,k,χ ·

E∗(·, fαpκ,τ)|G×G, and consider the (p-adic) q-expansion, defined as (2.6.1), of the nearly holomorphic

form Eαpκ,τ. Let ΣN,p,+ be the intersection of the set Σp,+ and
⋂
v|N N

−1 Sym(2n,Zv)∗.
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Proposition 4.4.1. Suppose (κ, τ) ∈ Homcont(Z×p × Tn(Zp),Q
×
p ) is an admissible point satisfying

the parity condition φχ(−1) = (−1)k. Then

(4.4.1) εq,p-adic(E
αp
κ,τ) =

∑
β1,β2∈N−1 Sym(n,Z)∗

∑
β=

(
β1 β0
tβ0 β2

)
∈ΣN,p,+

c
αp
κ,τ(β)qβ1qβ2 ,

with

c
αp
κ,τ(β) =

det(2β)1/2

G(φβ)
α̂vol
N (β) · χ−1(Cφβ)C−k+n+1

φβ
· LN (k − n, φ−1

β χ−1)−1 · Lp(1− k + n, φβχ)

× gSβ(k, φχ) · α̂p(β)

n∏
l=1

detl(2β0)tl−tl+1 det(2β)k−n−1.

Proof. The proof is straightforward. All we need to be careful about is to be precise with all
representations and maps involved here, instead of looking at isomorphim classes or working up to
scalars. We use the symbol τk to mean an arithmetic character of Tn(Zp) with algebraic part equal

to the scalar weight k = κalg. Let E
αp
κ,τk be the inverse image of A−1

n,φ,k,χ ·E
∗(·, fαpκ,τk) under the map

ϕH(·, ecan), which is a global section of the sheaf ωk = V0
k over XH,Γ. It follows from the definition

of polynomial q-expansions, the canonical test object carried by H2n and Proposition 3.5.1 that

E
αp
κ,τk(q, Y ) =

∑
β∈ΣN,p,+

c
αp
κ,τk(β) · vkqβ,

where vk is a basis of the representation detk. Let X = (Xij)≤i,j≤2n be the basis of the represen-
tation τ2n defined as in the paragraphs above Proposition 2.4.1, and we write it in n× n blocks as(
X1 X0

tX0 X2

)
. Applying Proposition 2.6.1 we get

(4.4.2) (De
kE

αp
κ,τk)(q, 0) =

∑
β∈ΣN,p,+

c
αp
κ,τk(β) · vk ⊗

 ∑
1≤i≤j≤2n

(2− δij)βijXij

e

qβ.

Let τ2n,0 be the direct summand of τ2n|GL(n)×GL(n) generated by entries of X0. For a ∈ X(Tn)+

with |a| = e and an ≥ 0, put an+1 = 0 and fix the morphism of GL(n)×GL(n)-representations

(4.4.3) detk ⊗ Syme τ2n,0 −→Wa+k �Wa+k

sending vk ⊗
∏n
l=1 detl(X0)al−al+1 to the vector wa+k � wa+k. Here for each b ∈ X(Tn)+ the

function wb : GL(n)/Nn → A1 is defined as wb(g) = det(g)−b1
∏n−1
l=1 detn−l(g)bl−bl+1 . Recall that

V r
k⊗Syme τ2n

= detk⊗Syme τ2n[Y ]≤r. Similarly to X we write Y =

(
Y 1 Y 0

tY 0 Y 2

)
. It is easy to check

that modulo X1, X2, Y 0 gives rise to a QG×QG-representation morphism from V r
k⊗Syme τ2n

|QG×QG
to Syme τ2n,0 ⊗ (V r

k � V r
k ) which, when composed with (4.4.3), gives

πk,a : V r
k⊗Syme τ2n

∣∣
QG×QG

−→ V r
a+k � V r

a+k.
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Given Proposition 2.3.1, 2.4.1 it is tautological to check that we have the following commutative
diagram

H0(XH,Γ, ωk)
ϕH(·,ecan)

//

Dek
��

A(H(Q)\H(A))

∏n
l=1 detl(− 1

4πi
µ̂+

0 )
al−al+1

��

H0(XH,Γ,Vek⊗Syme τ2n
)

ϕH(·,ecan⊗wa′ (X∗0))
//

��

A(H(Q)\H(A))

��

H0(XG,Γ ×XG,Γ, ι
∗Vek⊗Syme τ2n

)

πk,a

��

H0(XG,Γ ×XG,Γ,Vea+k � Vea+k)
ϕG×G(·,ecan)

// A(G(Q)×G(Q)\G(A)×G(A)),

where a′ = (−an, · · · ,−a1). Thus the (p-adic) q-expansion of Eαpκ,τ is obtained from applying

wa′(X
∗
0), with a = t− k, to (4.4.2) and setting Y to zero, qβ to qβ1qβ2 , i.e.

εq,p-adic(E
αp
κ,τ) =

∑
β=

(
β1 β0
tβ0 β2

)
∈ΣN,p,+

n∏
l=1

detl(2β0)tl−tl+1c
αp
κ,τk(β)qβ1qβ2 ,

which is exactly (4.4.1). �

5. The measure µE,q-exp and local zeta integrals at p

We review briefly the theory of p-adic measures, and then pick suitable α̂κ,τ,p such that the

εq,p-adic(E
ακ,τ,p
κ,τ )’s amalgamate into an element of M eas

(
Z×p × Tn(Zp),OF [[N−1 Sym(n,Z)∗⊕2

>0 ]]
)
,

where F is a finite extension of Qp containing all N -th roots of unity. Then we retrieve fp,κ,τ
from α̂p,κ,τ and carry out local computations at p.

5.1. p-adic measures. Suppose that Y is a compact and totally disconnected topological space.
Let R be a p-adic ring, i.e. R = lim←−R/p

nR, and M be a p-adically complete R-module. Denote by

C (Y,R) the R-algebra of continuous R-valued functions on Y . An M -valued p-adic measure on Y
is a continuous R-linear map

µ : C (Y,R) −→M

f 7−→ µ(f) =

∫
Y
f dµ,

where the topology on C (Y,R) is the topology of uniform convergence. The set of M -valued p-
adic measures on Y is a p-adically complete R-module and is denoted as M eas(Y,M). For an
R-algebra R′, which is also p-adically complete, since C (Y,R′) = C (Y,R)⊗̂R′, there is a natural
map M eas(Y,M) → M eas(Y,M⊗̂R′) and we view M eas(Y,M) as a subset of M eas(Y,M⊗̂R′) if
R→ R′ is injective. From definition it is easily seen that we have the following maps

(5.1.1)
Y −→ M eas(Y,R)

y 7−→ δy(f) := f(y),
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and

(5.1.2)

M eas(Y,M)× C (Y,R) −→ M eas(Y,M)

(µ, h) 7−→ µh(f) :=

∫
Y
fh dµ.

Moreover if we assume that Y is equipped with the structure of an abelian group (written multi-
plicatively), then we can define the convolution on M eas(Y,R) as

(5.1.3)

M eas(Y,R)×M eas(Y,R) −→ M eas(Y,R)

(µ1, µ2) 7−→ µ1 ∗ µ2(f) :=

∫
Y

∫
Y
f(yz) dµ1(y)dµ2(z).

If f ∈ Homcont(Y,R
×) is a multiplicative character, we have

(5.1.4)

∫
Y
f d(µ1 ∗ µ2) =

(∫
Y
f dµ1

)(∫
Y
f dµ2

)
.

5.2. The p-adic measure µE,q-exp and the section fκ,τ,p. Now take Y = Z×p × Tn(Zp) and
R = OF . The goal is to select the Schwartz function α̂κ,τ,p and construct an element µE,q-exp inside

the space M eas
(
Z×p × Tn(Zp),OF [[N−1 Sym(n,Z)∗⊕2

>0 ]]
)

such that∫
Z×p ×Tn(Zp)

(κ, τ) dµE,q-exp = εq,p-adic(E
ακ,τ,p
κ,τ ).

By definition it is enough to construct, for each β ∈ ΣN,p,+, a measure µE,β ∈ M eas(Y,OF ) with
the property that
(5.2.1)∫
Z×p ×Tn(Zp)

(κ, τ) dµE,β = c
ακ,τ,p
κ,τ (β) =

det(2β)1/2

G(φβ)
α̂vol
N (β) · χ−1(Cφβ)C−k+n+1

φβ
· LN (k − n, φ−1

β χ−1)−1

× Lp(1− k + n, φβχ) · gSβ(k, φχ)

× α̂κ,τ,p(β)
n∏
l=1

detl(2β0)tl−tl+1 det(2β)k−n−1.

Because of (5.1.4) we can deal with the RHS of (5.2.1) term by term.

The first term det(2β)1/2

G(φβ) α̂vol
N (β) is a constant inside OF . The second term is interpolated by the

measure Cn+1
φβ
·δ(C−1

φβ
,id), where id is the unity of Tn(Zp). Both of the term LN (k−n, φ−1

β χ−1)−1 and

the term gSβ(k, φχ) can be written as OF -linear combinations of χ−1(m)m−k with some positive

integers m prime to p. For each m the measure δ(m−1,id) interpolates χ−1(m)m−k.

Regarding the term Lp(1 − k + n, φβχ) = (1 − φβχ◦(p)pk−n−1)L(1 − k + n, φβχ
◦), there is the

following theorem on the existence of p-adic Dirichlet L-functions.

Theorem 5.2.1 (Kubota–Leopoldt, [Hid93, Theorem 4.4.1]). Given a nontrivial primitive Dirichlet
character ξ with conductor prime to p, there is a unique measure µξ ∈ M eas

(
Z×p ,Zp[ξ]

)
such that

for all integers j ≥ 1 and finite order characters χ ∈ Homcont(Z×p ,C×),∫
Z×p
χ(y)yj dµξ(y) = (1− ξχ◦(p)pj−1)L(1− j, ξχ◦).
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As for the trivial character, for each fixed prime ` prime to p, there is a unique measure µ` ∈
M eas

(
Z×p ,Zp

)
such that for all j and χ as before,∫

Z×p
χ(y)yj dµ`(y) = (1− χ(`)−1`−j)(1− χ◦(p)pj−1)L(1− j, χ◦).

For simplicity we assume that φ2 6= 1 from now on, so that φβ will always be nontrivial. Without

this assumption, for a fixed prime ` prime to p, we can interpolate (1− χ(`)−1`−k+n) · Eκ,τ instead
of Eκ,τ. Then everything in the following goes the same, and we get the measure µC,`,φ,β1,β2 as
described in Remark 1.0.2.

Let hn(y) = y−n. Using (5.1.2) we get the measure µφβ,hn on Z×p with µφβ,hn(κ) = Lp(1 − k +
n, φβχ), whose direct product with the measure δid on Tn(Zp) gives the desired p-adic interpolation
of Lp(1− k + n, φβχ).

It remains to treat the term α̂κ,τ,p(β)
∏n
l=1 detl(2β0)tl−tl+1 det(2β)k−n−1 by selecting suitable

α̂κ,τ,p. Due to the density of polynomial functions inside C (Z×p × Tn(Zp), F ), the measure in-

terpolating this expression must be det(2β)−n−1 · δ(b0,b1,··· ,bn), where b0 = det(2β) det(2β0)−1,

b1 = det1(2β0), bl = detl−1(2β0)−1 detl(2β0) for 2 ≤ l ≤ n, and we must require all the detl(2β0)
to lie inside Z×p . Accordingly we see that a natural choice of the Schwartz function α̂κ,τ,p on
Sym(2n,Qp) is

α̂κ,τ,p

((
β1 β0
tβ0 β2

))
=1p2 Sym(n,Zp)∗(β1)1Sym(n,Zp)∗(β2)

n∏
l=1

1GLl(Zp) ((2β0)l) · χ(det(2β))

n∏
l=1

ψlψ
−1
l+1(detl(2β0)),

where (similar to how we have put tn+1 = k) we set ψn+1 = χ, and (2β0)l stands for the upper left
l × l minor of 2β0. In fact the only freedom in the choice is to vary the support.

The inverse Fourier transform of the above defined α̂κ,τ,p gives ακ,τ,p, and our choice of fκ,τ,p is

the “big cell” section f
ακ,τ,p
κ,τ (s, ξ) ∈ IQH ,p(s, ξ) associated to ακ,τ,p, evaluated at s = k − 2n+1

2 and

ξ = φ−1χ◦−1. Now it is clear that the desired measure µE,β in (5.2.1) exists. One also notices that

its evaluation at (κ, τ) with φχ(−1) 6= (−1)k is 0.
So far for all admissible (κ, τ) satisfying φχ(−1) = (−1)k, we have made our choices of fκ,τ,v ∈

IQH ,v(k− 2n+1
2 , φ−1χ◦−1) for all places v. From now on we write fκ,τ to mean the product of all the

local sections we have selected for admissible (κ, τ) if φχ(−1) = (−1)k, and simply 0 if the parity

condition does not hold. We denote by Eκ,τ the global section of V |t|−nkt �V |t|−nkt over XG,Γ×XG,Γ

that is mapped to A−1
n,φ,k,χ · E

∗(·, fκ,τ)|G×G by the map ϕG×G(·, ecan).

Theorem 5.2.2. There is a measure µE,q-exp ∈ M eas
(
Z×p × Tn(Zp),OF [[N−1 Sym(n,Z)∗⊕2

>0 ]]
)

sat-
isfying ∫

Z×p ×Tn(Zp)
(κ, τ) dµE,q-exp = εq,p-adic(Eκ,τ)

for all admissible (κ, τ) ∈ Homcont(Z×p × Tn(Zp),Q
×
p ).

Explicit computation results on the local zeta integrals for v - p∞ have been obtained in The-
orem 4.1.2 and Proposition 4.2.1. For the archimedean place we the nonvanishing result is shown
in Proposition 4.3.1. It remains to carry out the local computations at p, which occupy the rest
of this section. All the results are summarized in the following Proposition 5.2.3, which gives the
interpolation properties of the (n+ 1)-variable p-adic L-function we will finally construct.

By the reasoning near the end of §2.5 we can define (e × 1)Eκ,τ, the ordinary projection of Eκ,τ
on the first factor. For an irreducible cuspidal automorphic representation π of G(A) with π∞ ∼=
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Dt, denote by π
Γ̂1(N,pm),ψ

t the subspace of π consisting of automorphic forms whose archimedean

components, under an isomorphism π ∼=
⊗′

v πv are the highest weight vector inside the lowest

KG,∞-type t, invariant under the right translation of Γ̂1(N, pm), and acted on by the character ψ
by the group TG(Zp).

Proposition 5.2.3. Let ϕ ∈ π
Γ̂1(N,pm),ψ

t be a weight t ordinary cuspidal Siegel modular form.

Regarding the Petersson inner product of ϕ with the automorphic form ϕG×G((e × 1)Eκ,τ, ecan) on
its first factor, we have〈

ϕG×G((e× 1)Eκ,τ, ecan)(·, g), ϕ
〉

=φ(−1)nvol
(

Γ̂(N)
) pn

2
(p− 1)n∏n

l=1(p2l − 1)
· Γ(k − n)Γ2n(k)

2k+n−1(πi)2nk+k−n ·
Z∞(fκ,τ,∞, v

∨
t , vt)

〈v∨t , vt〉

× Ep(k − n, π × φ−1χ−1) · LNp∞(k − n, π × φ−1χ−1) · eW (ϕ)(g),

where the modified Euler factor Ep(k − n, π × φ−1χ−1) is defined by (1.0.1), and the operator
W : A(G(Q)\G(A))→ A(G(Q)\G(A)) is defined as

(5.2.2) W (ϕ)(g) :=

(∫
NG(Zp)

Rp(u)ϕϑdu

)
(g) =

∫
NG(Zp)

ϕ(ϑguϑ) du.

Thanks to the multiplicity one theorem for symplectic groups, the operator W preserves π and

π
Γ̂1(N,pm),ψ

t . However this W is not C-linear.

In the unitary case such local zeta integrals are calculated in [Wan15,EHLS16]. The restrictive
conditions in [Wan15] amount to cχψ1 > cχψ2 > · · · > cχψn here, in particular missing the most
interesting cases where cχψ1 = cχψ2 = · · · = cχψn = 0. Computations in [EHLS16] are done in
a different way from ours below, applying the Godement–Jacquet local functional equation, but
without considering the ordinary projection.

5.3. An observation of Böcherer–Schmidt. The first step of the calculation is to compute
the inverse Fourier transform of α̂κ,τ,p. However this computation is in fact not very convenient
because of the term χ(det(2β)). The observation of Böcherer–Schmidt is that, for computing
local zeta integrals, instead of using α̂κ,τ,p, we may use the Schwartz function modified from it by
changing χ(det(2β)) to χ(−1)nχ2(det(2β0)), i.e.
(5.3.1)

α̂′κ,τ,p

((
β1 β0
tβ0 β2

))
=1p2 Sym(n,Zp)∗(β1)1Sym(n,Zp)∗(β2)

n∏
l=1

1GLl(Zp)((2β0)l) · χ(−1)nχ2(det(2β0))
n∏
l=1

ψlψ
−1
l+1(detl(2β0))

=1p2 Sym(n,Zp)∗(β1)1Sym(n,Zp)∗(β2)
n∏
l=1

1GLl(Zp)((2β0)l) · χ(−1)n
n∏
l=1

ψ′lψ
′−1
l+1(detl(2β0)),

where ψ′l = χψl if 1 ≤ l ≤ n and ψ′n+1 is the trivial character. Let f ′κ,τ,p ∈ IQH ,p(k− 2n+1
2 , φ−1χ◦−1)

be the section associated to α′κ,τ,p, the inverse Fourier transform of α̂′κ,τ,p.

Recall that we have defined the adelic Up-operators in (2.5.2) and (2.5.3). For a ∈ C+
n , with the

embedding ι : G × G ↪→ H, we can make Up,a act on smooth functions on H(A) simply by the
formula (2.5.3) on the first factor. We use Up,a× 1 to denote this action, and it is easily seen to be
compatible with restriction by ι and the operator Up,a × 1 on G×G. The operator Up,n is the one
with a = (1, · · · , 1),
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Proposition 5.3.1. If m is a positive integer such that the conductor of χ divides p2m, then

(Ump,n × 1)E∗(·, fκ,τ) = (Ump,n × 1)E∗(·, f ′κ,τ).

Proof. Let E∗,pβ (hz, fκ,τ) be E∗β(hz, fκ,τ) with the factor Wβ,p(1p, fκ,τ,p) removed. The β-th Fourier

coefficient of (Ump,n×1)E∗(·, fκ,τ) at hz is equal to E∗,pβ (hz, fκ,τ)Wβ,p(1p, (U
m
p,n×1)fκ,τ,p). We define

similarly E∗,pβ (hz, f
′
κ,τ), and it is obvious that E∗,pβ (hz, fκ,τ) = E∗,pβ (hz, f

′
κ,τ). Therefore all we need

to show is that

(5.3.2) Wβ,p(1p, (U
m
p,n × 1)fκ,τ,p) = Wβ,p(1p, (U

m
p,n × 1)f ′κ,τ,p)

for all β ∈ Sym(2n,Q). Let Sn = Sym(n,Qp), Mn = Mn(Qp) and for element ς ∈ S2n we write it

in n× n blocks as

(
ς1 ς0
tς0 ς1

)
. One easily computes

p−(|t|−n(n+1))mWβ,p(1p, (U
m
p,n × 1)fκ,τ,p)

=
∑

u∈Sn(Z/p2mZ)

∫
S2n

fκ,τ,p

(
wu(ς)ι

((
pm up−m

0 p−m

)
, 1

))
ep(−Trβς) dς

=
∑

u∈Sn(Z/p2mZ)

∫
Mn

∫
Sn

∫
Sn

fκ,τ,p




0 0 −p−m 0
0 0 0 −1
pm 0 (ς1 + u)p−m ς0
0 1 tς0p

−m ς2


 ep(−Trβς) dς1 dς2 dς0

=
(
φ(p)pk

)nm ∑
u∈Sn(Z/p2mZ)

∫
Mn

∫
Sn

∫
Sn

ακ,τ,p

((
(ς1 + u)p−2m ς0p

−m
tς0p
−m ς2

))
ep(−Trβς) dς1 dς2 dς0

=
(
φ(p)pk−2n−1

)nm ∑
u∈Sn(Z/p2mZ)

ep(Trβ1u)

∫
S2n

ακ,τ,p(ς)ep

(
−Tr

(
β1p

2m β0p
m

tβ0p
m β2

)
ς

)
dς

=
(
φ(p)pk−n

)nm
1Sym(n,Zp)(β1)α̂κ,τ,p

((
β1p

2m β0p
m

tβ0p
m β2

))
,

and similarly

p−(|t|−n(n+1))mWβ,p(1p, (U
m
p,n × 1)f ′κ,τ,p) =

(
φ(p)pk−n

)nm
1Sym(n,Zp)(β1)α̂′κ,τ,p

((
β1p

2m β0p
m

tβ0p
m β2

))
.

It is easily seen that if β1, β0p
m and β2 are all integral, then

det

((
β1p

2m β0p
m

tβ0p
m β2

))
≡ (−1)n det (β0p

m)2 mod p2m,

so when the conductor of χ divides p2m, the functions α̂κ,τ,p and α̂′κ,τ,p take the same value at such(
β1p

2m β0p
m

tβ0p
m β2

)
, and (5.3.2) is true for all β ∈ Sym(2n,Q). �

Due to the above proposition we know that for a ∈ C+
n with ∆a� 0 and ϕ ∈ π we have〈

(Up,a × 1)E∗
(
ι(·, g), fκ,τ

)
, ϕ
〉

=
〈
(Up,a × 1)E∗

(
ι(·, g), f ′κ,τ

)
, ϕ
〉
,

where the Petersson inner product is taken on the first factor of the restricted Siegel Eisenstein
series. We will compute the local zeta integral for f ′κ,τ,p.
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5.4. The inverse Fourier transform of α̂′κ,τ,p. In this subsection we regard characters of Z×p
(including the trivial character) as functions on Qp by making them take the value 0 outside Z×p .

Given characters of Z×p of finite order ξ = (ξ1, · · · , ξn) whose conductors are pcξ1 , · · · , pcξn , for each
1 ≤ l ≤ n, define the Schwartz function Ψξ,l on Ml(Qp) as

Ψξ,l(x) = 1Ml(Zp)(x) ·
l−1∏
j=1

ξjξ
−1
j+1(detj(−x)) · ξl(detl(−x)).

Denote by F−1Ψξ,l the inverse Fourier transform of Ψξ,l. First we give an inductive formula for

F−1Ψξ,l. Set

Φξ,l(ς) =


ξ−1
l (pcξl ςl)F−1Ψξ,l−1(ς ′) if ς ∈

(
Il−1 Zl−1

p

0 1

)(
ς ′

ςl

)(
Il−1 0
tZl−1
p 1

)
with ς ′ ∈Ml−1(Qp), ςl ∈ Qp,

0 otherwise.

and

Φ′ξ,l(ς) =

F
−1Ψξ,l−1(ς ′) if ς ∈

(
ς ′ Zl−1

p
tZl−1
p Zp

)
with ς ′ ∈Ml−1(Qp),

0 otherwise.

Proposition 5.4.1. We have

(1) if ξl is nontrivial, then

(5.4.1) F−1Ψξ,l(ς) = p−lcξlG(ξl)Φξ,l(ς),

(2) if ξl is the trivial character, then

(5.4.2) F−1Ψξ,l(ς) = −p−lΦξ,l(ς) + (1− p−1)Φ′ξ,l(ς).

Proof. Write ς =

(
ς ′ η
tµ λ

)
and x =

(
x′ y
tz w

)
with ς ′, x′ ∈Ml−1(Qp) and λ,w ∈ Qp. Then

F−1Ψξ,l(ς)

=

∫
Ml(Qp)

Ψξ,l(x)ep
(
Tr txς

)
dx

=

∫
Ml−1(Zp)×Zl−1

p ×Zl−1
p ×Zp

Ψξ,l

((
x′ y
tz w

))
ep

(
Tr(

t
x′ς ′ + tzµ+ tyη + wλ)

)
dx′ dy dz dw

=

∫
Ml−1(Zp)

Ψξ,l−1(x′)ep
(
Tr tx′ς ′

) ∫
Zl−1
p ×Zl−1

p ×Zp
ξl(−w + tzx′−1y)ep

(
Tr(tzµ+ tyη + wλ)

)
dy dz dw dx′

=

∫
Ml−1(Zp)

Ψξ,l−1(x′)ep
(
Tr tx′ς ′

) ∫
Zl−1
p ×Zl−1

p

ep
(
Tr(tzµ+ tyη + tzx′−1ytλ)

) ∫
Zp
ξl(−w)ep (Tr(wλ)) dw dy dz dx′.

First assume that ξl is nontrivial. Then

(5.4.3)

∫
Zp
ξl(−w)ep (Tr(wλ)) dw = p−cξlG(ξl)ξ

−1
l (det(pcξlλ)).

Hence F−1Ψξ(ς) is 0 unless λ belongs to p−cξlZ×p . Suppose λ ∈ p−cξlZ×p , and we write(
ς ′ η
tµ λ

)
=

(
1 ηλ−1

0 1

)(
ς̃ ′ 0
0 λ

)(
1 0

λ−1tµ 1

)
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with ς̃ ′ = ς ′ − ηλ−1tµ. Then
(5.4.4)∫

Ml−1(Zp)
Ψξ,l−1(x′)ep

(
Tr tx′ς ′

) ∫
Zl−1
p ×Zl−1

p

ep
(
Tr(tzµ+ tyη + tzx′−1yλ)

)
dy dz dx′

=

∫
Ml−1(Zp)

Ψξ,l−1(x′)ep
(
Tr tx′ς̃ ′

) ∫
Zl−1
p

ep
(
Tr(λ−1tηx′(µ+ x′−1yλ))

) ∫
Zl−1
p

ep
(
Tr(tz(µ+ x′−1yλ))

)
dz dy dx′

= p−(l−1)cξl1Zl−1
p

(λ−1tµ)1Zl−1
p

(ηλ−1) ·
∫
Ml−1(Zp)

Ψξ,l−1(x′)ep
(
Tr tx′ς̃ ′

)
dx′.

Combining (5.4.3) and (5.4.4) we get (5.4.1). Now if ξl is the trivial character, then

(5.4.5)

∫
Zp
ξl(−w)ep (Tr(wλ)) dw = −p−11p−1Z×p (λ) + (1− p−1)1Zp(λ).

When λ ∈ p−1Z×p , (5.4.4) holds with cξl replaced by 1. When λ ∈ Zp,

(5.4.6)

∫
Ml−1(Zp)

Ψξ,l−1(x′)ep
(
Tr tx′ς ′

) ∫
Zl−1
p ×Zl−1

p

ep
(
Tr(tzµ+ tyη + tzx′−1yλ)

)
dy dz dx′

=

∫
Ml−1(Zp)

Ψξ,l−1(x′)ep
(
Tr tx′ς ′

) ∫
Zl−1
p ×Zl−1

p

ep
(
Tr(tzµ+ tyη)

)
dy dz dx′

=F−1Ψξ,l−1(ς ′) · 1Zl−1
p

(η)1Zl−1
p

(µ).

We see that (5.4.2) follows from (5.4.5),(5.4.4) (with cξl replaced by 1) and (5.4.6). �

Recall that for an n-tuple of integers c = (c1, · · · , cn) we have defined pc to be the element
diag(pc1 , · · · , pcn , p−c1 , · · · , p−cn) inside G(Qp), so p

cχψ gives a diagonal matrix in G(Qp). When
ξ1, · · · , ξn are all nontrivial, the induction formula in Proposition 5.4.1 easily gives formulas for
F−1Ψξ,l, and hence formulas for the section f ′dκ,τ,p.

Corollary 5.4.2. As a function on G(Qp) the smooth function f ′dκ,τ,p(ι(·, 1)) is supported on the
compact open subset

N−G (Zp)pcχψ
(
p−1In 0

0 pIn

)
BG(Zp)

(
pIn 0
0 p−1In

)
,

and takes the value
n∏
l=1

ψl(xl) · p−n(n+1)−
∑n
l=1 lcχψl

(
pkφ(p)

)∑n
l=1 cχψl

n∏
l=1

G(χψl)

at the element u−p
cχψ diag(x1, · · · , xn, x−1

1 , · · · , x−1
n )u, with xl ∈ Z×p , u− ∈ N−G (Zp) and u ∈(

p−1In 0
0 pIn

)
NG(Zp)

(
pIn 0
0 p−1In

)
.

Proof. Write g ∈ G(Q) as g =

(
a b
c d

)
, using (4.2.1) we get

f ′dκ,τ,p(ι(g, 1)) = f ′κ,τ,p(Sι(g, 1))

= φpχp

(
det

(
c −In
−a 0

)) ∣∣∣∣det

(
c −In
−a 0

)∣∣∣∣−k
p

α′κ,τ,p

((
a−1b −a−1

−d+ ca−1b −ca−1

))
= χ(−1)nχ−1 (det(a)|det(a)|p)φ−1 (|det(a)|p) |det(a)|−kp p−n(n+1)

· 1p−2 Sym(n,Zp)(a
−1b)1Sym(n,Zp)(ca

−1) · χ(−1)nF−1Ψχψ(a−1),
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and the statement follows by applying Proposition 5.4.1. �

We will say that an admissible point (κ, τ) belongs to the ramified cases if none of the characters
χψ1, · · · , χψn is trivial.

5.5. The Up-operators and the theory of Jacquet modules. Before starting the computation
of the zeta integrals at p ,we state some facts that follow easily from the theory of Jacquet modules
and are useful in the study of p-adic automorphic forms of finite slopes. One can also consult the
treatment in [Hid04, §5.1].

Let π ⊂ A0(G(Q)\G(A)) be an irreducible cuspidal automorphic representation with a fixed
isomorphism π ∼=

⊗′
v πv. Assume that π∞ ∼= Dt. For each ϕ ∈ π its ordinary projection eϕ

is defined by the discussion in §2.5. Put πord = eπ. By Proposition 2.5.5 we know that πord is
contained inside the subspace of holomorphic forms inside π.

The facts we show below and will be of use later are: if πord is nonzero, then πp is isomorphic to
a composition factor of certain principal series, and the projection of πord to πp is one dimensional,
and the action of the Up-operators on

⋂
a∈C+

n
Up,a(πp), the intersection of the images of all the

Up-operators acting on πp, is semisimple.
Given an admissible representation Π of G(Qp), define Up,a,loc =

∫
NG(Zp) Π(upa) du (in a purely

local situation we do not care about the normalization). Let Π(NG(Qp)) be the subspace of Π
spanned by Π(u)v − v for all u ∈ NG, v ∈ Π. The Jacquet module ΠNG(Qp) is defined to be the
quotient of Π by Π(NG(Qp)).

It follows from Jacquet’s Lemma [Cas95, Theorem 4.1.2, Proposition 4.1.4] that the restriction
of the projection Π → ΠNG(Qp) to

⋂
a∈C+

n
Up,a,loc(Π) is an isomorphism of TG(Zp)-representations.

It is also easy to check that the action of Up,a, a ∈ C+
n on Up,a,loc(Π) translates to the action of

pa ∈ TG(Qp) on the Jacquet module ΠNG(Qp). Let δBG be the modulus character associated to

BG. It takes the value
∏n
j=1 |xj |

2(n+1−j)
p on diag(x1, · · · , xn, x−1

1 , · · · , x−1
n ) ∈ BG(Qp). There is the

Frobenius reciprocity indicating HomG(Qp)

(
Π, Ind

G(Qp)
BG(Qp) θ

)
∼= HomTG(Qp)

(
ΠNG(Qp), θδ

1/2
BG

)
where

θ = (θ1, · · · , θn) is a character of TG(Qp) and Ind
G(Qp)
BG(Qp) θ is the normalized induction. Therefore

one concludes that as long as the operator Up = Up,ρG acting on π has a nonzero eigenvalue, the

G(Qp)-representation πp can be embedded into a principal series representation Ind
G(Qp)
BG(Qp) θ for

some θ. More precisely we have the following proposition.

Proposition 5.5.1. Suppose that there are a1, · · · , an ∈ OQp
\{0} and an automorphic form ϕ ∈

π
Γ̂1(N,pm),ψ

t on which the operator Up,a acts by
∏n
j=1 a

aj
j for all a ∈ C+

n . Let θ be the character of

TG(Qp) whose restriction to TG(Zp) is ψ and θj(p) = αj = p−(tj−j)aj. Then πp can be embedded

into the principal series representation Ind
G(Qp)
BG(Qp) θ.

Notice that when πord is nonzero, the p-adic evaluations of the above defined α1, · · · , αn, α−1
1 , · · · , α−1

n

are pairwise distinct, and are among ±(t1 − 1), · · · ,±(tn − n).
The information regarding the Up-operators acting on

⋂
a∈C+

n
Up,a(πp) can be deduced from the

knowledge of the action of TG(Qp) on
(

Ind
G(Qp)
BG(Qp) θ

)
NG(Qp)

, the Jacquet module of the principal

series that contains πp. According to [Cas95, Proposition 6.3.1, Proposition 6.3.3], the composi-

tion series of
(

Ind
G(Qp)
BG(Qp) θ

)
NG(Qp)

consists of |WG| characters of TG(Qp), which are (θ ◦ w) · δ1/2
BG

,

w ∈ WG, where WG is the Weyl group of G with respect to its maximal torus TG. The non-
triviality of πord implies that these |WG| characters are pairwise distinct, so the TG(Qp)-action on
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(
Ind

G(Qp)
BG(Qp) θ

)
NG(Qp)

, as well as πp,NG(Qp), is semisimple. By a simple examination of the corre-

sponding p-adic valuations one also sees that there is only one w in WG having the property that

for all a ∈ C+
n the number θ(w(pa))δ

1/2
BG

(pa) has p-adic valuation less or equal to −〈t+ 2ρG,c, a〉.

Proposition 5.5.2. If πord is nonzero, then the action of Up-operators on
⋂
a∈C+

n
Up,a(πp) is

semisimple. Let πp,ord be the image of the projection of πord to πp. Then πp,ord is one dimen-
sional.

From now on when πord is nonzero, we put a1, · · · , an ∈ O×Qp to be the p-adic integers such that

the Up-operator Up,a acts on πord by
∏n
j=1 a

aj
j for a = (a1, · · · , an) ∈ C+

n . We will also assume that

the group TG(Zp) acts on πord by the character ψ. For 1 ≤ j ≤ n, the number αj and the character

θj of Q×p are defined from aj and ψj as above, i.e. αj = p−(tj−j)aj and θj |Z×p = ψj with θj(p) = αj .

5.6. The proof of Prop 5.2.3 for the ramified cases.

Proof (the ramified cases). Assume that χψ1, · · · , χψn are all nontrivial, and ϕ ∈ πΓ1(N,pm)
t is ordi-

nary. The computation is straightforward. For ∆a � 0, by definition of the operator Up,a (2.5.2)
and Proposition 5.3.1,(

T(Up,a×1)fκ,τ,pϕ
)

(gϑ) =
(
T(Up,a×1)f ′κ,τ,p

ϕ
)

(gϑ)

= p〈t+2ρG,c, a〉
∫
G(Qp)

∫
NG(Zp)

f ′dκ,τ,p(ι(g
′upa, 1))ϕ(gϑg′)dudg′

= p〈t+2ρG,c, a〉
∫
G(Qp)

f ′dκ,τ,p(ι(g
′, 1))ϕ(gϑg′p−a)dg.

Abbreviate the scalar p−
∑n
l=1 l·cχψl

(
pkφ(p)

)∑n
l=1 cχψl

∏n
l=1G(χψl) as bk,φ,χψ. Then applying Corol-

lary 5.4.2 we get

b−1
k,φ,χψvol

(
N−G (Zp)BG(Zp)

)−1 ·
(
T(Up,a×1)fκ,τ,pϕ

)
(gϑ)

= p
〈t+2ρG,c, a〉−

〈
2ρG, cχψ

〉 ∫
N−G (Zp)

∫
NG(Zp)

ϕ

(
gϑu−p

cχψ

(
p−1In 0

0 pIn

)
u

(
pIn 0
0 p−1In

)
p−a
)
du du−

= p
〈t+2ρG,c, a〉−

〈
2ρG, cχψ

〉 ∫
N−G (Zp)

ϕ
(
gϑu−p

cχψ−a
)
du−

= p
〈t+2ρG,c, a〉−

〈
2ρG, cχψ

〉 ∫
NG(Zp)

ϕ
(
ϑgup

a−cχψϑ
)
du

= p

〈
t−2ρG,nc, cχψ

〉 (
Up,a−cχψϕ

ϑ
)

(g)

Using vol
(
N−G (Zp)BG(Zp)

)
= pn

2
(p−1)n∏n

l=1(p2l−1)
, we get

(5.6.1)
(
T(Up,a×1)fκ,τ,pϕ

)
(gϑ) = bk,φ,χψ

pn
2
(p− 1)n∏n

l=1(p2l − 1)
p

〈
t−2ρG,nc, cχψ

〉
·
(
Up,a−cχψϕ

ϑ
)

(g).

The automorphic form ϕϑ ∈ π in general is not fixed by NG(Zp), and W (ϕ) by definition equals
its average over NG(Zp). We have

(Up,aϕ
ϑ)(g) =

∫
NG(Zp)

ϕϑ (gupa) du =

∫
NG(Zp)

∫
NG(Zp)

ϕϑ
(
gupau′

)
du du′ =

(
Up,aW (ϕ)

)
(g),
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so (5.6.1) becomes(
T(Up,a×1)fκ,τ,pϕ

)
(gϑ) = bk,φ,χψ

pn
2
(p− 1)n∏n

l=1(p2l − 1)
p

〈
t−2ρG,nc, cχψ

〉
·
(
Up,a−cχψW (ϕ)

)
(g),

which, together with Theorem 4.1.2, Proposition 4.2.1, the fact that an ordinary nearly holomorphic
form must be holomorphic and Proposition 5.5.2, implies Proposition 5.2.3 in the ramified case. �

5.7. The proof of Prop 5.2.3 for general cases. We first state a proposition whose proof is
postponed to the end of §6.2.

Proposition 5.7.1. For each admissible point (κ, τ) the nearly holomorphic form (e × 1)Eκ,τ is
ordinary on both factors.

The idea of the proof is simple. The statement is true in the ramified cases by results in §5.6.
The admissible points belonging to the ramified cases are Zariski sense inside the weight space

Homcont(Z×p × Tn(Zp),Q
×
p ) and the statement for the general cases follows from a p-adic family

argument.
Another proposition that will be useful for us verifies the nonvanishing of the ordinary projection

of W (ϕ) for a nonzero ordinary Siegel modular form ϕ.

Proposition 5.7.2. If ϕ ∈ πΓ̂1(N,pm),ψ

t is nonzero ordinary, then eW (ϕ) is nonzero.

Proof. Take ϕ′ ∈ π invariant under the right translation of N−G (Zp). We consider the Petersson

inner product of eW (ϕ) with ϕ′ϑ.〈
Up,aW (ϕ), ϕ′ϑ

〉
=p〈t+2ρG,c, a〉

∫
G(Q)\G(A)×NG(Zp)×NG(Zp)

ϕ(ϑgupau′ϑ)ϕ′(ϑgϑ) dg du du′

=p〈t+2ρG,c, a〉
∫
G(Q)\G(A)×NG(Zp)

ϕ(ϑgupaϑ)ϕ′(ϑgϑ) dgdu.

Making the change of variable g 7→ ϑgϑ, we get〈
Up,aW (ϕ), ϕ′ϑ

〉
=p〈t+2ρG,c, a〉

∫
G(Q)\G(A)×NG(Zp)

ϕ(gϑupaϑ)ϕ′(g) dg du

=p〈t+2ρG,c, a〉
∫
G(Q)\G(A)×NG(Zp)

ϕ(g)ϕ(gϑp−auϑ) dg du

=p〈t+2ρG,c, a〉
∫
G(Q)\G(A)

ϕ(g)ϕ(gpa) dg

=p〈t+2ρG,c, a〉
∫
G(Q)\G(A)×NG(Zp)

ϕ(gu)ϕ(gpa) dg du

=p〈t+2ρG,c, a〉
∫
G(Q)\G(A)×NG(Zp)

ϕ(g)ϕ(gupa) dg du

=
〈
ϕ,Up,aϕ

′〉 ,
from which it follows that〈

eW (ϕ), ϕ′ϑ
〉

= lim
r→∞

〈
U r!p W (ϕ), ϕ′

〉
= lim

r→∞

〈
ϕ,U r!p ϕ

′
〉

=
〈
ϕ, eϕ′

〉
.

For fixed ϕ and ϕ′, there are finite dimensional subspaces (viewed as both over C and Qp) of π
and π which contain all the automorphic forms appearing in the above identity, and we regard the
Petersson inner product as a bi-Qp-linear pairing between them. Hence the limits with respect to
the p-adic topology are well defined and commute with the Petersson inner product.
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Now take ϕ′ = Rp(p
c)ϕ with c ∈ C+

n and ∆c sufficiently large such that Rp(p
c)ϕ is fixed by

N−G (Zp). Combining the above computation and the fact Up,aRp(p
c) = Up,a+c, we see that〈

eW (ϕ), (Rp(p
c)ϕ)ϑ

〉
=
〈
ϕ,Up,cϕ

〉
6= 0,

and the nonvanishing of eW (ϕ) follows. �

Now we begin the proof of Proposition 5.2.3 for general cases.

Proof (general cases). Assume that ϕ ∈ π
Γ̂1(N,pm),ψ

t is nonzero ordinary. Let W (ϕ)p be the im-

age of W (ϕ) under the map π
∼→
⊗′ πv → ⊗

v 6=p πv. By the doubling method formula Theo-
rem 4.1.2 and Proposition 4.2.1, 2.5.5, 5.7.1, we deduce that the image of the automorphic form〈
ϕG×G((e× 1)Eκ,τ, ecan)(·, g), ϕ

〉
in
⊗′ πv lies inside W (ϕ)p ⊗ πp,ord. By by Proposition 5.5.2, we

know that W (ϕ)p⊗πp,ord is a one dimensional C-vector space, so the nonvanishing of eW (ϕ) implies

that there exists a complex number Cφ,κ,τ,π ∈ C ∼= Qp such that〈
ϕG×G((e× 1)Eκ,τ, ecan)(·, g), ϕ

〉
= Cφ,κ,τ,π · eW (ϕ)(g).

Let

Bφ,κ,τ,π = A−1
n,φ,k,χ · φ(−1)nvol

(
Γ̂(N)

)
·
Z∞(fκ,τ,∞, v

∨
t , vt)

〈v∨t , vt〉
· LNp∞(k − n, π × φ−1χ−1),

where An,φ,k,χ is defined as (3.5.4). This Bφ,κ,τ,π is a finite complex number because of the absolute
convergence of the archimedean zeta integral and the fact that the partial standard L-function
LNp∞(s, π × φ−1χ−1) does not have a pole at k − n. Let α1, · · · , αn and θ = (θ1, · · · , θn) be the
invariants associated to πp at the end of §5.5. Define

Rp(s, θj , φ
−1) :=

1− (χψj)
◦(p) · φ(p)α−1

j ps−1

1− (χψj)◦(p) · φ(p)−1αjp−s
·
(
φ(p)α−1

j ps−1
)cχψj

G(χψj),

where by convention (χψj)
◦(p) =

{
1 if χψj is trivial
0 otherwise

. The ordinarity condition on π implies

that Rp(s, θj , φ
−1), 1 ≤ j ≤ n, dose not have a pole at s = k − n. Our goal is to show that

(5.7.1) Cφ,κ,τ,π = Bφ,κ,τ,π · vol
(
BG(Zp)N−G (Zp)

) n∏
j=1

Rp(k − n, θj , φ−1).

Let f ′dκ,τ,p(s) = f
d,α′κ,τ,p
p (s− 1

2 , φ
−1χ−1), the “big cell” section inside IPH ,p(s− 1

2 , φ
−1χ◦−1) (defined

as (3.2.1)) , associated to the Schwartz function α′κ,τ,p whose Fourier transform is (5.3.1). We have

f ′dκ,τ,p = f ′dκ,τ,p(k − n). We add the parameter s here due to convergence consideration, because in

general fκ,τ,p(ι(·, 1)) is not compactly supported. In the following we assume Re (s)� 0 whenever
necessary, and the computation results will be easily seen to admit meromorphic continuations with
respect to s.

For c ∈ C+
n , we write

〈
ϕG×G

(
(Up,c × 1)Eκ,τ, ecan

)
(·, g), ϕ

〉
as ϕc(g). Given ϕ′ ∈ πN

−
G (Zp)

t , we have〈
ϕc, ϕ

′ϑ
〉

= Bφ,κ,τ,π lim
s→k−n

p〈t+2ρG,c, c〉
∫
G(Q)\G(A)

∫
G(Qp)

∫
NG(Zp)

f ′dκ,τ,p(s)(ι(g
′upc, 1))ϕ(gϑg′)ϕ′(gϑ) du dg′ dg

= Bφ,κ,τ,π lim
s→k−n

p〈t+2ρG,c, c〉
∫
G(Q)\G(A)

∫
G(Qp)

f ′dκ,τ,p(ι(g
′, 1))ϕ(gϑg′p−c)ϕ′(gϑ) dg′ dg

= Bφ,κ,τ,π lim
s→k−n

p〈t+2ρG,c, c〉
∫
G(Q)\G(A)

∫
G(Qp)

f ′dκ,τ,p(ι(g
′, 1))ϕ(g)ϕ′(gpcg′−1) dg′ dg
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= Bφ,κ,τ,π lim
s→k−n

p〈t+2ρG,c, c〉vol
(
QG(Zp)U−G (Zp)

) ∫
G(Q)\G(A)

ϕ(g)

∫
GL(n,Qp)

p−n(n+1) · ηκ,τ,n(s, a)

·
∫
UG(Zp)×U−G (Zp)

ϕ′
(
gpc
(
p−1In 0

0 pIn

)
u

(
pIn 0
0 p−1In

)(
a 0
0 ta−1

)
u−
)
du du− da dg,

= Bφ,κ,τ,π lim
s→k−n

vol
(
BG(Zp)N−G (Zp)

)
vol
(
Bn(Zp)N−n (Zp)

) · p〈t+2ρG,c,c〉
∫
G(Q)\G(A)

ϕ(g)

∫
NG(Zp)×GL(n,Qp)

ηκ,τ,n(s, a)

· ϕ′
(
gupc

(
a 0
0 ta−1

))
du da dg,

where for 1 ≤ l ≤ n we define the Schwartz function ηκ,τ,l(s, ·) on Ml(Qp), supported on GL(n,Qp),
as

(5.7.2) ηκ,τ,l(s, a) = χ(det(a)|det(a)|p) · φ(| det(a)|p) · | det(a)|s−1
p · F−1Ψχψ,l(a)

for a ∈Ml(Qp). Define the operator

Tκ,τ,p(s) =

∫
GL(n,Qp)

ηκ,τ,n(s, a)πp

((
a 0
0 ta−1

))
da

(certainly in general as an operator acting on π or a model of πp, its absolute convergence requires
Re (s) to be sufficiently large). Then〈

ϕc, ϕ
′ϑ
〉

= Bφ,κ,τ,π
vol
(
BG(Zp)N−G (Zp)

)
vol
(
Bn(Zp)N−n (Zp)

) lim
s→k−n

〈
ϕ, Up,cTκ,τ,p(s)ϕ′

〉
.

At the same time it follows from the computation in the last proposition that〈
Up,cW (ϕ), ϕ′ϑ

〉
=
〈
ϕ, Up,cϕ

′〉 .
There exists a polynomial R(X) ∈ C[X] such that (e × 1)Eκ,τ = (R(Up) × 1)Eκ,τ and eW (ϕ) =
R(Up)ϕ. Thus we have〈
ϕG×G((e× 1)Eκ,τ, ecan), ϕ⊗ ϕ′ϑ

〉
= Bφ,κ,τ,π

vol
(
BG(Zp)N−G (Zp)

)
vol
(
Bn(Zp)N−n (Zp)

) lim
s→k−n

〈
ϕ, R(Up)Tκ,τ,p(s)ϕ′

〉
,〈

eW (ϕ), ϕ′ϑ
〉

=
〈
ϕ, R(Up)ϕ

′〉 .
Now one sees that in order to verify (5.7.1), it suffices to show that there exists some ϕ′ ∈ πN

−
G (Zp)

with eϕ′ 6= 0, such that, as a function in s,
〈
ϕ, Q(Up)Tκ,τ,p(s)ϕ′

〉
admits a meromorphic continuation

and

(5.7.3) lim
s→k−n

〈
ϕ, R(Up)Tκ,τ,p(s)ϕ′

〉
〈ϕ, R(Up)ϕ′〉

= vol
(
Bn(Zp)N−n (Zp)

) n∏
j=1

Rp(k − n, θj , φ−1).

If we fix ϕ′ it is not difficult to check that there exists an open compact subgroup Kp ⊂ G(Zp)
such that πKp contains Up,cϕ

′, Up,cTκ,τ,p(s)ϕ′ for all c ∈ C+
n and s ∈ C with Re (s) large enough.

Therefore we can assume that the polynomial R(X) satisfies eϕ′ = R(Up)ϕ
′ and eTκ,τ,p(s)ϕ′ =

R(Up)Tκ,τ,p(s)ϕ′. In this case the value of the left hand side of (5.7.3) dose not change if we replace

ϕ by any ϕ′′ ∈ π with
〈
ϕ′′, eϕ′

〉
6= 0. Thus we have a big freedom in choosing ϕ′ and ϕ′′ to compute

the left hand side of (5.7.3). The requirements on ϕ′ and ϕ′′ are ϕ′ ∈ πN
−
G (Zp)

t and
〈
ϕ′′, eϕ′

〉
6= 0.

It is also clear that the computation can be reduced to a local situation using any model of πp.

Let fN−G
∈ Ind

G(Qp)
BG(Qp) θ be the section supported BG(Qp)N

−
G (Zp) and taking the value 1 on

N−G (Zp). Fix an open compact subgroup Kp of G(Zp) sufficiently small such that the vectors
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Up,cfN−G
, Up,cTκ,τ,p(s)fN−G , with c ∈ C+

n , Re (s)� 0, are all fixed by the right translation of Kp and

the restriction of θ to BG(Qp)∩Kp is the trivial character. Let f̃Kp ∈ Ind
G(Qp)
BG(Qp) θ

−1 be the section

supported on BG(Qp)Kp and taking the value 1 on Kp . (5.7.3) will follow from the equality

(5.7.4)

〈
f̃Kp , Up,cTκ,τ,p(s)fN−G

〉
〈
f̃Kp , Up,cfN−G

〉 = vol
(
Bn(Zp)N−n (Zp)

) n∏
j=1

Rp(s, θj , φ
−1)

for all c ∈ C+
n . Note that although πp is a sub-representation of Ind

G(Qp)
BG(Qp) θ and in general they

are not equal, by the discussion in §5.5, under the normalization for the Up-operators associated to

t, the ordinary subspace in Ind
G(Qp)
BG(Qp) θ is one dimensional and certainly coincides with that of πp.

The pairing between a section f ∈ Ind
G(Qp)
BG(Qp) θ and a section f̃ ∈ Ind

G(Qp)
BG(Qp) θ

−1 is given as

〈f, f̃〉 =
∫
G(Zp) f(g)̃f(g) dg. We have

〈
f̃Kp , Up,cTκ,τ,p(s)fN−G

〉
〈
f̃Kp , Up,cfN−G

〉 =

(
Up,cTκ,τ,p(s)fN−G

)
(1)(

Up,cfN−G

)
(1)

=

∫
GL(n,Qp)

∫
NG(Zp) fN−G

(
upc

(
a 0
0 ta−1

))
ηκ,τ,n(s, a) du da∫

NG(Zp) fN−G
(upc)

=

∫
GL(n,Qp)

fN−G

((
a 0
0 ta−1

))
ηκ,τ,n(s, a) da

=

∫
GL(n,Qp)

wn(a) ηκ,τ,n(s, a) da,

where for 1 ≤ l ≤ n we define wl : GL(l,Qp) → C to be the smooth function supported on

Bn(Qp)N
−
n (Zp) such that wl(bu

−) =
∏l
j=1 θj(bj)|bj |

l+1−j
p for b ∈ diag(b1, · · · , bl)Nl(Qp) and u− ∈

N−l (Zp). The desired equality (5.7.4) can be deduced from the induction relation

(5.7.5)

∫
GL(l,Qp)

wl(a)ηκ,τ,l(s, a) da

= vol
(
Bl−1,1(Zp)N−l−1,1(Zp)

)
Rp(s, θl, φ

−1)

∫
GL(l−1,Qp)

wl−1(a)ηκ,τ,l−1(s, a) da,

where Bl−1,1(Zp) =

(
GL(l − 1,Zp) Zl−1

p

0 Z×p

)
and Nl−1,1(Zp) =

(
Il−1 0
tZl−1
p 1

)
.
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From the definition of F−1Ψχψ,l, we see that it is invariant under the right (resp. left) translation

of N−l (Zp) (resp. Nl(Zp)). By the definition of wl and that of ηκ,τ,l (5.7.2), we have

(5.7.6)

vol
(
Bl−1,1(Zp)N−l−1,1(Zp)

)−1
∫
GL(l,Qp)

wl(a)ηκ,τ,l(s, a) da

=

∫
GL(l−1,Qp)×Q×p ×Nl−1,1(Qp)×N−l−1,1(Zp)

wl

(
u

(
a′ 0
0 al

)
u−
) ∣∣det(a′)

∣∣−1

p
|al|l−1

p

· ηκ,τ,l
(
s, u

(
a′ 0
0 al

)
u−
)
da′ dal du du

−

=

∫
GL(l−1,Qp)×Q×p ×Ql−1

p

(
φ(p)−1αlp

−s)valp(al) χψl(al|al|p) ·wl−1(a′)

· χ
(
det(a′)|det(a′)|p

)
· φ(det(a′)|p) · | det(a′)|s−1

p · F−1Ψχψ,l

((
a′ y
0 al

))
da′ dal dy.

Next we split the proof of (5.7.5) into two cases depending on whether the character χψl is trivial
or not. First we look at the case when χψl is trivial. Using Proposition 5.4.1 we get

F−1Ψχψ,l

((
a′ y
0 al

))
=
(
−p−l1p−1Z×p (al)1alZl−1

p
(y) + (1− p−1)1Zp(al)1Zl−1

p
(y)
)
F−1Ψχψ,l−1(a′),

and (5.7.6) becomes

vol
(
Bl−1,1(Zp)N−l−1,1(Zp)

)−1
∫

GL(l,Qp)
wl(a)ηκ,τ,l(s, a) da

=

∫
Q×p ×Ql−1

p

(
φ(p)−1αlp

−s)valp(al)
(
−p−l1p−1Z×p (al)1p−1Zl−1

p
(y) + (1− p−1)1Zp(al)1Zl−1

p
(y)
)
dal dy

·
∫

GL(l−1,Qp)
wl−1(a′)ηκ,τ,l−1(s, a′) da′

=

−p−1 · φ(p)α−1
l ps + (1− p−1)

∞∑
j=0

(
φ(p)−1αlp

−s)j · ∫
GL(l−1,Qp)

wl−1(a′)ηκ,τ,l−1(s, a′) da′

=
1− φ(p)α−1

l ps−1

1− φ(p)−1αlp−s
·
∫

GL(l−1,Qp)
wl−1(a′)ηκ,τ,l−1(s, a′) da′,

which is exactly (5.7.5) in the case when χψl is trivial. Now assume that χψl is nontrivial. Again
using Proposition 5.4.1 we get

F−1Ψχψ,l

((
a′ y
0 al

))
= p−lcχψlG(χψl) ·1p−cχψlZ×p (al)1alZl−1

p
(y) · (χψl(pcχψlal))−1 ·F−1Ψχψ,l−1(a′),

which together with (5.7.6) gives

vol
(
Bl−1,1(Zp)N−l−1,1(Zp)

)−1
∫

GL(l,Qp)
wl(a)ηκ,τ,l(s, a) da

= p−lcχψlG(χψl) · vol
(
p−cχψlZl−1

p

)
·
(
φ(p)−1αlp

−s)−cχψl · ∫
GL(l−1,Qp)

wl−1(a′)ηκ,τ,l−1(s, a′) da′

=
(
φ(p)α−1

l ps−1
)cχψl G(χψl) ·

∫
GL(l−1,Qp)

wl−1(a′)ηκ,τ,l−1(s, a′) da′,

and proves (5.7.5) in the case when χψl is nontrivial. �
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6. The measure µE,ord,ı valued in Hida families

From the previously constructed measure µE,q-exp on Z×p × Tn(Zp), we apply Hida theory to

produce, for each character ı of Tn(Z/pZ), a measure µE,ord,ı on Z×p , valued in n-variable Hida
families of G×G.

6.1. Brief review of Hida theory for G. Usually Hida theory is formulated with G instead of
G, but it should be clear that by restricting to a connected component we get a good theory for G.

6.1.1. The Igusa tower. Let YG,N be the Siegel moduli scheme defined over Zp, parametrizing
principally polarized abelian schemes (A, λ) of dimension n with a principal level N structure
ψN over Spec(Zp), and XG,N be a smooth toroidal compactification of YG,N with boundary C,
over which there is the semi-abelian scheme G → XG,N extending the universal abelian scheme
A → YG,N . Let Ha = Ha(G[p∞]) be the Hasse invariant, which is a global section of the invertible
sheaf (detω(G/XG,N ))⊗p−1 over the reduction XG,N/Fp . The push-forward of detω(G/XG,N ) to
the minimal compactification X∗G,N is ample. For a sufficiently large integer c we can lift Hac to a
section over XG,N , and we denote by E such a lift.

Now let F be a finite extension of Qp containing all the N -th roots of unity, and XG,N be
a connected component of the base change of XG,N to OF . Define S = XG,N [1/E] and Sl =

S⊗Spec(Zp) Spec(Z/plZ). Let Tl,m = IsomSl

(
(G[pm])D,ét, (Z/pmZ)n

)
where the superscript D means

the Cartier dual. The scheme Tl,m is étale over Sl with Galois group GLn(Z/pmZ). The inverse
system · · · → Tl,m → Tl,m−1 → · · · → Tl,1 → Sl is called the Igusa tower. By abuse of notation the
pullback of the divisor C to Tm,l will also be written as C.

6.1.2. p-adic (cuspidal) Siegel modular forms. Define

Vl,m := H0
(
Tl,m,OTl,m(−C)

)Nn(Z/pmZ)
,

and set Vl,∞ = lim−→
m

Vl,m. By taking the inverse and direct limits of Vl,∞ one defines

V = lim←−
l

Vl,∞, V = lim−→
l

Vl,∞.

Elements in V are called (cuspidal) p-adic Siegel modular forms (of tame principal level N) . The
space V will be used to construct Hida families. We also define the space V ′ in the same way as
V but without requiring the cuspidality condition. The evaluation at the Mumford object (whose
construction is explained in §2.6) defines the q-expansion map

εq,l : V ′l,∞ −→ OF /plOF [[N−1 Sym(n,Z)∗≥0]],

and the p-adic q-expansion map for p-adic Siegel modular forms

(6.1.1) εq,p-adic : V ′ −→ OF [[N−1 Sym(n,Z)∗≥0]].

The injectivity of εq,l and εq,p-adic follows from the irreducibility of the Igusa tower lim←−
m

T1,m [FC90,

V.7], and is called the q-expansion principle for p-adic Siegel modular forms.

For each continuous character τ ∈ Homcont(Tn(Zp),Q
×
p ) (also called a p-adic weight), let V [τ]

(resp. V [τ]) be the τ-isotypic part of V ⊗OF OF (τ) (resp. V ⊗OF OF (τ)) under the action of Tn(Zp),
where F (τ) is the field obtained by adjoining to F the values of the character τ. Elements inside
the space V [τ] are called (cuspidal) p-adic Siegel modular forms of (p-adic) weight τ. Thanks to
the Hodge–Tate map

(6.1.2) (G[p∞])D,ét ⊗Zp OSl
∼−→ ω(G/Sl),
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for an algebraic weight t, there is the canonical embedding

H0(XG,N , ωt(−C))⊗Zp Z/plZ ↪−→ H0(Sl, ωt(−C)) ↪−→ Vl,∞[t].

The cuspidality condition guarantees that the following standard condition for Hida theory is
satisfied,

(Hyp) H0(S, ωt(−C))⊗Zp Z/plZ
∼−→ H0(Sl, ωt(−C))

for all dominant algebraic weight t, from which the density theorem follows, saying that the
space of classical forms

⊕
t�0H

0(XG,N , ωt(−C))[1/p] ∩ V is dense inside V [Hid02, §3.5].

The action of Up-operators can be defined for V [τ], V [τ] via algebraic correspondence [Hid04,
§8.3] [Liu15, §2.9.5], and is compatible with all the Up-operators we have defined before (in fact it
is the Up-action on V that has a canonical normalization, and the normalizations of the Up-action
in other circumstances are chosen to agree with it). Recall that we have set Up = Up,ρG to be
the operator associated to ρG = (n, n − 1, · · · , 1) ∈ C+

n . By the discussion on §2.5, the ordinary
projector

e = lim
r→∞

U r!p

is well defined on
⊕

t≥0H
0(XG,N , ωt(−C)). Then the density theorem indicates that the operator

e extends to V and V . It projects the spaces V and V to their subspaces where all the eigenvalues
of Up-operators are p-adic units. Put

Vord = eV, V ∗ord = HomOF (eV , F/OF ).

The group Tn(Zp) naturally acts on both Vord and V ∗ord and equip them with anOF [[Tn(Zp)]]-module
structure. Besides (Hyp) the other two conditions for the axiomatic vertical control theorem are

(C) e(Ef) = Ee(f) for all f ∈ H0(S1, ωt).

(F) dimF eH
0
(
XG,N , ωt ⊗ detk ω(G/XG,N )

)
is bounded independent of k.

The condition (C) can be easily checked using the q-expansion principle and the condition (F)
follows from results in [TU99].

6.1.3. Hida families and the vertical control theorem. The group Tn(Zp) decomposes as ΓTn ×
Tn(Z/pZ) with ΓTn being the p-profinite part. Set Λn = OF [[ΓTn ]]. The OF [[Tn(Zp)]]-module of
Hida families of cuspidal p-adic Siegel modular forms of tame principal level N is defined as

(6.1.3) Mord = HomΛn (V ∗ord,Λn) .

Given τ ∈ Hom(Tn(Zp),Q
×
p ) put pτ : OF [[Tn(Zp)]] → OF (τ) to be the map sending γ ∈ Tn(Zp) to

τ(γ).

Theorem 6.1.1 (Vertical Control Theorem [Hid04, Theorem 8.13]). As a Λn-module, the space
Mord of Hida families is free of finite rank. For each p-adic weight τ we have the Hecke-equivariant
isomorphismMord⊗OF [[Tn(Zp)]],pτ

OF (τ)
∼= Vord[τ]. When t is a sufficiently regular algebraic weight,

Vord[t] = eH0(XG,N , ωt(−C)).

The unramified Hecke operators and Up-operators act onMord and we denote by TNord the subal-

gebra of EndOF [[Tn(Zp)]](Mord) generated by them. The natural map Spec(TNord)→ Spec(OF [[Tn(Zp)]])
is called the weight projection map.

The finite group Tn(Z/pZ) acts on Mord and we have the decomposition of free Λn-modules

Mord =
⊕

ı∈Hom(Tn(Z/pZ),µp−1)

Mord,ı,

such that Tn(Z/pZ) acts on Mord,ı by the character ı.
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6.1.4. The spaces M eas(Tn(Zp), Vord)\ and M eas(Tn(Zp), V ∆
ord)\. The group Tn(Zp) acts on itself by

multiplication and induces a natural OF [[Tn(Zp)]]-module structure on the space C (Tn(Zp),OF ).

We define M eas(Tn(Zp), V ′)\ to be the subspace of M eas(Tn(Zp), V ′) consisting of continuous
maps C (Tn(Zp),OF )→ V ′ that are not only OF -linear but further OF [[Tn(Zp)]]-linear. An equiv-

alent description for the elements of the subspace M eas(Tn(Zp), V ′)\ is that the evaluations at all

τ ∈ Homcont(Tn(Zp),Q
×
p ) belong to V ′[τ]. Let M eas(Tn(Zp), Vord)\ be the ordinary cuspidal part

of M eas(Tn(Zp), V ′)\. For each character ı of Tn(Z/pZ), we construct a morphism Φı mapping

M eas(Tn(Zp), Vord)\ into the space of Hida families.

Unfolding the definitions one easily sees that there is a natural pairing Vord × V ∗ord

〈,〉→ OF such
that the following diagram commutes if ı = τ |Tn(Z/pZ)

Mord,ı × V ∗ord
//

sτ×1

��

Λn

pτ

��

Vord[τ]× V ∗ord
� � //

(
Vord ⊗OF OF (τ)

)
× V ∗ord

〈,〉
// OF (τ),

where sτ is the specialization map

(6.1.4) sτ :Mord −→Mord ⊗OF [[Tn(Zp)]],pτ
OF (τ)

∼−→ Vord[τ].

This pairing induces an OF [[Tn(Zp)]]-linear pairing

(6.1.5) M eas(Tn(Zp), Vord)\ × V ∗ord −→ M eas(Tn(Zp),OF ),

where the OF [[Tn(Zp)]]-module structure on M eas(Tn(Zp),OF ) comes from that of C (Tn(Zp),OF ).
Now fix a character ı of the finite group Tn(Z/pZ). Let u be a generator of 1 + pZp and we

associate to it the p-adic logarithm function logu : 1 + pZp → Zp such that the value at u is 1
and we extend logu to Z×p by requiring it to take value 0 on µp−1 (Z×p canonically decomposes
as µp−1 × (1 + pZp)). Denote by γi the element of Tn(Zp) whose i-th component is u and other
components are 1. Then γ1, · · · , γn topologically generate ΓTn . The p-adic Mellin transform with
respect to ı is the map

(6.1.6)

M eas(Tn(Zp),OF ) −→ Λn

µ 7−→
∫
Tn(Zp)

ı(x1, · · · , xn)

n∏
i=1

γ
logu(xi)
i dµ(x1, · · · , xn),

where γ
logu(xi)
i is the element

∑∞
m=0

(
logu xi
m

)
(γi − 1)m ∈ Λn with the binomial coefficient

(
logu xi
m

)
defined as logu xi(logu xi−1)···(logu xi−m+1)

m! . One can check that this p-adic Mellin transform with
respect to ı is Λn-linear. Combining it with (6.1.5) we get a Λn-linear pairing

M eas(Tn(Zp), Vord)\ × V ∗ord −→ Λn,

and therefore the desired morphism of Λn-modules

(6.1.7) Φı : M eas(Tn(Zp), Vord)\ →Mord,ı.

Moreover for each point τ ∈ Homcont(Tn(Zp),Q
×
p ) whose restriction to Tn(Z/pZ) is ı and µ ∈

M eas(Tn(Zp), Vord)\, we have ∫
Tn(Zp)

τ dµ = sτ ◦ Φı(µ).
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For our applications we define the OF [[Tn(Zp)]]-module V ∆, which as an OF -module is the
subspace of V ⊗OF V generated by the elements killed by γ⊗1−1⊗γ for all γ ∈ Tn(Zp). The action
of Tn(Zp) on V ∆ via either factor agrees with the other, so V ∆ has a well-defined OF [[Tn(Zp)]]-
module structure. Denote by V ∆

ord the sub-OF [[Tn(Zp)]]-module of V ∆ obtained by taking the

ordinary projection on both factors, and we define the OF [[Tn(Zp)]]-module M eas(Tn(Zp), V ∆
ord)\

to be the space of continuous OF [[Tn(Zp)]]-linear maps from C (Tn(Zp),OF ) to V ∆
ord. Through the

same argument as above we see that there exists a canonical OF [[Tn(Zp)]]-linear pairing

V ∆
ord ×

(
V ∗ord ⊗OF [[Tn(Zp)]] V ∗ord

)
−→ OF

whose restriction to either factor agrees with the previous pairing Vord × V ∗ord

〈,〉→ OF . It induces a
morphism of Λn-modules

(6.1.8) Φ∆
ı : M eas(Tn(Zp), V ∆

ord)\ →Mord,ı ⊗ΛnMord,ı,

with the property ∫
Tn(Zp)

τ dµ = (sτ × sτ) ◦ Φ∆
ı (µ)

for all τ ∈ Homcont(Tn(Zp),Q
×
p ) whose restriction to Tn(Z/pZ) is ı and µ ∈ M eas(Tn(Zp), V ∆

ord)\.

6.1.5. The q-expansions of Hida families. For each β ∈ N−1 Sym(n,Z)∗>0, the maps εq,β : Vl,∞ →
OF /plOF , l ≥ 1, of taking the β-th coefficient of the q-expansion patch to an OF -linear map
εq,β : V → F/OF , which gives an element of V ∗ord. Thus by definition there is a Λn-linear map

εq,β :Mord −→ Λn

which makes the following diagram

Mord,ı

εq,β
//

sτ

��

Λn

pτ

��

Vord[τ]
εq,p-adic

// OF (τ)[[N
−1 Sym(n,Z)∗>0]]

β-th coefficient
// OF (τ)

commute for τ that restricts to ı on Tn(Z/pZ). From εq,β, for (β1, β2) ∈ N−1 Sym(n,Z)∗⊕2
>0 we

define the Λn-linear map

εq,β1,β2 :Mord ⊗OF [[Tn(Zp)]]Mord −→ Λn.

6.2. Construct µE,ord,ı from µE,q-exp.

6.2.1. Embedding nearly holomorphic forms into p-adic forms. Let T∞,m be the formal scheme
lim−→l

Tl,m defined over OF . When m = 0 the formal scheme T∞,0 is the completion of S = XG,N [1/E]
along its special fibre. Over T∞,0 the Hodge filtration admits a splitting

H1
dR(A/YG,N )can

∣∣
T∞,0

= ω(G/T∞,0)⊕ UH,

called the unit root splitting, which is constructed by considering the F -crystal structure ofH1
dR(A/YG,N )

[Kat73, Theorem 4.1]. Take the generic fibre Trig,m of the formal scheme T∞,m. It is a rigid analytic
subspace of the rigid analytic space Xan

G,Γ(Npm) associated to the scheme XG,Γ(Npm) over F . Pulling

back the unit root splitting from level Γ(N) to Γ(Npm) yields a projection Vrt → ωt of coherent
sheaves over the rigid analytic space Trig,m, from which one gets, combining with the Hodge–Tate
map (6.1.2), the following Hecke equivariant map

ιp-adic : H0(XG,Γ1(N,pm),Vrt )[ψ] −→ H0(T∞,m, ωt)
Nn(Z/pmZ)[ψ][1/p] −→ V ′[τ][1/p],
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where τ ∈ Homcont(Tn(Zp) × Z×p ,Q
×
p ) is an arithmetic weight with algebraic part t dominant and

finite part ψ valued in µ(p−1)pm−1 . The symbol [ψ] means the ψ equivariant part under the natural
action of Tn(Zp). The injectivity of ιp-adic results from the fact that the unit root splitting agrees
with the C∞ splitting at ordinary CM points and the analytic density of ordinary CM points (see
also [Liu15, Proposition 3.12.1]).

The map ιp-adic embeds nearly holomorphic forms into the space of p-adic forms Hecke equivari-
antly and gives an integral structure to the space H0(XG,Γ1(N,pm),Vrt ) which is preserved by the
Up-operators. Moreover we have

Proposition 6.2.1. eH0(XG,Γ1(N,pm),Vrt ) = eH0(XG,Γ1(N,pm), ωt).

Proof. Proposition 2.5.5 says that the composition Ete is 0, or equivalently the image of e is killed
by the operator Et, so holomorphic. �

6.2.2. The measure µE,ord,ı. The composition of ιp-adic with (6.1.1) is exactly the (p-adic) q-expansion
map for nearly holomorphic forms defined in (2.6.1), because the basis (ωcan, δcan) is compatible
with the unit root splitting as δj,can, 1 ≤ j ≤ n are horizontal for the Gauss–Manin connec-
tion. Now Proposition 4.4.1 together with the q-expansion principle implies that ιp-adic(Eκ,τ) lies
inside V ′[τ] for all admissible (κ, τ). One direct corollary of the q-expansion principle is that
the space V ′ of p-adic forms (of tame principal level N) is a closed subspace, under the induced
topology, of the space OF [[N−1 Sym(n,Z)∗>0]]. Then the density of all the admissible points in-

side Homcont(Tn(Zp) × Z×p ,Q
×
p ) with respect to the p-adic topology indicates that the measure

µE,q-exp in Theorem 5.2.2 belongs to the image of the embedding of M eas
(
Z×p × Tn(Zp), V ′∆

)
into

M eas
(
Tn(Zp)× Z×p ,OF [[N−1 Sym(n,Z)∗⊕2

≥0 ]]
)

, induced by the q-expansion map.

This is not sufficient for us. Before we continue we must make sure that µE,q-exp actually is
contained in the image of the cuspidal part. Thanks to the cuspidality result Theorem 4.2.2 we
know that ιp-adic(Eκ,τ) is cuspidal if t1 = t2 = · · · = tn = k > 2n + 1. The p-adic density of such
points guarantees that µE,q-exp lies inside the image of the injective map

M eas
(
Z×p × Tn(Zp), V ∆

)
↪−→ M eas

(
Tn(Zp)× Z×p ,OF [[N−1 Sym(n,Z)∗⊕2

>0 ]]
)
,

and we denote by µE the preimage of µE,q-exp.

Now by applying the ordinary projection e× e : V ∆ → V ∆
ord to µE , we obtain the measure µE,ord

inside M eas
(
Z×p × Tn(Zp), V ∆

ord

)
= M eas

(
Z×p ,M eas(Tn(Zp), V ∆

ord)
)
. Using (6.1.8), we define

µE,ord,ı = Φ∆
ı (µE,ord) .

This µE,ord,ı lies inside M eas(Z×p ,Mord,ı ⊗ΛnMord,ı) and satisfies

(sτ × sτ)

(∫
Z×p
κ dµE,ord,ı

)
= (e× e)Eκ,τ

for all admissible (κ, τ) such that the restriction of τ to Tn(Z/pZ) is ı.

Before we ending this section we give the proof of Proposition 5.7.1.

Proof of Proposition 5.7.1. We show (e × e)(µE) − (e × 1)(µE) = 0, which can be implied by the
vanishing of its image νβ1,β2 ∈ M eas(Z×p × Tn(Zp),OF ) under the map

M eas
(
Z×p × Tn(Zp), V ∆

)
↪−→ M eas

(
Tn(Zp)× Z×p ,OF [[N−1 Sym(n,Z)∗⊕2

>0 ]]
)

(β1,β2)-th coefficient−−−−−−−−−−−−−→ M eas(Z×p × Tn(Zp),OF ),
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for all (β1, β2) ∈ N−1 Sym(n,Z)∗⊕2
>0 . The p-adic Mellin transform (defined similarly as (6.1.6))

gives an isomorphism between M eas(Z×p × Tn(Zp),OF ) and OF [[Z×p × Tn(Zp)]]. It is not dif-
ficult to see that the vanishing of νβ1,β1 follows from the Zariski density of the subset inside

Homcont

(
Z×p × Tn(Zp),Q

×
p

)
consisting of those points (by (5.6.1) including all admissible points

with χψ1, · · · , χψn nontrivial) at which the evaluations of νβ1,β2 are zero. �

7. The p-adic L-function for ordinary families and its interpolation properties

The p-adic L-function for a given ordinary family of Hecke eigen-systems is constructed by pro-
jecting the Hida-family-valued measure µE,ord,ı to the corresponding eigenspace for that ordinary
family and then taking a nonvanishing Fourier coefficient.

The universal ordinary Hecke algebra TNord of tame principal level N is finite torsion free over
Λn, and reduced because of Proposition 5.5.2.

Given a point x ∈ Spec(TNord)(Qp) whose projection to the weight space τ ∈ Homcont(Tn(Zp),Q
×
p )

is arithmetic with dominant algebraic part t ∈ X(Tn)+, define Sx to be the finite dimensional
F (τ)-vector space consisting of cuspidal holomorphic Siegel modular forms which are contained in
H0(XG,Γ1(N,pm), ωt(−C))[ψ] for some m, and belong to the eigenspace parametrized by x for the
unramified Hecke operators and Up-operators. The space Sx is stable under the operator eW ,
the composition of the ordinary projector and the operator W defined as (5.2.2). Let ax,j ∈ O×Qp ,
1 ≤ j ≤ n, be the p-adic integers such that for each a = (a1, · · · , an) ∈ C+

n , the eigenvalue of the
operator Up,a parametrized by x is given by

∏n
j=1 a

aj
x,j . If π ⊂ A0(G(Q)\G(A)) is an irreducible

cuspidal automorphic representation generated by an element inside Sx, then for v - Np, it is clear
that the isomorphism class of πv is completely determined by x. At the same time the isomorphism
class of the component πp is also determined by ψ = τf and ax,1, · · · , ax,n (see §5.5). Thus the

isomorphism class of the G(AN )-representation
⊗′

v-N πv is determined by x and we denote it by

πNx . Set αx,j = p−(tj−j)ax,j .
To πNx and Dirichlet characters φ, χ, we associate the partial standard L-function LNp∞(s, πNx ⊗

φ−1χ−1), and the modified Euler factor at p

Ep(s, π
N
x × φ−1χ−1) =

(
1− χ◦(p) · φ(p)ps−1

)∏n
j=1

(
1− (χψj)

◦(p) · φ(p)α−1
x,jp

s−1
)

(1− χ◦(p) · φ(p)−1p−s)
∏n
j=1 (1− (χψj)◦(p) · φ(p)−1αx,jp−s)

×
(
φ(p)ps−1

)cχ
G(χ)

n∏
j=1

(
φ(p)α−1

x,jp
s−1
)cχψj

G(χψj).

Let C be a geometrically irreducible component of Spec(TNord ⊗OF F ). Set FC to be the function

field of C and IC to be the integral closure of Λn inside FC . Denote by λC : TNord → IC the

homomorphism of Λn-algebras corresponding to C. The group Tn(Z/pZ) acts on TNord and its
action on IC is by a character ıC .

There is an isomorphism of FC-algebras

TNord ⊗Λn FC = FC ⊕RC
such that the projection of TNord⊗ΛnIC onto the first factor coincides with λC . Define 1C ∈ TNord⊗ΛnFC
to be the idempotent corresponding to the first factor. For a finite extension F ′ of F , write Λn,F ′

(resp. TNord,F ′ , IC,F ′) to be the base change of Λn (resp. TNord, IC) from OF to F ′. If the weight

projection map Λn,F ′ → TNord,F ′ is étale at the point x ∈ C(F ′), put x′ ∈ Spec(TNord ⊗Λn IC,F ′,x)

to be the maximal ideal generated by T ⊗ 1 − 1 ⊗ λC(T ) for all T ∈ TNord and 1 ⊗ a for all a
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inside the maximal ideal corresponding to x. It follows from [Sta15, Tag 00UE, Tag 00U8] that(
TNord ⊗Λn IC,F ′,x

)
x′

= IC,F ′,x, so the localization map TNord ⊗Λn IC,F ′,x →
(
TNord ⊗Λn IC,F ′,x

)
x′

is
surjective, and there exists the decomposition of IC,F ′,x-algebras

TNord ⊗Λn IC,F ′,x = IC,F ′,x ⊕R′C,x
with the first projection being λC . Thus the projector 1C lies inside TNord ⊗Λn IC,F ′,x as long as the
weight projection map is étale at x ∈ C(F ′).

Remark 7.0.1. It is still an open problem to decide the exact conditions on a classical point x ∈
C(Qp) in order for the connected component C to be étale at x. In [AIP15, §8.3], an example
is given in the case n = 2 and the tame level is 1, where if the automorphic representation πx
associated to x is tempered and ordinary, πx,p is unramified and the weight satisfies t1 ≥ t2 > 3,
it is shown that the weight projection map is étale at x. The argument is for eigenvariety of finite
slope forms and follows that in [Che11] where the étaleness results are proved for non-critical regular
classical tempered crystalline points with distinct Frobenius eigenvalues on the eigenvarieties for
unitary groups under certain conditions. The argument relies on the classcity results for p-adic
forms, the analysis of the Galois representations associated to classical points in a neighborhood of
x at the primes dividing the tame level together with the compatibility with the local Langlands
correspondence, and the multiplicity one results. In our case of Sp(2n), the multiplicity one result
is known [Art13] and some classcity theorems are obtained in [BPS16, Pil11]. It is possible that,
using some arguments in [Til06,Pil12a] on analyzing the Galois representations at primes dividing
the tame level, one can prove some étaleness results for tempered classical points with weights

t1 ≥ · · · ≥ tn > n(n+1)
2 under certain suitable assumptions.

Now applying the Hecke projector 1C to the measure µE,ord,ıC constructed in §6.2.2 gives an

element inside M eas(Z×p ,Mord,ı ⊗Λn Mord,ı) ⊗Λn FC on which the Hecke operators act by λC .
Suppose that the point x ∈ C(F ′) projects to an arithmetic point τ in the weight space whose
algebraic part is dominant and the weight projection map is étale at x. Let sx :Mord⊗Λn IC,F ′,x →
Vord[τ] ⊗OF (τ)

OF ′ be the specialization map defined from (6.1.4) by extension of scalars. Fix an

orthogonal basis sx = {ϕ1, · · · , ϕd} of the vector space Sx, i.e. ϕ1, · · · , ϕd span Sx and satisfy

〈ϕi, ϕj〉 = 0 if i 6= j. Then for each arithmetic κ ∈ Homcont(Z×p ,Q
×
p ) with t1 ≥ · · · ≥ tn ≥

k ≥ n + 1 and κ(−1) = φ(−1), we know by construction that the specialization at x of the Hida
family 1C

∫
Z×p κ dµE,ord,ıC is a classical cuspidal holomorphic Siegel modular form on G × G. By

Proposition 5.2.3 we have

(7.0.1)

sx

(
1C

∫
Z×p
κ dµE,ord,ıC

)

=φ(−1)nvol
(

Γ̂(N)
) pn

2
(p− 1)n∏n

l=1(p2l − 1)
· Γ(k − n)Γ2n(k)

2k+n−1(πi)2nk+k−n ·
Z∞(fκ,τ,∞, v

∨
t , vt)

〈v∨t , vt〉

× Ep(k − n, πNx × φ−1χ−1) · LNp∞(k − n, πNx × φ−1χ−1) ·
∑
ϕ∈sx

ϕ⊗ eW (ϕ)

〈ϕ,ϕ〉
,

where vt is the highest weight vector inside the lowest KG,∞-type of the holomorphic discrete series
Dt and v∨t is taken to be its dual vector.

For each (β1, β2) ∈ N−1 Sym(n,Z)∗⊕2
>0 , define (recall that for simplicity we have assumed φ2 6= 0)

µC,φ,β1,β2 = εq,β1,β2

(
1C · µE,ord,ıC

)
∈ M eas(Z×p ,Λn)⊗Λn FC .

Contrary to the case of GL(2)/Q, where for an algebraic eigenform the first Fourier coefficient
always has the smallest p-adic evaluation, in our situation there is no such canonical choice for
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β1, β2. By construction we know that the measure µC,φ,β1,β2 vanishes at all κ ∈ Homcont(Z×p ,Q
×
p )

with κ(−1) 6= φ(−1).

Theorem 7.0.2. Assume that the weight projection map Spec(TNord)→ Spec(OF [[Tn(Zp)]]) is étale

at the point x ∈ C(Qp). Then the measure µC,φ,β1,β2 ∈ M eas(Z×p ,Λn)⊗Λn FC has no poles at x. Let

τ be the projection of x to the weight space Homcont(Tn(Zp),Q
×
p ). For κ ∈ Homcont(Z×p ,Q

×
p ) with

κ(−1) = φ(−1). If (κ, τ) is admissible, i.e. arithmetic with t1 ≥ · · · tn ≥ k ≥ n+ 1, then we have(∫
Z×p
κ dµC,φ,β1,β2

)
(x) =φ(−1)nvol

(
Γ̂(N)

) pn
2
(p− 1)n∏n

l=1(p2l − 1)
· Γ(k − n)Γ2n(k)

2k+n−1(πi)2nk+k−n

×
Z∞(fκ,τ,∞, v

∨
t , vt)

〈v∨t , vt〉
·
∑
ϕ∈sx

c(ϕ, β1)c(eW (ϕ), β2)

〈ϕ,ϕ〉

× Ep(k − n, πNx × φ−1χ−1) · LNp∞(k − n, πNx × φ−1χ−1).

Here c(·, βi) stands for the βi-th Fourier coefficient, i = 1, 2.

The nonvanishing of the archimedean zeta integral term Z∞(fκ,τ,∞, v
∨
t , vt) is guaranteed by

Proposition 4.3.1, and the nonvanishing of eW (ϕ), the ordinary projection of ϕ ∈ sx, follows from
Proposition 5.7.2.
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their Galois representations. Ann. Sci. École Norm. Sup. (4), 32(4):499–574, 1999. 44
[Urb06] Eric Urban. Groupes de Selmer et fonctions L p-adiques pour les représentations modulaires adjointes.

preprint, 2006. 4
[Wan15] Xin Wan. Families of nearly ordinary Eisenstein series on unitary groups. Algebra Number Theory,

9(9):1955–2054, 2015. With an appendix by Kai-Wen Lan. 5, 32

Department of Mathematics and Statistics, McGill University, Burnside Hall Room 1248, 805 Sher-
brooke Street West, Montreal, QC H3A 0B9, Canada

52


	1. Introduction
	2. Nearly holomorphic Siegel modular forms
	2.1. Siegel modular variety and automorphic sheaves
	2.2. Nearly holomorphic forms and differential operators
	2.3. Equivalence to Shimura's theory on Siegel upper half space
	2.4. Equivalence to the action of qG+
	2.5. Up-operators
	2.6. q-expansions of nearly holomorphic forms

	3. Siegel Eisenstein series and their Fourier coefficients
	3.1. Siegel Eisenstein series on H
	3.2. The ramified places
	3.3. The unramified places
	3.4. The archimedean place
	3.5. Summary

	4. Sections away from p and their local zeta integrals
	4.1. Doubling method for symplectic groups
	4.2. The ``volume sections'' at places dividing N
	4.3. The archimedean sections
	4.4. The q-expansions

	5. The measure E,q-exp and local zeta integrals at p
	5.1. p-adic measures
	5.2. The p-adic measure E,q-exp and the section f,,p
	5.3. An observation of Böcherer–Schmidt
	5.4. The inverse Fourier transform of "0362',,p
	5.5. The Up-operators and the theory of Jacquet modules
	5.6. The proof of Prop 5.2.3 for the ramified cases
	5.7. The proof of Prop 5.2.3 for general cases

	6. The measure E,`39`42`"613A``45`47`"603Aord, valued in Hida families
	6.1. Brief review of Hida theory for G
	6.2. Construct E,`39`42`"613A``45`47`"603Aord, from E,q-exp

	7. The p-adic L-function for ordinary families and its interpolation properties
	References

