p-ADIC L-FUNCTIONS FOR ORDINARY FAMILIES ON SYMPLECTIC
GROUPS

ZHENG LIU

ABSTRACT. We construct the p-adic standard L-functions for ordinary families of Hecke eigen-
systems of the symplectic group Sp(2n),o using the doubling method. We explain a clear and
simple strategy of choosing the local sections for the Siegel Eisenstein series on the doubling group
Sp(4n) g, which guarantees the nonvanishing of local zeta integrals and allows us to p-adically
interpolate the restrictions of the Siegel Eisenstein series to Sp(2n),q % Sp(2n) q.
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1. INTRODUCTION

The goal of this article is to construct the p-adic standard L-functions for ordinary families of
Hecke eigen-systems of symplectic groups. Let G = Sp(2n),g and 7 C Ag(G(Q)\G(A)) be an
irreducible cuspidal automorphic representation of G(A). Take S to be a finite set of places of
Q containing the archimedean place and all the finite places where m, is ramified. Suppose & is
a primitive Dirichlet character unramified outside S. Consider the partial standard L-function

L3(s,m x &) = [] Ly(s, 7 x &) with the unramified local L-factor defined as
vgS

n
Ly(s,mx &) = (1= &(a0)gy ") " [](1 = €(qw)amigy*) 71 (1 = &(gv)ay fa,*) 7,
i=1
where ¢, is the cardinality of the residue field and afﬂ, e ,afj,ll are the Satake parameters of .
The Euler product converges absolutely for Re (s) > 0 and has a meromorphic continuation to the
whole complex plane with at most simple poles [PSR87, KR9O0b].
Assume 7, = Dy, the holomorphic discrete series of weight ¢t = (t1,--- ,t,) (so t; > --- > t, >
n 4 1). The right half critical set of L5 (s, 7 x &) consists of points

s0 €Z, 1<sg<ty,—mnand (—1)%""=¢(-1).

At these critical points it is known that L°(s, 7 x &) has no poles and the critical values divided by
certain automorphic periods (depending on 7 and sp, but independent of &) are algebraic numbers
[Har81, Shi00, BS00].

Fix an odd prime p, an embedding of Q into C and an isomorphism between C and @p. We
study the p-adic interpolation (up to an explicit factor) of the critical L-values L (s, 7 x &), as the
p-part of { varies among all finite order characters of Z,, the point sq varies in the right half critical
set, and moreover the Hecke eigen-system associated to 7 varies in an ordinary p-adic family.

First for the automorphic representation 7, we define the modified Euler factor at p for p-adic

interpolation, under the ordinarity assumption on 7, i.e. there exist (aj,---,a,) € ((96 )™ and
. P
¢ € 7 such the Uy-operator Uy, acts on ¢ by []i_, a?J for all a = (a1, -+ ,an) € Z", a1 >

as > -+ > ap > 0 (see §2.5 for the definition of U, 4, especially the normalization which depends

on the Kg oo-type of the automorphic form it acts on). As shown in §5.5, for a fixed 7, if such

an (ag,---,a,) € ((96 )™ exists, then it must be unique, and the corresponding ¢ must be an
P

eigenvector for the action of Tz(Z,), where T is the standard maximal torus of G. Furthermore,
the ordinarity condition on 7 implies that the local factor 7, can be embedded into the principal

(Q(’a?p)(Gl, .-+ ,0p). Here B¢ is the the standard Borel subgroup of G. The character 6;

ol
of QF, 1 < j <mn, is defined as 0;(p) = a; = p~%~a;, and 0lyx = ¥j where ¥ = (1, ) is
the character of Tz(Z,) through which it acts on ¢.

Let N > 3 be a positive integer prime to p and ¢ be a Dirichlet character whose conductor

divides N. Let x be a Dirichlet character whose conductor is a power of p. For 7, ¢, x, define the
2
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modified Euler factor at p as

1= x°(0) - o)) T (1= () () - 6(p)a; ')
(L=x°() - o) 'p~*) ITj=1 (1 = (x¥5)°(p) - ¢(p)~tejp=*)
< (@op )" GO T (e 'p )™ Glxy).

j=1

Ep(sﬂr X Qb_lX_l) =

(1.0.1)

Here G(x) is the Gauss sum of x. The integer c, is defined such that the conductor of x is p,
and x° takes the value 0 at p, unless ¢, = 0 in which case x°(p) = 1. Similarly we define G(x;),
eyp; and (x¥;)°, 1 < j < n. The Ep(s,m x ¢~ 'x 1) defined above agrees with Coates’ definition
in [Coa9l, §6] of the modified Euler factor at p for the Weil-Deligne representation associated to
mp, twisted by the character ¢ 1x~! (note that the definition does not depend on the monodromy
operator).

Let F' be a finite extension of QQ, containing all N-th roots of unity. Denote by 7}, the standard
maximal torus of GL(n), which can be identified with Tz by the diagonal emdedding of GL(n) into
G. Denote by I'r,, the p-profinite subgroup of T,,(Z,) and set A,, = Op[[I'1,,]]. The Op[[T,(Z,)]-
algebra ng, consisting of unramified Hecke operators and Up-operators acting on Hida families of
tame principal level N, is finite and torsion free over A,, [Hid02,Pil12b]. A point = € Spec(ng)(@p)
corresponds to an eigen-system of the unramified Hecke operators and Up-operators. If that eigen-
system comes from an irreducible cuspidal automorphic representation 7 € Ag(G(Q)\G(A)), then it
completely determines the isomorphism class of 7, for all v { N and we write 72 for the isomorphism
class of the G(A™N)-representation ®;+N Ty-

Given a point (k, ) inside Homeont (Z) X Tn(Zp), @; ), we say it is arithmetic if it can be written
as the product of an algebraic character with a finite order character, and we write its algebraic

part (resp. finite part) as kajz = k, Talg =t = (tr, - ty) (vesp. ke =X, T =9 = (Y1, -+ ,¢n)). A
point is called admissible if it is arithmetic with t; > --- > ¢, > k > n+ 1. Given a geometrically
irreducible component C of Spec(Té\id ®o, F') with function field F¢, our main result is

Theorem 1.0.1. For every Dirichlet character ¢ with conductor dividing N such that ¢? is non-
trivial, and a pair (1, B2) of positive definite symmetric n X n matrices with rational entries, there
exists a p-adic measure fic ¢ 8, o € Meas(Z; N ®n,, Fe with the following interpolation properties.

) = Spec(OF[[Tn(Zy)]]) is étale at x € C(Q,).

Let T € Homcom(Tn(Zp),@;) be the projection of x into the weight space. If (k,T) is admissible,
then the evaluation of e ¢ g, g, at k,x is

s “(p—1)"  T(k—n)Tan(k
</z,, ﬁduc,¢>,ﬁl,ﬁ2> (z) = ¢(=1)"vol (F(N)> ﬁ}jpm _)1) : 2k+§1_1(m.))22k(+k)_n

(1.0.2) o Zoolfrzoo v, 00) 3 ¢(i0, BL)c(eW (), B2)
(v, vr) ol (o, ®)
X Bp(k —n,my x ¢~ - LAk = n,my x 67T,
if ox(—1) = (=1)*, and otherwise the evaluation is 0. Here

Suppose that the weight projection map Spec(TL,

ord

m(m—1)
o For a positive integer m the Gamma function Iy, (s) is defined as m~ 4

m—1 i

szo I(s—3).

o Zoo(frmoos vy, vt) is the archimedean zeta integral for the doubling method with vy being the highest
weight vector inside the lowest K¢ oo-type of Dy. Our choice of the archimedean section f oo in
§4.3 guarantees its nonvanishing. When ¢x(—1) = (=1)k the section f. oo depends only on the
algebraic part (k,t) of (k,T).
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o The finite set s, = {1, -+ ,pq} consists of an orthogonal basis of the space spanned by cuspi-
dal holomorphic forms on G(A) of weight t and tame principal level N belonging to the Hecke
eigenspace parametrized by x. In this article we use the bi-C-linear Petersson inner product with
respect to the Haar measure of G(A) specified in Notation. By being orthogonal we mean the
basis satisfies (@i, @j) =0 if i # j.

o ¢(+, ;) is the Bi-th Fourier coefficient for i = 1,2. The measure depends on the choice of the
indices 1, B2, and in general there is no canonical choice for them due to the lack of a canonical
nonvanishing Fourier coefficient for Siegel modular eigenforms, which can be regarded as the
analogue of the first Fourier coefficient in the case of modular forms.

o The operator W : m — 7 is defined as

W(e)(g) = /N L P

where the form ¢° is the MVW involution of ¢, i.e. the conjugation of @ by ¥ = (IO Ig), and
n

Ng¢ is the unipotent radical of Bg. Proposition 5.7.2 shows that the ordinary projection eW (o) is
nonzero if @ is ordinary . The operator W can be viewed as an analogue of the operator sending

a modular form f of level To(Ny) to f€| <]\07f _01>

Remark 1.0.2. The condition ¢? # 1 is used to make sure that the p-adic Dirichlet L-functions
which appear in our construction have no poles. Without this condition we can pick a prime
number £ coprime to p, and get a measure pic ¢4 8, 8, € Meas(Z; , Apn) ®4,, Fe with almost the same
interpolation properties as described above, with the only difference that we need to add the factor

1 — x ()17 on the RHS of (1.0.2).

When 7 is fixed with ¢ being a scalar weight and 1y = - - - = 1, the one-variable p-adic L-function
is constructed in [BS00, CP04] with a weaker ordinarity condition only requiring the eigenvalue of
the operator U, , to be a p-adic unit. The computations there are done with the Siegel upper half
space.

Our work in the construction of pc 4 3, 3, can also be viewed as a first step towards the Iwasawa—
Greenberg Main Conjecture for Sp(2n) generalizing [Urb06, SU14]. Our focus here is not only to
show the existence of the measure pc 4 g, g, With the interpolation properties described above, but
also to show that in the construction all section selections of the doubling method are completely
natural, by illustrating how differential operators show up in p-adic applications of the doubling
method, how representation theory at the archimedean place guides the selection of suitable dif-
ferential operators, employing the ideas in [Har86, Har08|, and how section selections at the place
p and the archimedean place are related for p-adic interpolation purposes. The strategy of section
selections here should generalize to many other cases where differential operators are involved.

It is well known that the doubling method reduces the study of analytic properties of L-functions,
as well as, algebraicity and p-adic interpolation of special L-values to that of the Siegel Eisenstein
series on the corresponding doubling group. Set H = Sp(4n) g and fix the (holomorphic) embedding
t: G x G < H. Let Py C H be the doubling Siegel parabolic. Pick a factorizable section f(s,¢)

from the normalized induction Ip,(s,&) = Indg:&) (&] - |® o det). Let E(-, f(s,€)) be the Siegel

Eisenstein series and E*(-, f(s,£)) be the normalization of E(-, f(s,£)) by multiplying the product

of Dirichlet L-functions d°(s,¢) (see §3 for precise definitions). Given 1, @9 € 7 with factorizable

images under ™ = ®; my and assuming all data outside S are unramified, the doubling method
4



formula [PSR87, Gar84, Shi00] reads

Zv(fv(sa 5)7@1,1}7 (10271))
) vlgg <¢1’v,§02,v>v

From (1.0.3) one sees that a key point in applying the doubling method to attain various results
about the L-function is to select suitable local sections f,(s,§) for v € S, such that one can get
a good handle on both the resulting normalized Siegel Eisenstein series on the left hand side, and
the local zeta integrals on the right hand side of the formula.

The proof of Theorem 1.0.1 consists of two main steps. The first step is to pick suitable local
sections furuv € Ipy, o (k—252L, ¢~ 1x~1) for all admissible points (r, T) inside Hom(Z, XT(ZP),@;),
and to compute the Fourier coefficients of the resulting Siegel Eisenstein series as well as the
corresponding local zeta integrals. Away from Npoo we always set f. ., to be the unramified
section. The two major criteria for selecting fy r, for v | Npoo are the nonvanishing and p-adic
interpolation conditions, i.e.

(103)  (B'(. ). f(5.0).71 @ 9f) = L3(s + 7w x €

5 (@1, p2) -

(1) the local zeta integral Z,(fx.v, P14, $2,0) does not vanish identically for o1, @2 € 5, if the
projection of the point x € Spec(ng)(@p) to the weight space is T, and

(2) the resulting E*(-, f, “’I)’Gx  after a further normalization is algebraic and its g-expansion
admits p-adic interpolation.

For v | N, a very simple choice is the so-called “volume section” (see §4.2).

Regarding the selection for v = p, 0o, one observation is that if at p we consider sections supported
on the “big cell” then, due to the p-adic interpolation condition on g-expansions, the archimedean
section fy r 0o almost determines the p-adic section fi 1, and vice versa. Our strategy is to make
choices for the archimedean sections incorporating both representation theory results and p-adic
considerations.

In §5, with all local sections selected, we interpolate the g-expansions of the restriction to G x G
of the corresponding Siegel Eisenstein series to the p-adic measure pig gexp on Z,; x T(Zjp) valued
in Op[[N~!Sym(n, Z)*;'SQ]]. It serves as the input for applying the machinery of Hida theory in the
next step. The second part of that section is devoted to the calculation of local zeta integrals at
p, where an important observation of Bocherer—Schmidt (see §5.3) helps simplify the computation.
The calculation results for all local zeta integrals are summarized in Proposition 5.2.3, which give
the interpolation properties of the p-adic L-function we will finally construct.

In the second step we apply Hida theory to produce, from the g¢-expansion-valued measure
e g-exp> @ p-adic measure on Z; valued in cuspidal ordinary families of p-adic Siegel modular forms
on G xG. Combining it with a p-adic analogue of the Petersson inner product, constructed from the
geometrically irreducible component C of Spec('ﬂ‘é\;d ®op F'), we get the measure in Theorem 1.0.1.

For unitary groups there are also works done towards the construction of p-adic L-functions
[HLS06, EHLS16, Eis15, Eis14, Eis16, EW16] and Klingen Eisenstein families [Wanl5]. The pa-
per [EHLS16] where the construction is completed was not yet available at the time this paper
was written. Their results are not used in our construction. The computations of the factors at p
done in [Wanl5] assume restrictive conditions on the conductors of the nebentypes. The general
cases are treated in [EHLS16] with an innovative use of the Godement—Jacquet local functional
equation. It is claimed in [Eis16] that the method for section selections there also works for sym-
plectic groups. We expect the sections chosen by that method (although the expressions seem
more complicated) to be no different from ours here because, as we have pointed out, the choice of
archimedean sections imposes sections at p via p-adic interpolation considerations, and based on
the ideas in [Har86], the choice of archimedean sections here is quite canonical as explained in the
proof of Proposition 4.3.1. The nonvanishing of the archimedean zeta integral is not particularly
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discussed in [Eis16], but should follow from the arguments in [Har08].

Notation. We fix an odd prime p and a positive integer N > 3 prime to p. We also fix an
embedding of Q into C and an isomorphism between @p and C.

For a Dirichlet character £ we write £° to denote the primitive one associated to it. We denote
by C¢ the conductor of £° and by G(§) the Gauss sum of £°. If the conductor Cg is a power of p we
define the integer c¢ such that C¢ = p%. The Dirichlet characters we consider in the following will
be almost all primitive with only one exception. For a finite order character inside Hom(Z;,< , Cpoo)
when we regard it as a Dirichlet character we require it to take value 0 at p.

Let L,, be the free Z-module of rank 2n spanned by the basis e1, - ,en, f1, -, fn. We will

always use this basis to write related objects in matrix form. Equip L, with the symplectic pairing
. I : . .
given by ( OI 6L> Then ey,---,e, (resp. fi,---, fn) span a maximal isotropic subspace L,
—4in
(resp. L}) and we have the polarization L, = L,, & L}. We use G to denote the reductive group
G(L,) = Sp(2n) defined over Z. In matrix form it is

{g €GL(2n) : g (_Ojn IS) 9= <—Ofn Ig) } '

Let Q¢ be the standard Siegel parabolic subgroup of G preserving L,,. We identify its Levi subgroup
with GL(n) via the map p : Qg — GL(n) sending <8 talil> to a. Denote by B, the Borel subgroup

of GL(n) of upper triangular matrices, and by N,, 7T, its unipotent radical and maximal torus
respectively. We fix the isomorphism of G}, with 7;, which sends (a1, --- ,a,) to diag(ai,--- ,ap).
The inverse image under p of B,, constitutes the standard Borel subgroup Bg of G with unipotent
radical Ng and maximal torus T¢. The tori T}, and T are identified via the map p.

Let g (resp. q¢) be the Lie algebra of G (resp. Q). We use Ej; to denote the matrix with 1 in
the (4,7) entry and 0 elsewhere, whose size will be clear from the context. Fix the following basis
of g

Nij = Eij — Ejtn,itn, 1<i,j<n,
:u;zr‘ = Ei,ier Wi = Pitngi, 1<1<n,
pig = Bijin + Ejign, tij = Eitnj + Ejini, 1<i<j<n

For a positive integer m and an algebra R, denote by Sym(m, R) the set of m x m symmetric
matrices with entries in R.
Consider the connected Shimura datum (G, u) with

w:U(1,R) = G*(R)

i0 cosf -1, sinf-1I,
€ ’_><—sir10-]n cosO-1,)"

The group G(R) acts on u by conjugation. The centralizer

Koo = {(_ab 2) ca+bie U(n,R)}

is a maximal compact subgroup of G(R), and the conjugacy class of u is G(R)/Kqg o0, which is
isomorphic to the Siegel upper half space

H, ={z € M,(C): %2 =2, Imz > 0}.
6
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The group G(R) acts on H,, by g- 2z = (az +b)(cz +d)~! for g = (CCL d

> € G(R), z € H,, and we

put u(g,z) = cz+d.
Fix the standard additive character ey = @), e, : Q\A — C* with local component e, defined
6—27ri{$}1,7 v ?é 00

as ey(x) = J2nia where {z}, is the fractional part of x.

v =00

For a finite place v we fix the Haar measure on Q, (resp. G(Q,)) with Z, (resp. G(Z,)) having
volume 1. For the archimedean place we take the usual Lebesgue measure for R. For the group
G(R) we take the product measure where the one on K¢ o has total volume 1 and the one on

the H,, is det(y)™™ ' T[] dwy; dy;j. The Haar measures on A and G(A) are obtained by taking
1<i<j<n

products of the local ones. For the unipotent group Ng(Q,) (resp. Ug(Qy)), we always take the

Haar measure that gives the open compact subgroup Ng(Z,) (resp. Ug(Z,)) volume 1 if v is finite,

and the Haar measure docu(x) = [ dx;; for the archimedean place, where u(x) = <I" $>
1<i<j<n 0 I,

for z € Sym(n, R).
Similarly we have all the above definitions for H = Sp(4n).

Acknowledgements. 1 am grateful to my advisor Eric Urban for suggesting this problem to me and
for the inspirational discussions as well as his constant encouragement. I thank Michael Harris for
explaining to me how the results in [JV79] are used in his construction of holomorphic differen-
tial operators and their applications in studying the algebraicity of special L-values through the
doubling method. I also thank Ellen Eischen, Christopher Skinner, Binyong Sun and Xin Wan for
helpful conversations.

2. NEARLY HOLOMORPHIC SIEGEL MODULAR FORMS

As a preparation for our following constructions we introduce the space of nearly holomor-
phic Siegel modular forms and the Maass—Shimura differential operators. With our choice of
archimedean sections in §4.3 the Siegel Eisenstein series on H and their restrictions to G x G
are in general not holomorphic but nearly holomorphic. The action of qg (see §2.4 for definition)
will be applied for choosing the archimedean sections. We show how to translate the qg—action on
A(G(Q)\G(A)) to the Maass—Shimura differential operators (defined by Shimura) acting on smooth
functions on the Siegel upper half space, and to the Gauss—Manin connections associated to the
automorphic sheaves of nearly holomorphic forms.

Besides we define g-expansions, Up-operators and ordinary projections for nearly holomorphic
forms. The U,-operators are defined both geometrically and adelically. One crucial aspect for the
definition of the U,-operators is the normalization.

For more detailed treatment see [Liul5]. We formulate the theory for G and it is clear that
everything applies to H and G x G.

2.1. Siegel modular variety and automorphic sheaves. Let G = GSp(2n) with the mul-
tiplier character v : G — G, and Q be its standard Siegel parabolic subgroup consisting of
matrices whose lower left n x n blocks are zero. Set I' = I'y(IV,p™) to be the congruence sub-
group {v € Sp(2n,Z) : v = I3, mod N, ~ mod p™ € Ng(Z/p™Z)}. Denote by Ygr the Siegel
modular variety parametrizing principally polarized abelian schemes of dimension n with level T’
structure defined over Q. Over it there is the universal abelian scheme (A, A,q/JN,ﬁl;m) where A
is a principal polarization, ¥y is an isomorphism L, ®Z/NZ = A[N] respecting the Weil pairing
up to similitude, and ﬁl:jm is a full flag with trivialization of graded pieces of an isotropic free
Z/p™Z-submodule of A[p™] of rank n.
7



Take X r to be a smooth toroidal compactification of Yg r with boundary C (see [FC90,Lan12]).
The universal abelian scheme A extends to a semi-abelian scheme p : ¢ — X@ r with a canonical

section e. Let w(G/Xagr) = e*Qé /xqr Pe the sheaf of invariant differentials, which is locally free

of rank n. The sheaf Hly(A/Yar) = Rlp*(Q;‘/YG .) has a canonical extension HAg(A/YG r)on,
which is a locally free sheaf over X r of rank 2n equipped with the Hodge filtration

(2.1.1) 0 — w(G/Xar) — Hig(A/Yar)™ — Lie('G/Xar) — 0,

and a symplectic pairing such that w(G/Xqg r) is maximally isotropic. The Gauss-Manin connection
on Hip(A/Ya ) also extends to an integrable connection on Hjg (A/ Y r)® with log poles along
the boundary

Vi Har(A/Yar)™ — Hap(A/Yar)™ @oy, . Ve, (log O).

There is a standard way to attach an automorphic sheaf to an object in Repgp Q, the category
of algebraic representations of Q over Q-vector spaces. Over Xg r we have the right Q-torsor

Ty = Isomy,, | (Ln ®20x¢ r, Hir(A/Yar)™),

where the isomorphisms are required to respect the Hodge filtration and the symplectic pairing up
to similitude. Using the contracted product one defines the functor

£ :Repg Q — QCoh(Xa,r)
V— Tﬁ xQV

sending a Q-representation to a locally free sheaf over Xg . We will also write £(V') as V. For
a prime number ¢ with (¢, Np) = 1 and v € G(Z)\ G(Q¢)/ G(Z;) the Hecke action of T, on
H O(XG,F,V) can be defined in the standard way using algebraic correspondence. We call such a
V, together with the Hecke actions on its global sections, an automorphic sheaf over Xg r. The
multiplier character v is a character of Q and so gives an invertible automorphic sheaf £(v). As
a coherent sheaf, £(v) is isomorphic to the structure sheaf but the Hecke actions differ by a Tate
twist. We use V(i) to denote V @ &(v)®".

Let X¢,r be a connected component of the base change of Xg r to Q((n). Here we do all the
constructions over Xg . For applications later we restrict everything to X¢ . What we need to
be careful about is the Hecke operators. For v { N, over Xg r we consider operators corresponding
to elements inside G(Qy), while over the connected component X we only consider those inside

G(Qy).

2.2. Nearly holomorphic forms and differential operators. If we want to consider auto-
morphic sheaves further endowed with an integrable connection, the right objects to consider are
(Lie G, Q)-modules. A (Lie G, Q)-module V' is an object in Repg Q with an extra action of Lie G
such that its restriction to Lie Q agrees with the one induced from the action of Q, and the com-
patibility condition
g-X-gtv= (Ad(g9)X) -v

holds for all v € V, X € LieG and g € Q. Denote by Repg(Lie G, Q) the category of (Lie G, Q)-
modules.

Suppose V is a (Lie G, Q)-module. It follows from [Liul5, Proposition 2.2.3] that there is the
Gauss—Manin connection for the locally free sheaf £(V'),

ViE(V) — E(V) @0y . Vg (log C)

which induces Hecke equivariant maps on global sections. Its construction uses the Gauss—Manin
connection (2.1.1) and the Lie G-module structure of V.
8



Now let (0,W,) be a finite dimensional algebraic representation of GL(n). We define the
(Lie G, Q)-module V, as follows. Let Y = (Yjj)i<ij<n the symmetric n x n matrix with the
(¢,7) and (j,%) entries being the indeterminate Y;; = Yj;. As a Q-vector space V, = W,[Y], the
space of polynomials in Y;; with coefficients in W,. The action of Q is defined as

(g Z) P(Y)=a-Pla'b+a'Yd)

for <8 Z) € Qand P(Y) € V,. The element p;; acts on P(Y) by

(1i; - P)Y) = D (Yaowy + Yegmei) - P(Y) — Z (YiiYji + Y zl)aff P(Y) i # ],

1<k<n 1<k<I<n

(g - PUY) = > Yep(ma) - P(Y) = D YiiYag—P(Y).

1<k<n 1<k<I<n

It is easy to check that the above formulas define a (Lie G, Q)-module structure on V.

As a Q-representation, V, admits an increasing ﬁltratwn V5= Wy[Y]<y, ¥ > 0, where the
subscript < r means polynomials in ¥;;,1 < 4,7 < n with total degree less or equal to r. We have
g-VIcvrtl

The locally free sheaf over X r of (nonholomorphy) degree r nearly holomorphic forms valued
in W, is defined to be V. = £(V)). The connection on V, restricts to

Vo : Vg — Vi @oxg . Qg (log O).

Let 7,, be the symmetric square of the standard representation of GL(n). Combining the connection
with the KodairafSpencer isomorphism we get the differential operator

Dy : V! Yo yrl ®xar Vg (logC) BS yral (1) — Vit

[

The map on global sections induced by D, fails to be Hecke equivariant by a Tate twist because of
the last morphism above. By iteration one can define the differential operator D¢, : VI — V;ggym .

Given a dominant weight t = (t1,--- ,t,) € X(T,,)+ with respect to B, set t’ = (—tp, - - —tl)
and define

Wy = {f:GL(n)/N, = A" : f(gz) =t (z)f(g) for all z € T}, }
with g € GL(n) acting by left inverse translation. Then W; is an irreducible finite dimensional
representation of GL(n) with highest weight t. Evaluation at I,, gives a canonical element in its
dual representation and we denote it by ecan. From W; one constructs the (Lie G, Q)-module V;
and its sub-Q-representations V;".

Definition 2.2.1. The automorphic sheaf over Xgr of weight t, (non-holomorphy) degree r nearly
holomorphic forms is defined to be V] = E(V/").

Put wy = Vg. It is the sheaf of holomorphic Siegel modular forms of weight ¢.

Denote by 7,7 the dual representation of 7,,. The natural Q-representation morphism V] —

VIV — VOT@TI (—1) induces an Oxg .-linear operator

(2:2.1) Eq Vi — Vygr:(=1) — Vil
whose induced map on global sections fails to commute with Hecke actions by a Tate twist. Given
a o-valued nearly holomorphic Siegel modular form, it is holomorphic if and only if it is annihilated

by the operator E,.
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2.3. Equivalence to Shimura’s theory on Siegel upper half space. Let us recall Shimura’s
definition of nearly holomorphic forms and Maass—Shimura differential operators [Shi00]. Let
C%°(H,,T') be the C-vector space of smooth functions f : H,, — W,(C) satisfying the transfor-
mation property f(y-z) = o(u(7,2))f(z). Shimura defines the space NZ(H,,T') of o-valued,
degree r and level I' nearly holomorphic Siegel modular forms to be the subspace of C3°(H,,I")
consisting of those functions that can be written as a polynomial in the entries of (Im z)~! of degree
less or equal to r with coefficients being holomorphic maps from H,, to W,(C) (if n = 1 a growth
condition at oo is also needed).
The Maass—Shimura differential operator is defined as

Do, : C(H,,T) — C22_ (H,,T)

oRTn

fr—o(Imz)"'d, (oc(Imz)f),

where d. stands for 2, ;- dzij - 2. Tt restricts to Dy, : NZ(H,,T) — NZ&1 (H,, T).

8zij : TRTn
The base change of A — Y 1 to the field of complex numbers is isomorphic to I'\C" x H,, /Z*" —
I\H,,. Here (m1,mz) € Z*" and v € T act on (w, z) € C" x H,, by

(w, Z) : (ml,mg) = (w + miz + ma, Z),
v (w’ Z) = (wlu‘(’)/v Z)ilvfy : Z)'

Over H, there is the principally polarized abelian scheme Ay, = C"xH,,/Z?" with a canonical basis
dwy, - -+, dwy, for the sheaf of invariant differentials w(Agy, /H,,). The Kodaira-Spencer isomorphism
identifies dw;dw; with 273 - dz;;. As in [Liulb, §2.5] a canonical test object can be constructed from
Am, . Using the modular interpretation a la Katz for the global sections of automorphic sheaves, the
evaluation of the sheaf-theoretically defined nearly holomorphic forms at that test object defines
the map
(2.3.1) H(Xgr,V5) ©gcy) C = Ny(Hy, T).
We summarize the results there in the proposition below.

Proposition 2.3.1. The map (2.3.1) is an isomorphism and the diagram below commutes.

H(Xar, V) ®g(cy) C——— NJ(H,,T)

lDo— J{DU,Hn

HY(Xar: Vagr,) @acy) C —— Npgr (H,,T)

2.4. Equivalence to the action of q},. Let C*°(I'\G(R)) be the C-vector space of smooth func-
tions on G(R) that are invariant under the left translation by I'. Let W7 be the dual representation
of W,(C) and (,) : W, x W} — Al be the canonical pairing. For each w* € W(C) there is the
embedding
(2.4.1) va(w) : CF(H,,T') - C*(I'\G[R)),
defined as

eaf.w)(g) = (o (ulg,)) " flg-3), w")
for f € C°(H,,,I') and g € G(R). The maximal compact subgroup K¢ ~ acts on W,(C), WZ(C)
via the isomorphism Kg o = U(n,R) C GL(n,C). One can check that for k € Kg o we have

pa(f, w)(gk) = ea(f,k " w)(g).

Therefore if we put Vy = {pq(f, w*) : w* € W;(C)} then it is a subspace of C*°(I'\G(R)) closed
under the action of K¢ o and is isomorphic to W,(C) as a K¢ -representation.
10



The torus C* acts on G(R) by

-1
. - xl, yl, xl, yl,
inducing an action of C* on gc. Let g?c’b be the subspace of gc on which z € C* acts by the scalar

—a%z=%_ Then gc decomposes as gél’l <) g?c’o @ g(lc’fl. We have 9%0 = £g c, the complexified Lie

algebra of Kgoo. Set qJGr = g(El’l and q, = g(lc’fl. The aim of this section is to show that the
q&-action on C*(I', G(R)) translates to the Maass—Shimura differential operators on C5°(H,,T)
under the embedding (2.4.1). This is explained in [Shi00, A.8] but we include a proof here for the
convenience of our later application.

Fix a basis X = (Xyj)1<ij<n, Xij = Xji of 7, with a € GL(n) acting on it by @ Xa. We will
assume that under the trivialization of w(Ap, /H,) by the basis dwi,--- ,dwy,, the element Xj;
corresponds to dw;dw; = 2mi - dz;j. Denote by X* = (ij)lgi,jgm X;; = X3, the basis of 7;; dual
to X.

Let ¢ = - (In ll”) and /717; = cpije . Then /7;;7 1<i<j<n,span qf.

z

v2 \il, I,
Proposition 2.4.1. The diagram

Coo(H,,, 1) — 2 ooo(m\G(R))

47i-Dy 1, J{ J’fﬁ]
00 (pg(',w*@)ij) .
Cor, Hn,I') ———— C*(I'\G(R))

commutes.

Proof. We need to show the identity

(2.4.2) Ami - (Do, f,w" ® X75)(9) = Bjva(f,w)(g)

for all f € C3°(H,,I'), g € G(R) and 1 <1i < j < n. Notice that for all k € K o we have

wc( ot s w" @ X55)(9k) = ¢c(Do, [, k- (w* ® X5))(9),
and
Thus it is enough to show (2.4.2) for g € Qg (R).
a z'a”
0 !
matrix with real coefficients. Put y = a'a which is positive definite symmetric. Then z = x + iy
belongs to H,, and by definition

1
Write elements in Qg(R) as g = ) with a € GL(n,R) and = an n X n symmetric

¢G (Do, frw" @ p(g,)) ™" Xi5)(9) = (0 @ 7 (ug,) ") o(y) ™! ( W)f(2), w*" @ pulg, 1) - X55)
=<dem”aU (eW)f(2), v @ Xy

:21m'<0( ) 18(3”( )yw >

t —1 t
Given a € GL(n,C) we define « - ﬁ;; to be ¢ <a0 g) u;-; <g oﬁl) ¢~ 1. It is easy to see that
under this definition if o - ZZ;; = > cijﬁjj with ¢;; € C, then a- X, = > cij X
1<i<j<n 1<i<j<n
11



Let €;5, 1 <14 < j < n be variables and we write € to mean the n x n symmetric matrix whose
(,7) and (j,4) entries are €;;. Then we have

R S| “1.t,—1
N - 1 (a"c'a 0 1 0 a ‘ea
(g i)~ Z 5ij“i+j DY < 0 —a‘lsta‘1> 3 <a‘15ta—1 0 > '
1<i<j<n

Now we compute
(ulg, 1)1 - 1i5) ea(f,w*) (g)

i 0 . a zla! a"tela! 0
= —585”90G(f,w) 0 tg! eXp 0 —aletg!

e=0
9 t —1 1t -1
+;85ij(pG(f’w*)(<g faa_1>exp <a—lgta—1 ¢ %a >) -
S éafij <a(a)_1a(y+5)f(z + 2ie), w*) » + ;3(3@' <U(a)_1a(y —ig) f(z + 2¢),w*) _
——i Ja_laa' z), w* —ilola)" o 9 zw*>
_ 2< @ 5o WS > i),
y'=y
i —1 0 / * < -1 0 *>
AR C R R GO T - C

2(ot o) (550~ 5o ) 10"

5 8.172']' B 5 0yij

= 2ot (350 - 3oy )

= 2(o0) 5 (W) 0" )

8zij

2=z

Therefore for a given g € Q(R) we have the identity
dmi - (Do, frw* @ ulg, i)~ X5)(9) = (g, 9) ™" - 1) pa (f, w*)(9)
for all 1 <1i < j <mn, from which (2.4.2) follows. O

Remark 2.4.2. A similar computation as above shows that for the action of q, on C*(I'\G(R)) we

have 5
= p(g, )~ (cpc(af, : w")) (g, )7L
Zij 1<4,j<n

Up to scalars the action of q, on C*°(I'\G(RR)) corresponds to the operator
Eom, : CF (Hy, I') — Cogrs (Hy, T')
f L dEf?
which translates to the operator E, defined as (2.2.1) by the map (2.3.1).

1<i,j<n

Let T be the completion of I" inside G(A¢). The strong approximation implies that
G(Q\G(A)/T =T\G(R).
Let A(G(Q)\G(A)/T) be the space of automorphic forms on G(A) that are invariant under the

right translation of I'. For t € X(T), we use A(G(Q)\G(A)/T); to denote its t-isotypic part as a
K oo-representation. The composition of (2.3.1) with (2.4.1) gives the map

(2.4.3) ¢G(- ecan) : H' (X0, Vi) @gcy) C — Nf (Hy, T) Pl A(GQ\G(A)/T):.
12



In §4.3 we use operators in qE to construct the archimedean sections. The corresponding adelic
Eisenstein series are obtained from the scalar weight holomorphic Eisenstein series by applying the
action of qE. Propositions 2.3.1, 2.4.1 make it clear how to translate the adelic picture to the
geometric picture.

2.5. Up-operators. For each ¢ € Z" we define Aa := (a1 — az, -+ ,apn—1 — ap,a,) and p¢ =
diag(p™,--- ,p®,p~®, ... p~9) € G(Q). Denote by C; be the subset of Z" consisting of a
such that Aa > 0. We construct operators U,, for all a € C; acting on HO(XG,F,VD and

A(G(Q)\G(A)/f)i, such that the map (2.4.3) is U 4-equivariant. All such operators will be called
Up-operators. What we need to be careful about is the normalization. In §6.2.1 we show that
nearly holomorphic forms embed into the space of p-adic Siegel modular forms. The normalization
should make the Uj,-operators here compatible with those defined for the space of p-adic Siegel
modular forms, for which there is a canonical optimal normalization that preserves its natural in-
tegral structure.

First we look at the geometric picture. Set

I, 0 0 0
0 plo; O 0

'Yp,i: 0 0 pZI/L 0 1§7’§n_1’
@5.) 0o 0 0 ph
I 0
Ypn = <6L pfn> and Yp,0 = pIQn'

We associate to 7,; an operator U, ; acting on HO(XGI, V{) for each 0 < i < n, and define U, 4

T

n—1
as UJ 9! Ui‘fz [T U5, “*'. It will be clear that U, induces an endomorphism of H%(X¢ r, V}).
£ k] i:l ’ - =

We make 7,0 act invertibly on Yg r by sending the quadruple (A4, A,q/JN,ﬁl;rm) to (A, A\, N o

P, ﬁl;;n). The canonical isomorphism between ) (4/Ya ) and 7;70H(1:1R(A/ Ya r) gives an isomor-
phism between V/ and v, V. The operator U,, , is defined to be the composition

T N
HO(YG,Fa Vz) L% HO(YG,F> ’7p7OV£) — HO(YG,F) Vg)v

and its action is easily seen to be invertible.

For 7,4, 1 <14 < n, consider the moduli scheme C; parametrizing the quintuple (A, A, ¥, ﬁl;m, L)
with L being a Lagrangian subgroup of A[p?] (resp. Afp]) if 1 <i <n —1 (resp. i = n) satisfying
Lip]@pm1 ﬁl;m’i = A[p]. There are two projections p1,ps : C; = Yg r. The projection p; is simply
forgetting L. Let m: A — A/L be the universal isogeny. The projection py sends (A, A, ¥y, ﬁl;m, L)
to (A/L, N 7o @bN,ﬁl;ﬁL). Here the polarization is defined by 7*\ = p?X\ (resp. 7*\ = p)) for
1<i<n-—1(resp. i =n). Ifxy, -+ ,z, € A[p™] represents ﬁl;m with pm_lxj € Lfori+1<j<n,
we put ﬁl}ﬁ to be the filtration represented by 7(z1),--- ,7(x;), 7(p"12i11), - ,7(p~ w,). Since
p is inverted the pullback gives the morphism 7* : p3T;; — piTy; which induces 7 : p5VI — piVy.
The operator U, ; is the composition

s X * . —u; Ty
H°(Yar, Vi) = H(Ci,p3V]) = HO(Ci,piVy) " —"" H(Yar, Vy),
where the normalization factor u; is defined as

Jin ) F (b H ) f1<i<n—1,
YT nn+1)/2 if i =n.
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The normalization factor is picked in order to make the definition compatible with the U,-operators
defined for (integral) p-adic Siegel modular forms. Considerations in two aspects make contribu-
tions. The part involving t appears because when working with p-adic Siegel modular forms the
action of p% on W; needs to be renormalized to preserve integrality optimally. The part indepen-
dent of ¢ is the pure inseparability degree of the map p; restricted to the ordinary locus. If more
generally we consider the operator U, ; on the space H O(XG,F, VZ"@Syme T;), one can check that the

optimal normalization that makes all eigenvalues p-adically integral is p~%+2¢ if 1 <4 <n —1 and
p~ U if i =n.

Adelically for a € C;I we define the operator U, , acting on A(G(Q)\G(A)); as
Ng(Zyp)

where R,(g) is the right translation by g € G(Q)), and the measure of Ng(Z,) is its Haar measure
with total volume 1. We use pg . (resp. pa, pane) to denote the half sum of positive compact
(resp. positive, positive noncompact) roots of g with respect to Bg. If K, C G(Z,) is an open
compact subgroup containing N¢(Z,), then as an action on ﬂg{ ?, the above defined U, , equals, up to
scalar, the usual Hecke operator associated to the characteristic function of the compact open subset
K,p*K, of G(Qp). Set Ng(a) to be the set of representatives of the quotient N¢(Z,)/p*Na(Zy,)p~<.
Then the action of U, , on A(G(@)\G(A)/f)z can also be written as be

(2.5.3) Up}g:p@ﬂpa,m,@ Z Ry (up®).
u€Ng(a)

It is easy to check that with the above definitions of the operator U,, on H°(Xqr,Vf) and
A(G(Q)\G(A)/T),, the map (2.4.3) is Up-equivariant.

Remark 2.5.1. Note that although up to a scalar one may think of the adelic operator U, , as
defined locally at the place p, the correct normalization for studying p-adic properties of these
operators essentially depends on the Kg o-type. This illustrates a common phenomenon in the
study of p-adic automorphic forms that the place p and the archimedean place are closely related.

Proposition 2.5.2. Given a weight t nearly holomorphic form ¢ € A(G(Q)\G(A)): (for ex-
ample an automorphic form of Kg «-type t inside a cuspidal automorphic representation whose
archimedean component is a holomorphic discrete series), let U,(y) be the finite dimensional C-
vector space (viewed also as a @p—vector space by our fized isomorphism between C and @p) spanned
by Upap, a € C. Then by our normalization for the Uy-operators, for each Uy, all of its eigen-
values on Up(p) are p-adic integers.

Proof. This results follows from two facts. One is that the space of nearly holomorphic forms can
be embedded, Uj,-equivariantly, into the space of p-adic forms (see §6.2.1). The other is that the
natural p-adic integral structure of the space of p-adic forms are preserved by the U,-operators (the
normalization of Uy-operators is optimal for preserving the integral structure) [Hid04, §8.3] [Liulb,
§2.9.5]. 0

For 1 < j < n, we define the operator U, ; to be the one that corresponds to the element
diag(plj, In—j,p~ 1, I,—;) inside G(Q), and U, = H?Zl Up,j- Equivalently we can define U, =

Up,pe:» the operator associated to pg = (n,n—1,---,1) € C;f. The above proposition tells us that,
for a nearly holomorphic form ¢, the limit

. 7!
(2.5.4) Tlggo Uy o,

14



with respect to the usual p-adic topology of the finite dimensional @p—vector spaces Up(yp), is well
defined. We denote by ey this limit, which is called the ordinary projection of ¢, because it is
the projection of ¢ to the direct sum of the generalized eigenspaces of the U,-operators associ-
ated to eigenvalues that are all p-adic units. Although in the uniform definition (2.5.4) a limit
with respect to the p-adic topology is involved, in each specific cases the ordinary projector is a C-
linear endomorphism of a finite dimensional vector space that can be written as a polynomial of U,,.

The following proposition proved in [Liul5, Corollary 3.10.3] will be used later. It shows that
ordinary nearly holomorphic forms must be holomorphic.

Proposition 2.5.3. As maps from H*(Xqr,Vf) to HO(XQF,Vg@TTl*), we have
(2.5.5) E,U, = p* - UpE,.

2.6. g-expansions of nearly holomorphic forms. We have fixed the rank 2n lattice L, =
L, @& L} with a symplectic pairing where L,,, L;, are both maximal isotropic and are dual to each
other. Let S, be the symmetric quotient of L, x L,, and S, >0 be the intersection of Sy, with
the cone dual to the cone inside S7 ®z R consisting of semi-positive definite forms. Take a basis
81,77, Sp(n+1)/2 of Sr,, lying inside St >0, and set Z((SLn,ZO)) = Z[[SLn,EOH[l/SISQ s 5n(n+1)/2]-
For 3 € Sp,, >0, the corresponding element in Z[[Sy,, >o]] is sometimes written as ¢°.

The natural map L, — Sg, ® L;, defines a period group L, C L;, ® Gy, /7 Sp,.50)) principally
polarized by the duality between L,, and L. Mumford’s construction [FC90] gives an abelian variety
A/Z((SLn,>o)) with a canonical polarization Acan and a canonical basis wean = (Wi can, *** s Wn,can) Of
w(A/Z((SL, >0))). From the exact sequence

0= Ly @ [ [limpwm — [[T0(A) = L@ Z — 0
] m l

one can define the level structure ¥y can and ﬁlzmﬂan after base changing to Z((N 151, >0))[(n, 1/Np).
Let Dj; € Der(Z((St,,,>0)), Z((SL,,>0))) be the element dual to w; canwj,can and 0; can = V(Dyi)wi can-
For B € Sp, >0 we have D;;(¢°) = (2 — 0;;)Bij¢° with &;; = 0if i # j, and 1 if i = j. Then
dcan = (01,can, -+ »On,can) together with weay forms a basis of HéR(A/Z((SLn,zo))) respecting both
the Hodge filtration and the symplectic pairing.

Let F' be a number field containing Q((y). Evaluating a nearly holomorphic form f inside
HO(XGJ“, Vg) ®Q(CN) F at the test object (A/Z((N_lSLn,ZO))[CNJ/NP]7 Acans @bN,canp ﬁl;_m,cam Wean s 5can)
defines its polynomial g-expansion which we denote by f(q, Y). It lies inside Z[[N~1SL, >o]] ®z
W, (F)[Y]<,. For a dominant weight ¢, applying ec,n to the polynomial g-expansion of a weight ¢

nearly holomorphic form and putting Y = 0 gives the (p-adic) g-expansion map
(2.6.1) Eq,p-adic HO(XG,F,VZ;) XQ(¢w) F— Z[[NﬁlsLmZo]] ®z F.

This g-expansion map is injective and can be used to give an integral structure on the space of
nearly holomorphic forms. We call it p-adic because it agrees with the one obtained by viewing
nearly holomorphic forms as p-adic forms and applying the g-expansion map for p-adic forms to
them (see §6.2.1).

Let Sym(n,Z)* be the subset of Sym(n, Q) consisting of elements a such that Traa € Z for all a €
Sym(n, Z). Using our fixed basis of Ly, we identify S, >0 with Sym(n,Z)%,, and Z[[N~1SL, >0]]
with Z[[N~! Sym(n, Z)%,]].

We record here [Liul5, Proposition 2.6.1] the formulas of differential operators in terms of poly-
nomial g-expansions. Recall that we have fixed a basis X of the GL(n)-representation ,.
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Proposition 2.6.1. Let f € HO(XG,F, Vi) @q(cey) F'be a nearly holomorphic form with polynomial
q-expansion f(q,Y). Then

Def)@Y) = > (Duf(@.Y) + 1510 Y)) © X

1<i<j<n

3. SIEGEL EISENSTEIN SERIES AND THEIR FOURIER COEFFICIENTS

Let k£ be an integer larger or equal to n + 1 and £ be a primitive Dirichlet character with
conductor dividing Np> such that the parity condition £(—1) = (—1)* holds. We record here some
computation results of Shimura [Shi82, Shi97] on the Fourier coefficients of certain holomorphic
Siegel Eisenstein series of weight k, and put the formulas into a form that is ready for p-adic
interpolation.

3.1. Siegel Eisenstein series on H. Take a primitive Dirichlet character £ whose conductor
divides Np*°. For a complex number s we denote by & = &| - |® o det the character of Qp(A)

sending <61 tAB_1> to £(det A)|det A|*. Let Ig,(s,§) = Indgﬁ?&

consisting of smooth functions f on H(A) that satisfy f(gh) = §S(q)622/j(q)f(h) for all h € H(A)
2n+41 A B Lo
. Similarly

)55 be the normalized induction

and ¢ € Qu(A). Here the modulus character dg,, takes value |det A|" 2" at 0 t4-1

we define the local degenerate principal series Ig,, (s, &) for all places of Q.
Given a section f(s,§) € Ig,(s,§), its associated Siegel Eisenstein series is defined as

E(h, f(s.6) = >, f(s9)0h)
7€Qu (Q\H(Q)
The sum is absolutely convergent for Re (s) sufficiently large and admits a meromorphic continua-
tion.
We have already fixed an additive character ey of Q\A and a Haar measure on A. If z €

Sym(2n, A) set u(x) to be the element <Ién Ia: ) of the unipotent radical Uy (A) C Qg (A). For
2n

B € Sym(2n, Q) the B-th Fourier coefficient for E(-, f(s, 5)) is defined as

Ep(h, f(s,€)) == / E(u(x)h, f(s,€))en(— Tr Br) do.

Sym(2n,Q)\ Sym(2n,A)
If det(B) # 0 and f(s,£) = ®,fv(s,&) is factorizable, then

(3.1.1) Eg(h, £(5,€) = [[Wa.(h, £(5,9))

with
Wi (s fo(5,€)) = / Fuls, €)(wrru(s)h)ey(— Tr Be) dus
Sym(2n7@v)

where wy = < I(Q)n _62"

Let St be the set of finite places of Q dividing Np and S be the union of S with {oco}. In the
following, for v ¢ S we always take f,(s,£) to be the unique section f;"(s,&) € Ig, +(s,€) that takes
value 1 on H(Z,) (the uniqueness is due to the Iwasawa decomposition H(Q,) = Qu(Q,)H (Zy)).
For v € St the section f,(s, &) we will consider is supported on the so-called “big cell” inside H(Q,),
ie. Qu(Qy)wrUn(Qy). An element (é g) € H(Q,) belongs to the “big cell” if and only if
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one local section supported on the “big cell”, (3.1.1) holds for all 3. Next we compute formulas for
Wp.o(h, fu(5,€)) place by place.

—1
det C # 0. Given z = « + iy € Hy,, we put h, = 1¢ - <‘/‘77 v > . With A~ = h, and at least
oo

3.2. The ramified places. Let «, be a compactly supported smooth function on Sym(2n,Q,).
We define the section f5v(s,&) € Ig, +(s,&) as

(321)  f"(s9) ((A B)) [ Y(det C)| det C|7T#5 N a, (CTID) i det C £ 0,
; U\ D))o if det C = 0.
An easy computation shows that
(3'2'2) Wﬁm(lv,fgv(s,f)) :/ av(g)ev(—Tr,Bg) dvg:av(ﬂ)‘
Sym(2n,Qy)

Since the Fourier transform is an isomorphism on the space of compactly supported smooth func-
tions on Sym(2n,Q, ), the above formula gives us adequate flexibility in arranging, for our purpose
of p-adic interpolation, the contribution of ramified places to the Fourier coefficients of the Siegel
Eisenstein series. Later when choosing sections at p we will first decide what &), should be and then
get the corresponding f,7 (s, &). Notice also that for such “big cell” sections, Wg ., (1y, f&(s,€)) is
independent of s and &.

In the following we always require the &), to be supported on the following compact set

(3.2.3) {b = (f;)l ZO> € Sym(2n,Z,) : by =0 mod p?, by € GL(n,Zp)} .
0 02

In particular under this requirement the Fourier coefficient Eg(h;, f(s,£)) vanishes for all degen-

erate 3.

3.3. The unramified places. For v ¢ S we record here Shimura’s calculation of Wy ,, (14, i (s,£))
in the case when 3 is nondegenerate. Let val, be the valuation of Q, taking value 1 at the
uniformizer and ¢, be the cardinality of the residue field. Denote by Sym(2n,Z,)* the set of
symmetric matrices n € Sym(2n,Q,) such that Trns € Z, for all ¢ € Sym(2n,Z,). Define

n

O T Lo@s +2n+1 25,6,
j=1

2n+1

dy(s,€) := Ly(s + 5

With all data unramified at v we have

Theorem 3.3.1 ( [Shi97, Theorem 13.6, Proposition 14.9]). The Fourier coefficient Wg (14, fi(s,€))
vanishes unless B lies inside the intersection of Sym(2n, Q) with Sym(2n, Z,)*. When it is nonva-
nishing, we have

(B31)  Wao(le, fi%(5,6) = du(s, &) Luls + 5, 60s) - g5, (aqv)q; “*2”;1)) .

— ((=1)"det(2B)
) = < v

Here \g(qy ) and gg.(t) is a polynomial with coefficients in 7 whose constant

term is 1 and degree is at most 4n - val, (det(28)). In particular gg,(t) =1 if det(28) € Z.

What is relevant to us is the evaluation of E(-, f(s,£)) at so = k — 2% with £(—1) = (—1)* and

k > n+1. In that case we have the parity (—1)*= = ¢\g(—1) so the special value L(sq+ %, ENg) =
L(k —n,&{\g) belongs to the set of interpolation points of the p-adic Dirichlet L-function.
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3.4. The archimedean place. For an integer k > n+ 1 satisfying £(—1) = (—1)* we consider the
canonical section fX (s,€) € I, «(s,€) defined as

FE (5, (h) = (i)~ (h i)+ 55

A B

where j(h,i) = det (u(h,i)) = det(Ci + D) for h = (C D

series of scalar weight k. Then
Wﬁ,oo(hz, f(lfo(sa f))

:/ det (Vi + (x+¢) vy )" ‘det (Voi + (@ + <)y )
Sym(2n,R)

). It gives rise to a Siegel Eisenstein

‘k_(8+2n2+1)

e (—TrB¢) ds

2 )Tt

n 1 2 1 k1 2 1 k
=eoo<Trﬂw><dety>%<S+2?l>§2n(y,ﬁ;2<s+ T+ 5l )

where for hi, ho € Sym(2n,R) and s, s2 € C the function £y, is defined as

Eon(hi, ho;s1,892) = / det(s + thy) *t det(s — ih1) 2 exo (Tr hog)ds.
Sym(2n,R)

The function &a,(h1, he; s1, s2) is studied by Shimura in full generality [Shi82]. Before stating the
result we define the Gamma function

Theorem 3.4.1 (Theorem 4.2, loc. cit). Let ry (resp. r_) be the number of positive (resp.
negative) eigenvalues of B and r = 2n —ry —r_. Set . (By) (resp. d_(By)) to be the product of
all positive eigenvalues (resp. absolute values of negative eigenvalues) of By.

Eon(y, B; 51, 89) =27"F 281 (re =) 282 (r—n) + FEGE mion(s1—s2) prsy b sy Hgm 4 TS

2n+1 2n+1 2n+1 +’i
4

x (det ) 2" ~(1H92)5 (By) T T 5 (By)n
Fr(Sl + 82 — 2n2+1)

Loy (SI)FQn—r+ (32

>W(27Ty, 167 S1, 32)

Here w(2my, B; 81, 82) is a holomorphic function in s1, s2, and if B is strictly positive definite

w(2my, B; 51,0) = 27" e (i Tr By).

The value Wg oo (hz, 5 (s,£)) we are interested in is at so = k — 2% which corresponds to

_2n+1
the evaluation of &, (y, 3;s1,52) at s1 = k,s2 = 0. Look at the term T FT(SI(;‘Q)?Z 2 )(52). By
n—r_ T‘L*’I‘+

our requirement on &, only nondegenerate B’s need to be considered, for which » = 0 and the
numerator is 1. Meanwhile the function I'g,_,, (s2) in the denominator has a pole at s = 0 unless
r+ = 2n. Hence for nondegenerate 3 the value Wg o (hz, fE (k- 2"2—+1, €)) is nonvanishing only if
3 is strictly positive definite. For those 3’s we have

2n + 1 22
7 6) =(-1) km

18
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3.5. Summary. Let d%(s,&) = [] du(s,€) and we normalize the Siegel Eisenstein series as
végS

E*(h, f(5,6)) = d*(s, ) E(h, f(5,€)).
Let Sym(2n,Q)~¢ be the subset of Sym(2n,Q) consisting of (strictly) positive definite elements,
and X, + be the subset of Sym(2n, Q)¢ consisting of elements that belong to both the set (3.2.3)
and Sym(2n,Z,)* for all v ¢ S. Use ag, to denote the collection of the Schwartz functions «, on
Sym(2n,Q,) for v € S¢ with @), always assumed to be supported on the set (3.2.3). Put

2n—|—1 2n+1 2n—|—1 2n+1
(3.5.1) fhose (k- = Q£ (k- )© Q) fi (k- ) ® fl(k—=——,6),
vﬁS vE St
which is a section inside Ig,, (k — 25, €).

Combining results from the previous three sections we know that the normalized Siegel Eisenstein
series E*(-, f*5t) on H(A) is holomorphic of weight k with Fourier coefficients supported on %, .
Put gg(k:,f_l) = I 98.,(€(qw)q, *). For B € ¥, 1 there is the formula

vgS

(3.5.2)
" ]f»OéSf . 2n + 1
:(—1)"kﬂﬂ2”kLS(l€ n, )\,35 H ay(B)(det 28)%~ (det y)g o(Tr Bz).

o (k)

Implementing the g-expansion principle, with suitable ag,, one can deduce the algebraicity of

VE St

E*(-, foost (g — 2”2—“, €)), i.e. up to an explicit normalization factor it lies inside the image under
the map (2.4.3) of algebraic global sections.

We modify (3.5.2) into a form that is more convenient for later p-adic interpolation. Under our
parity condition on k£ and &, the functional equation for Dirichlet L-functions indicates

(2mi)k—"
or' (k — n)c’;;gfla(Aglgfl)

(3.5.3) L(k —n,\g€) = Ll —k+n, "¢,

Now write ¢ as the product ¢~'x°~! of two primitive characters, where the conductor of ¢ (resp.
x°) divides N (is a power of p). We write x to mean the character associated to x° taking value
0 at p. When there is no need to emphasize the primitivity of x° we also simply write x. Set

g = )\Blgb whose conductor is prime to p. Using the relation G(¢gx) = ¢g(Cy)X(Cys)G(dp)G(X)
and (3.5.3) we get from (3.5.2)

« o 2n+1 4
Eﬁ (h’zafl€7 Sf(k - ) 1X 1)>

2
B 2k+n—1(ﬂ_i)2nk+k—n . )\ﬁ(CX)Lp(l k4 n, QbﬁXO)
L(k = n)Tan(k)p(Cy)CY "G (x) Lyp(k —n, ¢5" x> 1)
det(2 1/2
eg(f;) . X_l(C%)C’;:J“”H -Ln(k —mn, qb[_;lx_l)_l -LP(1 = k+n,¢gX)
X gﬁ L, OX) - H ay(B) det(28)F7""1 . (det y)g oo (Tr B2).
VESE

For readers who are familiar with p-adic interpolation, it is noticeable that the above formula has
been grouped into factors each of which is ready for p-adic interpolation with respect to k and Yy,

Lo(1—k-+r.68x°) . '
AB(CX)Lp(k_n’(ﬁElXofwa eSpeClaﬂy the term )\g(cx) This
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term depends both on k,x and @ and in general does not admit p-adic interpolation. However

1%1) gg) that lies inside X, . For

such a 3 it is easy to see that det 3 is a p-adic integer and det 3 = (—1)"(det 39)?> mod p. Thus
Ag(p) = 1. Let ¢, be the integer such that C) = p°c. Define

2k+n—1(7”')2nk+k—n . Lp(l —k+ n7¢XO)
['(k —n)lap(k) Ly(k—n,¢=1x°"1)

Proposition 3.5.1. For B € X, . we have

Ep <hz,f’“’°‘sf<k: 2”“,¢>—1 ° 1))
~det(28)'/2
R G(0g)

x gk, ¢x) - [] @v(B)det(28)F " - (det y)
VE S

by our requirement on a, it suffices to consider only 8 = <

-1

(3.5.4) Ap gy = ((é(p)p’“’”*)cx G(X)>

X (Cag) Oy ™ Lv(k =, dg"x ™) 71 - LP(1 =k + 1, ¢px)

k
2@

oo(Tr B2).

One can observe that on the RHS of the equality, the term A,, 4 1. is independent of 3 and other
terms admit p-adic interpolations with respect to k, x for suitably chosen ag, (c.f. §5.2).

4. SECTIONS AWAY FROM p AND THEIR LOCAL ZETA INTEGRALS

Let (x,T) be an arithmetic point of Homcont(Z, X Tn(Zp),@;), i.e. it can be written as the
product of an algebraic character (Kalg, T,j,) and a finite order character (s¢, T;). We write ka5 = k,
alg =1= (tlv to 7tn) with katb e tn being integersv and Kt = X, Tf = ﬂ = (¢17 T 7wn) with
X; %1, -+, ¥, being characters of Z of finite order. We call an arithmetic point (k,T) admissible
ift; > >t, >k>n+ 1.

From now on we fix a primitive Dirichlet character ¢ whose conductor divides N, and we will
sometimes omit N and ¢ from some notation that actually depends on them. Proposition 3.5.1
basically gives us a one-variable family of Siegel Eisenstein series on H where the variable is k.
What we want is an (n + 1)-variable cuspidal family on G x G, whose members are the restrictions
to G x G of Siegel Eisenstein series on H, and its pairing with an n-variable family on G x G will
give the desired (n + 1)-variable p-adic L-function. Constructing this (n + 1)-variable family boils
down to selecting sections fr inside Io, (k — 2%, ¢~1x°71) for each admissible (x,T). It is no
surprise that for all v ¢ S we set f. 1, to be the unramlﬁed section f"(k — 2”+1,¢ Lye=h). For
v € S¢ we consider the “big cell” sections. Thus what we need to select is the collection of Schwartz
functions a1 s, and the archimedean section fy 1 00-

In this section we make the choices for ay; ¢ n and fy 0. With our choices we compute the local
zeta integrals for the doubling method for v | N, and show the nonvanishing of the archimedean zeta
integral. In the next section we treat the place p. Based on the two criteria in the introduction,
i.e. nonvanishing local zeta integrals and p-adically interpolatable g-expansions, all choices are
completely natural.

4.1. Doubling method for symplectic groups. Let us first briefly recall the formulas of the

doubling method. We have fixed the rank 2n free Z-module L,, with a symplectic pairing and G =

G(Ly). Let V,, = V,,®V,* be the polarized symplectic space over Q with basis ey, - ,en, f1,** , fn

obtained from L, by tensoring with Q. Take another copy of V,, with basis €/, -, e/, fi, -+, f1,

and put Vg, = V,, &V, with the induced symplectic pairing. Elements in H = G(Vy,) will be

written in matrix form with respect to the basis ey, -+ ,en, €], €, f1,- -+ fas f1, -+, [, Then
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there is the (holomorphic) embedding ¢ of G x G into H given by
t:GxG— H

a 0 b O

<a b)x<a’ b’>}_> 0 0 ¥V
c d d d c 0 d 0
0 ¢ 0 d

Fix the map ¥ from V,, into itself whose matrix is ( IO I(;L) with respect to our fixed basis. It
n

does not preserve the symplectic pairing but has the similitude —1. Let V4 = {(v,9(v)) : v € V,,}
and Vo, 4 = {(v,—9Y(v)) : v € V,,} which are both maximal isotropic subspaces of Vy,. The
doubling Siegel parabolic Py is defined to be the stabilizer of Vgn. The standard Siegel parabolic
Qg is the stabilizer of the maximal isotropic subspace V,, & V,, and we have

I, 0 0 O

. 1 . 10 I, 0 O
Py =8QuS with S = 0 I, I, 0
I, 0 0 I,

For each section f(s,&) € Ig, (s,&) we set

(4.1.1) F(s,6)(h) = f(5,€)(S™'h)

for h € H(A). Then f(s,&) lies inside Ip,(s,€) and E(-, f(s,€)) = E(-, f4(s,£)). For an element
g € G we define g” to be 999 € G. This conjugation by 9 is called the MVW involution. The MVW
involution of an irreducible smooth representation of G(Q,) is isomorphic to its contragredient
[MVWS87, p. 91].

Given an irreducible cuspidal automorphic representation 7 C Ay(G(Q)\G(A)) of G(A) and
its complex conjugation 7 C Ag(G(Q)\G(A)), which is isomorphic to the contragredient of 7, we
fix isomorphisms 7 = &' 7, and T = @) 7, such that for factorizable @1, € 7 with images

®v Plo € ®; 7y and ®,U @2’1) S ®; Ty, we have

(p1,92) = H <@1,va¢2,v>v )
v

where the pairing on the left hand side is the bi-C-linear Petersson inner product with respect
to our fixed Haar measure on G(A) and the pairing on the right hand side is the natural pairing
between m, and its contragredient 7.

For ¢ € m we define its MVW involution ¢” by ¢©”(g) = (g
7 due to the multiplicity one theorem [Art13].

For a local section fy,(s,&) € Ig, +(s,&) we define the operator

), and we know that ¢V lies inside

va(&g) T —> T
o (T e09) (9) = /G o, FH 006 D) ola0! o,

Certainly in order for T, s ¢) to be well defined we must address convergence issues. The absolute
convergence can be proved for s € C with Re (s) sufficiently large. In our applications a meromor-
phic continuation always exists and we use it to define T, (,¢) for general s € C. In fact when v | N

or when v = p and Y1, -, x¥, are all nontrivial, by our choices the function ;{LU(L(-, 1)) on
G(Qy) is compactly supported. When v = oo the absolute convergence follows from the fact that
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Teo 18 a discrete series as discussed in [Li90]. The only place we need to be careful with the conver-
gence issue is the computation in §5.7, i.e. the local zeta integral at p with some of x1, -+, X¥n
being trivial.

The doubling local zeta integral is defined as (purely locally)

Zy(fo(8,8),y7) 1y X 1y — C
(412) (01’62) — Zv(fv(s’g)’vl’f&) = / fg(‘S»g)(L(gva 1)) <7TU(gv)Ula ’62>v dyGo-
G(Qu)

As a pairing between Ig,, »(s,§) and 7, X 7,, the doubling local zeta integral has the equivariance
property that for (g1,92) € G(Q,) x G(Qy),

(4.1.3) Zo (Ru(ulg1, 99)) £(5.€) molg1)vn, 7olg2)52 ) = Zu( (5, €), 01, 72).

Remark 4.1.1. The standard notation for the zeta integral should be written as Z,(f%(s, €),v1, ¥a).
In our construction we always use f,(s,§) for computing the Fourier coefficients of E*(, f, (s, )) =
E*(-, f4(s,€)) while the zeta integral is always computed with f¢(s,¢). The notation in (4.1.2) is
more convenient for us here, and should cause no confusion.

Theorem 4.1.2 ( [PSR87, Gar84, Shi00]). Suppose f(s,§) = Q5 £ (5,€) @ Qes fu(s,€) is a
section inside to Ig, (s,§). If ¢ € K& with K2 = [Togs G(Zy), then

(B (u(,9), f(s,6)) ) = LS(S+*7T><£ <H J%(s,&) ’).
veS

Equivalently for all factorizable @1, po € ﬂ'KCSz‘,

Zv(f’u(87 5)7 @1,1}7 902,1)) <¢ @2>
1 :

1
(B (5. Olaxa 7@ @) = Lo(s + 5w x ) §! S cay

Remark 4.1.3. Our formulation of the doubling method aligns with those of [Gar84, Shi00] where
if the Siegel Eisenstein series on H is holomorphic its restriction to G x G is still holomorphic on
both factors, because the embedding ¢ : G x G < H corresponds to the holomorphic embedding

of the Siegel upper half spaces H,, x H,, < Hsy,, sending (z1, z2) to (28 f) However it differs
2

from the standard formulation in the study of the doubling method from the point of view of theta
correspondence, where the embedding is equivalent to ¢ with a conjugation by ¥ on the second
factor. The translation from the standard formulation to ours here depends on the choice of the
map ¥ from V,, to itself with similitude —1.

4.2. The “volume sections” at places dividing N. For a place v | N we pick a very simple
so-called “volume section” that gives simple Fourier coefficients and easily computed local zeta
integrals. Moreover it makes the restriction of the resulting Siegel Eisenstein series to G x G
cuspidal when the archimedean section is taken to be fX. The cuspidality fact is crucial for us to
apply Hida theory on G.

Define the Schwartz function o/ : Sym(2n,Q,) — C to be the characteristic function of the

IO IO) + N Sym(2n,Z,) of Sym(2n,Q,). The “volume section” inside
n

Ig; (s, &) is defined as f)°!(s, &) = ffzo (s,€). It gives the Fourier coefficient

W, (Lo, f3°(5,€)) = @°1(8) = IN[;*" ey (2 Tr o) - L1 sym(anz,)+ (8)
22
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for B = <th gg) , where 1 y-1gym(2n,7,) 18 the characteristic function of the set N~ Sym(2n, Zy,)*.
vol

The “volume section” f% , is independent of T and its corresponding Fourier coefficient is a p-adic
integer independent of both x and T.

Next we compute the local zeta integral. Let I'(N), be the open compact subgroup of G(Q,)
consisting of elements in G(Z,) whose reduction modulo N is 1.

Proposition 4.2.1. Suppose ¢ € 7 is invariant under right translation by T'(N),. Then
Tiyor(s6)® = €o(=1)"Vol(T(N)y) - .

Proof. For g = (Z Z) € G(Q,) we have
I, 0 0 O a 0 b 0 a b 0
wwy (8 k0 8| Pae ) T 5 e
I, 0 0 I, 0 0 0 I, —a 0 =b I,
It belongs to the support of fY°!(s, ¢) if and only if det <_Ca _(‘)’"> # 0 and (_ca _6,"> o (_db Ii)
<_dj__;2—1b __CC(LI_—11> belongs to — <I(i IS) + N Sym(2n, Z,,). Therefore

&(=1)" if g e T'(N),y,
0 otherwise,

Fl(s,€)(u(g,1)) = {

and the proposition follows. O

For an admissible (k,T) we set fir, = ;’,OT{U = fyl(k — 22 ¢=1x°~1) and use fY% \ to denote

the product of local sections ®v‘ N ;’Ollv We also put o} = HU| N avel,
Before moving to the archimedean place, we record here the following theorem due to Garrett

concerning the cuspidality of the restriction to G x G of the Siegel Eisenstein series.

Theorem 4.2.2 ( [Gar92, p. 465-473]). Let f(s,&) be a factorizable section inside Ig, (s,§) with
fo(s,€) = fyol(s, €) for some finite place v and foo(s,€) = f£ (5,€), k > 2n+1. Then the evaluation
at s = k — 273—“ of the restriction of the Siegel Eisenstein series E(-, f(s,€))|laxa is a cuspidal
holomorphic Siegel modular form of scalar weight k on G x G.

4.3. The archimedean sections. We select a section fy r o0 from Ig, oo(k — 2";1,¢_1XO_1) for
each admissible (k,T) = (k- x,t-9) with & satisfying the parity condition ¢y(—1) = (—1)*. Denote
by D; the holomorphic discrete series (9, KG 00)-module whose lowest K¢ oo-type is of highest weight
t, and by D;(t) the lowest K¢ oo-type inside Dy. Let Dy be the contragredient of D; and E(—j) be
its highest Kqg -type.

In our application of the doubling method formula, the cuspidal automorphic forms ¢ on G(A)
we consider are those coming from global sections of the automorphic sheaf w; = VY over Shimura
varieties of certain level through the map (2.4.3). Thus the archimedean factor 7, is a holomorphic
discrete series and o lies inside its lowest K¢ oo-type. The nonvanishing condition we put on
Jr,1,00 is that for all such ¢, the (—t)-isotypic part of T}, . ® is nontrivial, or equivalently the map
Zoo(frmoos ) - ZZ(—L) X Dy(t) — C is nonzero.

For the case t; = -+ = t,, = k the very canonical choice for the archimedean section is fclfo

The corresponding local zeta integral is computed in [Shi95] and the results clearly imply the
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nonvanishing. From Proposition 3.5.1 one sees that f¥ also satisfies the condition that after
dividing an explicit scalar, its Fourier coefficients are all algebraic.

In order for E*(-, fx ) to be algebraic it is natural to consider sections obtained by applying
operators constructed from q;} to fX  because then our discussion in §2 shows that the resulting
Siegel Eisenstein series can be obtained by applying the (geometrically defined) differential operators
to E*(-, fk’asf), and the differential operators have an algebraic structure as well as formulas on
g-expansions.

Recall that we have fixed a basis ﬁ;;, 1 <4 < j < 2n for the Lie algebra q;;. Putting ﬁ;; = ﬁ;’l for
St

i > j, we let [if; be the symmetric 2n x 2n matrix whose (i, j) entry is ﬁ:; Write i}, = <%1+ gg)
0 He

in n X n blocks.
Inspired by [Har86], we define the following archimedean section

n 1 ti—ti41 L
(431) fK,,I,OO = Hdetl <47‘(‘7/M8_> . foo,
=1

where we put t,+1 = k and for a matrix A we use det;(A) to denote the determinant of its upper
left [ x [ minor. The rest of this section is devoted to proving the following proposition stating that
this fy 100 satisfies the nonvanishing condition. The strategy for making this selection will manifest
in the proof.

Proposition 4.3.1. With f. 1o defined as in (4.3.1), the map
(4.3.2) Zoo(frmoor ) : Di(—t) x Dy(t) — C

is nonzero. Let vy € Dy(t) be a nonzero vector of highest weight and v, € 5;(—;) be its dual vector.
Zo (f;@,l,ooﬂ)z :UL)
{0/ vt)
Proof. Let U(bc) - FE% be the sub-(hr, Kp,00)-module of Ip, o (k — 25, ¢~ 1x°~1) generated by
fi;"i As explained above due to the algebraicity consideration we want to pick our f,f’Loo from

Then the number 18 nonzero

U(he) - fgék. Regarding U(hc) - fgék as a representation of the compact group Kg oo X KG o0, We
prove that in the decomposition of U(h¢) - féﬁk

Ke.ooxKa o Uhere is a unique piece oy, which pairs
nontrivially with 73;(—;) X Dy(t) under the zeta integral. Then we finish the proof by showing that
f;fmoo has a nonzero projection into oy, ;.

We start by introducing several unitarizable irreducible (br, K1 ,00)-modules whose K g ~o-finite
parts are isomorphic to U(h¢) - féﬁk or its contragradient when the parameters are within the range

relevant to us here. Let (0, W,) be a finite dimensional algebraic representation of GL(2n). Then
W4 (C) is a K co-representation. Define the H(R)-representation

analytic functions f : H(R) — W, (C) that are annihilated
O(H(R), Ky ~,0) = { by the action of q;; on the right, and f(hk) = o~ (k) f(g)
for all k € Ky o, h € H(R)

with H(R) acting by left inverse translation. Let OY(H(R), Ky o,0) be the (hr, K o )-module
which is the subspace of O(H(R), Ky 00, 0) spanned by Kp oo-finite vectors. Let O(Hy,, o) be
A B

-1
C D> € H(R) acting on

the space of W,-valued holomorphic functions on Hy, with A = <
f € O(Hap,, o) via

(h-f)(z) =0 ((Cz+ D)) f (Az+ B)(Cz + D)™ ').
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It is easily seen that O(H(R), Ky 0, 0) is isomorphic to O(Hsay, o) (c.f. Remark 2.4.2). One can
also check that the hc-module O (H(R), Ky, o) is isomorphic to the base change to C of the h-
module V,; defined in §2.2, and that the formulas there show that it has a unique highest Ky o-type
o which is contained inside every sub-representation.

Let Way, o be the real vector space of dimension 2k with a positive definite symmetric pairing and
O(2k,0) be the associated orthogonal group. The action of O(2k,0) x H(R) on the Schrodinger
model S(Wa 0 ® Vap, ar), the space of Schwartz functions on Way, g ® Vo, 4w, of its Weil represen-
tation with respect to the polarization Vg, = Vgn ® Vg, 4 is given by

(w(@)s)(z) = s('az), o€ O(2k,0),
(w(m)s)(z) = det (mlyg )" s(ma), m € P(Vd,5) O P(Vanaz),
(w()8) (2) = encl(~u(w), ) /2)5(2), we N(Vi,z)
(o)) = enol(y, w))s(1)dy.

Wak,0®Van dr

Here for an isotropic subspace V', P(V) is the stabilizer of V' and N (V) is the unipotent radical
of P(V). The element w in H(R) is the one sending (v,9(v)) to (v, —¥(v)) and (v, —9(v)) to
—(v,9(v)) for v € V,,.

Let Og4,0(0) = S(Wapo ® V2n’d’R)O(2k’0) be the theta lift of the trivial representation from
O(2k,0) to H(R). The morphism

2n+1 .
Q: S(Wako @ Vanar) — Ipy cc(k — 5 , Sign®)

5 — ®(s)(g) := (w(g)8)(0)

embeds ©s,0(0) into the degenerate principal series [KR90a, Theorem 3]. We denote by ng,o
the image of ©gy0(0) inside Ip, «(k — 2%, Sign*) and Royo be the sub-H(R)-representation of
10, 00(k — 2551 Sign*), which corresponds to ng,o via (4.1.1).

The representation ©¢(0) is unitary and embeds into O(Hy,, —k) through the map

§— eso(Trz'z2)s(x)dx.
Wak,09Van ar
Therefore Og,((0) is irreducible. If k > n (we have always assumed k > n + 1) the image is
dense [KV78, p. 3]. It follows that Of(H(R), Ky o, —k) is irreducible, so isomorphic to the Verma
module U(hc) BU (e cmah) det ™ of highest weight —k.

We use the superscript MVW to denote the MV W-involution, i.e. conjugation by ¢, of the
above defined representations. In our case, thanks to the irreducibility, the MVW-involution is
isomorphic to the contragredient representation. By using —Woyy, o we define O 2x(0) and R o C
Ipy ook — %, Signk). It is easily seen that ©g 25 (0) = @2k70(0)MVW. The Kg oo-finite part of

Ry 2, will be denoted as R(I;,Zk‘

The degenerate principal I¢ H7oo(/<:—2”2—+1, Sign*) is K H,0o-multiplicity free [Gui80]. Both U (h¢) - b

and Rg o are irreducible hc-submodules of the degenerate principal series and contain the Kp -
type of scalar weight k. Hence they must be equal to each other, and we are reduced to studying
the hc-module RY ., which by the above discussion is isomorphic to Of(H (R), K g 00, —k)MVW and
the Verma module My = U(hc) ®U(EH,céBq;,

as a gc X ge-module there is the following theorem.
25
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Theorem 4.3.2 ( [JV79, Proposition 2.2, Corollary 2.3]). If k > n + 1, then
ONH(R), K00, —k)|gexge = GBOf (G(R) x G(R), Kao0 K0, det™ @ Sym” (a7 /a5 x 45))

Applying the decomposition results on algebraic GL(n)-representations [Shi84, Theorem 2.A],

we have
Sym"(qaf/ak xal) = P WalC)RW,(C)
a1>->an>0
la|=r

as K¢ oo X Kg oo-representations, where |a| = a1 + -+ + a,. Let ¢ = (—ap, -+ ,—a1). When
t, > n+ 1 the (gr, K oo)-module Of(H,,a )MVW gives the holomorphic dlscrete series D, of
lowest K oo-type a. Since we have always assumed k > n + 1 we obtain the the multiplicity free
decomposition

(4.3.3) Roglgcxge = €D Da® Dy

a1>-->an>k

Let oy be the unique Kg o X K@ oo-sub-representation of Ry o, that corresponds to Dy (t) K Dy(t)
under the above isomorphism. Now due to the equivariance property (4.1.3) it is clear that the
zeta integral pairing

(4.3.4) Zoo + Ro o X (Dt( £) x Dy(t )) —C
factors through oy ;.

Lemma 4.3.3. The pairing (4.3.4) is nontrivial.

Proof. Since the representation of G(R) we are considering is discrete series, the arguments in [Li90]
demonstrates the equivalence between the nontriviality of (4.3.4) and the nonvanishing of the theta
lift of D; from G(R) to O(0,2k). The nonvanishing of this theta lift is easily seen from [KV78,
Theorem (6.13)] or from (4.3.3) plus the doubling seesaw. O

Thus a section inside Ry o5 pairs nontrivially with E(—;) x Dy(t) by the zeta integral if and only
if its projection to oy, is nontrivial. Once we know that the projection of f’iI:OO to oy, is nonzero,

Vv
we can deduce the nonvanishing of the map (4.3.2), as well as that of the number W
t VL

in the statement of Proposition 4.3.1 since by [Shi84, Theorem 2.A] and the definition of fgLoo, its
projection to oy is the highest weight vector on both factors. Therefore the last step is to prove
the following lemma.

Lemma 4.3.4. The section fg&oo projects nontrivially onto oy ;.

Proof. Let vy, be the lowest weight vector of the Verma module M;, = U(hc) BU ey coap) detk.

Under the isomorphism between Ry o; and M), the section fff(;’“ corresponds to vg. Therefore by

the definition of f¢ 00> What we need to show is that [[_, det; (M’)tl U1y has a nontrivial
projection onto the lowest £g ¢ x £g c-type of the D; X Dy-isotypic component of My|g.xg.. The
universal enveloping algebra U(hc) comes with a natural grading (J,~, U-(bc), where U, (hc) is
spanned by elements that can be written as a product of no more than r vectors in hc. Viewing M,
as a g¢ X gc module, it has the natural filtration J, -y M ., with My, , being the module generated

by vy under the action of U(gc x gc) and U, (hc). Let q; be the Lie subalgebra of the abelian Lie
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algebra of q}} spanned by entries of /’IT, for i = 0,1,2. Consider the morphism of C-vector spaces

Uqf @ q3) ®@c Un(qf) — My,

(4.3.5) o B ol o

It is injective by the PBW theorem, and the image contains U, (h¢) - v. From the relation [[(tg,c @
dg) % (ba,c @ ag),qg],ag] C a7, we see that ((ke,c ® qg5) X (bg.c D ag)) - Up(ag) - vk is contained in
U(qf @ q3)Ur(qg) - v. Therefore the image of (4.3.5) is stable under the action of (kg c @ qg) X
(ta,c @ qg), and (4.3.5) is a bijection, which implies that

@ t—t
(4.3.6) Hdetz + o Uk & My || —nk—1-

At the same time the bijection (4.3.5) gives
Mk,r/Mk,rfl = U(Q(C X g(C) ®U((€c,c®q5)X(€c,c®q5)) (Symr(q—i}}/qg X qg) ® detk)

~ P (U(gc) BU (e coag) Wg—i—k) X (U(Qc) (g ca) Wﬁk)
(437) a1>->an>0
la|=r
D  Dust B Dy

a1 >-->an>0
la|=r

I

The vector [[;-, det; (AJr)tl*t“rl -vy, belongs to the t x t-isotypic part of My|e, o xtg ¢ » SO its image in
My (¢ —nk/ M, |t —nk—1, Which is nonzero by (4.3.6), lands inside Dy(t) XDy (t) under the isomorphism

(4.3.7). Now we can conclude that [];", det; (A+)tl bt - v, projects nontrivially to the lowest
tc.c x tg c-type of the Dy X Dy-isotypic component of Mp|g.xge- O

O

4.4. The g-expansions. For a Schwartz function o, on Sym(2n,Q,) whose Fourier transform is
supported on the compact set (3.2.3) and takes values inside a number field on Sym(2n, Q), set

2n +1
2

o ur 2n+1 o vO «
= Q= T e @ iy @ (k-
vgS

7¢71X071) ® fIiJ,OO‘

From the discussion in §2 we see that the Siegel Eisenstein series £*(-, fok) on H and its restriction
to G x G are both nearly holomorphic of degree less or equal to |t| — nk. Since the archimedean
section fi 1 oo belongs to the tXt-isotypic component of I, oo (k— 2”2—“, Signk) |KG.oox Koo and is of
weight (t,t), we know that the form A ; ey BTG feb)|axq lies inside the image of the embedding

HY(Xar x Xar VI RV, g ) F 220 4G(Q) x GIQ)\G(A) x G(A)/T x Dy,

D¢y
where I' = I'y1 (N, p™) with m sufficiently large, and F' is a sufficiently large number field . We

denote by £k the global section of Vlt‘ R V|t| ™ over Xar x Xgr which is mapped to An kX

E*(., f,ﬂ)|GXg, and consider the (p—adlc) g-expansion, defined as (2.6.1), of the nearly holomorphic
form Ec%. Let Y, 4+ be the intersection of the set ¥, 4 and Moy N~!Sym(2n,Z,)*.
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Proposition 4.4.1. Suppose (k,T) € Homeont(Z,, X Tn(Zp),@;) is an admissible point satisfying

the parity condition ¢px(—1) = (=1)k. Then
(4.4.1) Eqpadic(Enit) = > > cx%(8)d™ ¢,
bnen Tminr o (5 s,
with
celx(8) 42O ol ). X O )Co ™ Ly(k =, 05 x 7)1+ LP(1 = k + n, éx)

G(9a)

x gg(ka éx) - ap(,@) Hdetl@ﬁo)tl_tlﬂ det(Qﬂ)k_”_l.
=1

Proof. The proof is straightforward. All we need to be careful about is to be precise with all
representations and maps involved here, instead of looking at isomorphim classes or working up to
scalars. We use the symbol T;, to mean an arithmetic character of T},(Z,) with algebraic part equal
to the scalar weight k = Ka1. Let Eﬁgk be the inverse image of A;,bnk,x -E*(, f,?’ik) under the map

©m(+, ecan), which is a global section of the sheaf wy = V,g over Xpr. It follows from the definition
of polynomial g-expansions, the canonical test object carried by Hs, and Proposition 3.5.1 that

Eg,l’:rk (Q7 X) = Z c(:gtk (18) ) quﬁa
BEXN p,+

where vy, is a basis of the representation det®. Let X = (Xij)gi,jggn be the basis of the represen-
tation 7o, defined as in the paragraphs above Proposition 2.4.1, and we write it in n x n blocks as

tX1 Xo . Applying Proposition 2.6.1 we get
Xo Xo

(442) (DzEfipIk)(% 0) = Z C»Cs,plk (/3) U ® Z (2 - 51])/6UXZJ q’B.
BEXN,p,+ 1<i<j<2n

Let m2n0 be the direct summand of 7on|Grn)xcL(n) generated by entries of Xo. For a € X(T,,)+
with |a| = e and a,, > 0, put a,4+1 = 0 and fix the morphism of GL(n) x GL(n)-representations

(4.4.3) det” @ Sym® 1o,,0 — Wair K Wy

sending v, ® [}, det;( Xo)®~*+! to the vector wgir W wqti. Here for each b € X(T,)4 the
function wy : GL(n)/N,, — A is defined as wy(g) = det(g) =" [} det,_;(g)?~+1. Recall that

Yi Yo :
Y, Y2>. It is easy to check
that modulo X1, X9, Y gives rise to a Qg X Qg-representation morphism from Vk’"®syme o l0ax0a

to Sym® 79,0 ® (V' X V)") which, when composed with (4.4.3), gives

VkT®Syme o = det” ® Sym® Ton[ Y ]<r. Similarly to X we write Y =

. T T T
Tha * Viesym® ronlguxoe — Vark 8 Vats-
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Given Proposition 2.3.1, 2.4.1 it is tautological to check that we have the following commutative
diagram

WH('vecan)

H(Xpr,wi) A(H(Q)\H(A))
Dz Hlnzl detl(—ﬁﬁa—)al_al"'l
0 e SOH('yecan®wﬁl(X6))
H (XH1F7 1}]<:®Syrne Tgn) A(H(Q)\H(A))

0 *
HY(Xar x Xar " Vigsyme r,,)

Tk,a

PG xG(*rtcan)
HO(XG,F x Xar Vo, X V§+k> e

A(G(Q) x GQ\G(A) x G(A)),

where @' = (—an, -+, —a1). Thus the (p-adic) g-expansion of £c% is obtained from applying
wy ( XE), with @ =t — k, to (4.4.2) and setting Y to zero, ¢° to ¢*1¢™, i.e.

n
Eq,p—adiC(ggfi) = Z H det; (2/30)”4”1 Cgplk (ﬁ)qﬁl qﬁz’a
=1
5=(5 5o ) P

which is exactly (4.4.1). O

5. THE MEASURE fig g-exp AND LOCAL ZETA INTEGRALS AT p

We review briefly the theory of p-adic measures, and then pick suitable @, such that the
Eqpadic(En™”)’s amalgamate into an element of Meas (Z) x T(Zy), Op[[N~! Sym(n, Z)*%%]),
where F' is a finite extension of Q, containing all N-th roots of unity. Then we retrieve f, .«

from @ . and carry out local computations at p.

5.1. p-adic measures. Suppose that Y is a compact and totally disconnected topological space.
Let R be a p-adic ring, i.e. R = 1&1 R/p"R, and M be a p-adically complete R-module. Denote by
¢ (Y, R) the R-algebra of continuous R-valued functions on Y. An M-valued p-adic measure on Y
is a continuous R-linear map

w:C(Y,R) — M
f s u(f) =/deu,

where the topology on € (Y, R) is the topology of uniform convergence. The set of M-valued p-
adic measures on Y is a p-adically complete R-module and is denoted as Meas(Y,M). For an
R-algebra R', which is also p-adically complete, since € (Y, R') = €(Y, R)®R/, there is a natural
map Meas(Y, M) — Meas(Y, M®R') and we view Meas(Y, M) as a subset of Meas(Y, MBR') if
R — R’ is injective. From definition it is easily seen that we have the following maps

Y — Meas(Y, R)
y — 0y (f) == f(y),
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and

Meas(Y, M) x €(Y,R) — Meas(Y, M)

(5.1.2) (1y B) — pn(f / fhdp.

Moreover if we assume that Y is equipped with the structure of an abelian group (written multi-
plicatively), then we can define the convolution on Meas(Y, R) as

Meas(Y, R) x Meas(Y,R) — Meas(Y, R)

(5.1.3) (p1, pi2) — g1 * pa(f / / f(yz) dpi(y)dpa(z).

If f € Homeony (Y, R™) is a multiplicative character, we have

(5.1.4) [ gt = </deu1) (/deﬂz>-

5.2. The p-adic measure (g sexp and the section fi 1. Now take Y = Z; x T,(Zp) and
R = Op. The goal is to select the Schwartz function @, and construct an element fig 4exp inside
the space Meas (Z; x T,(Zy), Op[[N~* Sym(n, Z)%%%)]) such that

Oémz,p)

/Z>< (@ )(KZ,I) dﬂg,q—exp = 2gq,p-adic(gl-i,z
XTn(Zp

By definition it is enough to construct, for each 8 € X +, a measure ug g € Meas(Y,Or) with
the property that
(5.2.1)

O, det(28)1/2
/ (. 7) dpie. g = < (8) = SU20)
Ly XTn(Zp)

G(¢p) N (8) XN (Con ) Lv(k =y g1 T
X LP(1—k+n,¢gx) - gg(ka ox)

X Qxp(B) H det; (28)f "+t det(28)F "1
=1

Because of (5.1.4) we can deal with the RHS of (5.2.1) term by term.

/2 . .o ..
The first term %a‘[\?l(,@) is a constant inside Op. The second term is interpolated by the

measure C’g;l .6(0531’1(1)7 where id is the unity of T},(Z,). Both of the term Ly (k—n, d)[_;lx_l)_l and

the term gg(k, $X) can be written as Op-linear combinations of x~*(m)m~* with some positive
integers m prime to p. For each m the measure 5(m717id) interpolates X_l(m)m_k.
Regarding the term LP(1 — k + n, ¢gx) = (1 — ¢gx°(p)p* ™ 1)L(1 — k + n, ¢3x°), there is the

following theorem on the existence of p-adic Dirichlet L-functions.

Theorem 5.2.1 (Kubota—Leopoldt, [Hid93, Theorem 4.4.1]). Given a nontrivial primitive Dirichlet
character £ with conductor prime to p, there is a unique measure pe € Meas (Z;,Zp[ﬁ]) such that
for all integers j > 1 and finite order characters x € Homeont(Z,;, C*),

/zx XW)y dpe(y) = (1= &x° (PP’ ™LA = j,6x°)-
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As for the trivial character, for each fixed prime ¢ prime to p, there is a unique measure iy €
Meas (Z;,Zp) such that for all j and x as before,

| x@ duty) = (1= x(O 1= X @ LA )
P

For simplicity we assume that ¢? # 1 from now on, so that ¢ will always be nontrivial. Without
this assumption, for a fixed prime £ prime to p, we can interpolate (1 — x(¢)~*¢=*+") . &, - instead
of £ ¢. Then everything in the following goes the same, and we get the measure pc 43,5, as
described in Remark 1.0.2.

Let hn(y) = y~". Using (5.1.2) we get the measure pigg p, on Z; with pggp, (k) = LP(1 -k +
n, ¢gx), whose direct product with the measure diq on T),(Z,) gives the desired p-adic interpolation
of LP(1 — k +n, ¢gXx).

It remains to treat the term @& ,(8) [/, det;(280)% 1+ det(28)* ! by selecting suitable
Qrrp- Due to the density of polynomial functions inside € (Z,; x T,(Zp), F), the measure in-
terpolating this expression must be det(23) "' . O(bo,bi, ), Where by = det(203) det(280) 71,
by = det1(280), by = det;_1(280) ! det;(2p) for 2 < I < n, and we must require all the det;(28;)
to lie inside Z). Accordingly we see that a natural choice of the Schwartz function @y r;, on
Sym(2n,Q)) is

~ B Bo
Az <<tﬁo 52))

n n

=12 Sym(nz,)* (B Lsymnz,)+ (B2) [ [ Lawiz,) ((280)1) - x(det(28)) | | ey (deti(260)),
=1 I=1

where (similar to how we have put ¢,+1 = k) we set ¥,+1 = X, and (25y); stands for the upper left

[ x [ minor of 28y. In fact the only freedom in the choice is to vary the support.

The inverse Fourier transform of the above defined @, 1, gives a1 p, and our choice of fy ¢, is
the “big cell” section frx™"(s,&) € Ig, p(s,€) associated to ay rp, evaluated at s = k — 2% and
£ =¢ x°!. Now it is clear that the desired measure pe g in (5.2.1) exists. One also notices that
its evaluation at (x,T) with ¢x(—1) # (—1)F is 0.

So far for all admissible (k,T) satisfying ¢x(—1) = (—1)¥, we have made our choices of fi r, €
Igy o(k— %TH, ¢~1x°~1) for all places v. From now on we write f, r to mean the product of all the
local sections we have selected for admissible (x,T) if ¢x(—1) = (—1)*, and simply 0 if the parity
condition does not hold. We denote by &, . the global section of Vlﬂ_nk X Vlﬂ_nk over Xgr X Xar
that is mapped to A;}zﬁ,hx - E*(-, fux)laxa by the map paxa(- ecan)-

Theorem 5.2.2. There is a measure jig g.exp € Meas (L x T, (Zy), Op[[N~' Sym(n, Z)’;%2]]) sat-
1sfying
/ (”,I) d,ug,q-exp = Egq,p-adic (gn,l)
Ly XTn(Zyp)

for all admissible (k,T) € Homeont(Z,, X Tn(Zp),@;).

Explicit computation results on the local zeta integrals for v f poo have been obtained in The-
orem 4.1.2 and Proposition 4.2.1. For the archimedean place we the nonvanishing result is shown
in Proposition 4.3.1. It remains to carry out the local computations at p, which occupy the rest
of this section. All the results are summarized in the following Proposition 5.2.3, which gives the
interpolation properties of the (n + 1)-variable p-adic L-function we will finally construct.

By the reasoning near the end of §2.5 we can define (e x 1)&, «, the ordinary projection of &
on the first factor. For an irreducible cuspidal automorphic representation 7 of G(A) with 7 =
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Lu(Np™)% the subspace of 7 consisting of automorphic forms whose archimedean

Dy, denote by m
components, under an isomorphism m 2 ®v m, are the highest weight vector inside the lowest
K¢ oo-type t, invariant under the right translation of fl(N ,p™), and acted on by the character 1
by the group Tg(Zy). a
Proposition 5.2.3. Let ¢ € ﬂfl(N’pm)’y be a weight t ordinary cuspidal Siegel modular form.
Regarding the Petersson inner product of @ with the automorphic form ogxa((e X 1)Exx, can) 0N

its first factor, we have

<SOG><G((6 X 1)5&1? ecan)(‘,g), ¢>
n n? —1)" T k —n T n k Zm(fn,l,wavg/avi)
=¢(—1)"vol (F(N)> l%l 1@(? 2 _)1) : 2k+EL—1(7TZ'))2ka—(i-k)—n : wy, U§>7

X By(k —n,mx ¢~y - LY (k —n,m x ¢~ X1 - eW(9)(9),

where the modified Euler factor Ey(k — n,m x ¢~ 1x™1) is defined by (1.0.1), and the operator
W: AGQ\GA)) = A(GQ)\G(A)) is defined as

(5.2.2) W(e)(g) == ( /N (Z)Rpwwu) (9) = /N . Pligu)du.

Thanks to the multiplicity one theorem for symplectic groups, the operator W preserves m and
T (Np™) 8

Ty —. However this IV is not C-linear.

In the unitary case such local zeta integrals are calculated in [Wanl15, EHLS16]. The restrictive
conditions in [Wanl5] amount to ¢y, > Cyyp, > -+ > €y, here, in particular missing the most
interesting cases where ¢y, = Cyypy = -+ = Cyy, = 0. Computations in [EHLS16] are done in

a different way from ours below, applying the Godement—Jacquet local functional equation, but
without considering the ordinary projection.

5.3. An observation of Bocherer—Schmidt. The first step of the calculation is to compute
the inverse Fourier transform of @, r,. However this computation is in fact not very convenient
because of the term y(det(283)). The observation of Bécherer—Schmidt is that, for computing
local zeta integrals, instead of using @, we may use the Schwartz function modified from it by
changing x(det(283)) to x(—1)"x?(det(250)), i.e

(5.3.1)

— B1 Bo
Y <<tﬁo 52))

= 12 Sym(nz,)* (B Lsym(n.z,)+ (82) | [ Law,z,) ((260)1) - x(—1)"x? (det(250) H%Zm/}lﬂ det;(250))

=1 =1
= ]l 2 Sym(n,Zp) (ﬁl)]lSym (n,Zp)* ﬁQ H ]lGLl (Zp) ((2180 H ¢z¢l+1 detl 2&0))
=1
where ] = xt; if 1 <1 < nand 1)}, is the trivial character. Let f’ Rxp €lg,plk— %, o 1x°h
be the section associated to aj, ., the inverse Fourier transform of &;, . ..

Recall that we have defined the adelic Up-operators in (2.5.2) and (2 5.3). For a € C;, with the
embedding ¢ : G x G — H, we can make U,, act on smooth functions on H(A) simply by the
formula (2.5.3) on the first factor. We use U, X 1 to denote this action, and it is easily seen to be
compatible with restriction by ¢ and the operator U, , x 1 on G x G. The operator U, ,, is the one
with a = (1,---,1),
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Proposition 5.3.1. If m is a positive integer such that the conductor of x divides p*™, then
(Upin X DE" (-, frz) = (Uphy x DE*(:, fi o).

Proof. Let Eg’p(hz, frx) be EE(hz, frx) with the factor W@p(lp, frxp) removed. The B-th Fourier
coefficient of (U}, x 1)E* (-, fx.1) at hz is equal to E*p(hz, I T)I/Vmg( ps (U X 1) frexp). We define

similarly E5"(hs, f). ), and it is obvious that Eg” (hz, frz) = E5"(hz, f. ). Therefore all we need
to show is that
(5.3.2) Wap(1p, (U,Tn X 1) foxp) = Wap(1p, (U;Zln X 1)f:;,1,p)
for all B8 € Sym(2n,Q). Let S, = Sym(n,Q,), M, = M, (Q,) and for element ¢ € Sy, we write it
in n X n blocks as tg ! go . One easily computes
p (L= n(n+1))mwﬂp ' 1) frenp)
—m
- Z fnT,p wu( ( Q;p—m > a1>> ep(—TrB¢) ds
UESH (Z/p2mT) ¥ S2n
0 0 —pm 0
0 0 0 —1
= / / / frxp 0 (o + u) -m Co ep(— Tr B<) dsy dez dso
uESy Z/p2mz nJSn . oy

= <¢(p)pk)n /n /n /n Qe p (( B t+ wp =" m;;m>> ep(—Tr B¢) de dez dso

uGSn(Z/ 2m7)

2m m
S RPN RS C i DT

u€ES, (Z/p>™ )

nm 2m m
= <¢(p)pk—n> ﬂSym(n,Zp)(/Bl)aﬂpr <<%§9pm Boﬁi >> 7

and similarly

2m m
Wy U < W) = (600) ™ teminz B (G 1))
It is easily seen that if 51, Bop™ and (o are all integral, then
Bip*™ ﬁopm>) n m\2 2m
det = (-1)"det d
¢ <<tﬁopm B2 (=1)" det (Bop™)"  mod p

so when the conductor of x divides p?™, the functions @ ¢, and @ Q; ¢ p take the same value at such

2m
<%fpm 6%; ), and (5.3.2) is true for all 3 € Sym(2n,Q). O

Due to the above proposition we know that for a € C;I with Aa > 0 and ¢ € ™ we have

<(UP,Q X 1)E* (L('vg)vf&l) a¢> = <(Upa X 1)E* ( ( ) HT) 90>

where the Petersson inner product is taken on the first factor of the restricted Siegel Eisenstein
series. We will compute the local zeta integral for f,’_;&p
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5.4. The inverse Fourier transform of aj .,. In this subsection we regard characters of Z
(including the trivial character) as functions on @@, by making them take the value 0 outside Ly
Given characters of Z, of finite order § = (&1, -+, &) whose conductors are p®1,---  p%n, for each

1 <1 < n, define the Schwartz function \Ilgl on M;(Qy) as

‘I’g,l( ) = Las Zp) Hfj ]+1 (detj(—)) - &(deti(—x)).

7j=1
Denote by F _I\IJ@Z the inverse Fourier transform of W¢;. First we give an inductive formula for
‘7'-_1\1/@[. Set

) I Zl—l g/ I 0
& (ptaq) F~ Mg 4(¢") ifse =1 T 11_11
3 0 1 q) \zb' 1
Pei(s) =

> with ¢" € M;_1(Qp), g € Qp,

0 otherwise.
and
/ F () ifse 511 %) i ¢ € Mi1(Qp),
() = : L L
0 otherwise.

Proposition 5.4.1. We have
(1) if & is nontrivial, then

(5.4.1) F 10 (s) = p ' a G (&) Pe(s),
(2) if & is the trivial character, then
(5.4.2) F 1 ei(s) = —p ' e(s) + (1 = p~ )P (c).

/ /
Proof. Write ¢ = (EM Z) and z = <°;UZ 3;) with ¢/, 2" € M;_1(Qp) and X\, w € Qp. Then

f_l\l’évl(g)

:/ Uei(x)e, (Tr txg) dx
My(Qp)

/
/ ey ((tx y>> (Tr(twl§/ +Cu 4 yn + w/\)> dx’ dy dz dw
M1 (Zp)xZ5 Y x 25 <2y Z w

:/ e i1(z')ep (Tr'z's’) / G(—w + 22" y)e, (Tr(‘zp + 'yn + w)) dydz dw da’
M1 (Zp) Z5 <z xz,

:/ e y1(a')ep (Tr's’ ’)/ ey (Tr(“zp + 'yn + 22’ 1y'\)) / &(—w)ep, (Tr(w))) dw dy dz dx'.
My_1(Zp) VAR
First assume that & is nontrivial. Then

(5.4.3) [ a(-w)e, (Tx(wn) duw = p~“a G(@)E ™ (det (7 ).

Hence F1W,(c) is 0 unless A belongs to p~“ Z). Suppose A € p~““Z), and we write

¢ n\ (1 gAY\ [T 0 1 0
wox) T \0 1 0 A/ \ Mty 1
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with ¢ = ¢ — nA~'%. Then

(5.4.4)
e y1(a')ep (Tr'z'<) / ep (Tr(‘zp + 'yn + tzx'_ly)\)) dy dz dz’

My_y(Zp) Zy Xzt
:/ We1(z')ep (Tr'2'd) / e, (Tr(A a2/ (p + 2/ 1yN))) / o (Tr(%z(pn + 2" 'yN))) dzdyda’

My_1(Zp) — zit Zéfl
:p_(l_l)cfl]lZz_l(Afltu)]lqu(n)\*l) : \I!gl,l(x')ep (Tr'2'S’) da'.

P P My (Zp)

Combining (5.4.3) and (5.4.4) we get (5.4.1). Now if & is the trivial character, then
(5.4.5) / &(- Tr(w))) dw = —p~ 'L 170 (N) + (1= p~ )1z, ().

When \ € p_lZ;, (5.4.4) holds with c¢, replaced by 1. When X € Z,,

/ e i1(z')ep (Tr'2's’) / e, (Tr(zp + tyn + 22’ 'yN)) dydzda’
M_1(Zp) = /Y

(5.4.6) :/ e i1(2')ep (Tr'2's’) / ep (Tr("zpn + yn)) dydzda’
Mi_1(Zp,) = zhtxzbt
=F (<) Lyioa ()L ().
We see that (5.4.2) follows from (5.4.5),(5.4.4) (with cg, replaced by 1) and (5.4.6). O
Recall that for an n-tuple of integers ¢ = (¢1, - ,¢,) we have defined p¢ to be the element
diag(p“t,- -+ ,p,p~, .-+ ,p~ ") inside G(Qp), so pX% gives a diagonal matrix in G(Q,). When
&, , &, are all nontrivial, the induction formula in Proposition 5.4.1 easily gives formulas for

F ='W, and hence formulas for the section f/4,

Corollary 5.4.2. As a function on G(Qp) the smooth function ,’jl’p(L(‘, 1)) is supported on the
compact open subset

—1
— Cxap p In 0 pIn O
NG (Zp)p X < 0 pIn> BG(ZP) < O p_1[n> ’

and takes the value

sz () - 5D e (o)) T Gl
=1

at the element u*pﬂdlag(wl,--' ,:rn,:vl_l,'-- s Du, with ©; € Zy, u= € Ng(Zp) and u €

p~ I, 0O pl, 0
( 0 pfn> A2 ( 0 plfn)
Proof. Write g € G(Q) as g = (CCL
fl/;le(L(g’ 1)) = f/{c,l,p(S/'(gv 1))

—k
c -1, , a 1b —q~!
Sk Gl ) I G [ (i )

= x(=1)"x ! (det(a)| det(a)|,) ¢~ (| det(a)|,) | det(a)|, *p~ ("D

: ]lp—2 Sym(n,Zp)(a b)]ISym(n,Zp) (ca’_l) ’ X(il)n]:_l‘ljxﬂ(a_lx
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Z), using (4.2.1) we get




and the statement follows by applying Proposition 5.4.1. O

We will say that an admissible point (k,T) belongs to the ramified cases if none of the characters
X1, -+, XUy is trivial.

5.5. The U,-operators and the theory of Jacquet modules. Before starting the computation
of the zeta integrals at p ,we state some facts that follow easily from the theory of Jacquet modules
and are useful in the study of p-adic automorphic forms of finite slopes. One can also consult the
treatment in [Hid04, §5.1].

Let 1 € Ap(G(Q)\G(A)) be an irreducible cuspidal automorphic representation with a fixed
isomorphism 7w = ®; Ty. Assume that mo, = D;. For each ¢ € 7 its ordinary projection ep
is defined by the discussion in §2.5. Put m,q = ew. By Proposition 2.5.5 we know that my.q is
contained inside the subspace of holomorphic forms inside .

The facts we show below and will be of use later are: if mo.q is nonzero, then 7, is isomorphic to
a composition factor of certain principal series, and the projection of m,.q to m, is one dimensional,
and the action of the Up-operators on (),co+ Upa(mp), the intersection of the images of all the
U,-operators acting on p, is semisimple. -

Given an admissible representation II of G(Q,), define Uy 410c = || No(Zy) II(up%) du (in a purely
local situation we do not care about the normalization). Let II(Ng(Qp)) be the subspace of II
spanned by II(u)v — v for all w € Ng,v € II. The Jacquet module ITy,, (@) 18 defined to be the
quotient of IT by II(Ng(Qy)).

It follows from Jacquet’s Lemma [Cas95, Theorem 4.1.2, Proposition 4.1.4] that the restriction
of the projection II — Iy, (q,) t0 Nect Up.aloc(Il) is an isomorphism of T(Zpy)-representations.

It is also easy to check that the action of Up4,a € C)f on U, 410c(I) translates to the action of
p* € Tg(Qp) on the Jacquet module Iy, (q,). Let dp; be the modulus character associated to
Bg. It takes the value [T}, |2;[p 2(n+1 ) on diag(w1, -+ ,an, 27+ 2, ') € Ba(Qp). There is the
Frobenius reciprocity indicating Homg(qg,) (H Ind B( ((Q? ) 0) = Homr,(g,) (H Ne(Qp): Qéjlg/; ) where

0 = (61,---,6y,) is a character of Tz(Q,) and Ind BLQE?’Q? )Q is the normalized induction. Therefore
p

one concludes that as long as the operator U, = U, ,, acting on 7w has a nonzero eigenvalue, the

G(Qp)-representation 7, can be embedded into a principal series representation IndggQégp) 6 for

some 6. More precisely we have the following proposition.

Proposition 5.5.1. Suppose that there are ai,--- ,a, € (9— \{0} and an automorphic form ¢ €
f N m
my H(Np™) g on which the operator Uy, acts by H] 19, Y for all a € C;F. Let 8 be the character of

T (Qp) whose restriction to Tg(Zy) is ¥ and 0j(p) = aj = p~&~a;. Then 7, can be embedded

into the principal series representation Ind G(Qp (Q?p) 0.

Notice that when 7.4 is nonzero, the p-adic evaluations of the above defined a, - - - , oy, al_l, st

are pairwise distinct, and are among +(t; — 1), -+ , £(t, — n).
The information regarding the Uj-operators acting on (,co+ Upa(mp) can be deduced from the

BG(Qp)
series that contains m,. According to [Cas95, Proposition 6.3.1, Proposition 6.3.3], the composi-

tion series of (IndG(Q” ) 9>N @) consists of |Wg/| characters of T (Q)), which are (6 o w) - 5119/2 ,
G\p

knowledge of the action of T (Q,) on (Ind (@) 9)N ©,) the Jacquet module of the principal
G\\p

B (Qp)
w € Wg, where Wy is the Weyl group of G with respect to its maximal torus Tg. The non-
triviality of mopq implies that these |W¢| characters are pairwise distinct, so the T (Q))-action on
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G(Qp) : . . L.
(IndBG(Qp) Q) Ne(@) as well as m, N (qg,), is semisimple. By a simple examination of the corre-

sponding p-adic valuations one also sees that there is only one w in W having the property that
for all @ € C;}" the number 6(w(p ))(51/ (p*) has p-adic valuation less or equal to — (t + 2pg ¢, a).

Proposition 5.5.2. If m,q is nonzero, then the action of U,-operators on ﬂaeC;{U almp) s

semisimple. Let m, g be the image of the projection of Toq to mp. Then m,oq is one dimen-
stonal.

From now on when m,.q is nonzero, we put ay,--- ,a, € (96 to be the p-adic integers such that
D

the U,-operator U, , acts on meq by HJ 1 J] for a = (a1, ,a,) € C;f. We will also assume that

the group T (Z,) acts on myq by the character 9. For 1 < j <n, the number a; and the character
0; of Q) are defined from a; and 1; as above, i.e. a; = p_(tj_j)aj and ej‘zg =1 with 0;(p) = .

5.6. The proof of Prop 5.2.3 for the ramified cases.

Proof (the ramified cases). Assume that xi1, -+, xt, are all nontrivial, and ¢ € 7rtF LV g ordi-

nary. The computation is straightforward. For Aa > 0, by definition of the operator Upa (2.5.2)
and Proposition 5.3.1,

(T ax15x0) 6) = (T0ax1152,0,7) (0°)

—» (t+2pG.c,a / / H T7p L(g'up®, 1))3(g" g ) dudg'
G(Qp) Y Na(Zp)

:p(t+2pc,c,a)/ 7 (g 1))2(g”g'p %) dg.
GQ

p

Abbreviate the scalar p~ Limibexy (pkqﬁ(p))Zl Ly [[2; G(x¥) as by, x¢- Then applying Corol-
lary 5.4.2 we get

b ¥l (VG (20)Ba(2) "+ (T, pets, 7) (6)

_ t+20G,c7a>—<2PG,Cxw>/ / < 9 evw (p‘lfn 0) (pln 0 > —a> -
=p v 7| gu p=x2 u 1 p | dudu
NG (Zy) INa(2,) 0 ph 0 p~ i

:p<t+2pc,ma><2pc,cw>/ 5 (gﬁu_pcx—w_g> du—

¢ Zyp

:p<t+2pc,aa><2pc,%>/ 5 (ﬁgupg_cﬂﬁ) du
Ng p)

:p<£—2pc,ncv C><7w> (UM_MW) (9)

n?2 _1\n
Using vol (N (Zy)Ba(Zy)) = %, we get

-1 - c
(5.6.1) (T(Up,gxl)fﬂ,l,pa) (g ) by DXV I_Mp<t QPG,nc’ﬁ> . (Up7g_c>ﬂ¢§> (9)-

The automorphic form @’ € 7 in general is not fixed by Ng(Z,), and W (y) by definition equals
its average over Ng(Zy). We have

(Upa?)(9) = / 2 (gup®) du = / / 2 (qup™d) dudi = (UpaW(9)) (9).
NG(ZP) NG Zp) NG(ZLD
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so (5.6.1) becomes

n2i 1)n _ .
(T(Up,gxnfmz,pa) (gﬂ) - bk,@Xﬂ l—I[)ln:l(?pzl_)l)p<t 2pG’nC7ﬂ> ’ (UP,Q*CXJW(SD)) (g)a

which, together with Theorem 4.1.2, Proposition 4.2.1, the fact that an ordinary nearly holomorphic
form must be holomorphic and Proposition 5.5.2, implies Proposition 5.2.3 in the ramified case. [

5.7. The proof of Prop 5.2.3 for general cases. We first state a proposition whose proof is
postponed to the end of §6.2.

Proposition 5.7.1. For each admissible point (rk,T) the nearly holomorphic form (e x 1)E ¢ is
ordinary on both factors.

The idea of the proof is simple. The statement is true in the ramified cases by results in §5.6.
The admissible points belonging to the ramified cases are Zariski sense inside the weight space

Homcont(Z; X Tn(Zp),@; ) and the statement for the general cases follows from a p-adic family
argument.

Another proposition that will be useful for us verifies the nonvanishing of the ordinary projection
of W(y) for a nonzero ordinary Siegel modular form ¢.

Ty (Np™ . .
Proposition 5.7.2. If ¢ € 7r;( gl is nonzero ordinary, then eW () is nonzero.

Proof. Take ¢' € 7 invariant under the right translation of N (Z,). We consider the Petersson
inner product of eW () with 7.

<Up,gW(90), @”9> —pltt2rcea) / P(dgup*u'd)¢' (9g0) dg du du’
G(Q\G(A)x Na (Z,) x Ne (Z;)

:p<t+2pc,c,a>/ p(Igup™9) ' (Vg19) dgdu.
G(Q\G(A)xNa(Zp)
Making the change of variable g — ¥¢1, we get

<Up,gW(<P), s0”9> —pltt2c.ca) / ?(gup™) ' (g) dg du
G(Q\G(A) X NG (Z)
=p{tt2ro.ca) / @(g)p(gdp™tud) dg du
G(Q\G(A)x N (Z)
—p(t+20.0) / B(9)(gp%) dg
GQ\G(A)

=p{t+2pc.c.a) / B(gu)p(gp®) dg du
G(Q\G(A)xNg(Zp)

:p<t+2pc,c,g> /
G(Q\G(A)xNg(Zp)

= <¢7 Up,g@/> 9

(9)¢(gup?) dg du

<l

from which it follows that
(W (e)e) = lim (U W (o)) = lim (7,U0;') = (7,e¢)

For fixed ¢ and ¢, there are finite dimensional subspaces (viewed as both over C and @p) of w
and 7 which contain all the automorphic forms appearing in the above identity, and we regard the
Petersson inner product as a bi—@p—linear pairing between them. Hence the limits with respect to
the p-adic topology are well defined and commute with the Petersson inner product.
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Now take ¢’ = R,(p%)p with ¢ € C;I and Ac sufficiently large such that R,(pS)p is fixed by
N¢, (Zy). Combining the above computation and the fact U, o Rpy(p¢) = Up ate, We see that

<6W(90)7 (Rp(lfc>30)ﬂ> = <¢7 Up,g(P> # 0,
and the nonvanishing of eW (y) follows. O
Now we begin the proof of Proposition 5.2.3 for general cases.

Ty (Np™
Proof (general cases). Assume that ¢ € 7r;( P is nonzero ordinary. Let W ()P be the im-

age of W(y) under the map 7 = ®' 7, — &, Tv- By the doubling method formula Theo-
rem 4.1.2 and Proposition 4.2.1, 2.5.5, 5.7.1, we deduce that the image of the automorphic form
<<pG><G'((€ X 1)Ek x, ecan)(‘,g),¢> in ®' m, lies inside W (p)? @ Tpord- By by Proposition 5.5.2, we
know that W ()P @ orq is a one dimensional C-vector space, so the nonvanishing of eW (¢) implies
that there exists a complex number Cy . ¢ € C = @p such that

<90G><G((e X 1)Ex s ecan)('79)7¢> = Conm - eW(p)(9)-
Let

_ EN Zm(fﬁ,l,oov%va%)
o= gt )

where A,, ¢ 1 is defined as (3.5.4). This By . 1 » is a finite complex number because of the absolute
convergence of the archimedean zeta integral and the fact that the partial standard L-function
LNP2 (s, x ¢~1x~!) does not have a pole at k —n. Let oy, -, and 6 = (61,--- ,6,) be the
invariants associated to 7, at the end of §5.5. Define

CLNPR(k — o x ¢ T,

— (x¥)°(p) - p(p)a; 'p* ( (p)alp—L

1) = Oty .
Rp(579]7¢ ) T 1— (ij)o( ) ¢(p) 1ajp s a]’ p > G(Xd}])a

1 if xapj is trivial
0 otherwise
that Ry(s, 05, 1), 1 < j < n, dose not have a pole at s = k —n. Our goal is to show that

where by convention (x1;)°(p) = . The ordinarity condition on 7 implies

(5.7.1) Cyprxn = Borrn - vol (Bg(Zy H —n,0;,¢7 ).

Let f,”p( s) = f;’a“’l’p( —1,¢71x 1), the “big cell” section inside Ip, ,(s—3,¢ ' x°~!) (defined
as (3.2.1)) , associated to the Schwartz function o, ., whose Fourier transform is (5. 3 1). We have
,’fpr = ,’_ng(/c —n). We add the parameter s here due to convergence consideration, because in
general f. 1 p(¢(-,1)) is not compactly supported. In the following we assume Re (s) > 0 whenever
necessary, and the computation results will be easily seen to admit meromorphic continuations with

respect to s.

K,T,p

For c € C;f, we write (¢axa (Upe X 1)Ex 1, tcan) (1 9), @) as ¢c(g). Given ¢’ € %N&(Zp)

(¢0¢") = Boan lim plttoree >/ / / Fitep(5)(e(g'up®, 1))2(g" g )¢ (9”) du dg' dg
B GQ\G(A) JC(Q) ING(Zy)

= Byprn lim plit2racc) / /
s—k—n G(Q\G(A) JG(Qp)

= Borax lim plt+206,c:¢) / / £ g D))2(9)¢ (gpsg'™") dg’ dg
(Q\G(A) JG(@p)

, we have

(g 1)B(g"g'p )¢ (97) dg dg

-n
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= Bypan lim plt20eefvol (Qa(Z,)U; (Z,)) / 2(9) / p D (s, a)
s—=k-n G(Q\G(A) GL(n,Qp)

~1
/ c (P In 0) (pln 0 > <CL 0 > > _
: © \gpr- U - Z1)u | dudu” dadg,
/Ug(zp)xUG(zp) ( ( 0 ply 0 p'I,)\0 ‘ot

vol (Ba(Zy) N5 (Z,) . B
( p)NG (Zy)) -p<t+2”c'"“>/ so(g)/ e (s, @)
Zy)) G@)\G(A) Ng(Zp) xGL(n,Qp)

~ B li
oz LM (Bn(Zp) Ny (

cfa 0
-’ <guzr <0 ta—1>> duda dg,

where for 1 <[ < n we define the Schwartz function 7, 1;(s, -) on M;(Qy), supported on GL(n,Q,),
as

(5.7.2) Nexi(s, @) = x(det(a)| det(a)lp) - (| det(a)lp) - [det(a) ;" - F~1 Wy i(a)
for a € M;(Qp). Define the operator

0
77@,1,1:(5) :/ Un,z,n(&a)ﬂp <<8 ta—1)> da
GL(n,Qp)

(certainly in general as an operator acting on 7 or a model of 7, its absolute convergence requires
Re (s) to be sufficiently large). Then

9 vol (Ba(Zyp)Ng (Zy)) . B ,
p— 1 l .
<“’9’ 4 > Boman ] (Bu(Zy) Ny (Z,)) sk (@ UpeTrsnls)é)

At the same time it follows from the computation in the last proposition that

(U0 (9), ) = (@, Upet').

There exists a polynomial R(X) € C[X] such that (e x 1)&, = (R(Up) X 1)€,« and eW (p) =
R(U,)p. Thus we have

vol (Ba(Zyp)Ng (Zy)) . B /
Vo (B Ty N (Zy) <, (P RO Trsn(s)')

(W) ) = (o RUDS).

Now one sees that in order to verify (5.7.1), it suffices to show that there exists some ¢’ € 7V (Z»)
with e’ # 0, such that, as a function in s, (3, Q(Up) Trx,p(s)¢’) admits a meromorphic continuation
and

<90G><G((6 X 1)‘9&,17 ecan)v YR 90/19> = B¢,H,L7F

(5.7.3) i (P BUp) Tz (5)¢')

s—k—n <¢, R(Up)(p,>
If we fix ¢ it is not difficult to check that there exists an open compact subgroup K, C G(Z,)
such that 757 contains Uy c¢', Up Trxp(s)¢’ for all ¢ € C;F and s € C with Re (s) large enough.
Therefore we can assume that the polynomial R(X) satisfies e’ = R(Up)¢’ and €Ty 1 p(s)¢’ =
R(Up) T p(s)¢’. In this case the value of the left hand side of (5.7.3) dose not change if we replace

© by any ¢” € 7 with <W, ey > # 0. Thus we have a big freedom in choosing ¢’ and ¢” to compute

the left hand side of (5.7.3). The requirements on ¢’ and ¢” are ¢’ € ﬂéva(Zp) and (¢”, e@') # 0.

It is also clear that the computation can be reduced to a local situation using any model of .
Let ng € Indgg%gp) 0 be the section supported Bg(Qp)Ng (Zy) and taking the value 1 on

N (Zyp). Fix an open compact subgroup K, of G(Z,) sufficiently small such that the vectors
40

= vol (Bn(Zyp)N,, (Zp)) [ | Rp(k —n,6;,¢7").
j=1



Up’ngé’ Up,gﬁ,zvp(s)fNa, with ¢ € C;f', Re (s) > 0, are all fixed by the right translation of K, and

the restriction of 6 to Bg(Q)p) N K is the trivial character. Let ?Kp € Indg(%@) 8 0~ be the section

supported on Bg(Q,)K), and taking the value 1 on K, . (5.7.3) will follow from the equality

§ s U, c77iT ~ -
<fK” e ’*’p(S)fNG> = vol (Bu(Zy)N,; (Zyp)) H Ry(s,05,¢™"

(5.7.4) <]EKP, Up7§fN6> o

for all ¢ € C;f. Note that although 7, is a sub-representation of Ind B((%(’; )8 0 and in general they

are not equal, by the discussion in §5.5, under the normalization for the Up-operators associated to

G(Qp)

t, the ordinary subspace in Ind Bo(@y) 2 6 is one dimensional and certainly coincides with that of m,.

The palrlng between a section | € IndG(QE” ) g, 0 and a section f € Ind ((%” ) oY 0! is given as

fG g) dg. We have

<]EKp7 Up,gﬁ,z,p(s)fzva> B (Up,gﬂ,z,p(s)fNC;) (1)

<1EKp7 Up,ng5> - (UP7§fN5> (1)
_ Jorn@,) Iz, Fg (40 (§ 421)) Mezin(s, @) duda
fNG(Zp) fNa (up)

a 0
N /GL(anP) fNE; <<O ta—1>> nH,I,n(S, a) d(l

= / 0, (a) Nexn(s, a)da,
GL(n,Qp)

where for 1 < I < n we define t; : GL(l Qp) — C to be the smooth function supported on

B (Qp)N,; (Zy) such that vy (bu™) = [T, 0;(b;)|bjlp" 7 for b € diag(by, -, b)Ni(Qp) and u~ €

N; (Zp). The desired equality (5.7.4) can be deduced from the induction relation

(5.7.5)
=vol (Bl_l,l(Zp)Nl:Ll(ZpD Ry(s, 6, qb_l)/ w;_1(a)Nkxi-1(s,a) da,
GL(1-1,Qp)
GL(l —1,Z,) 741 L1 0
where By_11(Z,) = < PR ) and N1 (Zy) = | o :
v 0 Ly v /|
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From the definition of F _I\I/X%l, we see that it is invariant under the right (resp. left) translation
of N (Zy) (resp. Ni(Zyp)). By the definition of t; and that of 1, «; (5.7.2), we have

—1
vol (Bl_l,l(zp)zv;_ o (Z,,)) / w(a) 2 (s, a) da
' GL( ’Qp)

a 0 _
= wpluf o, ~ ) |det(a’ ‘ \al|
GL(I-1,Qp) XQp X Ni—1,1(Qp) X Ny 1 (Z) !

/
(5.7.6) o <3,u (C(L) 0) u_) da’ da; du du™

aj

(o(p) eup™ )Valp x¥i(arlaylp) - w01 (a’)

/GL(zL@,,)x@;xQ;l
!
(det(a) de@)) - o @) derta ) 7y (1)) d dondy

Next we split the proof of (5.7.5) into two cases depending on whether the character xi; is trivial
or not. First we look at the case when x); is trivial. Using Proposition 5.4.1 we get

!/
F ((0 yl)) = (=07 gy (@)1 s () + (1= 7)1z, (@) 111 (9)) F A (),

and (5.7.6) becomes

-1
vol (Biaa(@)NC1 () [ P, do

_ _gs\valp(a - _
= /@ R GO P (p T g (@), e () (1= 970z, ()T (9) ) dardy
p XUp

~ / 0,1 (01 (s, @) da’
GL(1-1,Qp)

oo
=" o P+ (1 =p) ) (d(p) ™)’ / 1;1(a ) ci-1(s, a’) da’
= GL(-1.0p)

1- ¢(p)al_1p871 / / / /
= _ o ;_1(a Ne,xl—1\S,a da ’
1—9@)tap™™ Jara-1,0,) (@)1 (5 @)

which is exactly (5.7.5) in the case when x; is trivial. Now assume that x1); is nontrivial. Again
using Proposition 5.4.1 we get

/
F 0 <<% Z)) ZP_ZCWZG(XM)']IP*CW[Z; (@)1, 711 (y) - Ot (P> a) ! F T Wpi-1(d),

which together with (5.7.6) gives

—1
vol (Bl_l,1 (Zy) N, 1(zp)) / 10,(a)z1(s, a) da
’ GL(1,Qp)

=7 Gl vol (o2 ) - (060) o) [ 11 (@) 11 (5, ') do!
GL(l_vaP)
= (¢(p)oy P~ )™ Glxw) - / w01 (') 21-1(s, ') da,
GL(I-1,Qp)
and proves (5.7.5) in the case when x); is nontrivial. O
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6. THE MEASURE [ig ord, VALUED IN HIDA FAMILIES

From the previously constructed measure jig g.cxp On Z; x Ty(Zy,), we apply Hida theory to

produce, for each character 1z of T,,(Z/pZ), a measure fig ord, ON Zg, valued in n-variable Hida
families of G x G.

6.1. Brief review of Hida theory for . Usually Hida theory is formulated with G instead of
G, but it should be clear that by restricting to a connected component we get a good theory for G.

6.1.1. The Igusa tower. Let Yg y be the Siegel moduli scheme defined over Z,, parametrizing
principally polarized abelian schemes (A, \) of dimension n with a principal level N structure
N over Spec(Zy), and Xg v be a smooth toroidal compactification of Yg y with boundary C,
over which there is the semi-abelian scheme G — Xg v extending the universal abelian scheme
A — Yg n. Let Ha = Ha(G[p*°]) be the Hasse invariant, which is a global section of the invertible
sheaf (detw(G/Xg n))®P~! over the reduction Xa,nyr,- The push-forward of detw(G/Xa n) to
the minimal compactification X y is ample. For a sufficiently large integer ¢ we can lift Ha® to a
section over Xg n, and we denote by E such a lift.

Now let F' be a finite extension of Q, containing all the N-th roots of unity, and X¢g n be
a connected component of the base change of Xg n to Op. Define S = Xg n[1/E] and S; =
S ®8pec(z,) Spec(Z/p'Z). Let Ty, = Isomg, ((Glp™) P4, (Z/p™Z)") where the superscript D means
the Cartier dual. The scheme Tj,, is étale over S; with Galois group GL,,(Z/p™Z). The inverse
system - -+ — T}, — T} 1 — -+~ — Tj 1 — 5 is called the Igusa tower. By abuse of notation the
pullback of the divisor C' to T},; will also be written as C'.

6.1.2. p-adic (cuspidal) Siegel modular forms. Define

‘/Lm = HO (zﬁl,m, On,m(_c))Nn(Z/me) ,

and set Vo, = hg‘/}m By taking the inverse and direct limits of Vj o, one defines
m
V = lim Vicc. V = ling Vi .
1 1

Elements in V are called (cuspidal) p-adic Siegel modular forms (of tame principal level N) . The
space ¥ will be used to construct Hida families. We also define the space V' in the same way as
V but without requiring the cuspidality condition. The evaluation at the Mumford object (whose
construction is explained in §2.6) defines the g-expansion map

€ql Vieo — Op /P Op[[N~" Sym(n, Z)%]],
and the p-adic g-expansion map for p-adic Siegel modular forms
(6.1.1) Egpadic : V! — Op[[N™" Sym(n, Z)%]].
The injectivity of €,; and €,y aqgic follows from the irreducibility of the Igusa tower I'LmTLm [FC90,

V.7], and is called the g-expansion principle for p-adic Siegel modular forms.

For each continuous character T € Homcont(Tn(Zp),@; ) (also called a p-adic weight), let V1]
(resp. V[x]) be the T-isotypic part of V @0, Op(y) (resp. ¥V ®o, Op(r)) under the action of T;,(Zy),
where F'(1) is the field obtained by adjoining to F' the values of the character T. Elements inside
the space V1] are called (cuspidal) p-adic Siegel modular forms of (p-adic) weight T. Thanks to
the Hodge-Tate map

(6.1.2) (G @z, Os, > w(G/S),
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for an algebraic weight ¢, there is the canonical embedding
HY (X n,wi(—0)) @z, Z/p'Z — HO(S},w(—C)) — Vio[t].

The cuspidality condition guarantees that the following standard condition for Hida theory is
satisfied,

(Hyp) HO(S,wi(—C)) ®z, Z/p'Z = H(S), we(—C))

for all dominant algebraic weight ¢, from which the density theorem follows, saying that the
space of classical forms @, H*(Xg n,wi(—C))[1/p] NV is dense inside V [Hid02, §3.5].

The action of U,-operators can be defined for V[t], ¥[t] via algebraic correspondence [Hid04,
§8.3] [Liulb, §2.9.5], and is compatible with all the U,-operators we have defined before (in fact it
is the Up-action on V' that has a canonical normalization, and the normalizations of the Up-action
in other circumstances are chosen to agree with it). Recall that we have set U, = U, ,, to be
the operator associated to pg = (n,n —1,---,1) € C;. By the discussion on §2.5, the ordinary
projector

. !
e = lim U;'
T—00

is well defined on @,~q H*(X¢ n,wi(—C)). Then the density theorem indicates that the operator
e extends to V' and . It projects the spaces V and ¥ to their subspaces where all the eigenvalues
of Uy,-operators are p-adic units. Put

Vora = €V, V4 = Home, (eV, F/OF).

The group T,(Z,) naturally acts on both V,q and 9%, and equip them with an Op[[T},(Z,)]]-module
structure. Besides (Hyp) the other two conditions for the axiomatic vertical control theorem are
(C) e(Ef) = Ee(f) for all f € H(S1,w;).
(F) dimp eH? (Xg N, we ® det® w(G/Xa n)) is bounded independent of k.
The condition (C) can be easily checked using the g-expansion principle and the condition (F)
follows from results in [TU99].

6.1.3. Hida families and the wvertical control theorem. The group T,(Z,) decomposes as I'r, X
T, (Z/pZ) with I'y;, being the p-profinite part. Set A, = Op[[I'r,]]. The Op[[T(Zp)]]-module of
Hida families of cuspidal p-adic Siegel modular forms of tame principal level N is defined as

(6.1.3) Mord = HomAn (er;krd7 An) .

Given T € Hom(Tn(Zp),@;) put pr : Op[[Tn(Zy)]] = Op(r) to be the map sending v € T),(Zp) to
(y)-

Theorem 6.1.1 (Vertical Control Theorem [Hid04, Theorem 8.13]). As a A,-module, the space
Mra of Hida families is free of finite rank. For each p-adic weight T we have the Hecke-equivariant
isomorphism Mord o (13, (2,)]]p« OF(x) = Vord [t]. Whent is a sufficiently reqular algebraic weight,
Vord[t] = eH(Xe,n, wi(=C)).

The unramified Hecke operators and Up,-operators act on M4 and we denote by ng the subal-
gebra of Endo .11, (z,)] (Mora) generated by them. The natural map Spec(TY 1) — Spec(Op[[T1(Zp)]])
is called the weight projection map.

The finite group 7T, (Z/pZ) acts on M4 and we have the decomposition of free A,-modules
Mord = @ Mord,y
1€Hom(Tn (Z/pZ),pip—1)

such that T, (Z/pZ) acts on Mg, by the character 2.
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6.1.4. The spaces Meas(Ty(Zy), Vira)* and Meas(T,(Zy), V.5))". The group T),(Z,) acts on itself by
multiplication and induces a natural Op[[T,(Z,)]]-module structure on the space € (15 (Zy), OF).
We define Meas(T,,(Z,), V') to be the subspace of Meas(Ty,(Zy), V') consisting of continuous
maps € (T,(Zp), Or) — V' that are not only Op-linear but further Op[[T,,(Zy)]]-linear. An equiv-

alent description for the elements of the subspace Meas(T,(Zy), V' )f is that the evaluations at all
T € Homeont (T7(Zy), Q ) belong to V'[1]. Let Meas(Tn(Zy), Vira)® be the ordinary cuspidal part
of Meas(T,(Zy,),V')%. For each character 1 of Ty,(Z/pZ), we construct a morphism ®, mapping
Meas(T,(Z,p), Vora)? into the space of Hida families.

Unfolding the definitions one easily sees that there is a natural pairing Vy.q X —; OpF such

that the following diagram commutes if 2 = T ‘Tn(Z/pZ)

ord

Mordz x v

ord

STXIJ/ JPT
()

Vora[t] x Vg (Vord ®0p Ok(x)) X Vorg —— OF(w)»
where s; is the specialization map
(6.1.4) st: Mord — Mord @0 [[1,(2,)]].pe OF@ — Voralt]-

This pairing induces an Op[[T;,(Zy)]]-linear pairing
(6.1.5) Meas(T,(Zy), Vord)' X Vg — Meas(T,(Zy), OF),

where the Op[[T},(Z,)]]-module structure on Meas(Ty,(Zy), Or) comes from that of € (T, (Zy), OF).

Now fix a character ¢ of the finite group 7,(Z/pZ). Let u be a generator of 1 + pZ, and we
associate to it the p-adic logarithm function log, : 1 + pZ, — Z, such that the value at u is 1
and we extend log, to Z; by requiring it to take value 0 on fi,—1 (Z; canonically decomposes
as fp—1 X (1 4+ pZyp)). Denote by ~; the element of T,,(Z,) whose i-th component is u and other
components are 1. Then vy,--- , 7, topologically generate I';,. The p-adic Mellin transform with

respect to ¢ is the map
Meas(T,(Zy), Or) — Ay,

6.1.6
( ) wr— xla y L nylogu =) dlu' Zy,: ,I‘n),
Tn(Zp)

where 7logu(:vz') is the element Z;’:: (logu zz)(% 1)™ € A, with the binomial coefficient (logu 22)
defined as 28u®ilog, Ti— ) (logy i—m+1)

One can check that this p-adic Mellin transform with
respect to 2 is Aj,-linear. Combmmg it with (6.1.5) we get a A,-linear pairing

Meas(Tn(Zp),Vord) X Vg — An,
and therefore the desired morphism of A,-modules

(6.1.7) O, : Meas(Ty(Zy), Vord)h — Mord,.-

Moreover for each point T € Homcont(Tn(Zp),@; ) whose restriction to 7,(Z/pZ) is 1 and p €
Meas(Ty(Zy), Vira)?, we have

[ —

Tn(Zp)
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For our applications we define the Op[[T,(Z,)]]-module VA which as an Op-module is the
subspace of V ®0, V generated by the elements killed by y®1—1®~ for all v € T},(Z,). The action
of Tp,(Zy) on VA via either factor agrees with the other, so V2 has a well-defined Op[[T},(Z,)]]-
module structure. Denote by V.2, the sub-Op|[T,,(Zp)]]-module of V2 obtained by taking the
ordinary projection on both factors, and we define the Op[[T,(Zy)]]-module M eas( w(Zp), VA
to be the space of continuous Op|[[T},(Zp)]]-linear maps from € (T,,(Z,), Or) to V.&,. Through the

same argument as above we see that there exists a canonical Op|[[T},(Zy)]]-linear pairing

Vot X (Vird ©0, (11 @) Vora) — OF

whose restriction to either factor agrees with the previous pairing Viq X ¥4 Q Op. It induces a
morphism of A,-modules

(6.1.8) (I)A Meas( (Z ) Vord) — Mord,g ®An Mord,y

with the property

| xdu=(sex s 0 wb)
Tn(Zyp) N

for all T € Homeont (T (Zy), Q ) whose restriction to T,,(Z/pZ) is 2 and pu € Meas(T,(Zy), VA5

» Vord

6.1.5. The g-expansions of Hida families. For each 3 € N~!Sym(n,Z)%, the maps 5 : Vioo —
Or/p'Op, 1 > 1, of taking the SB-th coefficient of the g-expansion patch to an Op-linear map
€¢8 1V — F/Op, which gives an element of 9% ;. Thus by definition there is a A,-linear map

€q¢B " Mord — An
which makes the following diagram

€q,8

Mord,g An

STJ J(pT
€q,p-adic _ * [B-th coefficient

Vord 1] —==— Opw[[N 7! Sym(n, Z)%,g]] ———— Oppa)

commute for T that restricts to 1 on T,,(Z/pZ). From e,4, for (B1,52) € N~'Sym(n,Z)*H? we
define the A,-linear map

Eq,81,82 * Mord @0 ([T, (2,))] Mord — An.
6.2. Construct jig ora, from pig g cxp-

6.2.1. Embedding nearly holomorphic forms into p-adic forms. Let Tu,,, be the formal scheme
ligll T} m defined over Op. When m = 0 the formal scheme T o is the completion of S = X¢g y[1/E]
along its special fibre. Over T, o the Hodge filtration admits a splitting

Hin(A/ Yo )™ |, | = w(G/Tr0) & Un.

called the unit root splitting, which is constructed by considering the F-crystal structure of ’HcllR(.A /Ya N)
[Kat73, Theorem 4.1]. Take the generic fibre T}ig , of the formal scheme T, .. It is a rigid analytic
subspace of the rigid analytic space X gl,lr( Npm) associated to the scheme Xg r(ypm) over F. Pulling
back the unit root splitting from level I'(IV) to I'(Np™) yields a projection V; — w; of coherent
sheaves over the rigid analytic space T}ig m, from which one gets, combining with the Hodge Tate
map (6.1.2), the following Hecke equivariant map

lp-adic * HO(XG,Fl(N,pm)v VD [ﬂ] — HO (Too,m; wﬁ)Nn(Z/me) [%] [1/]7] — V/ [I] [1/]9],
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where T € Homeont (T (Zp) X Z;,@; ) is an arithmetic weight with algebraic part ¢ dominant and
finite part ¢ valued in fi(,_1)pm-1. The symbol [¢] means the 1) equivariant part under the natural
action of T},(Zy). The injectivity of ¢j aqic results from the fact that the unit root splitting agrees
with the C°° splitting at ordinary CM points and the analytic density of ordinary CM points (see
also [Liul5, Proposition 3.12.1]).

The map ¢p.adic embeds nearly holomorphic forms into the space of p-adic forms Hecke equivari-
antly and gives an integral structure to the space H O(XGII( Npm)s Vi ) which is preserved by the
Up-operators. Moreover we have

Proposition 6.2.1. eHO(XG,Fl(Mpm),Vz) = eHO(XGIl(N’pm),wL).

Proof. Proposition 2.5.5 says that the composition Eye is 0, or equivalently the image of e is killed
by the operator £}, so holomorphic. O

6.2.2. The measure jig ord,- The composition of ¢, aqic with (6.1.1) is exactly the (p-adic) g-expansion
map for nearly holomorphic forms defined in (2.6.1), because the basis (wWean, dcan) 1S compatible
with the unit root splitting as djcan, 1 < j < n are horizontal for the Gauss-Manin connec-
tion. Now Proposition 4.4.1 together with the g-expansion principle implies that tpadic(Exx) lies
inside V'[1] for all admissible (k,T). One direct corollary of the g-expansion principle is that
the space V' of p-adic forms (of tame principal level N) is a closed subspace, under the induced
topology, of the space Op[[N~1Sym(n,Z)%,)]. Then the density of all the admissible points in-
side Homeont (17, (Zp) X Zg,@; ) with respect to the p-adic topology indicates that the measure
e g-exp in Theorem 5.2.2 belongs to the image of the embedding of Meas (Z; X Tn(Zyp), V’A) into
Meas (Tn(Zp) X Z;,Op[[N_l Sym(n, Z);%Q]]), induced by the g-expansion map.

This is not sufficient for us. Before we continue we must make sure that pg 4exp actually is
contained in the image of the cuspidal part. Thanks to the cuspidality result Theorem 4.2.2 we

know that tp adic(Exc) is cuspidal if t =ty = --- =t, = k > 2n + 1. The p-adic density of such
points guarantees that pig gexp lies inside the image of the injective map

Meas (Z) x To(Zp), V) — Meas (Tn(Z,) x Z), Op[[N ' Sym(n, Z):57])

and we denote by pg the preimage of pg gexp-

Now by applying the ordinary projection e x e : VA& — Vofd to pg, we obtain the measure fig orq

inside Meas (Z;f X Tn(Zy), Vo%d) = Meas (Z§7 Meas(Tn(Zy), V;ﬁd)) Using (6.1.8), we define
Heorde = P1 (1g 0rd) -

This pig ora,, lies inside Meas(Zy, Mora, @, Mord,) and satisfies

(st X sq) (/ Iid/tg’ordJ) = (exe)lux
ZX

P

for all admissible (k,T) such that the restriction of T to T,,(Z/pZ) is 1.

Before we ending this section we give the proof of Proposition 5.7.1.

Proof of Proposition 5.7.1. We show (e x €)(ug) — (e x 1)(ug) = 0, which can be implied by the
vanishing of its image v, g, € Meas(Z, x Tn(Zy), OF) under the map

Meas (L) x Tn(Zp), VA) — Meas (Tn(Zp) % Z;,OF[[Nfl Sym(n,Z)i%Q]])
(B1,B2)-th coefficient

Meas(Z; x Tn(Zyp), OF),
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for all (B1,52) € Nt Sym(n,Z);%Q. The p-adic Mellin transform (defined similarly as (6.1.6))
gives an isomorphism between Meas(Z, x T,(Zy),Or) and Ofp[[Z; x Tn(Zp)]]. It is not dif-
ficult to see that the vanishing of vg, g, follows from the Zariski density of the subset inside

Hommeont (Z; X Tn(Z,), Qs

with xt1,-- -, x¥, nontrivial) at which the evaluations of vg, g, are zero. ([l

) consisting of those points (by (5.6.1) including all admissible points

7. THE p-ADIC L-FUNCTION FOR ORDINARY FAMILIES AND ITS INTERPOLATION PROPERTIES

The p-adic L-function for a given ordinary family of Hecke eigen-systems is constructed by pro-
jecting the Hida-family-valued measure jig orq, to the corresponding eigenspace for that ordinary
family and then taking a nonvanishing Fourier coefficient.

The universal ordinary Hecke algebra Té\id of tame principal level N is finite torsion free over
A,,, and reduced because of Proposition 5.5.2.

Given a point = € Spec(TZ ;)(Q,) whose projection to the weight space T € Homeont (T} (Zp), @;)
is arithmetic with dominant algebraic part ¢ € X(7},)+, define &, to be the finite dimensional
F(1)-vector space consisting of cuspidal holomorphic Siegel modular forms which are contained in
HO(XGII(N,pm),wz(—C))[g] for some m, and belong to the eigenspace parametrized by x for the
unramified Hecke operators and Up-operators. The space &, is stable under the operator eW,
the composition of the ordinary projector and the operator W defined as (5.2.2). Let a,,; € O |

»

1 < j < n, be the p-adic integers such that for each a = (a1, -+ ,a,) € C;7, the eigenvalue of the
operator Uy, parametrized by z is given by [[7_, aifj. If 7 € Ap(G(Q)\G(A)) is an irreducible
cuspidal automorphic representation generated by an element inside S, then for v { Np, it is clear
that the isomorphism class of 7, is completely determined by z. At the same time the isomorphism
class of the component 7, is also determined by ¢ = T; and a1, -+ ,a., (see §5.5). Thus the
isomorphism class of the G(A™V)-representation ®;+N 7, is determined by x and we denote it by
Wiv. Set ag, :p_(tj_j)aw.

To Wiv and Dirichlet characters ¢, x, we associate the partial standard L-function LVP>(s, Wé\f ®
¢~ 'x71), and the modified Euler factor at p

(1= X)) Ty (1 () @) - d(p)az o)
(L=x°(p) - o(p) o) [Tj=1 (1 = (x¥5)°(p) - 6(p) terg,jp~)

% (o) ) GO TT (swaz i)™ Glxy).

j=1

Ep(s,wiv x ¢ Ix7h) =

Let C be a geometrically irreducible component of Spec(Té{d ®oy F). Set F¢ to be the function
field of C and Iz to be the integral closure of A, inside Fg. Denote by A¢ : T(J)\Ed — ¢ the
homomorphism of A,-algebras corresponding to C. The group T,,(Z/pZ) acts on T, and its
action on I¢ is by a character ..

There is an isomorphism of Fe-algebras
Tlra @A, Fo = Fe @ Re

such that the projection of Té\id® A, Ic onto the first factor coincides with A¢. Define 1 € ']I‘(]Xd® AL Fe
to be the idempotent corresponding to the first factor. For a finite extension F’ of F, write A, p
(resp. TN, 1, Ic /) to be the base change of A, (resp. TY, I¢) from O to F'. If the weight

ord?

projection map A, g — TN, ., is étale at the point z € C(F”), put 2’ € Spec(TN, @, Lo )

to be the maximal ideal generated by T ® 1 — 1 ® A¢(T) for all T € TV, and 1 ® a for all a
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inside the maximal ideal corresponding to x. It follows from [Stal5, Tag 00UE, Tag 00US| that
(Tord ®n, Ic,F, ) = l¢ Fr 2, so the localization map Tord ®n, lepr o — (Tord @A, le,F, ) is
surjective, and there exists the decomposition of I¢ fr ,-algebras

N /
Tord ®A, ]Ich'aiU = HC,F’J S2) RC,x

with the first projection being A¢. Thus the projector 1¢ lies inside ']I‘é\][rd @A, Ic,Fr 2 as long as the
weight projection map is étale at z € C(F").

Remark 7.0.1. It is still an open problem to decide the exact conditions on a classical point x €
C(Q,) in order for the connected component C to be étale at z. In [AIP15, §8.3], an example
is given in the case n = 2 and the tame level is 1, where if the automorphic representation 7,
associated to x is tempered and ordinary, m,, is unramified and the weight satisfies t; > to > 3,
it is shown that the weight projection map is étale at . The argument is for eigenvariety of finite
slope forms and follows that in [Chell] where the étaleness results are proved for non-critical regular
classical tempered crystalline points with distinct Frobenius eigenvalues on the eigenvarieties for
unitary groups under certain conditions. The argument relies on the classcity results for p-adic
forms, the analysis of the Galois representations associated to classical points in a neighborhood of
x at the primes dividing the tame level together with the compatibility with the local Langlands
correspondence, and the multiplicity one results. In our case of Sp(2n), the multiplicity one result
is known [Art13] and some classcity theorems are obtained in [BPS16,Pilll]. It is possible that,
using some arguments in [Til06,Pil12a] on analyzing the Galois representations at primes dividing
the tame level, one can prove some étaleness results for tempered classical points with weights

t1 22>ty > n("H) under certain suitable assumptions.

Now applying the Hecke projector 1¢ to the measure fig ord,, constructed in §6.2.2 gives an
element inside Meas(Z,, Mora, @A, Mords) @a, Fe on which the Hecke operators act by Ac.
Suppose that the point x € C(F’) projects to an arithmetic point T in the weight space whose
algebraic part is dominant and the weight projection map is étale at x. Let s, : Moq @n, Ic 7/ 2 —
Vord|[T] QO (x) O be the specialization map defined from (6.1.4) by extension of scalars. Fix an
orthogonal ba31s s, = {p1,-++ ,pa} of the vector space &, i.e. @1, ,pq span &, and satisfy
(pi,@5) = 0if @ # j. Then for each arithmetic x € Homcont(Z;,@;) with ¢4 > -+ > ¢, >
k>n+1and k(—1) = ¢(—1), we know by construction that the specialization at x of the Hida
family 1¢ fzg K dfig ord, 18 a classical cuspidal holomorphic Siegel modular form on G x G. By
Proposition 5.2.3 we have

€T d ord,?
s <1c /z;/{ He, d7c>
n ~ n () — DI I'(k —n)y, (K Zoo(fn,z,omvvvv)
(7.0.1) = ¢(=1)"vol (P(N)> 1_1[3?1(](9?2[ _)1) ' 2k+(n—1(:i))2ik-(i-k)—n ' <U;/,Ut>£ t
p®eW(p)

)

X Ep(k —n,mly x ¢ x™1) - LNP®(k —n, 7l x o717 Z L4

S )

where v; is the highest weight vector inside the lowest K g o-type of the holomorphic discrete series
Dy and Uz is taken to be its dual vector.

For each (81, B2) € N1 Sym(n, Z)%5?, define (recall that for simplicity we have assumed ¢? # 0)

1C,6.81 82 = Eq.81,8, (e - Heorda,) € Meas(Ly, An) @n,, Fe.

Contrary to the case of GL(2),q, where for an algebraic eigenform the first Fourier coefficient
always has the smallest p-adic evaluation, in our situation there is no such canonical choice for
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B1, B2. By construction we know that the measure pc 4 3, 3, vanishes at all K € Homeont (Z;,@; )

with k(—1) # ¢(—1).

Theorem 7.0.2. Assume that the weight projection map Spec(TY ;) — Spec(Or[[T,.(Zy)]]) is étale
at the point x € C(Q,). Then the measure pc g 5, 3, € Meas(Zy, An) @p, Fe has no poles at x. Let

T be the projection of x to the weight space Homcont(Tn(Zp),@;). For k € Homcont(Z;,@;) with
k(=1) = ¢(=1). If (k,T) is admissible, i.e. arithmetic with t, > ---t, > k > n+ 1, then we have

_ e P (p—1)"  T(k—n)Tan(k)
/Z; rdhc.,p | () = ¢(=1)"vol (F(N)) T, (02 — 1)~ 2kFn—1(gj)2nkthn
ZOO(fR,I,Omvg/?Ué) C(gp,ﬁl)t(GW(gD),ﬂg)
T W Z .7
x Ep(k —mn, W;V X qb_lx_l) ~LNp°°(k — n,wiv X gb_lx_l).

Here ¢(-, 8;) stands for the B;-th Fourier coefficient, i = 1,2.

The nonvanishing of the archimedean zeta integral term Zuo(fuz,00, v ,v¢) is guaranteed by
Proposition 4.3.1, and the nonvanishing of eW (), the ordinary projection of ¢ € s,, follows from
Proposition 5.7.2.
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