ON THE SIGN CHARACTERISTIC OF HERMITIAN LINEARIZATIONS IN $\mathbb{D L}(P)$

M. I. BUENO*, J. BREEN ${ }^{\dagger}$, S. FORD \ddagger, AND S. FURTADO §

Abstract

The computation of eigenvalues and eigenvectors of matrix polynomials is an important, but difficult, problem. The standard approach to solve this problem is to use linearizations, which are matrix polynomials of degree 1 that share the eigenvalues of $P(\lambda)$.

Hermitian matrix polynomials and their real eigenvalues are of particular interest in applications. Attached to these eigenvalues is a set of signs called the sign characteristic. From both a theoretical and a practical point of view, it is important to be able to recover the sign characteristic of a Hermitian linearization of $P(\lambda)$ from the sign characteristic of $P(\lambda)$.

In this paper, for a Hermitian matrix polynomial $P(\lambda)$ with nonsingular leading coefficient, we describe, in terms of the sign characteristic of $P(\lambda)$, the sign characteristic of the Hermitian linearizations in the vector space $\mathbb{D} \mathbb{L}(P)$ (Mackey, Mackey, Mehl and Merhmann, 2006). In particular, we identify the Hermitian linearizations in $\mathbb{D L}(P)$ that preserve the sign characteristic of $P(\lambda)$. We also provide a description of the sign characteristic of the Hermitian linearizations of $P(\lambda)$ in the family of generalized Fiedler pencils with repetition (Bueno, Dopico, Furtado and Rychnovsky, 2015).

Key words. Hermitian matrix polynomial, Hermitian linearization, sign characteristic, $\mathbb{D} \mathbb{L}(P)$, generalized Fiedler pencil with repetition.

AMS subject classifications. $65 \mathrm{~F} 15,15 \mathrm{~A} 18$.

1. Introduction. Let

$$
\begin{equation*}
P(\lambda)=\sum_{i=0}^{k} A_{i} \lambda^{i} \tag{1.1}
\end{equation*}
$$

be a matrix polynomial of degree k with $A_{i} \in \mathbb{C}^{n \times n}$. In this paper we assume that $P(\lambda)$ is regular, that is, $\operatorname{det}(P(\lambda))$ is not identically zero.

The polynomial eigenvalue problem (PEP)

$$
\begin{equation*}
P(\lambda) x=0 \tag{1.2}
\end{equation*}
$$

arises in many areas such as control theory, signal processing, and vibration analysis. The solutions λ and x of (1.2) are called the (finite) eigenvalues and the (right) eigenvectors associated with λ, respectively, of the matrix polynomial $P(\lambda)$. The standard technique to solve the PEP is to replace $P(\lambda)$ by a linearization of $P(\lambda)$ and solve the corresponding linear eigenvalue problem.

A linearization of the matrix polynomial $P(\lambda)$ is a pencil $L(\lambda)=\lambda L_{1}-L_{0}$ of size $n k \times n k$ such that

$$
U(\lambda) L(\lambda) V(\lambda)=\left[\begin{array}{cc}
P(\lambda) & 0 \\
0 & I_{n(k-1)}
\end{array}\right]
$$

[^0]for some unimodular matrix polynomials $U(\lambda)$ and $V(\lambda)$. (For a positive integer r, I_{r} denotes the identity matrix of size $r \times r$.) It is well known that linearizations of a matrix polynomial $P(\lambda)$ have the same elementary divisors and, in particular, the same eigenvalues as $P(\lambda)$.

In many applications, the matrix polynomial $P(\lambda)$ arises with some structure, such as Hermitian, symmetric, skew-symmetric, palindromic, etc. In order to preserve the properties of the eigenvalues imposed by that structure, it is convenient to find linearizations of $P(\lambda)$ with the same structure, if such linearizations exist. In this paper we will focus on the important class of Hermitian matrix polynomials. A matrix polynomial $P(\lambda)$ as in (1.1) is said to be Hermitian if $A_{i}=A_{i}^{*}, i=1, \ldots, k$, where A_{i}^{*} denotes the conjugate transpose of A_{i}.

Hermitian linearizations of Hermitian matrix polynomials $P(\lambda)$ have been developed in the literature. An important class of such linearizations is contained in the vector space $\mathbb{D L}(P)$ introduced in [11]. In [2] a new infinite class of Hermitian pencils, called Hermitian generalized Fiedler pencils with repetition (GFPR), was constructed containing the finite class of Hermitian Fiedler pencils with repetition introduced in [13], and, in particular, the pencils in the standard basis of $\mathbb{D L}(P)$.

An important feature of a Hermitian matrix polynomial $P(\lambda)$ is its sign characteristic. Here we consider the classical definition of the sign characteristic given in [5, 7], which assumes that $P(\lambda)$ has a nonsingular leading coefficient and assigns a set of signs to the (finite) elementary divisors of $P(\lambda)$. We note that, in a recent still unpublished paper [12], an extension of the classical definition of sign characteristic to infinite elementary divisors as well as to singular matrix polynomials (that is, matrix polynomials that are not regular) is developed. An interesting problem, that we plan to address in a future work, is generalizing the results in this paper by considering this extended definition of sign characteristic.

Among other relevant applications, the sign characteristic plays an important role in perturbation theory of Hermitian matrix polynomials. It is well known that a Hermitian linearization of a Hermitian matrix polynomial $P(\lambda)$ may have a sign characteristic different from the one of $P(\lambda)$. In general, it is convenient to use Hermitian linearizations with the same sign characteristic as $P(\lambda)$. In [1] it was shown, under some restrictions on the eigenvalues, that the last pencil in the standard basis of $\mathbb{D} \mathbb{L}(P)$, which is known to be a linearization of $P(\lambda)$ with nonsingular leading coefficient, preserves the sign characteristic of $P(\lambda)$. This result was generalized in [3] by relaxing the restrictions on the eigenvalues of $P(\lambda)$. Based on this result, a class of Hermitian linearizations in the family of Hermitian GFPR preserving the sign characteristic of $P(\lambda)$ was identified in that paper. We note, however, that in some circumstances, it is important that a linearization of $P(\lambda)$ preserves some additional structure of $P(\lambda)$ associated with relevant spectral properties and this may not be possible by considering a linearization with the same sign characteristic as $P(\lambda)$ [8]. In such a case, it is important to know how the sign characteristic of the linearization changes with respect to the sign characteristic of $P(\lambda)$.

In this paper, given a Hermitian matrix polynomial with nonsingular leading coefficient, we describe the sign characteristic of the Hermitian linearizations in $\mathbb{D L}(P)$ in terms of the sign characteristic of $P(\lambda)$ and, in particular, we identify those linearizations that preserve the sign characteristic of $P(\lambda)$. As a consequence of this result, we give a similar description of the sign characteristic of all the Hermitian GFPR linearizations of $P(\lambda)$.

This paper is organized as follows. In Section 2 we introduce some basic concepts
and results from the general theory of matrix polynomials, define the sign characteristic of a Hermitian matrix polynomial with nonsingular leading coefficient and give a related result that will be used in the paper. In Section 3, we review the vector space $\mathbb{D} \mathbb{L}(P)$, as well as some related concepts and results, and identify the subfamily of pencils that are Hermitian when $P(\lambda)$ is. In Section 4, we state the main result of this paper, Theorem 4.1, which provides a description of the sign characteristic of the Hermitian linearizations in $\mathbb{D L}(P)$ of a matrix polynomial $P(\lambda)$ in terms of the sign characteristic of $P(\lambda)$, when $P(\lambda)$ is Hermitian with nonsingular leading coefficient. Also, as a consequence of this result, we describe the sign characteristic of the Hermitian GFPR linearizations of $P(\lambda)$. The rest of the paper is dedicated to the proof of Theorem 4.1. In Section 5 we construct Jordan chains of the pencils in $\mathbb{D L}(P)$ from Jordan chains of $P(\lambda)$. In Section 6 we describe the structure of a certain matrix $H(X, J, v)$ constructed from a pencil in $\mathbb{D} \mathbb{L}(P)$ and its Jordan chains, that has a key role in obtaining our main results. In Section 7 we study an equation involving a general matrix with the same structure as $H(X, J, v)$. The main result in this section is Theorem 7.7, which may have interest by itself. In Section 8 we prove Theorem 4.1. Finally, in Section 9, we summarize our main contributions in this paper and identify some open problems.
2. Basic concepts. In this section we introduce some important concepts from the theory of matrix polynomials and define the sign characteristic of a Hermitian matrix polynomial $P(\lambda)$ with nonsingular leading coefficient.

We will use the following notation: for $j \geq 0, P^{(j)}(\lambda)$ denotes the j-th derivative of $P(\lambda)$ with respect to λ. For the first derivative, we also use the standard notation: $P^{\prime}(\lambda)$.

A sequence of vectors $\left\{x_{1}, \ldots, x_{r}\right\}$ in \mathbb{C}^{n} is called a Jordan chain of length r of a regular matrix polynomial $P(\lambda)$, at the finite eigenvalue λ_{0}, if $x_{1} \neq 0$ and

$$
\begin{aligned}
& P\left(\lambda_{0}\right) x_{1}=0 \\
& P^{\prime}\left(\lambda_{0}\right) x_{1}+P\left(\lambda_{0}\right) x_{2}=0 \\
& \vdots \\
& \sum_{j=0}^{r-1} \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right) x_{r-j}=0 .
\end{aligned}
$$

A Jordan chain $\left\{x_{1}, \ldots, x_{r}\right\}$ is said to be maximal if there is no vector $x_{r+1} \in \mathbb{C}^{n}$ such that $\left\{x_{1}, \ldots, x_{r+1}\right\}$ is a Jordan chain. Note that the vectors in a Jordan chain of a matrix polynomial may be zero and they are not necessarily linearly independent.

The concept of Jordan chain of a matrix polynomial extends the well-known concept of Jordan chain of a constant matrix A, or equivalently, the concept of Jordan chain of a monic matrix pencil $\lambda I-A$.

In the rest of this section, we assume that $P(\lambda)$ is an $n \times n$ matrix polynomial of degree k as in (1.1) with nonsingular A_{k}. We associate to $P(\lambda)$ the following $n k \times n k$ matrices:

$$
C_{P}=\left[\begin{array}{ccccc}
0 & I_{n} & 0 & \cdots & 0 \\
0 & 0 & I_{n} & & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & I_{n} \\
-A_{k}^{-1} A_{0} & -A_{k}^{-1} A_{1} & \cdots & \cdots & -A_{k}^{-1} A_{k-1}
\end{array}\right], \quad B_{P}=\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{k} \\
A_{2} & \vdots & & \\
\vdots & A_{k} & & \\
A_{k} & & & 0
\end{array}\right]
$$

The matrix C_{P} is called the companion matrix of $P(\lambda)$. It is well-known that the pencil $\lambda I-C_{P}$ is a linearization of $P(\lambda)[5,7]$ and, therefore, the matrix C_{P} has the same finite elementary divisors as $P(\lambda)$.

Clearly, B_{P} is nonsingular as A_{k} is. Moreover, if $P(\lambda)$ is Hermitian, then B_{P} is Hermitian and $C_{P}^{*}=B_{P}^{-1} C_{P} B_{P}$.

Observe that, if $L(\lambda)=\lambda L_{1}-L_{0}$ is a pencil with L_{1} nonsingular, then

$$
C_{L}=L_{1}^{-1} L_{0} \text { and } B_{L}=L_{1}
$$

In what follows, given $\lambda \in \mathbb{C}$, we denote by $J_{r}(\lambda)$ the $r \times r$ Jordan block associated with the eigenvalue λ.

Suppose that S is a nonsingular matrix such that

$$
J:=S^{-1} C_{P} S=J_{l_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{l_{r}}\left(\lambda_{r}\right),
$$

is in Jordan form, where $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{C}$ are the eigenvalues of $P(\lambda)$.
It can be easily seen that, for the partition of S

$$
\begin{equation*}
S=\left[S_{1} \cdots S_{r}\right] \tag{2.1}
\end{equation*}
$$

where $S_{i}, i=1, \ldots, r$ has l_{i} columns, the columns of S_{i} form a maximal Jordan chain for C_{P} associated with λ_{i}. Let

$$
X=\left[\begin{array}{llll}
I_{n} & 0 & \cdots & 0 \tag{2.2}
\end{array}\right] S
$$

Partitioning $X=\left[\begin{array}{lll}X_{1} & \cdots & X_{r}\end{array}\right]$ according to the partition of S given in (2.1), the columns of each X_{i} form maximal Jordan chains for $P(\lambda)$ associated with $\lambda_{i}[4,6]$. The pair (X, J) is called a Jordan pair for $P(\lambda)$.

Given a Jordan pair (X, J), the matrix S can be recovered from (X, J) as follows [5, Proposition 12.1.1]:

$$
S=\left[\begin{array}{c}
X \tag{2.3}\\
X J \\
\vdots \\
X J^{k-1}
\end{array}\right]
$$

In particular, if $P(\lambda)$ is a matrix pencil, then $S=X$.
The matrix (2.3) constructed from given X and J will be called the (X, J)-matrix. By definition of Jordan pair, if (X, J) is a Jordan pair for $P(\lambda)$ and S is the (X, J) matrix, then $J=S^{-1} C_{P} S$.

In the rest of this section, we assume that $P(\lambda)$ is Hermitian with nonsingular leading coefficient.

It is well-known that the eigenvalues of a Hermitian matrix polynomial $P(\lambda)$ are either real or occur in conjugate pairs.

Throughout the paper, we denote by \mathcal{R}_{m}, or $\operatorname{simply} \mathcal{R}$ (if there is no ambiguity with respect to the size), the sip matrix of size $m \times m$:

$$
\mathcal{R}_{m}=\left[\begin{array}{ccc}
0 & \cdots & 1 \tag{2.4}\\
\vdots & . & \vdots \\
1 & \cdots & 0
\end{array}\right]
$$

Definition 2.1. Let J be a matrix in Jordan form:

$$
\begin{align*}
J & =J_{l_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{l_{\alpha}}\left(\lambda_{\alpha}\right) \tag{2.5}\\
& \oplus\left(J_{l_{\alpha+1}}\left(\lambda_{\alpha+1}\right) \oplus J_{l_{\alpha+1}}\left(\overline{\lambda_{\alpha+1}}\right)\right) \oplus \cdots \oplus\left(J_{l_{\beta}}\left(\lambda_{\beta}\right) \oplus J_{l_{\beta}}\left(\overline{\lambda_{\beta}}\right)\right)
\end{align*}
$$

where $\lambda_{1}, \ldots, \lambda_{\alpha} \in \mathbb{R}$ and $\lambda_{\alpha+1}, \ldots, \lambda_{\beta}$ are nonreal complex numbers on the upper half-plane. Let $\epsilon=\left\{\epsilon_{1}, \ldots, \epsilon_{\alpha}\right\}$ be an ordered set of α signs ± 1. Then, we denote

$$
P_{\epsilon, J}:=\epsilon_{1} \mathcal{R}_{l_{1}} \oplus \cdots \oplus \epsilon_{\alpha} \mathcal{R}_{l_{\alpha}} \oplus \mathcal{R}_{2 l_{\alpha+1}} \oplus \cdots \oplus \mathcal{R}_{2 l_{\beta}}
$$

and call ϵ a set of signs associated with J.
Theorem 2.2. [5, Theorem 5.1.1] Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial as in (1.1) with nonsingular A_{k}. Let $\lambda_{1}, \ldots, \lambda_{\alpha}$ be the real eigenvalues and $\lambda_{\alpha+1}, \ldots, \lambda_{\beta}$ be the nonreal eigenvalues of $P(\lambda)$ from the upper half-plane. Then, there exists a nonsingular matrix S such that $J:=S^{-1} C_{P} S$ is as in (2.5) and $S^{*} B_{P} S=$ $P_{\epsilon, J}$ for some ordered set of signs $\epsilon=\left\{\epsilon_{1}, \ldots, \epsilon_{\alpha}\right\}$. Moreover, the set ϵ is unique (up to permutation of signs corresponding to identical Jordan blocks in J).

Definition 2.3. Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial with nonsingular leading coefficient and let ϵ be the set of signs given by Theorem 2.2. The set ϵ is called the sign characteristic of $P(\lambda)$. Moreover, we call the pair $\left(J, P_{\epsilon, J}\right)$ in Theorem 2.2 a canonical pair for $P(\lambda)$ and call the Jordan pair (X, J) a reducing Jordan pair associated with $P(\lambda)$, where X is as in (2.2) with S as in Theorem 2.2.

Note that the sign characteristic of $P(\lambda)$ attaches a sign to each elementary divisor of $P(\lambda)$ associated with a real eigenvalue. When we fix an order for the elementary divisors of $P(\lambda)$ associated with the real eigenvalues, namely, $\left(\lambda-\lambda_{1}\right)^{s_{1}}, \ldots,\left(\lambda-\lambda_{\alpha}\right)^{s_{\alpha}}$, and say that $P(\lambda)$ has sign characteristic $\epsilon_{1}, \ldots, \epsilon_{\alpha}$, we mean that the sign associated with the elementary divisor $\left(\lambda-\lambda_{i}\right)^{s_{i}}$ is $\epsilon_{i}, i=1, \ldots, \alpha$.

Clearly, if J^{\prime} and $P_{\epsilon^{\prime}, J^{\prime}}$ are obtained from J and $P_{\epsilon, J}$ by a simultaneous block permutation similarity, then $\left(J^{\prime}, P_{\epsilon^{\prime}, J^{\prime}}\right)$ is still a canonical pair for $P(\lambda)$.

The next result gives necessary and sufficient conditions for a pair $\left(J, P_{\epsilon, J}\right)$ to be a canonical pair for a matrix polynomial.

Proposition 2.4. Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial as in (1.1) with nonsingular A_{k}. Let (X, J) be a Jordan pair for $P(\lambda)$ and let ϵ be an ordered set of signs associated with J. Then, $\left(J, P_{\epsilon, J}\right)$ is a canonical pair for $P(\lambda)$ if and only if there exists a nonsingular matrix Q such that

$$
J=Q^{-1} J Q \quad \text { and } \quad Q^{*} P_{\epsilon, J} Q=Z^{*} B_{P} Z
$$

where Z is the (X, J)-matrix.
Proof. We have

$$
\begin{aligned}
Q^{*} P_{\epsilon, J} Q & =Z^{*} B_{P} Z \Leftrightarrow P_{\epsilon, J}=Q^{-*} Z^{*} B_{P} Z Q^{-1} \Leftrightarrow P_{\epsilon, J}=S^{*} B_{P} S \\
J & =Q^{-1} J Q \Leftrightarrow Z^{-1} C_{P} Z=Q^{-1} J Q \Leftrightarrow S^{-1} C_{P} S=J,
\end{aligned}
$$

where $S=Z Q^{-1}$.
3. Hermitian linearizations in $\mathbb{D} \mathbb{L}(P)$. Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree k as in (1.1). In what follows, let

$$
\begin{equation*}
\Lambda(\lambda)=\left[\lambda^{k-1} \lambda^{k-2} \cdots \lambda 1\right]^{T} \tag{3.1}
\end{equation*}
$$

and let \otimes denote the Kronecker product.

The following vector spaces of $n k \times n k$ pencils were defined in [11]:

$$
\begin{aligned}
& \mathbb{L}_{1}(P):=\left\{L(\lambda)=\lambda X+Y: L(\lambda)\left(\Lambda(\lambda) \otimes I_{n}\right)=v \otimes P(\lambda), v \in \mathbb{C}^{k}\right\} \\
& \mathbb{L}_{2}(P):=\left\{L(\lambda)=\lambda X+Y:\left(\Lambda(\lambda)^{T} \otimes I_{n}\right) L(\lambda)=w^{T} \otimes P(\lambda), w \in \mathbb{C}^{k}\right\}
\end{aligned}
$$

The intersection of these two vector spaces is the vector space

$$
\mathbb{D L}(P):=\mathbb{L}_{1}(P) \cap \mathbb{L}_{2}(P)
$$

It is well-known that, for a pencil in $\mathbb{D L}(P)$ associated with a vector v in $\mathbb{L}_{1}(P)$ and a vector w in $\mathbb{L}_{2}(P)$, we have $v=w$. We denote this pencil by $D(P, v)$. The corresponding vector v is called the ansatz vector of $D(P, v)$. The space $\mathbb{D} \mathbb{L}(P)$ consists of block-symmetric pencils, most of which are linearizations of $P(\lambda)[11]$. Moreover, $\mathbb{D L}(P)$ is a vector space of dimension k, the degree of $P(\lambda)$. A basis of $\mathbb{D L}(P)$, called the standard basis, is formed by the pencils $D\left(P, e_{i}\right), i=1, \ldots, k$, where e_{i} denotes the i th column of the $k \times k$ identity matrix I_{k}.

As in [1], we associate to the pencil $D(P, v) \in \mathbb{D} \mathbb{L}(P)$ the polynomial $p(\lambda ; v)$ defined in terms of the ansatz vector $v=\left[v_{1}, \ldots, v_{k}\right]^{T} \in \mathbb{C}^{k}$ and given by

$$
\begin{equation*}
p(\lambda ; v)=\Lambda(\lambda)^{T} v=\lambda^{k-1} v_{1}+\lambda^{k-2} v_{2}+\cdots+\lambda v_{k-1}+v_{k} . \tag{3.2}
\end{equation*}
$$

We call $p(\lambda ; v)$ the v-polynomial. Next, a characterization of the pencils in $\mathbb{D L}(P)$ which are linearizations of $P(\lambda)$ is given in terms of the v-polynomial.

THEOREM 3.1. [11] Suppose that $P(\lambda)$ is a regular matrix polynomial and let $0 \neq v \in \mathbb{C}^{k}$. Then, $D(P, v)$ is a linearization of $P(\lambda)$ if and only if no root of the v-polynomial $p(\lambda ; v)$ is an eigenvalue of $P(\lambda)$, where, by convention, $p(\lambda ; v)$ has a root at ∞ whenever $v_{1}=0$.

The next result gives a relationship between the (right and left) eigenvectors of $P(\lambda)$ and the (right and left) eigenvectors of any linearization of $P(\lambda)$ in $\mathbb{D L}(P)$.

Theorem 3.2. [11](Eigenvector Recovery Property) Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree k, and let $v \in \mathbb{C}^{k} \backslash\{0\}$. Let $\lambda_{0} \in \mathbb{C}$ be an eigenvalue of $P(\lambda)$. Then, x (resp. y) is a right (resp. left) eigenvector for $P(\lambda)$ associated with λ_{0} if and only if $\Lambda\left(\lambda_{0}\right) \otimes x$ (resp. $\overline{\Lambda\left(\lambda_{0}\right)} \otimes y$) is a right (resp. left) eigenvector for $D(P, v)$ associated with λ_{0}. If, in addition, $P(\lambda)$ is regular and $D(P, v)$ is a linearization of $P(\lambda)$, then every right (resp. left) eigenvector of $D(P, v)$ with finite eigenvalue λ_{0} is of the form $\Lambda\left(\lambda_{0}\right) \otimes x$ (resp. $\overline{\Lambda\left(\lambda_{0}\right)} \otimes y$) for some right (resp. left) eigenvector x (resp. $y)$ of $P(\lambda)$.

We now focus on the case in which $P(\lambda)$ is a Hermitian matrix polynomial of degree k. For such a $P(\lambda)$, we denote by $\mathbb{H}(P)$ the subset of $\mathbb{D} \mathbb{L}(P)$ that consists of its Hermitian pencils, that is,

$$
\mathbb{H}(P)=\{L(\lambda) \in \mathbb{D} \mathbb{L}(P): L(\lambda) \text { is Hermitian }\}
$$

In fact, the pencils in $\mathbb{H}(P)$ are those whose ansatz vector v has real entries, that is, $v \in \mathbb{R}^{k}$ [9, Lemma 6.1].

One of the main goals of this paper is to express the sign characteristic of a linearization of $P(\lambda)$ in $\mathbb{H}(P)$ in terms of the sign characteristic of $P(\lambda)$, when $P(\lambda)$ is Hermitian with nonsingular leading coefficient. As a corollary, we will determine the linearizations in $\mathbb{H}(P)$ that preserve its sign characteristic.
4. Main results. We give next the main result of this paper which describes the sign characteristic of a linearization $D(P, v) \in \mathbb{H}(P)$ of a Hermitian matrix polynomial $P(\lambda)$ with nonsingular leading coefficient in terms of the sign characteristic of $P(\lambda)$. The proof of this result will be presented in Section 8.

Given a real number $b \neq 0$, we denote $\operatorname{sign}(b)=1$ if $b>0$ and $\operatorname{sign}(b)=-1$ if $b<0$.

Theorem 4.1. Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial as in (1.1) with nonsingular A_{k}. Let $L(\lambda)=D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. Let $(\lambda-$ $\left.\lambda_{1}\right)^{s_{1}}, \ldots,\left(\lambda-\lambda_{\alpha}\right)^{s_{\alpha}}$ be an ordered list of the elementary divisors of $P(\lambda)$ associated with the real eigenvalues $\lambda_{1}, \ldots, \lambda_{\alpha}$ and let $\epsilon_{1}, \ldots, \epsilon_{\alpha}$ be the corresponding signs in the sign characteristic of $P(\lambda)$. Then, the sign characteristic of $D(P, v)$ is

$$
\operatorname{sign}\left(p\left(\lambda_{1} ; v\right)\right) \epsilon_{1}, \ldots, \operatorname{sign}\left(p\left(\lambda_{\alpha} ; v\right)\right) \epsilon_{\alpha}
$$

In the next result, which is an immediate consequence of Theorem 4.1, we characterize the linearizations in $\mathbb{H}(P)$ that preserve the sign characteristic of $P(\lambda)$.

Corollary 4.2. Let $P(\lambda)$ be a Hermitian matrix polynomial as in (1.1) with nonsingular A_{k}. Let $D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. Then, $D(P, v)$ preserves the sign characteristic of $P(\lambda)$ if and only if, for each eigenvalue λ_{i} of $P(\lambda)$ such that $p\left(\lambda_{i} ; v\right)<0$, the number of negative and positive signs in the sign characteristic of $P(\lambda)$ corresponding to the elementary divisors of $P(\lambda)$ associated with λ_{i} coincides and the elementary divisors associated with positive signs can be paired with the elementary divisors attached with negative signs in such a way that the paired elementary divisors are identical.

From the previous corollary, we obtain a simple sufficient condition for a linearization in $\mathbb{H}(P)$ to preserve the sign characteristic of $P(\lambda)$.

Corollary 4.3. Let $P(\lambda)$ be a Hermitian matrix polynomial as in (1.1) with nonsingular A_{k} and let $D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. If $p\left(\lambda_{0} ; v\right)>0$ for all real eigenvalues λ_{0} of $P(\lambda)$, then $D(P, v)$ preserves the sign characteristic of $P(\lambda)$.

For a matrix polynomial $P(\lambda)$ of degree k as in (1.1), we described, in [2], an infinite family of pencils, called generalized Fiedler pencils with repetition (GFPR), most of which are linearizations of $P(\lambda)$. An infinite subfamily of the GFPR formed by block-symmetric pencils was also identified. A pencil in this subfamily, denoted by $L_{P}\left(h, \mathbf{t}_{w}, \mathbf{t}_{v}, Z_{w}, Z_{v}\right)$, is determined by a parameter h, with $0 \leq h<k$, some sets of indices $\mathbf{t}_{w} \subseteq\{0, \ldots, h-2\}$ and $\mathbf{t}_{v} \subseteq\{-k, \ldots,-h-3\}$, and some sequences Z_{w}, Z_{v} of $n \times n$ matrices assigned to the tuples \mathbf{t}_{w} and \mathbf{t}_{v}. Since a formal description of these pencils is very technical, we omit it here. For a detailed description of the class of block-symmetric GFPR, see [2] (for a summarized description, see [3, Section 5]). In these references, it is shown that, for each $i=1, \ldots, k$, the pencil $D\left(P, e_{i}\right)$ in the standard basis of the vector space $\mathbb{D L}(P)$ is a block-symmetric GFPR associated with the parameter $h=k-i$. When $P(\lambda)$ is a Hermitian matrix polynomial and the matrices in Z_{w} and Z_{v} are Hermitian, the block-symmetric GFPR $L_{P}\left(h, \mathbf{t}_{w}, \mathbf{t}_{v}, Z_{w}, Z_{v}\right)$ is also Hermitian.

Assume that $P(\lambda)$ is Hermitian with nonsingular leading coefficient. As a consequence of Theorem 4.1, we next give a complete description of the sign characteristic of the Hermitian GFPR linearizations $L_{P}\left(h, \mathbf{t}_{w}, \mathbf{t}_{v}, Z_{w}, Z_{v}\right)$ of $P(\lambda)$ in terms of the sign characteristic of $P(\lambda)$. We note that, when h is even, this description is given in [3, Theorem 8.1].

In [3, Lemma 6.1], it is shown that $*$ congruent Hermitian linearizations of $P(\lambda)$ have the same sign characteristic. Moreover, it is shown in this reference that, for h even, any Hermitian GFPR $L_{P}\left(h, \mathbf{t}_{w}, \mathbf{t}_{v}, Z_{w}, Z_{v}\right)$ is $*$ congruent to $D\left(P, e_{k}\right)$ (see the proof of $\left[3\right.$, Theorem 8.1]), which implies that $L_{P}\left(h, \mathbf{t}_{w}, \mathbf{t}_{v}, Z_{w}, Z_{v}\right)$ and $D\left(P, e_{k}\right)$ have the same sign characteristic [3, Theorem 8.1]. On the other hand, when h is odd, any Hermitian GFPR $L_{P}\left(h, \mathbf{t}_{w}, \mathbf{t}_{v}, Z_{w}, Z_{v}\right)$ is $*$ congruent to $D\left(P, e_{k-1}\right)$ (see [3, Remark 8.5]), and, thus, when they are linearizations of $P(\lambda)$, both have the same sign characteristic. Therefore, from Theorem 4.1, and taking into account that the v-polynomial $p(\lambda ; v)$ associated with $D\left(P, e_{k}\right)$ and $D\left(P, e_{k-1}\right)$ is 1 and λ, respectively, we obtain the following result.

Theorem 4.4. Let $P(\lambda)$ be a Hermitian matrix polynomial of degree k as in (1.1) with invertible A_{k}. Let $\left(\lambda-\lambda_{1}\right)^{s_{1}}, \ldots,\left(\lambda-\lambda_{\alpha}\right)^{s_{\alpha}}$ be an ordered list of the elementary divisors of $P(\lambda)$ associated with the real eigenvalues and $\epsilon_{1}, \ldots, \epsilon_{\alpha}$ be the corresponding signs in the sign characteristic of $P(\lambda)$. Let $L(\lambda)=L_{P}\left(h, \mathbf{t}_{w}, \mathbf{t}_{v}, Z_{w}, Z_{v}\right)$, with $0 \leq$ $h<k$, be a Hermitian GFPR linearization of $P(\lambda)$. Then,

- if h is even, $P(\lambda)$ and $L(\lambda)$ have the same sign characteristic;
- if h is odd, the sign characteristic of $L(\lambda)$ is given by

$$
\operatorname{sign}\left(\lambda_{1}\right) \epsilon_{1}, \ldots, \operatorname{sign}\left(\lambda_{\alpha}\right) \epsilon_{\alpha}
$$

In the next three sections we include results that will be used in the proof of Theorem 4.1. Instead of finding an explicit reducing Jordan pair for $L(\lambda)$, the proof of this theorem will be based on Proposition 2.4 as follows:

- We first find a Jordan pair (Z, J) (not necessarily a reducing pair) for $L(\lambda)$ by constructing a Jordan chain for each eigenvalue of $L(\lambda)$ from a Jordan chain of $P(\lambda)$ associated with the same eigenvalue.
- Because (Z, J) is a Jordan pair, we have $J=Z^{-1} C_{L} Z$. However, since (Z, J) may not be a reducing pair, $\left(J, Z^{*} B_{L} Z\right)$ may not be a canonical pair for $L(\lambda)$. Thus, we show that there exists a nonsingular matrix Q that commutes with J and such that $Z^{*} B_{L} Z=Q^{*} P_{\epsilon, J} Q$ for some set of signs ϵ. By Proposition 2.4, ϵ is the sign characteristic of $L(\lambda)$.

5. Jordan pairs of linearizations in $\mathbb{D} \mathbb{L}(P)$. In this section we construct Jordan chains for pencils in $\mathbb{D L}(P)$ from Jordan chains of $P(\lambda)$ associated with the same eigenvalue, generalizing the construction of eigenvectors of pencils in $\mathbb{D L}(P)$ from eigenvectors of $P(\lambda)$ given in Theorem 3.2.

We start with a technical lemma.
Lemma 5.1. Let $P(\lambda)$ be a matrix polynomial of degree k, and let $L(\lambda)=$ $D(P, v) \in \mathbb{D} \mathbb{L}(P)$, with $v \in \mathbb{C}^{k}$. Then,

$$
\begin{align*}
v \otimes P(\lambda) & =L(\lambda)\left(\Lambda(\lambda) \otimes I_{n}\right) \tag{5.1}\\
v \otimes P^{(j)}(\lambda) & =L(\lambda)\left(\Lambda^{(j)}(\lambda) \otimes I_{n}\right)+j L^{\prime}(\lambda)\left(\Lambda^{(j-1)}(\lambda) \otimes I_{n}\right), j>0 \tag{5.2}
\end{align*}
$$

(In particular, for $j>k, v \otimes P^{(j)}(\lambda)=0$.) Moreover, for $r \geq 1$,
$v \otimes\left(\sum_{j=1}^{r} \frac{1}{j!} P^{(j)}(\lambda)\right)=L(\lambda) \sum_{j=1}^{r}\left(\frac{1}{j!} \Lambda^{(j)}(\lambda) \otimes I_{n}\right)+L^{\prime}(\lambda) \sum_{j=1}^{r}\left(\frac{1}{(j-1)!} \Lambda^{(j-1)}(\lambda) \otimes I_{n}\right)$.
Proof. Condition (5.1) follows from the definition of $\mathbb{L}_{1}(P)$ and the fact that $\mathbb{D} \mathbb{L}(P) \subseteq \mathbb{L}_{1}(P)$.

To prove (5.2), we proceed by induction on j. Differentiating (5.1) with respect to λ, we get

$$
v \otimes P^{\prime}(\lambda)=L(\lambda)\left(\Lambda^{\prime}(\lambda) \otimes I_{n}\right)+L^{\prime}(\lambda)\left(\Lambda(\lambda) \otimes I_{n}\right),
$$

and (5.2) holds for $j=1$. Next, suppose that (5.2) holds for some $j>0$. Keeping in mind that $L^{(2)}(\lambda)=0$, since $L(\lambda)$ is a polynomial of degree 1 , and using the inductive hypothesis, we have

$$
\begin{aligned}
v \otimes P^{(j+1)}(\lambda) & =L(\lambda)\left(\Lambda^{(j+1)}(\lambda) \otimes I_{n}\right)+L^{\prime}(\lambda)\left(\Lambda^{(j)}(\lambda) \otimes I_{n}\right)+j L^{\prime}(\lambda)\left(\Lambda^{(j)}(\lambda) \otimes I_{n}\right) \\
& =L(\lambda)\left(\Lambda^{(j+1)}(\lambda) \otimes I_{n}\right)+(j+1) L^{\prime}(\lambda)\left(\Lambda^{(j)}(\lambda) \otimes I_{n}\right)
\end{aligned}
$$

and, thus, (5.2) follows. Note that, if $j \geq k$, then $\Lambda^{(j)}(\lambda)=0$. Condition (5.3) follows by multiplying (5.2) by $1 / j$! for each j and summing the expressions for $j=1, \ldots, r$, collecting like terms.

Theorem 5.2. Let $P(\lambda)$ be an $n \times n$ regular matrix polynomial of degree k. Let $L(\lambda) \in \mathbb{D} \mathbb{L}(P)$ be a linearization of $P(\lambda)$. Let λ_{0} be a finite eigenvalue of $P(\lambda)$. Then, $\left\{x_{1}, \ldots, x_{r}\right\}$ is a Jordan chain of $P(\lambda)$ corresponding to λ_{0} if and only if $\left\{z_{1}, \ldots, z_{r}\right\}$ is a Jordan chain of $L(\lambda)$ corresponding to λ_{0}, where

$$
\begin{equation*}
z_{\ell}=\sum_{j=0}^{\ell-1}\left(\frac{1}{j!} \Lambda^{(j)}\left(\lambda_{0}\right) \otimes x_{\ell-j}\right), \quad \ell=1, \ldots, r \tag{5.4}
\end{equation*}
$$

Proof.
For $r=1$, the claim follows from Theorem 3.2. Recall that a single vector forms a Jordan chain if and only if it is an eigenvector.

Next, assume that the theorem holds for some $r \geq 1$. We want to show that $\left\{x_{1}, \ldots, x_{r+1}\right\}$ is a Jordan chain for $P(\lambda)$ associated with λ_{0} if and only if $\left\{z_{1}, \ldots, z_{r+1}\right\}$ is a Jordan chain for $L(\lambda)$ associated with λ_{0}. By the definition of Jordan chain (see Section 2) and, using the inductive hypothesis, it is enough to see that

$$
\sum_{j=0}^{r} \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right) x_{r+1-j}=0
$$

if and only if

$$
\sum_{j=0}^{r} \frac{1}{j!} L^{(j)}\left(\lambda_{0}\right) z_{r+1-j}=L\left(\lambda_{0}\right) z_{r+1}+L^{\prime}\left(\lambda_{0}\right) z_{r}=0
$$

Assume that $L(\lambda)=D(P, v)$, for some $v \in \mathbb{C}^{k}$. We have

$$
\begin{aligned}
& L\left(\lambda_{0}\right) z_{r+1}+L^{\prime}\left(\lambda_{0}\right) z_{r} \\
& =L\left(\lambda_{0}\right) \sum_{j=0}^{r}\left(\frac{1}{j!} \Lambda^{(j)}\left(\lambda_{0}\right) \otimes x_{r+1-j}\right)+L^{\prime}\left(\lambda_{0}\right) \sum_{j=1}^{r}\left(\frac{1}{(j-1)!} \Lambda^{(j-1)}\left(\lambda_{0}\right) \otimes x_{r+1-j}\right) \\
& =L\left(\lambda_{0}\right)\left(\Lambda\left(\lambda_{0}\right) \otimes x_{r+1}\right)+\sum_{j=1}^{r}\left[L\left(\lambda_{0}\right)\left(\frac{1}{j!} \Lambda^{(j)}\left(\lambda_{0}\right) \otimes x_{r+1-j}\right)+\right. \\
& \left.L^{\prime}\left(\lambda_{0}\right)\left(\frac{1}{(j-1)!} \Lambda^{(j-1)}\left(\lambda_{0}\right) \otimes x_{r+1-j}\right)\right] \\
& =\left(v \otimes P\left(\lambda_{0}\right)\right) x_{r+1}+\sum_{j=1}^{r}\left(v \otimes \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right)\right) x_{r+1-j}=v \otimes \sum_{j=0}^{r} \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right) x_{r+1-j},
\end{aligned}
$$

where the third equality follows from Lemma 5.1. Since $L(\lambda)$ is a linearization of a regular $P(\lambda)$, the vector v is nonzero. Thus, the desired equivalence follows.

Note that the Jordan chain $\left\{z_{1}, \ldots, z_{r}\right\}$ for $D(P, v)$ constructed from a Jordan chain $\left\{x_{1}, \ldots, x_{r}\right\}$ using (5.4) does not depend on the vector v.

Definition 5.3. We say that the Jordan chain $\left\{z_{1}, \ldots, z_{r}\right\}$ for $D(P, v)$ constructed from a Jordan chain $\left\{x_{1}, \ldots, x_{r}\right\}$ using (5.4) is the Jordan chain for $D(P, v)$ associated with $\left\{x_{1}, \ldots, x_{r}\right\}$.

DEFINITION 5.4. Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree k with nonsingular leading coefficient and let (X, J) be a Jordan pair for $P(\lambda)$. Let Z be the matrix whose ith column z_{i} is obtained from the ith column x_{i} of X as in (5.4). We call Z the L-matrix associated with X and denote it by $Z(X)$.

Next we construct a Jordan pair for $D(P, v)$ from a Jordan pair (X, J) of $P(\lambda)$.
In what follows, we denote

$$
R:=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & I_{n} \tag{5.5}\\
0 & 0 & \cdots & I_{n} & 0 \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & I_{n} & \cdots & 0 & 0 \\
I_{n} & 0 & \cdots & 0 & 0
\end{array}\right] \in \mathbb{C}^{n k \times n k}
$$

Proposition 5.5. Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree k with nonsingular leading coefficient and let (X, J) be a Jordan pair for $P(\lambda)$. Let $Z(X)$ be the L-matrix associated with X. Then, $Z(X)=R S$, where S is the (X, J)-matrix and R is as in (5.5). Moreover, if $D(P, v) \in \mathbb{D L}(P)$ is a linearization of $P(\lambda)$, then $(Z(X), J)$ is a Jordan pair for $D(P, v)$.

Proof. Suppose that $J=J_{l_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{l_{s}}\left(\lambda_{s}\right)$ and let $Z(X)=\left[Z_{i j}\right]_{\substack{i=1, \ldots, k, k \\ j=1, \ldots, s}}$ with $Z_{i j}$ of size $n \times l_{j}$ and $X=\left[X_{j}\right]_{j=1, \ldots, s}$ with X_{j} of size $n \times l_{j}$.

Taking into account that S is as in (2.3), it can easily be seen that the equality $Z(X)=R S$ is equivalent to

$$
Z_{k j}=X_{j}, \quad Z_{i j}=Z_{i+1, j} J_{l_{j}}\left(\lambda_{j}\right), \text { for } i=1, \ldots, k-1, j=1, \ldots, s
$$

Fix $i \in\{1, \ldots, k-1\}$ and $j \in\{1, \ldots, s\}$. Let

$$
X_{j}=\left[x_{1}^{(j)}, \ldots, x_{l_{j}}^{(j)}\right] \text { and } Z_{i j}=\left[z_{1}^{(i j)}, \ldots, z_{l_{j}}^{(i j)}\right]
$$

where $x_{l}^{(j)}$ and $z_{l}^{(i j)}$ are the l th columns of X_{j} and $Z_{i j}$, respectively. Taking into account the definition of $Z(X)$, we have that, for $l=1, \ldots, l_{j}, z_{l}^{(i j)}$ is the i-th block row of

$$
\sum_{w=0}^{l-1}\left(\frac{1}{w!} \Lambda^{(w)}\left(\lambda_{j}\right) \otimes x_{l-w}\right)
$$

A calculation shows that the i th block-row of $\Lambda^{(w)}(\lambda)$ is $(k-i)!q_{k-i-w}(\lambda)$, where $q_{t}(\lambda)=\frac{1}{t!} \lambda^{t}$ if $t \geq 0$ and $q_{t}=0$ otherwise. Thus, we have

$$
z_{l}^{(i j)}=\sum_{w=0}^{l-1}\binom{k-i}{w} \lambda_{j}^{k-i-w} x_{l-w}^{(j)}
$$

(For nonnegative integers a, b, we assume $\binom{a}{b}=0$ if $b>a$). We have $z_{l}^{k j}=x_{l}^{(j)}$, $l=1, \ldots, l_{j}$, implying $Z_{k, j}=X_{j}$. Now suppose that $i<k$. We have $z_{1}^{(i j)}=$ $\lambda_{j}^{k-i} x_{l}^{(j)}=\lambda_{j} z_{1}^{(i+1, j)}$. Also, for $l=1, \ldots, l_{j}-1$,

$$
\begin{aligned}
& \lambda_{j} z_{l+1}^{(i+1, j)}+z_{l}^{(i+1, j)} \\
& =\sum_{w=0}^{l}\binom{k-i-1}{w} \lambda_{j}^{k-i-w} x_{l+1-w}^{(j)}+\sum_{w=0}^{l-1}\binom{k-i-1}{w} \lambda_{j}^{k-i-1-w} x_{l-w}^{(j)} \\
& =\lambda_{j}^{k-i} x_{l+1}^{(j)}+\sum_{i=1}^{l}\left[\binom{k-i-1}{w}+\binom{k-i-1}{w-1}\right] \lambda_{j}^{k-i-w} x_{l+1-w}^{(j)} \\
& =\lambda_{j}^{k-i} x_{l+1}^{(j)}+\sum_{i=1}^{l}\binom{k-i}{w} \lambda_{j}^{k-i-w} x_{l+1-w}^{(j)}=z_{l+1}^{(i, j)}
\end{aligned}
$$

Thus, it follows that $Z_{i, j}=Z_{i+1, j} J_{l_{j}}\left(\lambda_{j}\right)$.
Now we show the second claim. Since the columns of X form Jordan chains for $P(\lambda)$, by definition of $Z(X)$ and Theorem 5.2, the corresponding columns of $Z(X)$ form Jordan chains for $L(\lambda):=D(P, v)=\lambda L_{1}-L_{0}$, and thus, for $C_{L}=L_{1}^{-1} L_{0}$. Therefore, $C_{L} Z(X)=Z(X) J$. Since we have proven that $Z(X)=R S$, and R and S are invertible, it follows that $Z(X)$ is also invertible. Thus, we have $J=$ $Z(X)^{-1} C_{L} Z(X)$, which implies that $(Z(X), J)$ is a Jordan pair for $D(P, v)$.

The following is a nice consequence of the previous result and emphasizes the fact that the Jordan chains for a pencil in $\mathbb{D} \mathbb{L}(P)$ do not depend on the ansatz vector associated with the pencil.

Corollary 5.6. Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree k with nonsingular leading coefficient. If $L(\lambda) \in \mathbb{D} \mathbb{L}(P)$ is a linearization of $P(\lambda)$, then the companion matrix C_{L} of $L(\lambda)$ is given by $R C_{P} R$, where R is as in (5.5).

Proof. If (X, J) is a Jordan pair for $P(\lambda)$ and S is the (X, J)-matrix, we have $J=S^{-1} C_{P} S$. From Proposition $5.5, Z(X)=R S$ and $J=Z(X)^{-1} C_{L} Z(X)$, where $Z(X)$ is the L-matrix associated with X. Thus, the claim follows.

As follows from Proposition 5.5, if $D(P, v) \in \mathbb{H}(P)$ is a linearization of a Hermitian matrix polynomial $P(\lambda)$ with nonsingular leading coefficient, then $(Z(X), J)$ is a Jordan pair for $D(P, v)$, that is,

$$
J=Z(X)^{-1} C_{D(P, v)} Z(X) .
$$

Unfortunately, in general, the pair $(Z(X), J)$ is not a reducing Jordan pair associated with $L(\lambda)$ (see Definition 2.3), even if (X, J) is a reducing pair for $P(\lambda)$, because, $Z(X)^{*} B_{L} Z(X)$ may not be of the form $P_{\epsilon, J}$ for a set of signs ϵ. However, the matrix

$$
H(X, J, v):=Z(X)^{*} B_{D(P, v)} Z(X)
$$

will play an important role in finding the sign characteristic of $D(P, v)$. In the next section we study the block-structure of $H(X, J, v)$.
6. Block-Hankel structure of $H(X, J, v)$. Let $P(\lambda)$ be a Hermitian matrix polynomial with nonsingular leading coefficient, and $D(P, v)) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. If (X, J) is a Jordan pair for $P(\lambda)$, it follows from Lemma 8.2 applied to $D(P, v)$ that $H(X, J, v)=H_{1} \oplus H_{2}$, where H_{1} is of the same size as the submatrix of J formed by the blocks corresponding to the real eigenvalues of $P(\lambda)$. Next we will show that the matrix H_{1} has a certain "block-Hankel" structure.

We start with an auxiliary lemma, which generalizes Lemma 2.8 in [1], where it was proven that, if λ_{0} is a finite eigenvalue of $P(\lambda)$ (and, therefore of a linearization $L(\lambda) \in \mathbb{H}(P))$ and x is a (right) eigenvector of $P(\lambda)$ associated with λ_{0}, then

$$
z^{*} L^{\prime}\left(\lambda_{0}\right) z=p\left(\lambda_{0} ; v\right)\left(x^{*} P^{\prime}\left(\lambda_{0}\right) x\right)
$$

where $z=\Lambda\left(\lambda_{0}\right) \otimes x$ is a right eigenvector of $L(\lambda)$ and $p(\lambda ; v)$ is defined in (3.2).
Lemma 6.1. Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial of degree k with nonsingular leading coefficient and let $L(\lambda)=D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. Let (X, J) be a Jordan pair for $P(\lambda)$. Let λ_{0} be a real eigenvalue of $P(\lambda)$ and y_{1} be an associated (right) eigenvector of $P(\lambda)$ in X. Let $\left\{x_{1}, \ldots x_{s}\right\}$ be a maximal Jordan chain of $P(\lambda)$ corresponding to λ_{0} obtained from X and let $\left\{z_{1}, \ldots, z_{s}\right\}$ be the associated Jordan chain for $L(\lambda)$. Then, for $1 \leq r \leq s$,

$$
\begin{equation*}
\left\langle\Lambda\left(\lambda_{0}\right) \otimes y_{1}, B_{L} z_{r}\right\rangle=p\left(\lambda_{0} ; v\right)\left\langle y_{1}, \sum_{j=1}^{r} \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right) x_{r+1-j}\right\rangle, \tag{6.1}
\end{equation*}
$$

where $p(\lambda ; v)$ is the v-polynomial. Moreover, if (X, J) is a reducing Jordan pair associated with $P(\lambda)$, then

$$
\left\langle\Lambda\left(\lambda_{0}\right) \otimes y_{1}, B_{L} z_{r}\right\rangle= \begin{cases}\epsilon_{0} p\left(\lambda_{0} ; v\right), & \text { if } r=s \text { and } y_{1}=x_{1} \\ 0, & \text { if } r<s \text { or } y_{1} \neq x_{1}\end{cases}
$$

where ϵ_{0} is the sign in the sign characteristic of $P(\lambda)$ associated with the Jordan chain $\left\{x_{1}, \ldots x_{s}\right\}$.

Proof. Denote $w_{1}:=\Lambda\left(\lambda_{0}\right) \otimes y_{1}$. Taking into account (5.4) and the fact that $B_{L}=L_{1}=L^{\prime}\left(\lambda_{0}\right)$, we get

$$
\left\langle w_{1}, B_{L} z_{r}\right\rangle=\left\langle w_{1}, L^{\prime}\left(\lambda_{0}\right) \sum_{j=0}^{r-1}\left(\frac{1}{j!} \Lambda^{(j)}\left(\lambda_{0}\right) \otimes x_{r-j}\right)\right\rangle
$$

Then, using Lemma 5.1, we have

$$
\begin{aligned}
& \left\langle w_{1}, B_{L} z_{r}\right\rangle \\
& =\left\langle w_{1}, v \otimes\left(\sum_{j=1}^{r} \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right) x_{r+1-j}\right)-L\left(\lambda_{0}\right)\left(\sum_{j=1}^{r} \frac{1}{j!} \Lambda^{(j)}\left(\lambda_{0}\right) \otimes x_{r+1-j}\right)\right\rangle \\
& =\left\langle w_{1}, v \otimes\left(\sum_{j=1}^{r} \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right) x_{r+1-j}\right)\right\rangle-\left\langle L\left(\lambda_{0}\right) w_{1}, \sum_{j=1}^{r} \frac{1}{j!} \Lambda^{(j)}\left(\lambda_{0}\right) \otimes x_{r+1-j}\right\rangle \\
& =\left\langle w_{1}, v \otimes\left(\sum_{j=1}^{r} \frac{1}{j!} P^{(j)}\left(\lambda_{0}\right) x_{r+1-j}\right)\right\rangle .
\end{aligned}
$$

where the second equality follows because $L\left(\lambda_{0}\right)$ is Hermitian and the last equality follows because w_{1} is an eigenvector for $L(\lambda)$ associated with λ_{0}. Now (6.1) follows taking into account the definition of w_{1} and using the properties of the Kronecker product as well as the fact that $p\left(\lambda_{0} ; v\right)=\left\langle\Lambda\left(\lambda_{0}\right), v\right\rangle$. The second claim follows from (6.1) and Theorem 1.11 in [6].

Let (X, J) be a Jordan pair for $P(\lambda)$ and let $L(\lambda)=D(P, v) \in \mathbb{H}(P)$. Let X_{i} denote a Jordan chain of $P(\lambda)$ in X, with sign characteristic ϵ_{i}, and let Z_{i} be the corresponding Jordan chain in $Z(X)$. Then, Lemma 6.1 implies that, in the i th main diagonal block of $H(X, J, v)$ (that is, the block $Z_{i}^{*} B_{L} Z_{i}$), the element in the first column and last row is $\epsilon_{i} p\left(\lambda_{0} ; v\right)$, while the rest of the elements in the first column are zero. Additionally, in the non-diagonal blocks, corresponding to products of two distinct Jordan chains associated with the same real eigenvalue, the first column is all zeros.

We now give a more detailed description of the structure of $H(X, J, v)$. We will use the following notation and concepts.

Recall that a $p \times p$ matrix $B=\left[b_{i j}\right]$ is said to be Hankel if $b_{i, j-1}=b_{i-1, j}$, for all $i, j=2, \ldots, p$. We call the ordered set of entries $b_{i, p+1-i}, i=1, \ldots, p$ the main skew-diagonal of B.

We denote by $H_{p \times q}$ the set of $p \times q$ matrices A of the form

$$
A=\left[\begin{array}{ll}
0 & B
\end{array}\right], \text { if } i \leq j, \quad \text { and } A=\left[\begin{array}{c}
0 \\
B
\end{array}\right], \text { if } i \geq j,
$$

where B is a square Hankel matrix with zeros above the main skew-diagonal. Note that, for $A=\left[a_{i j}\right]$, we have $a_{i j}=0$ for $i+j<p+1+\max \{0, q-p\}$. We denote by $H_{p \times q}^{0}$ the subset of matrices in $H_{p \times q}$ in which B has zeros on the main skew-diagonal.

Definition 6.2. Let $A=\left[A_{i j}\right]_{i, j=1: l}$, with $A_{i j} \in \mathbb{C}^{s_{i} \times s_{j}}$. We say that A is an $\left(s_{1}, s_{2}, \cdots, s_{l}\right)$ block-Hankel matrix if $A_{i i} \in H_{s_{i} \times s_{i}}$ and $A_{i j} \in H_{s_{i} \times s_{j}}^{0}$ for $i \neq j$, and we call the entries $\alpha_{1}, \ldots, \alpha_{l}$ on the main skew-diagonal of the blocks $A_{i i}, i=1, \ldots, l$, the main skew-diagonal entries of A.

Lemma 6.3. Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial of degree k with nonsingular leading coefficient and let (X, J) be a reducing Jordan pair for $P(\lambda)$. Let λ_{0} be a real eigenvalue of $P(\lambda)$. Let $L(\lambda)=D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. Let $\left\{x_{1}, \ldots, x_{c}\right\}$ and $\left\{y_{1}, \ldots, y_{r}\right\}$ be maximal Jordan chains of $P(\lambda)$ associated with λ_{0} obtained from X, and let $\left\{z_{1}, \ldots, z_{c}\right\}$ and $\left\{w_{1}, \ldots, w_{r}\right\}$ be, respectively, the associated Jordan chains for $L(\lambda)$. Let $Z:=\left[z_{1}, \ldots, z_{c}\right]$ and $W:=\left[w_{1}, \ldots, w_{r}\right]$. Then the following conditions hold.
i) $Z^{*} B_{L} Z \in H_{c \times c}$ has real entries and has main skew-diagonal entries equal to $\epsilon_{0} p\left(\lambda_{0}, v\right)$, where ϵ_{0} is the sign in the sign characteristic of $P(\lambda)$ corresponding to the Jordan chain $\left\{x_{1}, \ldots, x_{c}\right\}$.
ii) $Z^{*} B_{L} W \in H_{c \times r}^{0}$ if Z and W are distinct.

Proof. Since, by Theorem 5.2, the columns of Z form a Jordan chain for $L(\lambda)$ at λ_{0}, we have

$$
\sum_{j=0}^{i-1} \frac{1}{j!} L^{(j)}\left(\lambda_{0}\right) z_{i-j}=0
$$

for $i \leq c$. This is equivalent to

$$
\begin{equation*}
L\left(\lambda_{0}\right) z_{1}=0 \quad \text { and } \quad L\left(\lambda_{0}\right) z_{i}+L^{\prime}\left(\lambda_{0}\right) z_{i-1}=0 \tag{6.2}
\end{equation*}
$$

for $i=2, \ldots, c$. We prove that the $c \times c$ matrix $Z^{*} B_{L} Z=\left[\left\langle B_{L} z_{j}, z_{i}\right\rangle\right]_{i, j}$ is a Hankel matrix by showing that

$$
\left\langle B_{L} z_{j-1}, z_{i}\right\rangle=\left\langle B_{L} z_{j}, z_{i-1}\right\rangle, \quad i, j=2, \ldots, c
$$

Taking into account (6.2) and the fact that both $B_{L}=L^{\prime}\left(\lambda_{0}\right)$ and $L\left(\lambda_{0}\right)$ are Hermitian, we have

$$
\begin{aligned}
\left\langle L^{\prime}\left(\lambda_{0}\right) z_{j-1}, z_{i}\right\rangle & =\left\langle-L\left(\lambda_{0}\right) z_{j}, z_{i}\right\rangle \\
& =\left\langle-z_{j}, L\left(\lambda_{0}\right) z_{i}\right\rangle=\left\langle-z_{j},-L^{\prime}\left(\lambda_{0}\right) z_{i-1}\right\rangle \\
& =\left\langle z_{j}, L^{\prime}\left(\lambda_{0}\right) z_{i-1}\right\rangle=\left\langle L^{\prime}\left(\lambda_{0}\right) z_{j}, z_{i-1}\right\rangle,
\end{aligned}
$$

showing the claim. Moreover, since $H(X, J, v)$ is Hermitian, the entries of the Hankel matrix $Z^{*} B_{L} Z$ are real.

A similar argument shows that the $c \times r$ matrix $Z^{*} B_{L} W=\left[\left\langle B_{L} z_{j}, w_{i}\right\rangle\right]_{i, j}$ also has constant elements along the "skew-diagonals", that is, $\left\langle B_{L} z_{j-1}, w_{i}\right\rangle=\left\langle B_{L} z_{j}, w_{i-1}\right\rangle$, for $i=2, \ldots, c$ and $j=2, \ldots, r$.

Let $\left\{z_{1}, \ldots z_{c}\right\}$ and $\left\{w_{1}, \ldots, w_{r}\right\}$ be the columns of the (X, J)-matrix corresponding to $\left\{x_{1}, \ldots, x_{c}\right\}$ and $\left\{y_{1}, \ldots, y_{r}\right\}$, respectively. To complete our proof, it is enough to show that

$$
\begin{gather*}
\left\langle B_{L} z_{1}, z_{j}\right\rangle=0, \quad \text { if } \quad j=1, \ldots, c-1, \tag{6.3}\\
\left\langle B_{L} z_{1}, z_{c}\right\rangle=\epsilon_{0} p\left(v, \lambda_{0}\right) \tag{6.4}
\end{gather*}
$$

and, if $Z \neq W$,

$$
\begin{gather*}
\left\langle B_{L} z_{1}, w_{j}\right\rangle=0, \quad \text { if } \quad j=1, \ldots, c \tag{6.5}\\
\left\langle B_{L} z_{j}, w_{1}\right\rangle=0 \quad \text { if } \quad j=1, \ldots, r \tag{6.6}
\end{gather*}
$$

Conditions (6.3), (6.4), (6.5) and (6.6) follow from Lemma 6.1. Note that to obtain (6.6) we use the fact that

$$
\left\langle B_{L} z_{j}, w_{1}\right\rangle=\left\langle w_{1}, B_{L} z_{j}\right\rangle^{*} .
$$

The next corollary is an immediate consequence of the previous lemma.
Corollary 6.4. Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial of degree k with nonsingular leading coefficient and let $\left(J, P_{\epsilon, J}\right)$ be a canonical pair for $P(\lambda)$ with reducing Jordan pair (X, J). Suppose that $J=J_{1} \oplus J_{2}$, where J_{2} has nonreal eigenvalues and $J_{1}=J_{11} \oplus \cdots \oplus J_{1 l}$ has real eigenvalues, with

$$
J_{1 i}=J_{s_{i, 1}}\left(\lambda_{i}\right) \oplus \cdots \oplus J_{s_{i, l_{i}}}\left(\lambda_{i}\right)
$$

and $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. Let the main diagonal block of $P_{\epsilon, J}$ corresponding to $J_{1 i}$ be $\epsilon_{i, 1} \mathcal{R}_{s_{i, 1}} \oplus \cdots \oplus \epsilon_{i, l_{i}} \mathcal{R}_{s_{i, l_{i}}}$. Let $L(\lambda)=D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$ and let $Z=Z(X)$ be the L-matrix associated with X, where

$$
Z=\left[\begin{array}{llll}
Z_{11} & \cdots & Z_{1 l_{i}} & Z_{2}
\end{array}\right]
$$

and the number of columns of $Z_{1 i}$ and $J_{1 i}$ is the same. Then $Z_{1 i}^{*} B_{L} Z_{1 i}, i=1, \ldots, l$, is an $\left(s_{i, 1}, s_{i, 2}, \cdots, s_{i, l_{i}}\right)$ block-Hankel matrix with real main skew-diagonal entries $\epsilon_{i, 1} p\left(\lambda_{i} ; v\right), \ldots, \epsilon_{i, l_{i}} p\left(\lambda_{i} ; v\right)$.

Given a reducing pair (X, J) of a regular Hermitian $P(\lambda)$, by Lemma $5.5,(Z(X), J)$, where $Z(X)$ is the L-matrix associated with X, is a Jordan pair for a linearization $L(\lambda) \in \mathbb{H}(P)$. By Proposition 2.4 applied to $L(\lambda)$ (note that $Z(X)$ coincides with the $(Z(X), J)$-matrix), a pair $\left(J, P_{\epsilon^{\prime}, J}\right)$ is a canonical pair for $L(\lambda)$ if and only if there exists a nonsingular matrix Q that commutes with J and such that

$$
Q^{*} P_{\epsilon^{\prime}, J} Q=Z(X)^{*} B_{L} Z(X)=H(X, J, v)
$$

It is well-known that matrices that commute with a Jordan matrix are special cases of block-Toeplitz matrices. In the next section we study the existence of block-Toeplitz solutions Q of a general equation of the form $Q^{*} \mathcal{L} Q=H$, where H has a block-Hankel structure and \mathcal{L} is a direct sum of matrices as in (5.5), multiplied by some constants ± 1.
7. On the block-Toeplitz solutions of the equation $Q^{*} \mathcal{L} Q=H$ for a block-Hankel H. The main result in this section is Theorem 7.7, which will be used in Section 8 to prove our main theorem (Theorem 4.1) and has also independent interest.

We start with some definitions.
Recall that a $p \times p$ matrix $B=\left[b_{i j}\right]$ is said to be Toeplitz if it has constant values along the negative-sloping diagonals, i.e., $b_{i, j}=b_{i+1, j+1}, i, j=1, \ldots, p-1$.

In what follows we denote by $T_{p \times q}$ the set of $p \times q$ matrices A of the form

$$
A=\left[\begin{array}{ll}
0 & B
\end{array}\right], \text { if } p \leq q, \quad \text { and } A=\left[\begin{array}{c}
B \\
0
\end{array}\right], \text { if } p \geq q
$$

where B is an upper triangular Toeplitz matrix. Note that, for $A=\left[a_{i j}\right], a_{i j}=0$ for $i>j-\max \{0, q-p\}$. We denote by $T_{p \times q}^{0}$ the subset of matrices in $T_{p \times q}$ such that B is nilpotent, that is, its main diagonal entries are all zero. Note that $A \in T_{p \times q}$ (resp. $A \in T_{p \times q}^{0}$) if and only if $\mathcal{R}_{p} A \in H_{p \times q}$ (resp. $\mathcal{R}_{p} A \in H_{p \times q}^{0}$), where \mathcal{R}_{p} is defined in (2.4).

Definition 7.1. Let $A=\left[A_{i j}\right]_{i, j=1, \ldots, l}$, with $A_{i j} \in \mathbb{C}^{s_{i} \times s_{j}}$. We say that A is an $\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ block-Toeplitz matrix if $A_{i i} \in T_{s_{i} \times s_{i}}$ and $A_{i j} \in T_{s_{i} \times s_{j}}^{0}$ for $i \neq j$.

The following lemma can be easily verified.

Lemma 7.2. Let $\mathbf{a}=\left[a_{1}, \ldots, a_{m}\right]^{T} \in \mathbb{C}^{m}$. Then

$$
\mathbf{a}^{T} \mathcal{R}_{m} \mathbf{a}= \begin{cases}a_{1}^{2}, & m=1 ; \\ \sum_{l=1}^{\frac{m}{2}} 2 a_{l} a_{m+1-l}, & \text { if } m>1 \text { and } m \text { is even } \\ a_{\frac{m+1}{2}}^{2}+\sum_{l=1}^{\frac{m-1}{2}} 2 a_{l} a_{m+1-l}, & \text { if } m>1 \text { and } m \text { is odd }\end{cases}
$$

Proposition 7.3. Let $B \in H_{p \times p}$ be a real matrix with all the entries on the main skew-diagonal equal to $b_{1} \neq 0$. Then, there exists a real nonsingular matrix $A \in T_{p \times p}$ such that $A^{T} \mathcal{R}_{p} A=\operatorname{sign}\left(b_{1}\right) B$.

Proof. Let B be the real Hankel matrix given by

$$
B=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & b_{1} \\
0 & & & b_{1} & b_{2} \\
\vdots & & . \cdot & . \cdot & \vdots \\
0 & b_{1} & b_{2} & & b_{p-1} \\
b_{1} & b_{2} & \cdots & b_{p-1} & b_{p}
\end{array}\right] \in H_{p \times p}
$$

with $b_{1} \neq 0$. Let $\gamma=\operatorname{sign}\left(b_{1}\right)$. Consider the $p \times p$ Toeplitz matrix

$$
Q(B):=\left[\begin{array}{ccccc}
q_{1} & q_{2} & \cdots & q_{p-1} & q_{p} \\
& \ddots & \ddots & \vdots & q_{p-1} \\
& & \ddots & q_{2} & \vdots \\
& & & q_{1} & q_{2} \\
0 & & & & q_{1}
\end{array}\right]
$$

defined recursively by

$$
\begin{gather*}
q_{1}=\sqrt{\gamma b_{1}} \\
q_{m}=\frac{1}{2 q_{1}}\left(\gamma b_{m}-\sum_{\ell=2}^{\frac{m}{2}} 2 q_{\ell} q_{m-\ell+1}\right), \quad \text { if } m>1 \text { and } m \text { is even, } \tag{7.1}\\
q_{m}=\frac{1}{2 q_{1}}\left(\gamma b_{m}-q_{\frac{m+1}{2}}^{2}-\sum_{\ell=2}^{\frac{m-1}{2}} 2 q_{\ell} q_{m-\ell+1}\right), \quad \text { if } m>1 \text { and } m \text { is odd. }
\end{gather*}
$$

Notice that $Q(B)$ is nonsingular since $q_{1} \neq 0$, and is real since B is. Moreover, the matrix $Q(B)^{T} \mathcal{R}_{p} Q(B)$ is given by

$$
\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & \mathbf{q}_{1}^{T} \mathcal{R}_{1} \mathbf{q}_{1} \tag{7.2}\\
0 & 0 & \cdots & \mathbf{q}_{1}^{T} \mathcal{R}_{1} \mathbf{q}_{1} & \mathbf{q}_{2}^{T} \mathcal{R}_{2} \mathbf{q}_{2} \\
\vdots & \vdots & . \cdot & . \cdot & \vdots \\
0 & \mathbf{q}_{1}^{T} \mathcal{R}_{1} \mathbf{q}_{1} & \cdots & \mathbf{q}_{p-2}^{T} \mathcal{R}_{p-2} \mathbf{q}_{p-2} & \mathbf{q}_{p-1}^{T} \mathcal{R}_{p-1} \mathbf{q}_{p-1} \\
\mathbf{q}_{1}^{T} \mathcal{R}_{1} \mathbf{q}_{1} & \mathbf{q}_{2}^{T} \mathcal{R}_{2} \mathbf{q}_{2} & \cdots & \mathbf{q}_{p-1}^{T} \mathcal{R}_{p-1} \mathbf{q}_{p-1} & \mathbf{q}_{p}^{T} \mathcal{R}_{p} \mathbf{q}_{p}
\end{array}\right]
$$

where $\mathbf{q}_{i}=\left[q_{1}, \ldots, q_{i}\right]^{T}$ for $i=1, \ldots, p$. By Lemma $7.2, q_{1}^{T} R_{1} q_{1}=q_{1}^{2}=\operatorname{sign}\left(b_{1}\right) b_{1}$. Also, for $m>1$ even, we have

$$
\begin{aligned}
\mathbf{q}_{m}^{T} \mathcal{R}_{m} \mathbf{q}_{m} & =\sum_{l=1}^{m / 2} 2 q_{l} q_{m+1-l} \\
& =2 q_{1} q_{m}+\sum_{l=2}^{m / 2} 2 q_{l} q_{m+1-l}=\operatorname{sign}\left(b_{1}\right) b_{m}
\end{aligned}
$$

where the first equality follows from Lemma 7.2 and the third equality follows from (7.1). The proof for $m>1$ odd is similar. Thus, the claim follows with $A=Q(B)$. \square

Next we include some technical lemmas that will be useful to prove Theorem 7.7, which is the main result of this section.

Proposition 7.4. If $A \in T_{p \times q}^{0}$, then $A^{*} \mathcal{R}_{p} A \in H_{q \times q}^{0}$ and is a real matrix.
Proof. We prove the first claim for $p=q$ as the general case is a simple consequence of this one, which can be easily verified. Suppose that $p=q$. Let $B=\left[b_{i j}\right]:=A^{*}$ and $C=\left[c_{i j}\right]=\mathcal{R}_{p} A$. Since B is a nilpotent lower triangular matrix, we have $b_{i j}=0$ for $j \geq i$. Since $C \in H_{p \times p}^{0}$, we have $c_{i j}=0$ for $i+j \leq p+1$. Then, for $i+j \leq p+1$, we have $b_{i k} c_{k j}=0$ for $k=1, \ldots, p$. Thus, the (i, j) entry of $B C$ is 0 , implying the claim. Since $A^{*} \mathcal{R}_{p} A$ is Hankel and Hermitian, it is real. \square

Proposition 7.5. Let $B \in H_{p \times q}$. The following conditions hold:
(i) if $p=q, B$ is nonsingular and $C \in H_{p \times q}^{0}$, then $B^{-1} C \in T_{p \times q}^{0}$;
(ii) if $Q \in T_{q \times r}^{0}$, then $B Q \in H_{p \times r}^{0}$.

Proof. We prove claim (i). We have $B=\mathcal{R} T$, for some $T \in T_{p \times p}$. Since $T^{-1} \in T_{p \times p}$ and $\mathcal{R} C \in T_{p \times q}^{0}$, we get $B^{-1} C=T^{-1}(\mathcal{R} C) \in T_{p \times q}^{0}$.

The proof of claim (ii) follows with arguments similar to those used in the proof of Proposition 7.4.

The next result is stated using a notation that allows an immediate application in the proof of Theorem 7.7.

LEMMA 7.6. Let Q_{11} be a nonsingular upper triangular $\left(s_{1}, s_{2}, \cdots, s_{l-1}\right)$ blockToeplitz matrix and

$$
H_{12}=\left[\begin{array}{c}
H_{1} \\
\vdots \\
H_{l-1}
\end{array}\right]
$$

where $H_{i} \in H_{s_{i} \times s_{l}}^{0}$. Let

$$
\begin{equation*}
R_{11}=t_{1} \mathcal{R}_{s_{1}} \oplus \cdots \oplus t_{l-1} \mathcal{R}_{s_{l-1}} \tag{7.3}
\end{equation*}
$$

where $t_{i}= \pm 1$ for $i=1, \ldots, l-1$. Then $Q_{12}=R_{11} Q_{11}^{-*} H_{12}$ can be partitioned as

$$
Q_{12}=\left[\begin{array}{c}
Q_{1} \tag{7.4}\\
\vdots \\
Q_{l-1}
\end{array}\right]
$$

with $Q_{i} \in T_{s_{i} \times s_{l}}^{0}$.
Proof. We show that the unique solution of the equation $Q_{11}^{*} R_{11} X=H_{12}$, say Q_{12}, is of the claimed form.

Since the matrix $Q_{11}^{*} R_{11}$ is a nonsingular block lower triangular matrix, we can solve the equation $Q_{11}^{*} R_{11} X=H_{12}$ recursively by forward substitution, obtaining matrices Q_{1}, \ldots, Q_{l-1} so that Q_{12} as in (7.4) is a solution of the equation. Since $Q_{11}^{*} R_{11}$ is a nonsingular $\left(s_{1}, s_{2}, \cdots, s_{l-1}\right)$ block-Hankel matrix, and $H_{1} \in H_{s_{1} \times s_{l}}^{0}$, taking into account the first claim in Proposition $7.5, Q_{1} \in T_{s_{1} \times s_{l}}^{0}$. Using the second claim in the same proposition, in the second step of the recursion to solve $Q_{11}^{*} R_{11} X=$ H_{12}, we get an equation of the form $B_{2} Q_{2}=C_{2}$, with $B_{2} \in H_{s_{2} \times s_{2}}$ nonsingular and $C_{2} \in H_{s_{2} \times s_{l}}^{0}$, and applying the first claim in Proposition 7.5 again, we get that Q_{2} has the desired form. In general, in step i we have an equation of the form $B_{i} Q_{i}=C_{i}$, with $B_{i} \in H_{s_{i} \times s_{i}}$ nonsingular, and $C_{i} \in H_{s_{i} \times s_{l}}^{0}$ and the result follows from the second claim in Proposition 7.5.

We now give the main result in this section.
Theorem 7.7. Let H be a Hermitian $\left(s_{1}, s_{2}, \cdots, s_{l}\right)$ block-Hankel matrix with nonzero main skew-diagonal entries $\alpha_{1}, \ldots, \alpha_{l}$ and let $t_{i}=\operatorname{sign}\left(\alpha_{i}\right)$, for $i=1, \ldots, l$. Let

$$
\mathcal{L}=t_{1} \mathcal{R}_{s_{1}} \oplus \cdots \oplus t_{l} \mathcal{R}_{s_{l}}
$$

Then, there exists a nonsingular upper triangular $\left(s_{1}, s_{2}, \cdots, s_{l}\right)$ block-Toeplitz matrix Q such that $Q^{*} \mathcal{L} Q=H$.

Proof. The proof is by induction on l. Since H is Hermitian and the main diagonal blocks of H are Hankel matrices, these blocks have real entries. Thus, if $l=1$, the claim follows from Proposition 7.3.

Now suppose that $l>1$. Let R_{11} be as in (7.3). Partition H as

$$
H=\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right]
$$

with $H_{22} \in H_{s_{l} \times s_{l}}$. Note that H_{22} is real and H_{11} is an $\left(s_{1}, s_{2}, \cdots, s_{l-1}\right)$ block-Hankel matrix with main skew-diagonal entries $\alpha_{1}, \ldots, \alpha_{l-1}$. By the induction hypothesis, there exists a nonsingular upper triangular $\left(s_{1}, s_{2}, \cdots, s_{l-1}\right)$ block-Toeplitz matrix Q_{11} such that $Q_{11}^{*} R_{11} Q_{11}=H_{11}$.

Next we find Q_{12} and Q_{22} so that

$$
Q=\left[\begin{array}{cc}
Q_{11} & Q_{12} \\
0 & Q_{22}
\end{array}\right]
$$

satisfies $Q^{*} \mathcal{L} Q=H$, or equivalently, taking into account that H is Hermitian,

$$
Q_{11}^{*} R_{11} Q_{12}=H_{12}
$$

and

$$
\begin{equation*}
Q_{12}^{*} R_{11} Q_{12}+Q_{22}^{*} t_{l} \mathcal{R}_{s_{l}} Q_{22}=H_{22} \tag{7.5}
\end{equation*}
$$

Clearly, $Q_{12}:=R_{11} Q_{11}^{-*} H_{12}$. By Lemma 7.6, Q_{12} has the form (7.4) with $Q_{i} \in T_{s_{i} \times s_{l}}^{0}$. Taking into account Proposition 7.4, it follows that $Q_{12}^{*} R_{11} Q_{12}=$ $\sum_{i=1}^{l-1} Q_{i}^{*} t_{i} \mathcal{R}_{s_{i}} Q_{i} \in H_{s_{l} \times s_{l}}^{0}$ and is real. Thus, the existence of $Q_{22} \in T_{s_{l} \times s_{l}}$ satisfying (7.5) follows from Proposition 7.3.
8. Proof of Theorem 4.1. In this section we prove Theorem 4.1. We will need the next lemma, which is a refinement of Proposition 2.4. To prove it we use the following fact, which is a simple consequence of Theorem 4.46 in [10] (see also the exercise after this theorem).

REMARK 8.1. Let $A=A_{1} \oplus A_{2}$, with $A_{1} \in \mathbb{C}^{p \times p}$ and $A_{2} \in \mathbb{C}^{q \times q}$. Suppose that A_{1} and A_{2} have no eigenvalues in common. Then any matrix X commuting with A has the form $X=X_{1} \oplus X_{2}$, with $X_{1} \in \mathbb{C}^{p \times p}$ and $X_{2} \in \mathbb{C}^{q \times q}$.

Lemma 8.2. Let $P(\lambda)$ be an $n \times n$ Hermitian matrix polynomial as in (1.1) with nonsingular A_{k} and let (X, J) be a Jordan pair for $P(\lambda)$. Suppose that $J=J_{1} \oplus J_{2}$, where $J_{1}=J_{11} \oplus \cdots \oplus J_{1 l}$ is of size $p \times p$ and has real eigenvalues, J_{2} is of size $q \times q$ and has nonreal eigenvalues, each $J_{1 i}, i=1, \ldots, l$, is a direct sum of Jordan blocks corresponding to the same eigenvalue, and $J_{1 i}$ and $J_{1 j}$ have distinct eigenvalues for $i \neq j$. Then, the following conditions hold:
(i) If Z is the (X, J)-matrix, then

$$
\begin{equation*}
Z^{*} B_{P} Z=H_{1} \oplus H_{2}, \tag{8.1}
\end{equation*}
$$

where $H_{1}=H_{11} \oplus \cdots \oplus H_{1 l}$ for some $H_{1 i}, i=1, \ldots, l$, of size equal to the size of $J_{1 i}$, and H_{2} is of size $q \times q$.
(ii) For a set of signs ϵ associated with $J,\left(J, P_{\epsilon, J}\right)$ is a canonical pair for $P(\lambda)$ if and only if there exists nonsingular matrices $Q_{1 i}, i=1, \ldots, l$, such that

$$
\begin{equation*}
J_{1 i}=Q_{1 i}^{-1} J_{1 i} Q_{1 i}, \quad \text { and } \quad Q_{1 i}^{*} P_{1 i} Q_{1 i}=H_{1 i} \tag{8.2}
\end{equation*}
$$

where $P_{\epsilon, J}=P_{1} \oplus P_{2}, P_{1}=P_{11} \oplus \cdots \oplus P_{1 l}$ is $p \times p$ and is partitioned as J_{1}, P_{2} is $q \times q$, and $H_{1, i} i=1, \ldots, l$ are as in (i).
Proof. We first note the following fact that follows from Remark 8.1, taking into account that $J_{11}, \ldots, J_{1 l}, J_{2}$ have distinct eigenvalues, and will be used in the proof: if Q is nonsingular and $Q^{-1} J Q=J$, then

$$
\begin{equation*}
Q=Q_{11} \oplus \cdots \oplus Q_{1 l} \oplus Q_{2} \tag{8.3}
\end{equation*}
$$

where $Q_{1 i}, i=1, \ldots, l$, has the same size as $J_{1 i}$, and Q_{2} is $q \times q$.
Then, Condition (i) follows from the "only if" claim in Proposition 2.4 (observe that, by Theorem 2.2, there is a canonical pair for $P(\lambda)$). The" only if" claim in (ii) follows with similar arguments.

Now we show the " if" claim in (ii). Suppose that a pair $\left(J, P_{\epsilon, J}\right)$ is such that (8.2) holds for some nonsingular matrices $Q_{1 i}, i=1, \ldots, l$. We will show that $\left(J, P_{\epsilon, J}\right)$ is a canonical pair for $P(\lambda)$. Let ϵ^{\prime} be a set of signs associated with J such that $\left(J, P_{\epsilon^{\prime}, J}\right)$ is a canonical pair for $P(\lambda)$, and consider the partition $P_{\epsilon^{\prime}, J}=P_{1}^{\prime} \oplus P_{2}^{\prime}$, where P_{1}^{\prime} is $p \times p$ and P_{2}^{\prime} is $q \times q$. Note that, because J_{2} has no real eigenvalues, $P_{2}^{\prime}=P_{2}$. By Proposition 2.4, if Z is the (X, J)-matrix, we have

$$
\begin{equation*}
J=V^{-1} J V \text { and } V^{*} P_{\epsilon^{\prime}, J} V=Z^{*} B_{P} Z \tag{8.4}
\end{equation*}
$$

for some nonsingular V. Since J_{1} and J_{2} have no common eigenvalues and J commutes with V, again by Remark 8.1 we have

$$
V=V_{1} \oplus V_{2}
$$

where V_{1} is $p \times p$ and V_{2} is $q \times q$. By condition (i), (8.1) holds. Thus, condition (8.4) is equivalent to

$$
V_{1}^{*} P_{1}^{\prime} V_{1}=H_{1}, V_{2}^{*} P_{2}^{\prime} V_{2}=H_{2}, V_{1}^{-1} J_{1} V_{1}=J_{1}, \text { and } V_{2}^{-1} J_{2} V_{2}=J_{2} .
$$

Since (8.2) holds, we have that $J_{1}=Q_{1}^{-1} J_{1} Q_{1}$ and $V_{1}^{*} P_{1}^{\prime} V_{1}=H_{1}=Q_{1}^{*} P_{1} Q_{1}$, where $Q_{1}=Q_{11} \oplus \cdots \oplus Q_{1 l}$. Then, taking into account that $P_{2}^{\prime}=P_{2}$,

$$
J=W^{-1} J W \quad \text { and } \quad W^{*} P_{\epsilon, J} W=Z^{*} B_{P} Z
$$

where $W=Q_{1} \oplus V_{2}$. By Proposition 2.4, we deduce that $\left(J, P_{\epsilon, J}\right)$ is a canonical pair for $P(\lambda)$.

We now prove the main result in this paper.
Proof of Theorem 4.1. Let $\left(J, P_{\epsilon, J}\right)$ be a canonical pair for $P(\lambda)$ and (X, J) be the associated reducing Jordan pair. Let $L(\lambda)=D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. Assume that $J=J_{1} \oplus J_{2}$, where J_{2} has no real eigenvalues and $J_{1}=$ $J_{11} \oplus \cdots \oplus J_{1 l}$ has the real eigenvalues of $P(\lambda)$. Moreover, assume that $J_{1 i}$ only has one eigenvalue, say λ_{i}, and $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$. Suppose that the main diagonal block of $P_{\epsilon, J}$ corresponding to $J_{1 i}$ is

$$
P_{1 i}:=\epsilon_{i, 1} \mathcal{R}_{s_{i, 1}} \oplus \cdots \oplus \epsilon_{i, l_{i}} \mathcal{R}_{s_{i, l_{i}}}
$$

Let $Z(X)$ be the L-matrix associated with X. Then, by Proposition 5.5 and by definition of the matrix $H(X, J, v)$, we have

$$
J=Z(X)^{-1} C_{L} Z(X), \quad Z(X)^{*} B_{L} Z(X)=H(X, J, v)
$$

By Lemma 8.2 (i) (applied to $L(\lambda)$) and Corollary 6.4, we have $H(X, J, v)=$ $H_{11} \oplus \cdots H_{1 l} \oplus H_{2}$, where, for $i=1, \ldots, l, H_{1 i}$ is a $\operatorname{Hermitian}\left(s_{i, 1}, \ldots, s_{i, l_{i}}\right)$ blockHankel matrix whose main skew-diagonal entries are given by

$$
\operatorname{sign}\left(p\left(\lambda_{i} ; v\right)\right) \epsilon_{i, 1}, \ldots, \operatorname{sign}\left(p\left(\lambda_{i} ; v\right)\right) \epsilon_{i, l_{i}}
$$

Note that, since $L(\lambda)$ is a linearization of $P(\lambda)$, by Theorem 3.1, $p\left(\lambda_{i} ; v\right) \neq 0$ for all λ_{i}.

By Theorem 7.7, for each $H_{1 i}$ there exists a nonsingular upper triangular $\left(s_{i, 1}, \ldots\right.$, $s_{i, l_{i}}$) block-Toeplitz matrix $Q_{1 i}$ such that

$$
Q_{1 i}^{*} \operatorname{sign}\left(p\left(\lambda_{i} ; v\right) P_{1 i} Q_{1 i}=H_{1 i}\right.
$$

Because of the structure of $Q_{1 i}$, we have $Q_{1 i} J_{1 i}=J_{1 i} Q_{1 i}$ (see Lemma 4.4.11 in [10]). Then, by Lemma 8.2 (ii), ($\left.J, P_{\epsilon^{\prime}, J}\right)$ is a canonical pair for $L(\lambda)$, where the main diagonal block of $P_{\epsilon^{\prime}, J}$ corresponding to $J_{1 i}$ is

$$
P_{1 i}:=\operatorname{sign}\left(p\left(\lambda_{i} ; v\right)\right)\left[\epsilon_{i, 1} \mathcal{R}_{s_{i, 1}} \oplus \cdots \oplus \epsilon_{i, l_{i}} \mathcal{R}_{s_{i, l_{i}}}\right]
$$

Thus, the claim follows.
We close this section with the following remark. Let $L(\lambda)=D(P, v) \in \mathbb{H}(P)$ be a linearization of $P(\lambda)$. Using the notation in Lemma 8.2, it follows from this lemma that

$$
Z^{*} B_{L} Z=H_{11} \oplus \cdots \oplus H_{1 l} \oplus H_{2}
$$

where $H_{1 i}, i=1, \ldots, l$ is of size equal to the size of $J_{1 i}$, that is, corresponds to the blocks in J with the same eigenvalue λ_{i}, and H_{2} corresponds to the blocks in J with nonreal eigenvalues. In Corollary 6.4 we have shown that each matrix $H_{1 i}$ is blockHankel when partitioned as the corresponding block in J. We want to note that we can
show that each block $H_{1 i}$ is in fact block-diagonal and we can completely characterize the main diagonal blocks by giving the additional description of the entries below the main skew-diagonal. In fact, we can show that, for each of these main diagonal blocks, the entries in the j th diagonal below the main skew-diagonal are given by $\frac{\epsilon_{i}}{j!} p^{(j)}\left(\lambda_{i} ; v\right)$, where ϵ_{i} is the sign in the sign characteristic of $P(\lambda)$ associated with the corresponding Jordan block in J, λ_{i} is the associated eigenvalue, and $\left.p^{(j)}\right)\left(\lambda_{i} ; v\right)$ denotes the j th derivative of the v-polynomial evaluated at λ_{i}. Moreover, the matrices $Q_{1 i}$ in the proof of Theorem 4.1 can be taken block-diagonal with main diagonal blocks of the form $Q(B)$, for some matrices B. We did not consider this more detailed description of the structure of H as it is not necessary to prove the main result and some of the proofs involved are lengthy and very technical.
9. Conclusions. In this paper, for a Hermitian matrix polynomial $P(\lambda)$ with nonsingular leading coefficient, we have described the sign characteristic of the Hermitian linearizations of $P(\lambda)$ in the family $\mathbb{H}(P)$ of Hermitian pencils in $\mathbb{D L}(P)$, in terms of the sign characteristic of $P(\lambda)$. The connection between the sign characteristic of $P(\lambda)$ and the sign characteristic of its linearizations in $\mathbb{H}(P)$ is provided by the evaluation of the v-polynomial at the real eigenvalues of $P(\lambda)$.

Because the linearizations of $P(\lambda)$ in the family of Hermitian GFPR are *congruent to one of the last two pencils in the standard basis of $\mathbb{D} \mathbb{L}(P)$, we also described the sign characteristic of the linearizations of $P(\lambda)$ in that family.

In our study, we have considered the classical definition of the sign characteristic, which only applies to matrix polynomials with nonsingular leading coefficient, that is, to regular matrix polynomials with no infinite eigenvalues. By considering the recent definition of sign characteristic given in [12], in a future work, we intend to extend our results to Hermitian linearizations in $\mathbb{D L}(P)$ when $P(\lambda)$ is a regular Hermitian matrix polynomial with infinite elementary divisors. Note that, for $P(\lambda)$ singular, $\mathbb{D L}(P)$ has no linearizations of $P(\lambda)$. We also plan to study the sign characteristic of Hermitian GFPR linearizations of $P(\lambda)$ when $P(\lambda)$ has singular leading coefficient (that is, $P(\lambda)$ is singular or regular with infinite elementary divisors). In this case an approach different from the one considered in the paper should be followed since $D\left(P, e_{k}\right)$ and $D\left(P, e_{k-1}\right)$ are not linearizations of $P(\lambda)$.

REFERENCES

[1] M. Al-Ammari and F. Tissuer, Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification, Linear Algebra Appl., 436 (2012), pp. 3954-3973.
[2] M. I. Bueno, F. M. Dopico, S. Furtado, and M. Rychnovsky Large vector spaces of blocksymmetric strong linearizations for matrix polynomials, Lin. Alg. And Appl., 477 (2015), 165-210.
[3] M. I. Bueno, F. M. Dopico, and S. Furtado, Linearizations of Hermitian matrix polynomials preserving the sign characteristic. Preprint. (See online copy in math.ucsb.edu/~mbueno).
[4] I. Gohberg, P. Lancaster, and L. Rodman, Spectral Analysis of Matrix Polynomials I, Canonical forms and divisors, Lin. Alg. and Appl. 20 (1978), pp. 1-44.
[5] I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications, Birkhausser Verlag, Basel-Boston-Berlin, 2005.
[6] I. Gohberg, P. Lancaster, and L. Rodman, Spectral Analysis of Selfadjoint Matrix Polynomials, Annals of Mathematics, 112 (1980), pp. 33-71.
[7] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, SiAM, Philadelphia, 1982.
[8] N. J. Higham, D. S. Mackey, and F. Tisseur, Definite Matrix Polynomials and their linearization by definite pencils, SIAM J. Matrix Anal. and Appl., 31 (2009), pp. 478-502.
[9] N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur, Symmetric linearizations for matrix polynomials, SIAM J. Matrix Anal. \& Appl. 29(1) (2006), 143-159.
[10] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, NY, 1991.
[11] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28(4):971-1004, 2006.
[12] V. Mehrmann, V. Noferini, F. Tisseur, and H. Xu, On the sign characteristic of Hermitian matrix polynomials, PREPRINT.
[13] S. Vologiannidis and E. N. Antoniou, A permuted factors approach for the linearization of polynomial matrices, Math. Control Signals Systems, 22 (2011), pp. 317-342.

[^0]: *Department of Mathematics and College of Creative Studies, University of California, Santa Barbara, CA 93106, USA (mbueno@math.ucsb.edu). This work was partially supported by Ministerio de Economa y Competitividad of Spain through grant MTM2015-65798-P.
 ${ }^{\dagger}$ Department of Mathematics, Northwestern University, 2033 Sheridan Road Evanston, IL 60208 (josephbreen2016@u.northwestern.edu). The research of J. Breen was partially supported by NSF grant DMS-1358884.
 ${ }^{\ddagger}$ College of Creative Studies, University of California, Santa Barbara, CA 93106, USA (sif@umail.ucsb.edu).The research of S. Ford was partially supported by NSF grant DMS-1358884.
 ${ }^{\S}$ Centro de Análise Funcional, Estruturas Lineares e Aplicaçŏes da Universidade de Lisboa and Faculdade de Economia do Porto, Rua Dr. Roberto Frias 4200-464 Porto, Portugal (sbf@fep.up.pt).

