Distribution of the exponents of primitive circulant matrices in the first four boxes of \mathbb{Z}_{n}.
 M.I. Bueno
 Mathematics Department and College of Creative Studies, University of California Santa Barbara *,
 K. Y. Fang
 Department of Mathematics
 Northwestern University ${ }^{\dagger}$
 S. Fuller
 Department of Mathematics
 Pennsylvania State University ${ }^{\ddagger}$
 S. Furtado
 Faculdade de Economia do Porto, Portugal §

September 21, 2011

Abstract

In this paper we consider the problem of describing the possible exponents of n-by- n Boolean primitive circulant matrices. It is well

^[*Supported by Dirección General de Investigación (Ministerio de Ciencia y Tecnología) of Spain under grant MTM2009-09281 and NSF grant DMS-0852065. ${ }^{\dagger}$ NSF Grant DMS-0852065 for the REU program at UCSB \ddagger NSF Grant DMS-0852065 for the REU program at UCSB ${ }^{\S}$ This work was done within the activities of Centro de Estruturas Lineares e Combinatorias da Universidade de Lisboa.]

known that this set is a subset of $[1, n-1]$ and not all integers in $[1, n-1]$ are attainable exponents. In the literature, some attention has been paid to the gaps in the set of exponents. The first three gaps have been proven, that is, the integers in the intervals $[\lfloor n / 2\rfloor+1, n-2]$, $[\lfloor n / 3\rfloor+2,\lfloor n / 2\rfloor-2\rfloor$ and $[\lfloor n / 4\rfloor+3,\lfloor n / 3\rfloor-2]$ are not attainable exponents. Here we study the distribution of exponents in between those gaps by giving the exact exponents attained there by primitive circulant matrices. We also study the distribution of exponents in between the third gap and our conjectured fourth gap. It is interesting to point out that the exponents attained in between the $(i-1)$ th and the i th gap depend on the value of $n \bmod i$.

Keywords: Exponent, primitive circulant matrix, basis of a cyclic group, order, box.

AMS Subject Classification: 11P70, 05C25, 05C50.

1 Introduction

A Boolean matrix is a matrix over the binary Boolean algebra $\{0,1\}$. An n -by- n Boolean matrix C is said to be circulant if each row of C (except the first one) is obtained from the preceding row by shifting the elements cyclically 1 column to the right. In other words, the entries of a circulant matrix $C=\left(c_{i j}\right)$ are related in the manner: $c_{i+1, j}=c_{i, j-1}$, where $0 \leq i \leq n-2$, $0 \leq j \leq n-1$, and the subscripts are computed modulo n. The first row of C is called the generating vector. Here and throughout we number the rows and columns of an n-by- n matrix from 0 to $n-1$.

The set of all n-by- n Boolean circulant matrices forms a multiplicative commutative semigroup C_{n} with $\left|C_{n}\right|=2^{n}[5,9]$. In 1974, K. H. KimButtler and J.R. Krabill [7], and S. Schwarz [10] investigated this semigroup thoroughly.

An n-by- n Boolean matrix C is said to be primitive if there exists a positive integer k such that $C^{k}=J$, where J is the n-by- n matrix whose entries are all ones and the product is computed in the algebra $\{0,1\}$. The smallest such k is called the exponent of C, and we denote it by $\exp (C)$. Let us denote $E_{n}=\left\{\exp (C): C \in C_{n}, C\right.$ is primitive $\}$.

In [1] we stated the following question: Given a positive integer n, what is the set E_{n} ?

The previous question can easily be restated in terms of circulant graphs or bases for finite cyclic groups, as we explain next.

Let C be a Boolean primitive circulant matrix and let S be the set of positions corresponding to the nonzero entries in the generating vector of C (where the columns are counted starting with zero). C is the adjacency matrix of the circulant digraph $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$. The vertex set of this graph is \mathbb{Z}_{n} and there is an arc from u to $u+a(\bmod n)$ for every $u \in \mathbb{Z}_{n}$ and every $a \in S$. A digraph D is called primitive if there exists a positive integer k such that for each ordered pair a, b of vertices there is a directed walk from a to b of length k in D. The smallest such integer k is called the exponent of the primitive digraph D. Thus, a circulant digraph G is primitive if and only if its adjacency matrix is. Moreover, if they are primitive, they have the same exponent. Therefore, finding the set E_{n} is equivalent to finding the possible exponents of circulant digraphs of order n.

Let n be a positive integer and let S be a nonempty subset of the additive group \mathbb{Z}_{n}. For a positive integer k we denote by $k S$ the set given by

$$
k S=\left\{s_{1}+\cdots+s_{k} \bmod n: s_{i} \in S\right\} \subset \mathbb{Z}_{n}
$$

The set $k S$ is called the k-fold sumset of S.
The set S is said to be a basis for \mathbb{Z}_{n} if there exists a positive integer k such that $k S=\mathbb{Z}_{n}$. The smallest such k is called the order of S, denoted by $\operatorname{order}(S)$. It is well known $[7,10]$ that the set $S=\left\{s_{0}, s_{1}, \ldots, s_{r}\right\} \subset \mathbb{Z}_{n}$ is a basis if and only if $\operatorname{gcd}\left(s_{1}-s_{0}, \ldots, s_{r}-s_{0}, n\right)=1$. In [1] we proved that, given a matrix C in C_{n}, if S is the set of positions corresponding to the nonzero entries in the generating vector of C, then C is primitive if and only if S is a basis for \mathbb{Z}_{n}. Moreover, if C is primitive, then $\exp (C)=\operatorname{order}(S)$. Therefore, finding the set E_{n} is equivalent to finding the possible orders of bases for the cyclic group \mathbb{Z}_{n}. This question is quite interesting by itself. We note that all the results in this paper will be given in terms of bases for \mathbb{Z}_{n}, as the techniques we can use following this approach result more convenient.

The problem we study in this paper has applications in different areas. In particular, circulant matrices appear as transition matrices in Markov processes [3]. Also, the problem stated in terms of bases for \mathbb{Z}_{n} has applications in coding theory and quantum information [8].

In the literature, the problem of computing all possible exponents attained by circulant primitive matrices or, equivalently, by circulant digraphs, has been considered. In particular, the following results were obtained. Here
and throughout, $[a, b]$ denotes the set of positive integers in the real interval $[a, b]$. If $a>b$ then $[a, b]=\emptyset$.

Lemma 1 [4, 11] If C is a primitive circulant matrix, then its exponent is either $n-1,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor-1$ or does not exceed $\lfloor n / 3\rfloor+1$. Moreover, $\exp (C)=n-1$ if and only if the number of nonzero entries in the generating vector of C is exactly 2 .

Lemma $2[6]$ For every $n \geq 3,[\lfloor n / 4\rfloor+3,\lfloor n / 3\rfloor-2] \cap E_{n}=\emptyset$.
All these results can be immediately translated into results about the possible orders of bases for a finite cyclic group.

Note that the only primitive matrix in C_{2} is J_{2}, so $E_{2}=\{1\}$. From now on, we assume that $n \geq 3$. In [1] we presented a conjecture concerning the possible exponents attained by n-by- n Boolean primitive circulant matrices which we restate here in a more precise way. We start with a definition.

Definition Let j be a positive integer. We call the $j^{t h}$ box of \mathbb{Z}_{n}, and denote it by B_{j}, the set of positive integers

$$
\left[\left\lfloor\frac{n}{j}\right\rfloor-1,\left\lfloor\frac{n}{j}\right\rfloor+j-2\right]
$$

Conjecture 3 If $C \in C_{n}$ is primitive, then

$$
\exp (C) \in[1,\lfloor\sqrt{n}\rfloor] \cup \bigcup_{j=1}^{\lfloor\sqrt{n}\rfloor} B_{j}
$$

In a recent paper [6], it was proven that if $C \in C_{n}$ is primitive and its exponent is greater than k for some positive integer k, then there exists d_{k} such that the exponent of C is within d_{k} of n / l for some integer $l \in[1, k]$. Notice that the result we present in Conjecture 3 produces gaps in the set of exponents which are larger than the ones encountered in [6]. In fact, we have shown that the gaps in our conjecture should be maximal [2]. We say that a gap A in E_{n} is maximal if $A^{\prime} \cap E_{n} \neq \emptyset$ for any interval of integers $A^{\prime} \subset[1, n-1]$, with A strictly contained in A^{\prime}. In [2], we proved that for each positive integer j, there is an integer n, such that $B_{j, n}$ is a maximal gap in E_{n}. However, as stated in [6], we remain far from a complete characterization of the possible exponents of $n \times n$ primitive circulant matrices.

Lemmas 1 and 2 above show the gaps between the first and second box, between the second and third box, and between the third and fourth box when these boxes do not overlap. Here we present the distribution of orders of bases within the first three boxes by showing what orders are attained and which ones are not. The results for the first and second box were already known [4, 11] and we include them for completeness. We also study the order of bases in the fourth box by giving orders that are attained and we conjecture that those are, in fact, the exact orders in that box. In addition, we also prove that all integers in $[1,\lfloor\sqrt{n}\rfloor]$ are attained by bases of \mathbb{Z}_{n}.

This paper is organized as follows. In Section 2 we state our main results and prove them in Section 4. In section 3 we state and prove several auxiliary results concerning the order of bases for \mathbb{Z}_{n}, which will be used to prove our main theorems. The order of several bases for \mathbb{Z}_{n} with cardinality at most 4 that are relevant to our proofs is studied in the appendix.

2 Main Results

In this section, we give the exact orders attained by bases for \mathbb{Z}_{n} in the first three boxes of \mathbb{Z}_{n}. We also give orders attained in the fourth box. Notice that the results for the first and second box were already known [4, 11] but we include them for completeness. Finally, we state that all integers up to $\lfloor\sqrt{n}\rfloor$ are in E_{n}.

The result for the first box is an immediate consequence of Lemma 1.
Theorem 4 [4] For all n,

$$
B_{1} \subseteq E_{n}
$$

Concerning the second box, we have the following result obtained in [4, 11]. In Subsection 4.1 we include a proof of it using the techniques for bases.

Theorem 5 [4, 11] Let $n \geq 17$ be a positive integer.

- If n is even, then $B_{2} \subseteq E_{n}$.
- If n is odd, then $B_{2} \cap E_{n}=\left\lfloor\frac{n}{2}\right\rfloor$.

The next two theorems are our main results and will be proven in Section 4. In our first result we assume a lower bound n_{0} for n, which is the smallest
value of n for which the theorem holds for all $n>n_{0}$. The possible orders in E_{n}, with $n<n_{0}$, appear in Tables 1 and 2 . We observe that, for any n for which the box under study does not overlap with adjacent boxes, the theorem holds. We also notice that, though we have a lower bound for n in our results, when $n \equiv 0 \bmod j, j=3,4, B_{j}$ is a subset of E_{n}, for all n.

Theorem 6 Let $n \geq 45$ be a positive integer.

- If $n \equiv 0(\bmod 3)$, then $B_{3} \subseteq E_{n}$.
- If $n \equiv 1(\bmod 3)$, then $B_{3} \cap E_{n}=\left\{\left\lfloor\frac{n}{3}\right\rfloor+1,\left\lfloor\frac{n}{3}\right\rfloor\right\}$.
- If $n \equiv 2(\bmod 3)$, then $B_{3} \cap E_{n}=\left\{\left\lfloor\frac{n}{3}\right\rfloor+1\right\}$.

Theorem 7 Let $n \geq 16$ be a positive integer.

- If $n \equiv 0(\bmod 4)$, then $B_{4} \subseteq E_{n}$.
- If $n \equiv 1(\bmod 4)$, then $\left\{\left\lfloor\frac{n}{4}\right\rfloor+2,\left\lfloor\frac{n}{4}\right\rfloor+1,\left\lfloor\frac{n}{4}\right\rfloor\right\} \subseteq E_{n}$.
- If $n \equiv 2(\bmod 4)$ or $n \equiv 3(\bmod 4)$, then $\left\{\left\lfloor\frac{n}{4}\right\rfloor+2\left\lfloor\left\lfloor\frac{n}{4}\right\rfloor+1\right\} \subseteq E_{n}\right.$.

Though we do not prove it, we conjecture that $\lfloor n / 4\rfloor-1 \notin E_{n}$ when $n \equiv 1(\bmod 4)$ and $\lfloor n / 4\rfloor-1,\lfloor n / 4\rfloor \notin E_{n}$ when $n \equiv 2,3(\bmod 4)$.

In Tables 1 and 2 we give the exact orders attained by bases for \mathbb{Z}_{n} with $n=2,3,4, \ldots, 104$. As the numerical experiments show, for each n there is a number of consecutive orders that can be attained by bases of \mathbb{Z}_{n}. Though we prove Theorem 8, according to our numerical experiments, we conjecture that at least all consecutive integers up to $2 \sqrt{n}-2$ are attainable orders.

Theorem 8 Let n be a positive integer. Then, $[1,\lfloor\sqrt{n}\rfloor] \subseteq E_{n}$.
Though this result is referred in [6], it seems that the paper where its proof is said to be is not available.

n	E_{n}	n	E_{n}	n	E_{n}
2	1	23	$1 \ldots 8,11,22$	44	$1 \ldots 13,15,21,22,43$
3	1,2	24	$1 \ldots 9,11,12,23$	45	$1 \ldots 16,22,44$
4	$1,2,3$	25	$1 \ldots 9,12,24$	46	$1 \ldots 13,15,16,22,23,45$
5	$1,2,4$	26	$1 \ldots 9,12,13,25$	47	$1 \ldots 13,16,23,46$
6	$1,2,3,5$	27	$1 \ldots 10,13,26$	48	$1 \ldots 17,23,24,47$
7	$1,2,3,6$	28	$1 \ldots 10,13,14,27$	49	$1 \ldots 14,16,17,24,48$
8	$1 \ldots 4,7$	29	$1 \ldots 10,14,28$	50	$1 \ldots 14,17,24,25,49$
9	$1 \ldots 4,8$	30	$1 \ldots 11,14,15,29$	51	$1 \ldots 14,16,17,18,25,50$
10	$1 \ldots 5,9$	31	$1 \ldots 11,15,30$	52	$1 \ldots 15,17,18,25,26,51$
11	$1 \ldots 5,10$	32	$1 \ldots 11,15,16,31$	53	$1 \ldots 15,18,26,52$
12	$1 \ldots 6,11$	33	$1 \ldots 12,16,32$	54	$1 \ldots 15,17,18,19,26,27,53$
13	$1 \ldots 6,12$	34	$1 \ldots 12,16,17,33$	55	$1 \ldots 15,18,19,27,54$
14	$1 \ldots 7,13$	35	$1 \ldots 10,12,17,34$	56	$1 \ldots 16,19,27,28,55$
15	$1 \ldots 7,14$	36	$1 \ldots 13,17,18,35$	57	$1 \ldots 16,18,19,20,28,56$
16	$1 \ldots 8,15$	37	$1 \ldots 13,18,36$	58	$1 \ldots 16,19,20,28,29,57$
17	$1 \ldots 6,8,16$	38	$1 \ldots 11,13,18,19,37$	59	$1 \ldots 16,20,29,58$
18	$1 \ldots 9,17$	39	$1 \ldots 14,19,38$	60	$1 \ldots 17,19,20,21,29,30,59$
19	$1 \ldots 7,9,18$	40	$1 \ldots 14,19,20,39$	61	$1 \ldots 17,20,21,30,60$
20	$1 \ldots 7,9,10,19$	41	$1 \ldots 12,14,20,40$	62	$1 \ldots 17,21,30,31,61$
21	$1 \ldots 8,10,20$	42	$1 \ldots 14,15,20,21,41$	63	$1 \ldots 17,20,21,22,31,62$
22	$1 \ldots 8,10,11,21$	43	$1 \ldots 12,14,15,21,42$	64	$1 \ldots 18,21,22,31,32,63$

Table 1: Orders of bases for \mathbb{Z}_{n}

3 Order of Bases for \mathbb{Z}_{n}

Computing the order of bases for \mathbb{Z}_{n} is, in general, a challenging task. In this section we introduce some results relative to the order of bases of \mathbb{Z}_{n} that will be helpful when proving our main results.

To start with, let us notice that the order of a basis S is invariant under shifts and multiplication by a unit of \mathbb{Z}_{n}, that is, for $a \in \mathbb{Z}_{n}$ and b a unit of \mathbb{Z}_{n}

$$
\begin{equation*}
\operatorname{order}(S)=\operatorname{order}(S+a), \quad \text { and } \quad \operatorname{order}(S)=\operatorname{order}(b * S) \tag{1}
\end{equation*}
$$

where $b * S=\{b s \bmod n: s \in S\}$. In particular, this result implies that the set of orders attained by bases of \mathbb{Z}_{n} is the same as the set of orders attained by bases of \mathbb{Z}_{n} containing 0 .

We now state some known results about the order of a basis for \mathbb{Z}_{n}. The following lemma gives an upper bound on the cardinality of a basis when a

n	E_{n}	n	E_{n}
65	$1, \ldots, 14,16,17,18,22,32,64$	85	$1, \ldots, 18,20,21,22,23,28,29,42,84$
66	$1, \ldots, 18,21,22,23,32,33,65$	86	$1, \ldots, 18,20,21,22,23,29,42,43,85$
67	$1, \ldots, 18,22,23,33,66$	87	$1, \ldots, 18,20,22,23,28,29,30,43,86$
68	$1, \ldots, 19,23,33,34,67$	88	$1, \ldots, 24,29,30,43,44,87$
69	$1, \ldots, 19,22,23,24,34,68$	89	$1, \ldots, 20,22,23,24,30,44,88$
70	$1, \ldots, 15,17,18,19,23,24,34,35,69$	90	$1, \ldots 19,21,22,23,24,29,30,31,44,45,89$
71	$1, \ldots, 19,24,35,70$	91	$1, \ldots, 21,23,24,30,31,45,90$
72	$1, \ldots, 20,23,24,25,35,36,71$	92	$1, \ldots 19,21,22,23,24,25,31,45,46,91$
73	$1, \ldots, 20,24,25,36,72$	93	$1, \ldots, 21,23,24,25,30,31,32,46,92$
74	$1, \ldots, 20,25,36,37,73$	94	$1, \ldots, 21,23,24,25,31,32,46,47,93$
75	$1, \ldots, 16,18,19,20,24,25,26,37,74$	95	$1, \ldots, 20,22,24,25,32,47,94$
76	$1, \ldots, 21,25,26,37,38,75$	96	$1, \ldots, 26,31,32,33,47,48,95$
77	$1, \ldots, 16,18,19,20,21,26,38,76$	97	$1, \ldots, 18,20,22,24,25,26,32,33,48,96$
78	$1, \ldots, 21,25,26,27,38,39,77$	98	$1, \ldots, 22,24,25,26,33,48,49,97$
79	$1, \ldots, 18,20,21,26,27,39,78$	99	$1, \ldots, 22,25,26,32,33,34,49,98$
80	$1, \ldots, 17,19,20,21,22,27,39,40,79$	100	$1, \ldots, 21,23,24,25,26,27,33,34,49,50,99$
81	$1, \ldots, 22,26,27,28,40,80$	101	$1, \ldots, 23,25,26,27,34,50,100$
82	$1, \ldots, 17,19,20,21,22,27,28,40,41,81$	102	$1, \ldots, 21,23,25,26,27,33,34,35,50,51,101$
83	$1, \ldots, 19,21,22,28,41,82$	103	$1, \ldots, 19,21,22,23,26,27,34,35,51,102$
84	$1, \ldots, 23,27,28,29,41,42,83$	104	$1, \ldots, 19,21,22,23,25,26,27,28,35,51,52,103$

Table 2: Orders of bases for \mathbb{Z}_{n}
lower bound on its order is known.
Lemma 9 [8] Let $n \in \mathbb{N}$ and $\rho \in[2, n-1]$. Let S be a basis for \mathbb{Z}_{n} such that $\operatorname{order}(S) \geq \rho$. Then,

$$
|S| \leq \max \left\{\frac{n}{d}\left(\left\lfloor\frac{d-2}{\rho-1}\right\rfloor+1\right): d \mid n, d \geq \rho+1\right\}
$$

In particular, for each fixed $k \in \mathbb{N}$, if $\operatorname{order}(S) \geq \frac{n}{k}$ and $n \gg 0$, then $|S| \leq 2 k$.

The next lemma gives an upper and a lower bound on the order of some bases for \mathbb{Z}_{n} with cardinality 3 .

Lemma 10 [2] Let $2 \leq b \leq n-1$. Then,

$$
\left\lfloor\frac{n}{b}\right\rfloor \leq \operatorname{order}(\{0,1, b\}) \leq\left\lfloor\frac{n}{b}\right\rfloor+b-2
$$

We now give the exact order of some particular bases for \mathbb{Z}_{n} that will be needed later. The next lemma shows, in particular, that the largest element of the j th box, $j \leq \sqrt{n}$, belongs to E_{n} for all n.

Lemma 11 [1] For $j \in\{1,2, \ldots,\lfloor\sqrt{n}\rfloor\}$,

$$
\operatorname{order}\{0,1, j\})=\left\lfloor\frac{n}{j}\right\rfloor+j-2
$$

Lemma 12 [2] Let $2 \leq j \leq \sqrt{n}$ be a positive integer. Then,

$$
\operatorname{order}\left(\left\{0,1,\left\lfloor\frac{n}{j}\right\rfloor+1\right\}\right)=\left\lfloor\frac{n}{j}\right\rfloor+j-2
$$

Lemma 13 [1] Let $2 \leq r \leq n-1$ and $t=n-r\lfloor n / r\rfloor$. Then,

$$
\operatorname{order}(\{0,1,2, \ldots, r-1, r\})=\left\{\begin{array}{ll}
\lfloor n / r\rfloor, & \text { if } t \leq 1 \\
\lfloor n / r\rfloor+1, & \text { if } t>1
\end{array} .\right.
$$

Lemma 14 Let $2 \leq r \leq n-2$. Then,

$$
\operatorname{order}(\{0,1,2, \ldots, r-1, r+1\})=\left\lfloor\frac{n}{r+1}\right\rfloor+1
$$

Proof Let $S=\{0,1,2, \ldots, r-1, r+1\}$. It can be shown by induction on k that, for $k \geq 1, k S=[0, \cdots, k(r+1)-2] \cup\{k(r+1)\}$. Thus, $\operatorname{order}(S)=k$ if and only if k is the minimum integer such that $k(r+1)-2 \geq n-1$, which implies the result.

Lemma 15 Suppose that m is a divisor of n and let $1 \leq q<m \leq n$. Then,

$$
\operatorname{order}\left(\bigcup_{i=0}^{q}(i+\langle m\rangle)\right)=\left\lceil\frac{m-1}{q}\right\rceil .
$$

Proof Let S be the basis in the statement. Note that $k S=\bigcup_{i=0}^{k q}(i+\langle m\rangle)$ for all $k \geq 1$. Therefore, the order of S equals the minimum k such that $k q \geq m-1$ and the result follows.

As a consequence of the previous result, we obtain that, if j is a divisor of n, the smallest element of the j th box is an element of E_{n}, as $\operatorname{order}(\langle n / j\rangle \cup(1+\langle n / j\rangle))=n / j-1$.

Using canonical projections we can bound the order of some bases in a convenient way. Given \mathbb{Z}_{n} and a proper divisor m of n, we denote by ϕ the canonical quotient map $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n / m}$. We denote by $\operatorname{order}_{n}(S)$ the order of the basis S as a subset of \mathbb{Z}_{n}. The next result is well known. For that reason, we include it without proof.

Lemma 16 Let m be a proper divisor of n. If S is a basis for \mathbb{Z}_{n} that contains zero and an element of order m, then $\phi(S)$ is a basis for $\mathbb{Z}_{n / m}$ and

$$
\operatorname{order}_{n / m}(\phi(S)) \leq \operatorname{order}_{n}(S) \leq \operatorname{order}_{n / m}(\phi(S))+m-1
$$

The next corollaries are immediate consequences of the previous lemma and Lemma 1.

Corollary 1 [4] Suppose m is a proper divisor of n and S is a basis for \mathbb{Z}_{n} that contains zero and an element of order m. Then,

$$
\operatorname{order}(S) \leq \frac{n}{m}+m-2
$$

Corollary 2 Let S be a basis for \mathbb{Z}_{n} and assume that S contains zero and an element of order 2. Then,

$$
\operatorname{order}(S) \leq\left\lfloor\frac{n}{4}\right\rfloor+1 \quad \text { or } \quad \text { order }(S) \geq\left\lfloor\frac{n}{2}\right\rfloor-1
$$

Corollary 3 Let S be a basis for \mathbb{Z}_{n} and assume that S contains zero and an element of order 3. Then,

$$
\operatorname{order}(S) \leq\left\lfloor\frac{n}{6}\right\rfloor+2 \quad \text { or } \quad \text { order }(S) \geq\left\lfloor\frac{n}{3}\right\rfloor-1
$$

The next technical lemma allows us to prove Corollary 4, which is a key result in the proof of our main theorems.

Lemma 17 Let $j \geq 2$ be an integer and assume that $b \in I_{j}=\left[\left\lfloor\frac{n}{j+1}\right\rfloor+2,\left\lfloor\frac{n}{j}\right\rfloor-1\right]$. Then,

$$
\operatorname{order}(\{0,1, b\}) \leq\left\lfloor\frac{n}{j+2}\right\rfloor+j
$$

Proof Let $S=\{0,1, b\}$. First we observe that $j+1<(j+1) b-n<b$. We divide the proof into three cases.

Case 1: Assume b is even and $(j+1) b-n=b / 2$. This implies that $(2 j+1) b / 2=n$ and, therefore, b is not a divisor of n. Since $(2 j+1) b=2 n$, then b is an element of \mathbb{Z}_{n} of order $2 j+1$. Then,

$$
\operatorname{order}(S) \leq \frac{n}{2 j+1}+2 j-1 \leq\left\lfloor\frac{n}{j+2}\right\rfloor+j .
$$

The inequality on the left follows from Corollary 1 while the right inequality follows after a few computations. Thus,

$$
\left\lfloor\frac{n}{j+2}\right\rfloor+j=\left\lfloor\frac{(2 j+1)(j+2+k)}{j+2}\right\rfloor+j \geq 3 j+1+k=\frac{n}{2 j+1}+2 j-1 .
$$

Case 2: Assume $(j+1) b-n<b / 2$. Let $k=j+1$ and $p=(j+1) b-n$. Clearly, $[0, k] \cup\{p\} \cup[b, b+k-1] \subseteq k S$. It can be shown by induction on q that

$$
\begin{equation*}
\bigcup_{i=0}^{q}[i p, i p+(q-i) k] \cup[b, b+q k-1] \subset q k S \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcup_{i=0}^{q-1}[i p+(k-1) b, i p+(k-1) b+(q-(i+1)) k] \subset(q k-1) S . \tag{3}
\end{equation*}
$$

Now assume that q is the largest integer such that $q p<b$, that is, $q=\lfloor b / p\rfloor$ and let $l=\max \{b-p q, p-k\}$. Note that $q \geq 2$. Also, the gaps between consecutive intervals in the unions in (2) and (3) have at most $l-1$ elements. Thus, we have

$$
[0, b+j] \cup[j b, j b+(q-1) p+l] \subseteq(q k+l-1) S
$$

Moreover, $[0, j b+(q-1) p+l+j-1] \subseteq(q k+l-1+(j-1)) S$. Since $n-j b=b-p$, we get that $(q-1) p+l+j \geq n-j b$ is equivalent to $l+j \geq b-q p$, which is true because of the definition of l. This implies

$$
\begin{equation*}
\operatorname{order}(S) \leq q k+\max \{b-p q, p-k\}+j-2 . \tag{4}
\end{equation*}
$$

Let $b=p q+r, 0 \leq r<p$ and $q_{1}=\lfloor r k / p\rfloor$. It is easy to show that

$$
\begin{equation*}
\max \{b-p q, p-k\} \leq q_{1}+p-k \tag{5}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\operatorname{order}(S) \leq\left\lfloor\frac{b k}{p}\right\rfloor+p-k+j-2 \tag{6}
\end{equation*}
$$

Taking into account (6), to complete the proof it is sufficient to show that

$$
\begin{equation*}
\left\lfloor\frac{b k}{p}\right\rfloor+p-k+j-2 \leq\left\lfloor\frac{n}{j+2}\right\rfloor+j . \tag{7}
\end{equation*}
$$

Let g be the function given by

$$
g(b)=\frac{b k}{p}+p-3=\frac{n}{p}+p-2 .
$$

To see that (7) holds it is enough to note that $g(b) \leq \frac{n}{j+2}+j$, or, equivalently,

$$
b \in\left[\frac{n+j+2}{j+1}, \frac{n+\frac{n}{j+2}}{j+1}\right] .
$$

Case 3: Assume $(j+1) b-n>b / 2$. Note that $j=\lfloor n / b\rfloor$. Let $n=j b+r_{3}$, $0 \leq r_{3}<b$. Thus, $(j+1) b-n=b-r_{3}$. Clearly, $[0, j+1] \cup\left\{b-r_{3}\right\} \cup[b, b+$ $j] \cup[j b, j b+1] \subseteq(j+1) S$. It can be shown by induction on j that

$$
\begin{equation*}
[0, q j+1] \cup \bigcup_{i=0}^{q-1}\left[b-(q-i) r_{3}, b-(q-i) r_{3}+i j\right] \cup[b, b+q j] \subset(q j+1) S \tag{8}
\end{equation*}
$$

Denote by q the largest integer such that $q j+2 \leq b-q r_{3}$, that is, $q=\left\lfloor\frac{b-2}{j+r_{3}}\right\rfloor$. An argument similar to Case 2 implies that

$$
\begin{equation*}
\operatorname{order}(S) \leq q j+\max \left\{r_{3}, b-q\left(j+r_{3}\right)-1\right\}+j-1 . \tag{9}
\end{equation*}
$$

Let $l=\max \left\{r_{3}, b-q\left(j+r_{3}\right)-1\right\}$. Now we show that

$$
\begin{equation*}
q j+l+j-1 \leq\left\lfloor\frac{j(b-1)}{j+r_{3}}\right\rfloor+j+r_{3}-1 \leq\left\lfloor\frac{n}{j+2}\right\rfloor+j . \tag{10}
\end{equation*}
$$

To see the first inequality in (10), it is enough to note that, by definition of $q, q\left(j+r_{3}\right)<b-1$ and $b-1 \leq(q+1)\left(j+r_{3}\right)$. To see the second inequality in (10), let h be the function given by

$$
h(b)=\frac{j(b-1)}{j+r_{3}}+j+r_{3}-1=\frac{n}{j+n-j b}+j+n-j b-2 .
$$

Then, we see that

$$
h(b) \leq \frac{n}{j+2}+(j+2)-2 \text { if and only if } j+n-j b \in\left[j+2, \frac{n}{j+2}\right]
$$

Moreover, for $j+n-j b=\left\lfloor\frac{n}{j+2}\right\rfloor+1$, we get $\lfloor h(b)\rfloor=\left\lfloor\frac{n}{j+2}\right\rfloor+j$, since by Theorem 5.7 in [2], and taking into account that $j<\sqrt{n}$,

$$
\left\lfloor\frac{n}{\left\lfloor\frac{n}{j+2}\right\rfloor+1}\right\rfloor=j+1
$$

Therefore, if $j+n-j b \in\left[j+2, \frac{n}{j+2}+1\right]$, or equivalently, if

$$
\begin{equation*}
b \in\left[\frac{n+j-1-\frac{n}{j+2}}{j}, \frac{n-2}{j}\right] \tag{11}
\end{equation*}
$$

then the second inequality in (10) holds. We finish the proof by showing that any b satisfying our assumptions is such that (11) holds. Note that, as $(j+1) b-n>\frac{b}{2}$, we have $2 n /(2 j+1)<b \leq\lfloor n / j\rfloor-1$. Thus, because $j \geq 2$, it follows that $b \leq \frac{n}{j}-1 \leq \frac{n-2}{j}$. First we note that if $\left|I_{j}\right| \geq 2$, then

$$
\begin{equation*}
\frac{n+j-1-\frac{n}{j+2}}{j} \leq \frac{2 n}{2 j+1}<b \tag{12}
\end{equation*}
$$

If $\left|I_{j}\right|=1$, then $b=\left\lfloor\frac{n}{j}\right\rfloor-1$. If (12) holds, we are done. Otherwise, it can be proven that

$$
\frac{n+j-1-\frac{n}{j+2}}{j} \leq b=\left\lfloor\frac{n}{j}\right\rfloor-1
$$

From the previous lemma we obtain the next corollary which includes some results presented in [6] without proof.

Corollary 4 Let $n \geq 16$. Suppose that $2 \leq b \leq\lfloor n / 2\rfloor+1$.
i) If either $b \notin\left\{2,3,\left\lfloor\frac{n}{3}\right\rfloor,\left\lfloor\frac{n}{3}\right\rfloor+1,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}$, or $b=\left\lfloor\frac{n}{3}\right\rfloor$ and $n \neq 0$ $\bmod 3$ then

$$
\operatorname{order}(\{0,1, b\}) \leq\left\lfloor\frac{n}{4}\right\rfloor+2
$$

ii) If either $b \in\left\{3,\left\lfloor\frac{n}{3}\right\rfloor+1\right\}$, or $b=\left\lfloor\frac{n}{3}\right\rfloor$ and $n \equiv 0 \bmod 3$, or $b=\left\lfloor\frac{n}{2}\right\rfloor$ with n odd, then

$$
\operatorname{order}(\{0,1, b\})=\left\lfloor\frac{n}{3}\right\rfloor+1 .
$$

iii) If either $b \in\left\{2,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}$, or $b=\left\lfloor\frac{n}{2}\right\rfloor$ and n is even, then

$$
\operatorname{order}(\{0,1, b\})=\left\lfloor\frac{n}{2}\right\rfloor .
$$

Proof By Lemma 17, if $\left.b \in\left[\left\lfloor\frac{n}{4}\right\rfloor+2,\left\lfloor\frac{n}{3}\right\rfloor-1\right] \cup\left[\left\lfloor\frac{n}{3}\right\rfloor+2,\left\lfloor\frac{n}{2}\right\rfloor-1\right]\right]$, then $\operatorname{order}(\{0,1, b\}) \leq\left\lfloor\frac{n}{4}\right\rfloor+2$. By Lemma 10 , if $4 \leq b \leq n / 4$, then order $(\{0,1, b\}) \leq$ $\left\lfloor\frac{n}{4}\right\rfloor+2$. By Lemma 12, $\operatorname{order}\left\{0,1,\left\lfloor\frac{n}{4}\right\rfloor+1\right\}=\left\lfloor\frac{n}{4}\right\rfloor+2$. If $b=\left\lfloor\frac{n}{3}\right\rfloor$ and $n \neq 0$ mod 3 then
$\operatorname{order}(\{0,1, b\})=\left\{\begin{array}{ll}\operatorname{order}(1+3 *\{0,1, b\})=\operatorname{order}(\{0,1,4\}), & \text { if } n \equiv 1 \bmod 3 \\ \operatorname{order}(2+3 *\{0,1, b\})=\operatorname{order}(\{0,2,5\}), & \text { if } n \equiv 2 \bmod 3\end{array}\right.$,
and the result follows from Lemmas 19 and 20. Thus, i) follows. If $b \in$ $\{3,\lfloor n / 3\rfloor+1\}$ the result follows from Lemmas 12 and 14. If n is odd, then $\operatorname{order}(\{0,1,\lfloor n / 2\rfloor\})=\operatorname{order}(1+2 *\{0,1, b\})=\{0,1,3\}$ and the result follows from Lemma 14. If $n \equiv 0 \bmod 3$ and $b=n / 3$, then, for $k \geq 1, k S=$ $[0, k] \cup[n / 3, n / 3+k-1] \cup[2 n / 3,2 n / 3+k-2]($ in $\mathbb{Z})$. The order of S is the smallest positive integer k such that $k-2+2 n / 3 \geq n-1$, that is, $k=1+n / 3$, which completes the proof of ii). To prove iii), note that, if n is even and $b=n / 2$, then, for $k \geq 1, k S=[0, k] \cup[n / 2, n / 2+k-1]$ (in \mathbb{Z}). Thus, the order of S is the smallest positive integer k such that $k-1+n / 2 \geq n-1$, that is, $\operatorname{order}(S)=n / 2$. If $b \in\{2,\lfloor n / 2\rfloor+1\}$, the result follows from Lemmas 12 and 13.

4 Proofs of the Main Results

In this section we prove Theorems 5, 6, 7, and 8. To prove the first three results, we initially show that certain orders in each box are attained by giving examples of bases with such orders. Then, regarding the first two theorems, we prove that the remaining orders are not attained.

4.1 Proof of Theorem 5

In the next table, we give examples of bases attaining the orders in the second box according to Theorem 5. The results follow from Lemmas 13 and 15.

Second Box for \mathbb{Z}_{n}		
$n \equiv 0 \bmod 2$	$n \equiv 1 \bmod 2$	$\operatorname{Order}(S)$
$S=\langle n / 2\rangle \cup(1+\langle n / 2\rangle)$	-	$\lfloor n / 2\rfloor-1$
$S=\{0,1,2\}$	$S=\{0,1,2\}$	$\lfloor n / 2\rfloor$

We now assume that $n \geq 17$ and n is odd, and show that there is no basis $S \subseteq \mathbb{Z}_{n}$ such that $\operatorname{order}(S)=\lfloor n / 2\rfloor-1$.

Assume that $S \subset \mathbb{Z}_{n}$ is a basis such that $\operatorname{order}(S)=\lfloor n / 2\rfloor-1$. By Lemma $9,|S| \leq 3$. Note that, by definition of basis, $|S| \geq 2$ and, by Lemma $1,|S| \neq 2$ if $\operatorname{order}(S) \neq n-1$. Thus $|S|=3$. Suppose $S=\{0, a, b\}$ where $a, b \in \mathbb{Z}_{n}$. If a had order $m \neq n$, then $3 \leq m<\lfloor n / 2\rfloor$, since n is odd. By Corollary 1, this would imply that $\operatorname{order}(S) \leq m+n / m-2<\lfloor n / 2\rfloor-1$, as $n \geq 17$. Therefore, a must have order n. Then, S has the same order as $a^{-1} S=\{0,1, c\}$ for some $c \in \mathbb{Z}_{n}$. If $c>\lfloor n / 2\rfloor+1$, then S has the same order as $1-a^{-1} S=\{0,1, d\}$ with $d \leq\lfloor n / 2\rfloor+1$. Thus, we can assume that $c \leq\lfloor n / 2\rfloor+1$. Now using Corollary 4 , we get $\operatorname{order}(S) \neq\lfloor n / 2\rfloor-1$, a contradiction.

4.2 Proof of Theorem 6

The next table gives examples of bases attaining the conjectured orders in the third box according to Theorem 6. The results follow from Lemmas 13, 14 , and 15.

Third Box for \mathbb{Z}_{n}			
$n \equiv 0 \bmod 3$	$n \equiv 1 \bmod 3$	$n \equiv 2 \bmod 3$	Order (S)
$S=\langle n / 3\rangle \cup(1+\langle n / 3\rangle)$	-	-	$\lfloor n / 3\rfloor-1$
$S=\{0,1,2,3\}$	$S=\{0,1,2,3\}$	-	$\lfloor n / 3\rfloor$
$S=\{0,1,3\}$	$S=\{0,1,3\}$	$S=\{0,1,3\}$	$\lfloor n / 3\rfloor+1$

The fact that, for $n \geq 45$, $\operatorname{order}(S) \neq\lfloor n / 3\rfloor-1$, if $n \equiv 1 \bmod 3$, and $\operatorname{order}(S) \notin\{\lfloor n / 3\rfloor-1,\lfloor n / 3\rfloor\}$, if $n \equiv 2 \bmod 3$, follows from Lemma 18. Just note that, if $\operatorname{order}(S) \in\{\lfloor n / 3\rfloor-1,\lfloor n / 3\rfloor\}$, then, by Lemma $9,|S| \leq 4$.

We note that the statement of the next lemma is stronger than what is needed to prove Theorem 6. However, the techniques we developed before allowed us to get this result, which in turn is useful in the proof of Corollary 5.

Lemma 18 Let $n \geq 45$ and suppose that 3 is not a divisor of n. Let S be a basis for \mathbb{Z}_{n}. If $|S| \leq 4$, then

$$
\operatorname{order}(S) \leq\left\lfloor\frac{n}{4}\right\rfloor+2 \quad \text { or } \quad \operatorname{order}(S) \geq\lfloor n / 3\rfloor
$$

Moreover, if $\operatorname{order}(S)=\lfloor n / 3\rfloor$, then $n \equiv 1 \bmod 3$.
Proof Without loss of generality, assume $0 \in S$. Suppose that $n \neq 0 \bmod$ 3. Since S is a basis, $|S|>1$. If $|S|=2$, then $\operatorname{order}(S)=n-1>\lfloor n / 3\rfloor$. Suppose that $|S|=3$ or $|S|=4$. If S has an element whose order is not $1,2, n / 2$ nor n, then, by Corollary 1 , the result follows since there can't be an element of order 3 or $n / 3$. Thus, this element has order ≥ 4 or $\leq n / 4$. Suppose that the order of the elements in S is $1,2, n / 2$, or n, where 2 and $n / 2$ only occur when n is even. If S has an element of order 2 , then the result follows from Corollary 2. If S does not contain an element of order 2 , then necessarily it contains an element of order n. Moreover, by (1), if S has an element of order n, the basis S has the same order as some basis of the form $\{0,1, a, b\}$. If $|S|=3$, then we can assume that $S=\{0,1, a\}$, with $1<a \leq\left\lfloor\frac{n}{2}\right\rfloor+1$. In this case, the result follows from Corollary 4. If $|S|=4$, assume that $S=\{0,1, a, b\}$ with $a \leq\left\lfloor\frac{n}{2}\right\rfloor+1$. Since for $S^{\prime} \subset S$, $\operatorname{order}(S) \leq \operatorname{order}\left(S^{\prime}\right)$, we have

$$
\begin{equation*}
\operatorname{order}(\{0,1, a, b\}) \leq \min \{\operatorname{order}(\{0,1, a\}), \operatorname{order}(\{0,1, b\})\} \tag{13}
\end{equation*}
$$

Let

$$
A_{1}=\left\{2,3,\left\lfloor\frac{n}{3}\right\rfloor+1,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}
$$

and

$$
A_{2}=\left\{2,3,\left\lfloor\frac{n}{3}\right\rfloor+1,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor+1,1-\left\lfloor\frac{n}{2}\right\rfloor,-\left\lfloor\frac{n}{3}\right\rfloor,-2,-1\right\}
$$

Note that $-\left\lfloor\frac{n}{2}\right\rfloor \in A_{2}$. Also, $1-\lfloor n / 2\rfloor \equiv\lfloor n / 2\rfloor+1 \bmod n$, for n even. If $a \notin A_{1}$ or $b \notin A_{2}$ then, by Corollary 4 and taking into account (13),

$$
\operatorname{order}(\{0,1, a, b\}) \leq \min \{\operatorname{order}(\{0,1, a\}), \operatorname{order}(\{0,1, b\})\} \leq\left\lfloor\frac{n}{4}\right\rfloor+2 .
$$

Recall that $\operatorname{order}(\{0,1,1-b\})=\operatorname{order}(\{0,1, b\})$. If $a \in A_{1}$ and $b \in A_{2}$, the result follows from Lemmas 22, 23, 24, 25 and 26.

The following result was presented in [6]. However, the authors leave most of the details of the proof to the reader and we do not see clearly that the result follows from their proof. For that reason and for completeness we are including it in this paper.

Corollary 5 Let S be a basis for \mathbb{Z}_{n}. Then,

$$
\operatorname{order}(S) \notin\left[\left\lfloor\frac{n}{4}\right\rfloor+3,\left\lfloor\frac{n}{3}\right\rfloor-2\right] .
$$

Proof Note that, for $n<45$, the interval in the statement is empty. Assume that $n \geq 45$. Without loss of generality, suppose that $0 \in S$. If $S \subset \mathbb{Z}_{n}$ is a basis such that $\lfloor n / 4\rfloor+3 \leq \operatorname{order}(S)$, by Lemma $9,|S| \leq 6$. Assume that $n \neq 0 \bmod 3$. If $|S|=5$ or $|S|=6$, by [1, Theorem 3.7], $\operatorname{order}(S) \leq\lfloor n / 4\rfloor+1$. If $|S| \leq 4$, by Lemma 18 , order $(S) \leq\lfloor n / 4\rfloor+2$ or $\operatorname{order}(S) \geq\lfloor n / 3\rfloor$.

Now assume that $n \equiv 0 \bmod 3$. If $|S|=3$, the result follows from Corollary 4. Suppose that $|S| \in\{4,5,6\}$. If $\lfloor n / 4\rfloor+3 \leq \operatorname{order}(S)$, by Corollary 1, the order of the elements in S must be $1,2,3, n / 2, n / 3$, or n. First note that S contains, or has the same order as a basis which contains, an element of order 2,3 or n. In fact, if $|S|=4$ and S does not have an element of order 2,3 or n, then S has an element of order $n / 2$ and an element of order $n / 3$. Hence, $\{0,2 a, 3 b\} \subseteq S$ for some $a, b \in \mathbb{Z}_{n}$. Since S is a basis, $3 b-2 a$ is not an element of order $n / 2$ nor $n / 3$ as, otherwise, 6 would divide $2 a$ or $3 b$ and all elements of S would be multiples of 2 or multiples of 3 . Thus, S has the same order as $S-2 a$, which has an element of order 2,3 or n. A similar argument can be applied if $|S|=5$ or $|S|=6$. Thus, assume that S contains an element of order 2,3 or n. If S contains an element of order 2 or 3 , the result follows from Corollaries 2 and 3 . Now suppose that S contains an element of order n and no elements of order 2 and 3. If either $n / 3+1 \in S$ or n is even and $n / 2+1 \in S$, then S can be transformed into a basis with the same order containing zero and an element of order 2 or 3 and we reduce the problem to the previous case. Let $A_{1}=\{2,3,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1\}$ and $A_{2}=$ $\{2,3,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1,1-\lfloor n / 2\rfloor,-2,-1\}$. Assume that $S=\{0,1, a, b, c, d\}$, with $a \leq\lfloor n / 2\rfloor+1$ and $b=c=d$ if $|S|=4$, and $c=d$ if $|S|=5$. Note that if $S^{\prime} \subset S$ then $\operatorname{order}(S) \leq \operatorname{order}\left(S^{\prime}\right)$. If $a \notin A_{1}$ or, b, c, or $d \notin A_{2}$ the result follows from Corollary 4. Suppose that $a \in A_{1}, b, c, d \in A_{2}$ and if
a, b, c or $d \in\{\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1,1-\lfloor n / 2\rfloor\}$ then n is odd. If $|S|=4$, the result follows from Lemmas 22, 23, 24, 25 and 26. If $|S|=5$ or $|S|=6$ the result follows from Remark A by noting that S has a subset of cardinality 4 containing 0 and 1 which is not one of the exceptional bases and, therefore, $\operatorname{order}(S) \leq\lfloor n / 4\rfloor+2$.

4.3 Proof of Theorem 7

The next table gives examples of bases attaining the orders in the fourth box of \mathbb{Z}_{n} claimed in Theorem 7. The results follow from Lemmas 12, 13, 14, and 15.

Fourth Box for \mathbb{Z}_{n}				
$n \equiv 0 \bmod 4$	$n \equiv 1 \bmod 4$	$n \equiv 2 \bmod 4$	$n \equiv 3 \bmod 4$	Order (S)
$\langle n / 4\rangle \cup(1+\langle n / 4\rangle)$	-	-	-	$\lfloor n / 4\rfloor-1$
$\{0,1,2,3,4\}$	$\{0,1,2,3,4\}$	$\bigcup_{i=0}^{2}(i+\langle n / 2\rangle)$	-	$\lfloor n / 4\rfloor$
$\{0,1,2,4\}$	$\{0,1,2,4\}$	$\{0,1,2,4\}$	$\{0,1,2,4\}$	$\lfloor n / 4\rfloor+1$
$\{0,1,(n / 4)+1\}$	$\{0,1,\lfloor n / 4\rfloor+1\}$	$\{0,1,\lfloor n / 4\rfloor+1\}$	$\{0,1,\lfloor n / 4\rfloor+1\}$	$\lfloor n / 4\rfloor+2$

4.4 Proof of Theorem 8

If $n \leq 4$, the result follows from Table 1 . Assume $n \geq 5$. Notice that \mathbb{Z}_{n} is always a basis for \mathbb{Z}_{n}, which implies that $1 \in E_{n}$. Consider the set $S=$ $\{0,1,2, \ldots, r-1, r+1\}$ with $2 \leq r \leq n-2$. By Lemma 14 , order $(S)=\left\lceil\frac{n+1}{r+1}\right\rceil$. For all $r \geq \sqrt{n}-1$

$$
\frac{n+1}{r+1}-\frac{n+1}{r+2}=\frac{n+1}{(r+1)(r+2)}=\frac{n+1}{r^{2}+3 r+2} \leq \frac{n+1}{n+\sqrt{n}}<1 .
$$

It can be easily seen that, for positive real numbers a and $b,\lceil a\rceil-\lceil b\rceil \leq$ $\lceil a-b\rceil$. Thus, $\left\lceil\frac{n+1}{r+1}\right\rceil-\left\lceil\frac{n+1}{r+2}\right\rceil \leq 1$ for all $r \geq \sqrt{n}-1$, which implies that all integers from 2 to $\left\lceil\frac{n+1}{\lceil\sqrt{n}\rceil-1+1}\right\rceil$ are attained orders. But $\left\lceil\frac{n+1}{\lceil\sqrt{n}\rceil}\right\rceil \geq\left\lceil\frac{n}{\lceil\sqrt{n}\rceil}\right\rceil \geq$ $\lfloor\sqrt{n}\rfloor$ and the result follows.

5 Acknowledgements

We would like to thank the anonymous referee whose comments and suggestions helped us improve the presentation of our paper.

References

[1] M.I. Bueno, S. Furtado, and N. Sherer, Maximum exponent of Boolean circulant matrices with constant number of nonzero entries in its generating vector. Electronic Journal of Combinatorics 16(2009), no. 1, Research Paper 66.
[2] M.I. Bueno and S. Furtado, On the gaps in the set of exponents of boolean primitive circulant matrices. Elect. Journal of Linear Algebra, 20 (2010), 640-660.
[3] W-S. Chou, B-S. Du, and P. J.-S. Shiue, A note of circulant transition matrices in Markov chains, Linear algebra and its applications, 429 (2008), 1699-1704.
[4] H. Daode, On Circulant Boolean Matrices, Linear Algebra and its Applications, 136(1990), 107-117.
[5] P. J. Davis, Circulant Matrices, Wiley-Interscience, NY, 1979.
[6] P. Dukes, P. Hegarty, and S. Herke, On the possible orders of a basis for a finite cyclic group, Electron. Journal of Combinatorics, 17(2010), no. 1, Paper R79.
[7] K. H. Kim-Buttler and J. R. Krabill, Circulant Boolean relation matrices, Czechoslovak Math. J. 24(1974), 247-251.
[8] B. Klopsch and V. F. Lev, Generating Abelian Groups by Addition Only, Forum Math. 21 (2009), 23-41.
[9] P. Lancaster, Theory of Matrices, Academic press, NY, 1969.
[10] S. Schwarz, Circulant Boolean relation matrices, Czechoslovak Math. J. 24(1974), 252-253.
[11] J.Z. Wang and J. X. Meng, The exponent of the primitive Cayley digraphs on finite Abelian groups, Discrete Appl. Math., 80(1997), 177-191.

A Gallery of bases and their orders

Here we provide the order of some particular bases that are necessary to prove the main results in this paper. We do not include all the proofs since many of them are similar.

Lemma 19 For $n \geq 6$, order $(\{0,1,4\})=\lfloor n / 4\rfloor+2$.
Proof Let $S=\{0,1,4\}$. It can be shown by induction on k that in \mathbb{Z}, for all $k \geq 2$,

$$
k S=[0,4 k-6] \cup[4 k-4,4 k-3] \cup\{4 k\} .
$$

Let $q=\lfloor n / 4\rfloor$. Then,
$(q+1) S=[0,4 q-2] \cup[4 q, 4 q+1] \cup\{4 q+4\} \quad$ and $\quad[0,4 q+2] \subseteq(q+2) S$.
Note that, as $n \geq 6,4 q+4 \neq 4 q-1(\bmod n)$. Thus, $(q+1) S \neq \mathbb{Z}_{n}(\bmod n)$. On the other hand, $4 q+2 \geq n-1$. Thus, the result follows.

Lemma 20 For $n \geq 6$, order $(\{0,2,5\}) \leq\lfloor n / 5\rfloor+3$.
Lemma 21 For $n \geq 4$, order $(\{0,2,3,4\})=\lfloor n / 4\rfloor+1$.

Bases of the form $\{0,1,2, a\}$
Lemma 22 Let $n \geq 21$. Let $a \in\{3,\lfloor n / 3\rfloor+1,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1,1-$ $\lfloor n / 2\rfloor,-\lfloor n / 3\rfloor,-2,-1\}$ and $S=\{0,1,2, a\}$. Then,

$$
\operatorname{order}(S) \leq\lfloor n / 4\rfloor+2 \quad \text { or } \quad \text { order }(S) \geq\lfloor n / 3\rfloor-1 .
$$

Moreover, if $n \equiv 1 \bmod 3$, then $\operatorname{order}(S) \neq\lfloor n / 3\rfloor-1$ and if $n \equiv 2 \bmod 3$, then $\operatorname{order}(S) \notin\{\lfloor n / 3\rfloor-1,\lfloor n / 3\rfloor\}$.

Proof Case 1: If $a \in\{3,-1\}$, then the basis S has the same order as $\{0,1,2,3\}$ and the result follows by Lemma 13.

Case 2: If $a=-2$, then S has the same order as $2+S=\{0,2,3,4\}$ and the result follows from Lemma 21.

Case 3: Suppose that $a \in\{\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1,1-\lfloor n / 2\rfloor\}$. Assume n is even. Note that $1-\lfloor n / 2\rfloor=\lfloor n / 2\rfloor+1$. In this case, S contains an element
of order 2 or it has the same order as a basis containing 0 and an element of order 2. Thus, the result follows from Corollary 2. Assume n is odd. Then,

$$
\operatorname{order}(\{0,1,2,\lfloor n / 2\rfloor\})=\operatorname{order}(\{0,1,3,5\}) \leq \operatorname{order}(\{0,1,5\}),
$$

and

$$
\operatorname{order}(\{0,1,2,\lfloor n / 2\rfloor+1\})=\operatorname{order}(\{0,1,2,4\}) \leq \operatorname{order}(\{0,1,4\})
$$

In both cases, $\operatorname{order}(S) \leq\lfloor n / 4\rfloor+2$ by Corollary 4. Also,

$$
\operatorname{order}(\{0,1,2,\lfloor n / 2\rfloor+2\})=\operatorname{order}(\{0,2,3,4\}) \leq\lfloor n / 4\rfloor+2
$$

by Lemma 21. Note that $1-\lfloor n / 2\rfloor=\lfloor n / 2\rfloor+2$.
Case 4: Suppose that $a \in\{-\lfloor n / 3\rfloor,\lfloor n / 3\rfloor+1\}$. If $n \equiv 0 \bmod 3$, then S contains an element of order 3 or it has the same order as a basis containing 0 and an element of order 3. Thus, the result follows from Corollary 3. Let $n \equiv 1 \bmod 3$. If $a=-\lfloor n / 3\rfloor$, then $3 * S=\{0,1,3,6\}$ and

$$
\operatorname{order}(S)=\operatorname{order}(3 * S) \leq \operatorname{order}(\{0,1,6\})
$$

if $a=\lfloor n / 3\rfloor+1$, then $3 * S-2=\{0,1,4,-2\}$ and

$$
\operatorname{order}(S)=\operatorname{order}(3 * S-2) \leq \operatorname{order}(\{0,1,4\})
$$

In both cases, $\operatorname{order}(S) \leq\lfloor n / 4\rfloor+2$ by Corollary 4 . If $n \equiv 2 \bmod 3$, then

$$
\operatorname{order}(\{0,1,2,-\lfloor n / 3\rfloor\})=\operatorname{order}(\{0,1,4,-2\})
$$

and

$$
\operatorname{order}(\{0,1,2,\lfloor n / 3\rfloor+1\})=\operatorname{order}(\{0,1,3,6\})
$$

and the result follows as before.

Bases of the form $\{0,1,3, a\}$

Lemma 23 Let $n \geq 30$. Let $a \in\{\lfloor n / 3\rfloor+1,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1,1-\lfloor n / 2\rfloor,-\lfloor n / 3\rfloor,-2,-1\}$ and $S=\{0,1,3, a\}$. Then,

$$
\operatorname{order}(S) \leq\left\lfloor\frac{n}{4}\right\rfloor+2 \quad \text { or } \quad \text { order }(S) \geq\left\lfloor\frac{n}{3}\right\rfloor-1
$$

Moreover, if $n \equiv 1 \bmod 3$, then $\operatorname{order}(S) \neq\lfloor n / 3\rfloor-1$ and if $n \equiv 2 \bmod 3$, then $\operatorname{order}(S) \notin\{\lfloor n / 3\rfloor-1,\lfloor n / 3\rfloor\}$.

Bases of the form $\left\{0,1,\left\lfloor\frac{n}{3}\right\rfloor+1, a\right\}$
Lemma 24 Let $n \geq 30$. Let $a \in\left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor+1,1-\left\lfloor\frac{n}{2}\right\rfloor,-\left\lfloor\frac{n}{3}\right\rfloor,-2,-1\right\}$ and $S=\left\{0,1,\left\lfloor\frac{n}{3}\right\rfloor+1, a\right\}$. Then,

$$
\operatorname{order}(S) \leq\left\lfloor\frac{n}{4}\right\rfloor+2 \quad \text { or } \quad \text { order }(S) \geq\left\lfloor\frac{n}{3}\right\rfloor-1
$$

Moreover, if $n \equiv 1 \bmod 3$, then $\operatorname{order}(S) \neq\lfloor n / 3\rfloor-1$ and if $n \equiv 2 \bmod 3$, then $\operatorname{order}(S) \notin\{\lfloor n / 3\rfloor-1,\lfloor n / 3\rfloor\}$.

Bases of the form $\left\{0,1,\left\lfloor\frac{n}{2}\right\rfloor, a\right\}$
Lemma 25 Let $n \geq 22$. Let $a \in\{\lfloor n / 2\rfloor+1,1-\lfloor n / 2\rfloor,-\lfloor n / 3\rfloor,-2,-1\}$ and $S=\{0,1,\lfloor n / 2\rfloor, a\}$. Then,

$$
\operatorname{order}(S) \leq\left\lfloor\frac{n}{4}\right\rfloor+2 \quad \text { or } \quad \text { order }(S) \geq\lfloor n / 3\rfloor-1
$$

Moreover, if $n \equiv 1 \bmod 3$, then $\operatorname{order}(S) \neq\lfloor n / 3\rfloor-1$ and if $n \equiv 2 \bmod 3$, then $\operatorname{order}(S) \notin\{\lfloor n / 3\rfloor-1,\lfloor n / 3\rfloor\}$.

Proof If n is even, then S contains an element of order 2 and the result follows from Corollary 2. Now suppose that n is odd. Note that $2 * S+1=$ $\{0,1,3,2 a+1\}$.

For $a=-1, \operatorname{order}(S)=\operatorname{order}(\{0,1,3,-1\})=\operatorname{order}(\{0,1,2,4\}) \leq$ $\lfloor n / 4\rfloor+2$, by Corollary 4 .

For $a=-\lfloor n / 3\rfloor$ and $n \equiv 0 \bmod 3, S$ contains an element of order 3 and the result follows from Corollary 4.

For $a=\lfloor n / 2\rfloor+1, \operatorname{order}(S)=\operatorname{order}(2 * S+1)=\{0,1,2,3\}$ and the result follows from Lemma 13.

Now suppose that a does not satisfy the previous cases. We have $\operatorname{order}(S)=\operatorname{order}(\{0,1,3, b\})$, with $b \in\{4,\lfloor n / 3\rfloor+t+1,-3\}$, where $0<t=$ $n-3\lfloor n / 3\rfloor \leq 2$. Thus,

$$
\operatorname{order}(S) \leq \operatorname{order}(\{0,1, b\}) \leq\lfloor n / 4\rfloor+2
$$

by Corollary 4.
Bases of the form $\left\{0,1,\left\lfloor\frac{n}{2}\right\rfloor+1, a\right\}$

Lemma 26 Let $n \geq 21$. Let $a \in\{1-\lfloor n / 2\rfloor,-\lfloor n / 3\rfloor,-2,-1\}$ and $S=$ $\{0,1,\lfloor n / 2\rfloor+1, a\}$. Then,

$$
\operatorname{order}(S) \leq\left\lfloor\frac{n}{4}\right\rfloor+2 \quad \text { or } \quad \text { order }(S) \geq\lfloor n / 3\rfloor-1 .
$$

Moreover, if $n \equiv 1 \bmod 3$, then $\operatorname{order}(S) \neq\lfloor n / 3\rfloor-1$ and if $n \equiv 2 \bmod 3$, then $\operatorname{order}(S) \notin\{\lfloor n / 3\rfloor-1,\lfloor n / 3\rfloor\}$.

Proof If n is even, then S has the same order as $S-1$, which contains 0 and an element of order 2. Thus, the result follows from Corollary 2. Now suppose that n is odd. Then, $\operatorname{order}(S)=\operatorname{order}(\{0,1,2,2 a\})$.

If $a=1-\lfloor n / 2\rfloor=\lfloor n / 2\rfloor+2$, then $2 a=3$ and the result follows from Lemma 13 .

If $a=-2$, then $2 a=-4$ and, by Corollary 4 ,

$$
\operatorname{order}(S) \leq \operatorname{order}(\{0,1,-4\})=\operatorname{order}(\{0,1,5\}) \leq\lfloor n / 4\rfloor+2
$$

If $a=-1$, then $2 a=-2$ and, by Lemma $21, \operatorname{order}(S)=\operatorname{order}(\{0,2,3,4\}) \leq$ $\lfloor n / 4\rfloor+2$.

Suppose that $a=-\lfloor n / 3\rfloor$. If $n \equiv 0 \bmod 3$, then S contains 0 and an element of order 3 and the result follows from Corollary 3. If $n \equiv 1 \bmod 3$, then $S=\{0,1,2,\lfloor n / 3\rfloor+1\}$ and the result follows from Lemma 22. If $n \equiv 2$ $\bmod 3$, then, by Corollary 4 ,
$\operatorname{order}(S)=\operatorname{order}(\{0,1,2,\lfloor n / 3\rfloor+2\}) \leq \operatorname{order}(\{0,1,\lfloor n / 3\rfloor+2\}) \leq\lfloor n / 4\rfloor+2$.
Remark Suppose that $S=\{0,1, a, b\}$, with $a \in\{2,3,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1\}$ and $b \in\{2,3,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1,1-\lfloor n / 2\rfloor,-2,-1\}$, where n is odd if a or $b \in\{\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1,-\lfloor n / 2\rfloor\}$. From the proofs of Lemmas 22, 23, 24, 25 and 26 , we get that $\operatorname{order}(S) \leq\lfloor n / 4\rfloor+2$ if S is not one of the next exceptional bases:
$\{0,1,2,3\}, \quad\{0,1,2,-1\}, \quad\{0,1,\lfloor n / 2\rfloor,\lfloor n / 2\rfloor+1\}, \quad\{0,1,\lfloor n / 2\rfloor+1,1-\lfloor n / 2\rfloor\}$.
Note that all of them have the same order as $\{0,1,2,3\}$.

