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Abstract

In the 1920’s Artin defined the braid group, Bn, in an attempt to understand
knots in a more algebraic setting. A braid is a certain arrangement of strings in
three-dimensional space. It is a celebrated theorem of Alexander that every knot is
obtainable from a braid by identifying the endpoints of each string. Because of this
correspondence, the Jones and Alexander polynomials, two of the most important knot
invariants, can be described completely using the braid group. There has been a re-
cent growth of interest in other diagrammatic algebras, whose elements have a similar
topological flavor to the braid group. These have wide ranging applications in areas in-
cluding representation theory and quantum computation. We consider representations
of the braid group when passed through another diagrammatic algebra, the planar
rook algebra. By studying traces of these matrices, we recover both the Jones and
Alexander polynomials.

1 Introduction

The Artin braid groups, Bn, are the groups generated by σ1, σ2, . . . , σn−1 satisfying the
following relations:

1. σiσj = σjσi if |i− j| > 1

2. σiσjσi = σjσiσj if |i− j| = 1

For our purposes, one will find the abstract presentation insufficient. Instead we will work
with the following definition found, for example, in [KT].

Definition 1.1. A geometric braid on n ≥ 1 strings is a set b ⊂ R2× I formed by n disjoint
topological intervals called the strings of b such that the projection R2× I → I is increasing
and maps each string homeomorphically onto I with

b ∩ (R2 × {0}) = {(1, 0, 0), (2, 0, 0), . . . , (n, 0, 0)}
b ∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), . . . , (n, 0, 1)}
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The operation in this new interpretation is defined by stacking the two braids. An example
of this is seen below:

These groups are the focus of much study due to their wide ranging applications. One par-
ticular area of importance is the representation theory of Bn. For a comprehensive survey
of what is known about these representations, see [BUR], [FOR] and [BIG1]. In this paper,
we will study braid group representations when factored through the so called planar rook
algebra, CPn.

The rook monoid, Rn, as defined in [FHH], consists of all bipartite graphs on two rows of n
vertices, one on top of the other forming the boundary of a rectangle, such that each vertex
has degree either zero or one. Furthermore, we label the vertices in our diagram with the
numbers 1 through n from left to right. For example we have the following diagram:

•

•

•

•

•

•1 2 3

1 2 3
..........
..........
..........
..........
..........
..........
..........
..........
..........
......

........
........
........
........
........
........
........
........
........
..

∈ R3

We also have the following definitions which will simplify discussions of rook diagrams:

Definition 1.2. Given any rook diagram, d ∈ Rn we say:

1. d has a vertical line at i if it contains an edge from the vertex i on top to the same
vertex i on bottom.

2. d has a dead end at i if vertex i on top (or bottom) is not incident to an edge.

3. d has a slash from i to j if vertex i on bottom is adjacent to vertex j on top.

The product, d1d2, of two rook diagrams d1 and d2 is obtained by stacking d1 on top of d2
and deleting any edge from one that connects to a dead end from the other. For example,

•

•

•

•

• •

•

•

•

........
........
........
........
........
........
........
........
........
..

................................................................................................

.................................................................

........................................................

•
• •
•
•
•

=

With the rook monoid defined, one considers the submonoid of planar rook diagrams, Pn.
These are those diagrams that can be drawn in the plane without crossings when their edges
are not allowed to leave the rectangle formed by their vertices. Notice that the diagrams
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being multiplied above are in P3. Finally, one simply says that the planar rook algebra, CPn,
is the C-algebra generated by Pn with multiplication defined using the distributive law.

What makes CPn such an ideal object of study, aside from its relatively simple presenta-
tion, is that its representations have already been completely classified. One will find this
classification in [FHH]. This is invaluable for studying representations of Bn through CPn.
We discover through this paper that many of these representations are those of the Hecke
Algebra. We define:

Definition 1.3. The Hecke Algebra, Hn(q), is the quotient algebra of CBn by the subalgebra
generated by the following relations:

(σi − 1)(σi + q) = 0, i ∈ {1, . . . , n}.

This algebra has shown itself to be spectacularly useful in various mathematical fields. In
[JON2], Jones illustrated how this algebra and its representations could be used to fully
recover the Jones polynomial invariant. To understand this, one must first understand the
connection between links and braids.

Looking back to the geometric definition of a braid, it may become clear that there exists
some relationship between the braid groups and link theory. Indeed it is a celebrated theorem
of Alexander that these two concepts are essentially the same. To make this precise we
first define for any braid b ∈ Bn, the closure of b, denoted b̂, is the link in R3 obtained
by identifying the top and bottom of b. From this definition one can prove the following
theorem from [ALE1] and [ALE2].

Theorem 1.4 (Alexander). Every oriented link is isotopic to a closed braid

Unfortunately, the above correspondence is not one to one. Though this may seem like a
major setback, there is a way to exactly characterize the correspondence’s failure of bijectivity
using a method described first by Markov. We define an equivalence relation, ∼, on braids
as being generated by the following three “Markov moves”:

1. ab ∼ ba

2. ι(a)σn ∼ a

3. ι(a)σ−1n ∼ a

where a, b ∈ Bn and ι : Bn ↪→ Bn+1 is the map that adds a vertical string to the end of a
braid. Using this one then proves the following theorem.

Theorem 1.5 (Markov). Given two braids, b1 and b2, b̂1 = b̂2 if and only if b1 ∼ b2

In this paper we will be expanding on the ideas found in [BIG3] by creating and using Markov
traces to emulate the results of Jones in [JON1]. We find that both the Jones and Alexander
Polynomials arise through traces of the Planar Rook Algebra.

3



2 Finding the homomorphism

Before we begin, it is important that we impose an ordering on P2 as this will allow for much
simpler notation later on.

Definition 2.1. We enumerate the elements of P2 in the following fashion:

d1 =
•

•

•

•
d2 =

•

•

•

•.................................................................

d3 =
•

•

•

•

........
........
........
........
........
........
........
........
........
..

d4 =
•

•

•

•..........................................................................

d5 =
•

•

•

•

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

d6 =
•

•

•

•

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

Next, we present the homomorphism which we will be working with for the remainder of the
paper, ϕ : Bn → (CPn)∗ where (CPn)∗ is the group of units of CPn. To do this, we introduce
the following definition:

Definition 2.2. Given two diagrams, a, b ∈ Pn, we define the tensor product, denoted a⊗ b,
to be the result of appending of b to the right of a.

With these in mind we begin looking for a homomorphism of the following form:

ϕ(σi) = a · d1i + b · d2i + c · d3i + d · d4i + e · d5i + f · d6i

where
dji = I⊗i−1 ⊗ dj ⊗ I⊗n−i−1

and I is the identity diagram in P1. This is shown explicitly below:

It therefore remains to find the conditions on our coefficients which make ϕ a group homo-
morphism. In particular we need to make sure the braid relations are satisfied. Furthermore,
we need to make sure every element mapped to in CPn is invertible. For this reason we claim
f cannot be zero. If it was, our homomorphism would not have an identity diagram as one
of its terms. One then notices that it is impossible for the identity to be created by multi-
plication of other diagrams. Because we require ϕ(σ−1i ) = ϕ(σi)

−1, it follows that f must be
non-zero. Therefore, for the purpose of simplicity we will scale f to be 1. After doing this
we find the following:

Theorem 2.3. Assuming a + c + d 6= 1, f = 1 and cd 6= 0, any mapping of the above form
is a homomorphism if and only if its coefficients are in one of the following five families:

1. b = e = −1

2. a = −c− d, b = −1, e = −cd
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3. a = −c− d, b = −cd, e = −1

4. a = 1− c− d+ cd, b = −cd, e = −1

5. a = 1− c− d+ cd, b = −1, e = −cd

Furthermore, for each of the above five families one finds the following

1. ϕ(σ−1i ) =
(
1− 1

d
− 1

c
+ 1
−1+a+c+d

)
d1i − d2i + 1

d
d3i + 1

c
d4i − d5i + d6i

2. ϕ(σ−1i ) = (−1
c
− 1

d
)d1i − 1

cd
d2i + 1

d
d3i + 1

c
d4i − d5i + d6i

3. ϕ(σ−1i ) = (−1
c
− 1

d
)d1i − d2i + 1

d
d3i + 1

c
d4i − 1

cd
d5i + d6i

4. ϕ(σ−1i ) = (1− 1
c
− 1

d
+ 1

cd
)d1i − d2i + 1

d
d3i + 1

c
d4i − 1

cd
d5i + d6i

5. ϕ(σ−1i ) = (1− 1
c
− 1

d
+ 1

cd
)d1i − 1

cd
d2i + 1

d
d3i + 1

c
d4i − d5i + d6i

Proof. We begin by considering the first braid relation. If two generators, σi and σj, are
such that |i − j| > 1, then the diagrams in their image will not overlap in their copies of
di. In particular, in any product of diagrams the di will always end up on top, or bottom,
of vertical lines. It then follows that this will commute. We find, therefore, the first braid
relation will hold regardless of what coefficients we choose.

Next we claim it suffices consider the second braid relation for ϕ : B3 → (CP3)
∗. One will

notice that in the product, ϕ(σi) · ϕ(σi+1) · ϕ(σi), the only parts of the diagrams which ac-
tually change are the copies of the dj. Everything else in these diagrams are vertical lines
at the ends, which act like identities. From this we see that for higher values of n, one will
only be adding more vertical lines which do not influence anything.

Once these facts have been established, one may proceed by exhaustive case study in proving
the first half of the theorem. This can be done by a computer by considering the regular rep-
resentation of CPn and identifying the matrix ϕ(σ1σ2σ1)− ϕ(σ2σ1σ2) with the zero matrix.
This results in 400 polynomials that are required to equal zero. We factored these polyno-
mials, and observed that the expression c(b + 1)(e + 1) appeared frequently. We therefore
solved the system of equations separately in the cases where c, b+1 or e+1 is zero. After
finishing this, any redundant or non-invertible solutions were removed and our result follows.

Once this has been complete, one simply inverts the matrices found for ϕ(σ1) to finish the
proof.

For convenience, we identify the above homomorphisms by ϕi, where i = 1, ..., 5. One may
notice the symmetry in the variables b and e as well as c and d. Intuitively one may justify
this by considering what happens to a diagram when rotated or reflected. To be more precise,
we first notice that in each pair of “dual” families, the only free variables are c and d. If
we broadcast our choice by saying for i ∈ {2, . . . , 5}, ϕi = ϕc,di then the following corollary
becomes apparent.

Corollary 2.4. Let α : Bn → Bn be the automorphism which sends σi to σ−1i
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1. ϕc,d2 (σi) = ϕ
1
d
, 1
c

3 (α(σi))

2. ϕc,d5 (σi) = ϕ
1
d
, 1
c

4 (α(σi))

Because of this corollary, we are free to only consider ϕ1, ϕ2 and ϕ5. For the remainder of this
paper we will be looking at each one of these three morphisms and discovering representations
which factor through them as well as knot invariants. We find that ϕ2 and ϕ5 have many
very similar, and sometimes exactly the same, properties. We will also find that ϕ1 is the
most different and will therefore be treated last. With all this said we begin with ϕ5.

3 The Hecke algebra and Jones Polynomial

We begin this section by quickly considering the representations that factor through ϕ5.
Once this is completed we will discuss any knot invariants that can be found using this
homomorphism.

3.1 Representations Through ϕ5

We begin our study by showing ϕ5 satisfies a HOMFLYPT polynomial. Before we begin
however, it is important one take note of the form it is presented in. In particular, we show a
skein relation in terms of the braids σi, σ

−1
i and 1. It is non-obvious that any pair of links that

are related by a crossing change in an arbitrary diagram can be obtained from braid closures
in this way. For a proof of this fact one must simply look to the proof of Alexander’s theorem
itself. This can be found, for example, in [KT]. After one understands this algorithm for con-
verting a braid to a link it becomes clear that what we are working with is indeed equivalent.

With all of this said we proceed with the following theorem:

Lemma 3.1. The homomorphism, ϕ5 : Bn → (CPn)∗, satisfies the following skein relation
for all σj, j ∈ {1, . . . , n− 1} and x ∈ Bn

ϕ5(xσj)− cd · ϕ5(xσ
−1
j ) = (1− cd) · ϕ5(x).

In particular these homomorphisms satisfy the following quadratic equation

(ϕ5(σj)− ϕ5(1)) · (ϕ5(σj) + cd · ϕ5(1)) = 0.

Proof. We begin by noticing it suffices to prove for both assertions that,

ϕ5(σj)− cd · ϕ5(σ
−1
j ) = (1− cd) · ϕ5(1).

We proceed by gathering like terms to find

(1−c−d+cd−cd(
1− c− d+ cd

cd
))d1j+(−1+

cd

cd
)d2j+(c−cd

d
)d3j+(d−cd

c
)d4j+(−cd+cd)d5j+(1−cd)d6j.

Simplifying the above gives our result.

From this we may immediately categorize the representations of Bn through ϕ5. To do this
one simply combines the quadratic equation mentioned in the statement of Lemma 3.1 in
conjunction with the definition of the Hecke algebra. To be precise,

Theorem 3.2. All representations of Bn through ϕ5 are representations of Hn(cd)
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3.2 Rediscovering the Jones polynomial

Now that those representations which factor through ϕ5 have been shown to fall into a well
studied class of representations, we turn our attention to the question of knot invariants. All
of our results in this topic require the use of trace functions.

Definition 3.3. A trace function, tr : A→ F is any linear function from an algebra, A, to
a field, F , which satisfies tr(ab) = tr(ba)

It is a simple exercise to show that if A is the algebra of all n× n of matrices then the only
trace functions are scalar multiples of the classical matrix trace. Furthermore, we say a trace
is a Markov trace if it is invariant under the Markov moves. Using Markov trace functions,
we will discover knot invariants associated with each of our homomorphism families.

We begin by defining what we call the bubble trace, trβn.

Definition 3.4. For any β ∈ C, the bubble trace function trβn : CPn → C is the linear
function which acts on diagrams, d ∈ Pn, by trβn(d) = βk(d) where k(d) is the number of
vertical lines in d.

Of course it requires some justification to show that this is a trace. We have the following
lemma:

Lemma 3.5. For all diagrams a, b ∈ Pn, k(ab) = k(ba), where k(d) is the number of vertical
lines in d.

Proof. One considers how a vertical line can be formed in a product. First, one may have
two vertical lines stacked on top of one another. This configuration is obviously preserved if
product was done in the opposite order. Secondly, one may have a slash from i to j in a and
an slash from j to i in b. While the location of the vertical line is not preserved by changing
the order of a and b, its existence is.

Now that we see trβn is a trace, we will attempt to make it a Markov trace. This is achieved
below:

Proposition 3.6. Let trβn be a bubble trace, then the following is a Markov trace:

Tr5n(x) = (
√
cd)w(x)+n · tr

1+cd
cd

n (ϕ5(x))

where w(x) is the exponent sum, or writhe, of x.

Proof. We begin by noting the first Markov move is preserved by Lemma 3.5. We then
consider trβn+1(ϕ(xσn)) where x ∈ Bn+1 does not contain σn. We may visualize this using
Figure 1 below.

From this picture we see that we may gather terms in the following way:

(a+ c+ d+ eβ)trβn(ϕ5(x)′) + (β + b)trβn(ϕ5(x))
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Figure 1:

where ϕ(x)′ is a linear combination of all the diagrams of ϕ5(x) but with any vertical lines
at n, broken. We see that by construction a+ c+ d+ eβ = 0 and so we are left with:

tr
1+cd
cd

n+1 (ϕ5(xσn)) =
1

cd
tr

1+cd
cd

n (ϕ5(x)). (1)

Multiplying 1 by (
√
cd)w(xσn)+n+1 and using the definition of Tr5n

Tr5n+1(xσn) = (
√
cd)w(x)+1+n+1−2tr

1+cd
cd

n (ϕ5(x)) = (
√
cd)w(x)+ntr

1+cd
cd

n (ϕ5(x)) = Tr5n(x).

The proof for the last Markov move follows similarly.

Using this new Markov trace function we will discover that one can indeed recover the Jones
polynomial from ϕ5.

Theorem 3.7. If cd 6= −1 then Tr5n(x) = 1+cd√
cd
V (x̂) where V is the Jones polynomial.

Proof. Since Tr5n(x) is a Markov trace, we know it is an invariant of the oriented knot, or
link, x̂. Furthermore, we note the only invariants on knots that satisfy the Jones skein
relation are scalar multiples of the Jones polynomial. Therefore we begin by showing that
Tr5n satisfies the proper skein relation. Once this is finished it will only remain to show that

our trace also sends the unknot to 1+cd√
cd

. One recalls Lemma 3.1 and applies tr
1+cd
cd

n to both
sides to obtain

tr
1+cd
cd

n (ϕ5(xσi))− cd · tr
1+cd
cd

n (ϕ5(xσ
−1
i )) = (1− cd)tr

1+cd
cd

n (ϕ5(x)).

substituting the definition of Tr5n given in Proposition 3.6 we find,

(
√
cd)−(n+w(x)+1)Tr5n(xσi)−cd ·(

√
cd)−(n+w(x)−1)Tr5n(xσ−1i ) = (1−cd) ·(

√
cd)−(n+w(x))Tr5n(x)

=⇒ 1
cd
Tr5n(xσi)− cd · Tr5n(xσ−1i ) = ( 1√

cd
−
√
cd) · Tr5n(x)

as needed. Furthermore we see in B1,

Tr51(1) = (
√
cd)0+11 + cd

cd
=

1 + cd√
cd

.

One notices that by our assumptions cd 6= 0,−1 and this concludes the proof.

We may now discuss the second homomorphism family.
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4 The Hecke algebra and the Alexander polynomial

As stated previously, one will find the results in this section to be very similar to those
found above. Before we prove various properties of this homomorphism, we will rescale ϕ2

for convenience. In particular we scale f to be 1√
cd

and find:

ϕ2(σj) = (
−
√
c√
d
−
√
d√
c

)d1j −
1√
cd
d2j +

√
c√
d
d3j +

√
d√
c
d4j −

√
cd · d5j +

1√
cd
d6j. (2)

ϕ2(σ
−1
j ) = (

−
√
c√
d
−
√
d√
c

)d1j −
1√
cd
d2j +

√
c√
d
d3j +

√
d√
c
d4j −

√
cd · d5j +

√
cd · d6j. (3)

One will notice that all of the coefficients between the two linear combinations above are the
same aside from the last one. For the rest of this section we shall refer to our newly scaled
homomorphism by ϕ2.

4.1 Representations through ϕ2

We begin similarly to the ϕ5 case by showing ϕ2 satisfies a HOMFLYPT polynomial. In
particular we find,

Lemma 4.1. For each x ∈ Bn

ϕ2(xσi)− ϕ2(xσ
−1
i ) = (

1√
cd
−
√
cd) · ϕ2(x).

Proof. This follows from equations 2 and 3.

Once again the above skein relationship tells us exactly what representations will look like
through ϕ2. We have the following theorem:

Theorem 4.2. All representations of Bn through ϕ2 are representations of Hn(1 + cd)

4.2 Rediscovering the Alexander polynomial

Now that the representations are classified we may begin considering knot invariants. One
may expect this to be done using the methods discussed for the previous homomorphism.
Unfortunately, this cannot be the case. Going through the same steps above one finds a
Markov bubble trace with β = 0 for ϕ2. It then can be shown that this trace satisfies the
Alexander skein relation. A quick computation reveals that the unknot is sent to zero and
thus the work is wasted. We do not give up on our goal and thus define the following trace:

trn(x) =

{
1 if x has exactly 1 vertical line

0 otherwise
.

One may quickly note that once again Lemma 3.5 tells us this is indeed a trace. Furthermore,
Lemma 4.1 shows that it will satisfy the Alexander skein relation. Because we do not know
whether trn is a Markov trace, we may not yet conclude it is the Alexander polynomial. The
remainder of this subsection will be dedicated to normalizing trn to make it a Markov trace.
We begin first with the following critical proposition
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Proposition 4.3. Let xn = σ1 · · ·σn−1 ∈ Bn. Then the following three statements hold

1. The sum of all coefficients of diagrams in ϕ2(xn) with no vertical lines is 0.

2. The sum of all coefficients of diagrams in ϕ2(xn) with a vertical line at n and nowhere
else is (−

√
cd)n−1.

3. trn(ϕ2(xn)) =
(
−1√
cd

)n−1
[1 + cd+ (cd)2 + . . .+ (cd)n−1].

Proof. We prove the lemma by induction.
If n = 2 then

ϕ2(σ1) = (
−
√
c√
d
−
√
d√
c

)d1 −
1√
cd
d2 +

√
c√
d
d3 +

√
d√
c
d4 −

√
cd · d5 +

1√
cd
d6.

One begins by quickly verifying that the coefficients on d1, d3 and d4, the only terms with no
vertical lines, sum to zero. Next, one sees that the only diagram with a single vertical line
at n is d5 and its coefficient is −

√
cd. For the final claim we see only the fifth and second

terms have exactly one vertical line. Summing their two coefficients gives − 1√
cd
−
√
cd, as

needed.

Assume that the statement is true for some n ≥ 2, and consider xn+1. We write this as
xnσn, where xn ∈ Bn+1, and consider the diagrams found in Figure 1. We see in this case
that the first, third and fourth terms − those associated with the empty diagram and the
two slashes, respectively − do not gain a vertical line on their far right. We may therefore
conclude that these will have no effect in proving claim two. The inductive hypothesis also
tells us that any items in these terms with no straight lines will sum to zero, so we need not
worry about them for the remainder of claim 1. Finally, when one takes the trace, one finds,
similarly to that in the proof of Proposition 3.6, terms will gather in the following way:

((
−
√
c√
d
−
√
d√
c

) +

√
c√
d

+

√
d√
c

)trn(ϕ2(x)′).

This sum is zero and thus we are free to ignore these terms for the remainder of the proof.

We next turn our attention to the second, fifth, and sixth terms − those associated with the
left vertical line, right vertical line, and the identity diagram, respectively. We notice the
trace of the sixth term will cause any diagram in ϕ2(xn) with a vertical line to vanish. Fur-
thermore, the terms without a vertical line will sum to zero by the hypothesis. We therefore
only need consider the second and fifth terms.

Looking then at the fifth term, we see that any terms in ϕ2(xn) with no vertical lines will
once again sum to zero. The only terms we consider are those in ϕ2(xn) with exactly one
vertical line in the far right, as the break caused by d5 will cause this line to be lost in
ϕ2(xnσn). By our induction hypothesis we know these terms’ coefficients sum to (−

√
cd)n−1.

This completes the proof of claim 2 as the coefficient of the fifth term is −
√
cd. To finish the

entire induction one simply notices the second term is exactly tr(ϕ(xn)) with a coefficient of
−1
cd

. Our inductive hypothesis gives us both our results.
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With this proven we define a new trace in the following way, for any x ∈ Bn:

Tr2n(x) =
trn(ϕ2(x))

trn(ϕ2(xn))
.

One will notice that this trace will continue to satisfy the Alexander skein relation.

We claim that the above trace is indeed a Markov trace. It is non-obvious how one can
prove this directly, however. Instead we will provide a work around using ideas introduced
in [BIG2]. For our next statements, we must introduce some notation used in the aforemen-
tioned paper.

Definition 4.4. For any partition, λ = (n1, . . . , nk), of n we say τλ is the braid (σ1 · · ·σn1−1)⊗
. . .⊗ (σ1 · · · σnk−1) where the ith term in the product is a braid in Bni

.

To be clear one will find τ(4,1) below:

One may notice that if λ = (n) then τ(n) is exactly the xn in Proposition 4.3. With this
made clear we have another lemma as well as a critical proposition.

Lemma 4.5. if λ 6= (n) then Tr(τλ) = 0.

Proof. We will prove the proposition for the case where λ has two parts. One will see that
the method used generalizes quite easily. We see that τλ = (σ1 · · ·σi)(σi+2 · · ·σn) for some
i > 0. Let β1 = σ1 · · · σi, β2 = σi+2 · · ·σn. Since β1 and β2 are disjoint, all of the non
vertical portions of diagrams which arise from ϕ2(β1) will end up on top of vertical lines
in the diagrams of ϕ2(β2). From this it follows that when applying Tr2n to the product,
the surviving diagrams will be a product of a diagram with a single vertical line from one
of ϕ2(β1) or ϕ2(β2), with a diagram with no vertical lines from the other. Once again by
Proposition 4.3 we know these coefficients sum to zero and we are done.

Proposition 4.6. For all braid words, w ∈ Bn, there exists a sequence w = w0, w1, . . . , wk
such that the following hold:

1. wj = xσ±1i y, wj+1 = xσ∓1i y for some x, y ∈ Bn and some i.

2. wk is conjugate to τλ for some partition λ

Proof. the proof can be found in the form of an algorithm discussed in [BIG2]

With all of these tools we are ready to prove that Tr2n is indeed the Alexander polynomial.
We have:

Theorem 4.7. If w ∈ Bn then Tr2n(w) = ∆(ŵ), where ∆ is the Alexander polynomial.
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Proof. We prove the theorem by induction on the length of the word w. If |w| = 0 then
Tr2n(ϕ2(w)) = 0, unless n = 1 or 2. This is because in the case of n = 3, the extra vertical
line makes it so that only terms with no vertical lines will survive the trace. We know these
terms sum to zero. For all greater n, every term has at least two vertical lines. In the cases
of n = 1 and 2, the trace will be 1 as desired by simple calculation.

Next assume the statement holds for all lengths up to and including l and let w be an
arbitrary word of length l + 1. To proceed we prove the following claim:

Claim. All braids in the sequence w = w0, . . . , wk granted by Proposition 4.6 have Tr2n(wi) =
∆(ŵi).

Proof. We prove that Tr2n(wk−r) = ∆(ŵk−r) by induction on r.
if r = 0 then,

Tr2n(wk−r) = Tr2n(wk) = Tr2n(τλ) = ∆(τ̂λ) = ∆(ŵk−r)

by Proposition 4.3 and Lemma 4.5, along with the fact that knots are invariant under con-
jugation of their underlying braid.

Next we assume the statement is true for some r and consider wk−r−1. Without loss of
generality assume wk−r = aσ−1i b, and wk−(r+1) = aσib. We notice that our skein relation
gives us a relationship between successive terms in this sequence, along with a term of lesser
length. Because we know the theorem is true for shorter words as well as previous terms in
the sequence, we may conclude the theorem is true always. To be precise one computes,

Tr2n(wk−(r+1)) = Tr2n(aσib) = Tr2n(baσi)

= z · Tr2n(ba) + Tr2n(baσ−1i )

= z ·∆(b̂a) + ∆( ˆbaσ−1i )

= ∆( ˆbaσi) = ∆( ˆaσib)

= ∆(ŵk−(r+1))

Thus, Tr2n(w) = ∆(ŵ) and our proof is completed.

5 Colored braids and linking numbers

We conclude our paper in this section by discussing the first homomorphism family. As
was alluded to previously, this family has very different properties than the other two. One
will find, for example, that ϕ1 does not satisfy a HOMFLYPT polynomial. Because of this,
we will need to describe representations through ϕ1 using alternative methods. In partic-
ular we will use coloring methods along with a representation of CPn first described in [FHH].
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5.1 Representations through ϕ1

In order to discuss these representations, we must first introduce some notation.

We begin by creating a vector space, V n. We say,

V n = C-span{vS| S ⊆ {1, . . . , n}}.

Furthermore, we consider the following subspaces of this vector space,

V n
k = C-span{vS| S ⊆ {1, . . . , n} and |S| = k}.

With these defined, we introduce the following notational tools:

Definition 5.1. For a planar rook diagram d, let β(d) and τ(d) denote the vertices in
the top and bottom rows of d, respectively, which are incident to edges. We further let
f : β(d)→ τ(d) be the function that sends a bottom vertex to its neighbor in d.

Using these tools we may introduce a family of representations, ρk : CPn → End(V n
k ) as

follows:

ρk(d)(vS) =

{
vf(S) if S ⊆ β(d)

0 otherwise

It turns out that these representations are the fundamental irreducible representations of
CPn. To be precise one has the following theorem found in [FHH]:

Theorem 5.2.
n⊕
k=0

(
n

k

)
ρk is an isomorphism from CPn to a direct sum of matrix algebras.

Using this theorem we will classify all representations of Bn through CPn by using colored
braids. To be precise, for any x ∈ Bn and S ⊆ {1, . . . , n}, color each strand of x green if its
starting vertex is in S and red otherwise. Let r(x) be the number of crossings between red
strands counted with sign and r′(x) be the number of crossings between a red and a green

strand counted with sign. We also say that for any S ⊆ {1, . . . , n},
∑
S =

∑
i∈S

i.

With all this defined we may proceed with the following theorem:

Theorem 5.3. Let x ∈ Bn and π(x) ∈ Sn be the underlying permutation of x, then

ρkϕ1(β)(vS) = λTS (x)vT

where T = π(x)(S) and

λTS (x) = (a+ c+ d− 1)w(x)(
√
cd)w

′(x)(

√
c

d
)
∑
T−

∑
S

Proof. One notices that by the nature of group actions it suffices to show that the statement
is true for σ±1i where i ∈ {1, . . . , n− 1}.

Fix S ⊆ {1, . . . , n} and say T = (i, i+ 1)S. One verifies through quick computation that
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1.
ρkϕ1(σi)(vS) = λTSvT

where

λTS (x) =


1 = (a+ c+ d− 1)0

√
cd

0√ c
d

0
if i, i+ 1 ∈ S

a+ c+ d− 1 = (a+ c+ d− 1)1
√
cd

0√ c
d

0
if i, i+ 1 /∈ S

c = (a+ c+ d− 1)0
√
cd

1√ c
d

1
if i ∈ S, i+ 1 /∈ S

d = (a+ c+ d− 1)0
√
cd

1√ c
d

−1
if i /∈ S, i+ 1 ∈ S

2.
ρkϕ1(σ

−1
i )(vS) = λTSvT

where

λTS (x) =


1 = (a+ c+ d− 1)0

√
cd

0√ c
d

0
if i, i+ 1 ∈ S

1
a+c+d−1 = (a+ c+ d− 1)−1

√
cd

0√ c
d

0
if i, i+ 1 /∈ S

1
d

= (a+ c+ d− 1)0
√
cd
−1√ c

d

1
if i ∈ S, i+ 1 /∈ S

1
c

= (a+ c+ d− 1)0
√
cd
−1√ c

d

−1
if i /∈ S, i+ 1 ∈ S

As required.

For the purpose of completion, one may ask whether this representation of Bn is related to
any well known ones. Computation suggests that ρkϕ1 is some generalization of the repre-
sentation discussed in [FOR]; however we do not have a precise description of the connection
between them.

5.2 A linking number invariant

Now that we have established the representations through ϕ1 we turn our attentions to knot
invariants through ϕ1. We find in this case that given any braid x ∈ Bn, any Markov trace
will only be dependent on the linking numbers of x̂. Despite the anti-climax of the result, it
is non-trival to show as we will see.

We begin our proof with the following lemma:

Lemma 5.4. The only trace functions tr : CPn → C are linear combinations of matrix
traces of the V n

k representations

Proof. By Theorem 5.2, We know that the ρk representations give us an isomorphism between
CPn and an algebra of block diagonal matrices. Because any trace functions in such an
algebra would be a linear combination of traces from each block, we have our result.

This very useful fact will allow us to exhaustively consider all possible trace functions. For
example, using Lemma 5.4 along with Theorem 5.3, we know that for any braid x ∈ Bn, we
only need to consider those S ⊆ {1, . . . , n} with π(x)(S) = S. Consider then the coloring of a
braid, x, whose underlying permutation fixes a set S. We know that if a vertex was associated
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with a green (or red) vertex at the bottom then it will be so at the top. Furthermore, one
may realize that the collection of green (or red) strands will form one or more complete
components in the closure, x̂. Finally, the scalar λSS(x) associated with the action ρkϕ1(x)vS
is determined by the total writhe of the red components of x̂ and the total linking number
between red and green components. This of course follows from Theorem 5.3 along with the
remarks just made. Using this fact in conjunction with Lemma 5.4 we conclude the following
lemma:

Lemma 5.5. Let tr : CPn → C be a trace function, then for any braid x ∈ Bn, tr(ϕ1(x)) is
determined by the scalars λSS(x) in

ρkϕ1(x)vS = λSS(x)vS.

In particular, tr is at most dependent on

1. Which sets of strands give rise to components of x̂,

2. the writhes of these components and

3. the linking numbers between components of x̂.

using this lemma we are ready to prove the main theorem of this section. We have,

Theorem 5.6. Let Tr : CPn → C be a Markov trace function, then for any braid x ∈ Bn,
Tr(ϕ1(x)) is only dependent on the linking numbers between components of x̂.

Proof. Let L be an arbitrary link of c components and take x ∈ Bn such that L = x̂. We
recall that this relationship is unchanged by applying Markov moves to x, and thus without
loss of generality we may assume that each component of L uses N strands of x where N is
some sufficiently large number. This is done by conjugating x to move the strands in any
component of x̂ to the right of the braid, and then appending σn or σ−1n . Furthermore, each
one of these moves which adds a strand to x can happen using either a negative or positive
crossing. This then allows us to control the writhe of each component in x̂. One further
notes that the writhe of each component will necessarily be of the opposite integer parity to
the number of strands in this component. One then makes sure that through use of Markov
moves, each component in x̂ has a write of zero and 2N + 1 strands for sufficiently large
N . From Lemma 5.5 we know that Tr can depend on at most the number of strands in
each component, the writhes of these components and the linking number. Because Tr is a
Markov trace, we are free to apply the aforementioned Markov moves to any braid without
changing its value. This concludes the proof.
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