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Abstract

In this paper we consider the n× n matrix whose (i, j)th entry is
i · j (mod n) and compute its rank and a basis for its kernel (viewed
as a matrix over the real numbers), when n is prime. We also give a
conjecture on the rank of this matrix when n is not prime and give
a set of vectors in its kernel, which is a basis in case the conjecture
is true. Finally, we include an application of this problem to Number
Theory.

Keywords: Rank of a matrix, Kernel of a matrix, Bisymmetric
matrix.

AMS Subject Classification: 15A03, 11M06, 11M20.

1 Introduction.

When learning modular arithmetic, it is a natural exercise to consider the
multiplication table modulo an integer n. This table can be seen as an n×n
matrix whose entries are positive integers. A Linear Algebra question, which
is interesting by itself, is to determine the rank or, even better, a basis for
the kernel, of this matrix over the real numbers.

In this paper we denote by Cn the n× n matrix given by

Cn(i, j) = i · j (mod n), i, j = 1, . . . , n, (1)

where Cn(i, j) denotes the (i, j)th entry of Cn.
Using techniques from Matrix Analysis and Analytic Number Theory, we

find the rank and a basis for the kernel of Cn when n is prime. When n is
composite, we give a conjecture on the rank of Cn and a set of vectors in the
kernel of Cn that is a basis of the kernel if the conjecture is true.

Since the last row and column of Cn are both zero, the matrix Hn, ob-
tained from Cn by deleting that row and that column, has the same rank as
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Cn. Moreover, it is easy to find a basis for the kernel of Cn from the kernel
of Hn. Therefore, most of the paper will be focused on studying the kernel
of Hn.

As an example, for n = 5 we have

H5 =


1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

 .
The paper is organized as follows. In Section 2 we use a matrix theory

approach to study the (n − 1) × (n − 1) matrix Hn. In particular, we give
a block-diagonal matrix similar to Hn (Lemma 7) and use it to give a set of
vectors in the kernel of Hn. This result allows us to obtain nontrivial lower
and upper bounds for the rank of Hn for general n (Corollary 2). A conjecture
for the exact value of this rank is also presented (Conjecture 14). In Section
3 we obtain the main result of the paper (Theorem 40) which describes the
rank of the n×n matrix Cn, when n is prime, and gives a basis for its kernel.
The proof of the rank result is done using techniques from Character Theory
and Analytic Number Theory. In Section 4, we present an application to
Number Theory that motivated our work.

2 The kernel of the matrix Hn.

In this section we present some properties of the matrix Hn for general n and
use them to study the kernel of Hn. We first introduce some notation and
recall some definitions.

We denote by Mn,m the set of n × m matrices with entries in R. We
abbreviate Mn,n to Mn.

We denote by R the exchange matrix (also called the flip-transpose of the
identity matrix I) of appropriate size, that is,

R :=

0 . . . 1
... . .

. ...
1 . . . 0

 .

Note that R2 = I.
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Definition 1 Let A ∈Mn.

• The matrix A is called symmetric if A = AT .

• The matrix A is called persymmetric if A = RATR.

• The matrix A is called centrosymmetric if A = RAR.

• The matrix A is called bisymmetric (or symmetric centrosymmetric,
or doubly symmetric) if it is symmetric and centrosymmetric.

Remark 2 If A ∈ Mn is persymmetric, then RA is symmetric. Also, if A
is symmetric and centrosymmetric (resp. persymmetric), then A is persym-
metric (resp. centrosymmetric).

Note that A ∈Mn is bisymmetric if

A(i, j) = A(j, i) and A(i, j) = A(n+ 1− i, n+ 1− j), i, j = 1, . . . , n.

This means that being bisymmetric is equivalent to being symmetric with
respect to the main diagonal and being symmetric with respect to the anti-
diagonal. A look at H5 shows that this matrix is bisymmetric.

Lemma 3 Let n ∈ N. The matrix Hn ∈Mn−1 is bisymmetric.

Proof The matrix Hn is symmetric since Hn(i, j) = ij (modn) = Hn(j, i).
Additionally, Hn is centrosymmetric since

(n− i)(n− j) (mod n) = ij (mod n)

which implies that Hn(i, j) = Hn(n− i, n− j).

The following result follows from some well-known properties of bisym-
metric matrices [2, Lemma 2].

Lemma 4 If n is odd, then Hn has the form

Hn =

[
A RBR
B RAR

]
, (2)

for some A ∈M(n−1)/2 symmetric and B ∈M(n−1)/2 persymmetric.
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If n is even, then Hn has the form

Hn =

 A x RBR
xT q xTR
B Rx RAR

 , (3)

for some q ∈ C, x ∈ M(n−2)/2,1, A ∈ M(n−2)/2 symmetric and B ∈ M(n−2)/2

persymmetric.

Next we give an explicit expression for the number q and the vector x in
the block representation of Hn given in Lemma 4, when n is even.

Lemma 5 If n is even, then the number q in (3) is given by{
0, if n ≡ 0 (mod 4)
n
2
, if n 6= 0 (mod 4)

.

Proof We have
q = Hn

(n
2
,
n

2

)
=
n

2
· n

2
(mod n).

If n ≡ 0 (mod 4), n = 4k for some positive integer k. Thus,

n

2
· n

2
(mod n) = kn (mod n) = 0.

If n 6= 0 (mod 4), then, since n is even, n = 4k + 2 for some positive integer
k, and

n

2
· n

2
(mod n) = kn+ 2k + 1 (mod n) = 2k + 1 =

n

2
.

Lemma 6 If n is even, then the column vector x in (3) is given by

x(i) =

{
n
2
, if i is odd,

0, if i is even,
i = 1, 2, . . . ,

n− 2

2
,

where x(i) denotes the ith component of x.

Proof Note that x is located in the (n/2)th column of Hn. Thus, x(i) =
Hn(i, n

2
) for i = 1, 2, . . . , n−2

2
. If i = 2k for some positive integer k, then

Hn

(
i,
n

2

)
= kn (mod n) = 0
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Now, if i = 2k + 1 for some positive integer k, then

Hn

(
i,
n

2

)
= kn+

n

2
(mod n) =

n

2
,

which proves the result.

Taking into account Lemma 4, we next obtain a symmetric block-diagonal
matrix similar to Hn for all n. This result also follows from [2, Lemma 3].
Observe that A−RB and A+RB, where A and B are as in Lemma 4, are
symmetric matrices since RB is symmetric by Remark 2.

Lemma 7

1. Suppose that n is odd and let Hn be expressed as in (2). Then,

KHnK
−1 =

[
A−RB 0

0 A+RB

]
,

where K =

[
I −R
I R

]
.

2. Suppose that n is even and let Hn be expressed as in (3). Then,

KHnK
−1 =

 A−RB 0 0

0 A+RB
√

2x

0
√

2xT q

 ,

where K =

 I 0 −R
I 0 R

0
√

2 0

.

As a consequence of the previous result, the study of the kernel of the
bisymmetric matrix Hn can be reduced to the study of the kernel of the
diagonal blocks of the block-diagonal matrix similar to Hn given in Lemma
7. In fact, when n is odd, if {u1, ..., uj} is a basis for the kernel of A−RB and
{uj+1, ..., uj+k} is a basis for the kernel of A+RB, then {K−1w1, ..., K

−1wj+k}
is a basis for the kernel of Hn, where wi = [ui 0]T ∈ Mn−1,1, for i ≤ j, and
wi = [0 ui]

T ∈ Mn−1,1, for i > j. Analogously, when n is even, if {u1, ..., uj}
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is a basis for the kernel of A−RB and {uj+1, ..., uj+k} is a basis for the kernel
of [

A+RB
√

2x√
2xT q

]
, (4)

then {K−1w1, ..., K
−1wj+k} is a basis for the kernel of Hn, where each wi is

defined as before. Note that, if n = 2, the matrix A−RB is empty.
In what follows we denote by A + RB the symmetric matrix A+RB if n

is odd and [
A+RB 2x

2xT 2q

]
(5)

if n is even. Clearly, A + RB ∈ Mbn/2c. Note that v is in the kernel of the
matrix (4) if and only if [

I(n−2)/2 0

0
√

2
2

]
v

is in the kernel of the matrix (5). In particular, the matrices (4) and (5) have
the same rank.

Next we give an explicit expression for the symmetric matrix A + RB.

Lemma 8 The matrix A + RB ∈Mbn/2c is given by

(A + RB)(i, j) =

{
0, if n divides ij
n, otherwise

, i, j = 1, . . . ,
⌊n

2

⌋
.

Proof Recall that A,B ∈ Mb(n−1)/2c. Suppose that 1 ≤ i, j ≤
⌊
n−1

2

⌋
. We

have
A(i, j) = Hn (i, j)

and

RB(i, j) = B

(⌊
n+ 1

2

⌋
− i, j

)
= Hn(n− i, j).

Thus, for 1 ≤ i, j ≤
⌊
n−1

2

⌋
,

(A + RB)(i, j) = Hn(i, j) +Hn(n− i, j)
= ij(mod n) + (n− i)j(mod n)

= ij(mod n) + (−ij)(mod n),

7



which implies the claim for the entry in position (i, j). If n is odd the proof
is complete. Now suppose that n is even. By Lemma 5,

(A + RB)(n/2, n/2) = 2q =

{
0, if n ≡ 0 (mod 4)
n, if n 6= 0 (mod 4)

.

Since n divides (n/2)2 if and only if n ≡ 0 (mod 4), the result follows for
(i, j) = (n/2, n/2).

Now we consider the case j = n/2, 1 ≤ i ≤ n
2
− 1. By Lemma 6,

(A + RB)(i, n/2) = 2x(i) =

{
n, if i is odd
0, if i is even

.

Since n divides in/2 if and only if i is even, the result follows for the entries in
positions (i, n/2). Taking into account that A + RB is symmetric, the result
also follows for the entries in positions (n/2, j), 1 ≤ j ≤ n

2
− 1.

Next we compute the rank of A + RB in terms of the proper divisors of n.
We call a proper divisor of n, where n is a positive integer, a positive divisor
of n different from n. Note that any proper divisor of n is less than or equal
to
⌊
n
2

⌋
.

Lemma 9 Let n be a positive integer and k be the number of proper divisors
of n. Then, rank(A + RB) = k.

Proof Let i ∈ {1, . . . ,
⌊
n
2

⌋
}. If gcd(i, n) = 1, then n is not a divisor of ij for

all j = 1, . . . ,
⌊
n
2

⌋
. By Lemma 8, (A + RB)(i, j) = n for all j = 1, 2, ...,

⌊
n
2

⌋
.

If gcd(i, n) 6= 1 and i has order m in Zn (that is, m is the smallest possible
integer such that mi ≡ 0 (mod n)), then, by Lemma 8, (A + RB)(i, j) = 0 if
and only if j = ms for some positive integer s. Moreover, the nonzero entries
in the ith row are equal to n. Thus, from the comments above we conclude
that there are at most k distinct rows in A + RB, corresponding to the k
proper divisors of n. Moreover, one of these rows has all entries equal to n,
while the remaining have the first zero entry in distinct columns and have
all the nonzero entries equal to n. Note that distinct proper divisors have
distinct orders. By elementary row operations, it can be seen that these k
rows are linearly independent, which proves the result.

Remark 10 When n is prime, Lemma 9 implies that rank(A + RB) = 1.
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Another immediate consequence of Lemma 9 is given in the next corollary.

Corollary 1 Let n be a positive integer and k be the number of proper divi-
sors of n. Then,

dim(ker(A + RB)) =
⌊n

2

⌋
− k.

Since, from Lemma 7, rank(Hn) = rank(A − RB) + rank(A + RB), and
rank(A−RB) ≤

⌊
n−1

2

⌋
, from Lemma 9 we get the next result.

Corollary 2 Let n be a positive integer and let k be the number of proper
divisors of n. Then,

k ≤ rank(Hn) ≤
⌊
n− 1

2

⌋
+ k.

Next we compute a basis for the kernel of A + RB when n > 2. Note that
when n = 2, the kernel of A + RB only contains the zero vector by Corollary
1. We start with a technical lemma.

Lemma 11 Let n be a positive integer. For each j ∈
{

1, 2, . . . ,
⌊
n
2

⌋}
, let

dj = gcd(j, n). Then, for 1 ≤ i ≤
⌊
n
2

⌋
, (A + RB)(i, j) = 0 if and only if

(A + RB)(i, dj) = 0.

Proof Note that, from Lemma 8, the statement (A + RB)(i, j) = 0 if and
only if (A + RB)(i, dj) = 0 is equivalent to n divides ij if and only if n divides
idj.

Suppose that n divides ij. Then, there exists a positive integer k such
that nk = ij. Since gcd(j, n) = dj, we have dj = jx + ny for some x, y ∈ Z,

x 6= 0. Thus, nk = i(
dj−ny
x

), which implies n(xk+ iy) = idj and, therefore, n
divides idj.

Suppose now that n divides idj. Since dj divides j, then idj divides ij
and, therefore, n divides ij.

We denote by ei the vector of appropriate size whose entries are 0 except
the entry in position i which is 1.

Theorem 12 Let n > 2. The set of vectors uj := ej − edj
∈ Mbn/2c,1, with

j ∈ {1, . . . ,
⌊
n
2

⌋
}, where j is not a divisor of n and dj = gcd(j, n), forms a

basis for ker(A + RB).
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Proof First we show that the vectors uj are in the kernel of A + RB. Note
that, by definition of uj, the i-th entry of the vector (A + RB)uj is (A + RB)(i, j)−
(A + RB)(i, dj). By Lemma 8, each entry of A + RB is either n or 0 and,
by Lemma 11, (A + RB)(i, j) = 0 if and only if (A + RB)(i, dj) = 0. This
implies that (A + RB)uj = 0 for all uj’s, as desired.

Next, we show that the vectors uj form a linearly independent set. Let
U be the matrix whose columns are the vectors uj and let J be the set of
integers in {1, . . . ,

⌊
n
2

⌋
} that are not divisors of n. Notice that if j1, j2 ∈ J ,

then j1 6= dj2 since, if j1 = dj2 = gcd(j2, n), then j1 would divide n. This
implies that the submatrix of U formed by the rows indexed by J is a row
permutation of the identity matrix of size |J |, which shows that U has full
rank.

We have obtained a set of |J | linearly independent vectors in the kernel
of A + RB. Since the largest proper divisor of n is less than or equal to

⌊
n
2

⌋
,

we have |J | =
⌊
n
2

⌋
− k, where k is the number of proper divisors of n. By

Corollary 1, the result follows.

Example 13 Let n = 24. Then dim(ker(A + RB)) = 5 and the set J de-
fined in the proof of Theorem 12 is given by {5, 7, 9, 10, 11}. A basis for
ker(A + RB) is given by the vectors

−1
0
0
0
1
0
0
0
0
0
0
0



,



−1
0
0
0
0
0
1
0
0
0
0
0



,



0
0
−1
0
0
0
0
0
1
0
0
0



,



0
−1
0
0
0
0
0
0
0
1
0
0



,



−1
0
0
0
0
0
0
0
0
0
1
0



.

Though we could not find appropriate techniques from matrix theory
to show it, numerical experiments in Matlab, in which the rank of Hn was
computed for any n from 2 to 1000, suggest the following conjecture. Recall
that rank(Cn) = rank(Hn), where Cn is the matrix defined in (1).
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Conjecture 14 Let n be a positive integer and let k be the number of proper
divisors of n. Then,

rank(Cn) = rank(Hn) =

⌊
n− 1

2

⌋
+ k.

Clearly, the conjecture holds when n = 2. In the next section we prove
the conjecture when n is prime. The result when n is not prime remains
open.

Remark 15 Because of Lemmas 7 and 9, it follows that, if Conjecture 14 is
true and n > 2, then A − RB is a nonsingular matrix. Note that, if n = 2,
A−RB is empty and A + RB is nonsingular as well.

3 The rank of the matrix Hn when n is prime.

In this section we compute the rank of the matrix Hn, when n is prime, using
techniques from Character Theory and Analytic Number Theory.

We start with some basic concepts and lemmas that will be used to obtain
the main result.

Definition 16 (Character) [1, Section 6.5] Let G be a group and let C de-
note the set of complex numbers. A function f : G→ C is called a character
of G if

(i) f is a group homomorphism of G, that is, f(g1g2) = f(g1)f(g2), for all
g1, g2 ∈ G; and

(ii) f(g) 6= 0 for some g ∈ G.

The set of characters of a finite group G is also a group with respect
to the group operation of pointwise multiplication defined by (f1 · f2)(g) =
f1(g)f2(g) [1, Section 6.6]. This group is denoted by Ĝ. The identity element
of Ĝ is the character fI given by fI(g) = 1 for all g ∈ G. The inverse of
a character f is f given by f(g) = f(g) for all g ∈ G, where f(g) is the
complex conjugate of f(g). The identity element of Ĝ is called the principal
character of G, while the other characters are called nonprincipal characters
of G. Note that any character of G maps the identity element of G to 1.
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According to the next result, if f is a character of a finite group G, the
range of a character of G lies on the unit circle. We recall that if G is a finite
group with identity element e, then the exponent of G is the least positive
integer k such that gk = e for all g ∈ G.

Proposition 17 [1, Theorem 6.7] Let G be a finite group with identity ele-
ment e and let f ∈ Ĝ. Then, f(e) = 1 and each function value f(g) is an
mth root of unity, where m is the exponent of G.

One may think that the set of characters of a group could potentially con-
tain many functions. The next theorem gives the exact number of characters
when the group is finite and abelian.

Proposition 18 [1, Theorem 6.8] If G is a finite abelian group, then |Ĝ| =
|G|.

In particular, if G is a finite cyclic group of order n (in which case the
exponent of G equals the order of G) and g is a generator of G, then the
n characters of G are determined by sending g to the different nth roots of
unity in C.

Example 19 Let G be the additive group Z4. Then, there exist four charac-
ters {f1, f2, f3, f4} of G and each character value is in the set {1,−1, i,−i},
the 4th roots of unity. Suppose that f1 is the principal character and f2, f3, f4

are defined by f2(1) = −1, f3(1) = i and f4(1) = −i. Note that, since 1 is a
generator of G and characters are group homomorphisms, f2, f3, f4 are well
defined. We give the range of the characters of G through a 4 × 4 matrix
A whose entry A(i, j) is given by fi(gj), where g1 = 0, g2 = 1, g3 = 2, and
g4 = 3:

A =


1 1 1 1
1 −1 1 −1
1 i −1 −i
1 −i −1 i

 .
The following concept will be key in the proof of our main results.

Definition 20 (Group matrix) [3] Let G be a finite group of order n. Fix
an enumeration {g1, ..., gn} of the elements of G. For every complex-valued
function α on G, the matrix Aα given by Aα(i, j) = α(gig

−1
j ) is called a group

matrix associated to α.
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Example 21 Let G be the additive group Z4 and let f2 be the character de-
fined in Example 19. Then, the following matrix is a group matrix associated
to f2:

Af2 =


1 −i i −1
−1 1 −i i
i −1 1 −i
−i i −1 1

 .
In what follows we let p denote a prime number. Next we show that

the rank of Hp can be computed by finding the rank of a group matrix. In
particular, the next lemma states that the matrix Hp can be obtained by
permuting some columns of a group matrix associated with a real-valued
function on the multiplicative group Z×p , consisting of the units of Zp.

Lemma 22 Let p be a prime number. Let α : Z×p → N be given by α(m) =
m, where m denotes the equivalence class mod p of m ∈ {1, 2, ..., p − 1}.
Then, Hp is a column permutation of the group matrix Aα associated to α.

Proof First recall that, since p is a prime number, the group Z×p is a cyclic
group under multiplication. Let g, where g ∈ {1, 2, ..., p− 1}, be a generator

for Z×p and consider the enumeration of Z×p given by {gσ(1), gσ(2), . . . , gσ(p−1)},
where σ is a permutation of {1, 2, ..., p − 1} such that gσ(i) = i. Then,

Aα(i, j) = α(gσ(i) g−σ(j)) = ij−1 mod p. Let π be the permutation of {1, 2, ..., p−
1} such that π(j) = j−1. Now consider the matrix Ãα obtained from Aα by

permuting its columns as follows: column j of Ãα is column π(j) = j−1 of

Aα. Then, Ãα = Hp is obtained by permuting the columns of Aα and the
result follows.

The previous lemma implies that rank(Hp) = rank(Aα).
We next characterize the eigenvalues of a group matrix of a finite abelian

group, associated to an injective function, and show that it is diagonalizable,
implying that its rank is the number of its nonzero eigenvalues. For this
purpose, we present the next lemma which gives the spectrum of a group
matrix associated to an integer-valued injective function in terms of the values
of the characters of G at an element of the group ring Z[G], when G is a finite
abelian group. Note that any character in the character group of G can be
extended by linearity to a complex-valued function on Z[G].
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Lemma 23 ([3] and [4, Theorem. 7.7.4]) Let G be a finite abelian group
and let α be an injective function from G to N. Let a =

∑
g∈G α(g)g ∈ Z[G].

Then, the group matrix Aα associated to α is diagonalizable and its spectrum
is the set {f(a) : f ∈ Ĝ}.

Since Aα is diagonalizable, we can compute the rank of Aα by counting
the number of eigenvalues distinct from zero. Thus, rank(Aα) = |{f ∈ Ĝ :
f(a) 6= 0}|.

Remark 24 Taking into account Lemmas 22 and 23, in order to compute
rank(Hp), it is enough to determine the number of characters f in the char-
acter group of Z×p such that

∑p−1
i=1 i · f(i) 6= 0.

Here, it becomes convenient to work with the so-called Dirichlet charac-
ters whose definition we give below.

Definition 25 (Dirichlet Character) [1, Section 6.8] Let n ∈ N and f be
any character of Z×n . The function χ : N→ C given by

1. χ(m) = f(m), if n and m are relatively prime;

2. χ(m) = 0, if n and m are not relatively prime;

is called the Dirichlet character modulo n induced by f . The Dirichlet char-
acter induced by the principal character is called the principal Dirichlet char-
acter modulo n. A Dirichlet character modulo n that is not the principal
character is called nonprincipal.

It is easy to see that Dirichlet characters modulo n are completely mul-
tiplicative and periodic with period n [1, Theorem 6.15], that is, if χ is a
Dirichlet character, then

• χ(x+ n) = χ(x), for all x ∈ N;

• χ(xy) = χ(x)χ(y) for all x, y ∈ N.

Note that the number of Dirichlet characters modulo n equals the order
of Z×n since, by Proposition 18, the number of characters of a finite abelian
group equals its cardinality.
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Example 26 The following table displays the Dirichlet characters for n = 5.
We obtain four functions since Z5 contains 4 units. We only give the values
of the functions at the set {1, . . . , 5} since these Dirichlet characters are
periodic functions of period 5:

x 1 2 3 4 5
χ1(x) 1 1 1 1 0
χ2(x) 1 -1 -1 1 0
χ3(x) 1 i -i -1 0
χ4(x) 1 -i i -1 0

.

Definition 27 (Primitive Dirichlet character) [1, Section 8.7] A Dirichlet
character modulo n χ is said to be primitive if for every proper divisor d
of n there exists an integer a such that a ≡ 1(mod d), gcd(a, n) = 1, and
χ(a) 6= 1.

Example 28 Consider the Dirichlet characters modulo 5, given in Exam-
ple 26. The only proper divisor of 5 is 1. Note that χ1 is not primitive
since χ1(a) = 1 whenever gcd(a, n) = 1. However, the rest of the Dirichlet
characters are primitive since χi(2) 6= 1 for i = 2, 3, 4.

The observations in the previous example can be generalized as follows.

Lemma 29 [1, Theorems 8.13 and 8.14] The principal Dirichlet character
modulo n is not primitive. Moreover, if n is prime, all nonprincipal Dirichlet
characters modulo n are primitive.

Definition 30 (Admissible Dirichlet character) Let χ be a Dirichlet charac-
ter modulo n. We say that χ is admissible if

n−1∑
i=1

iχ(i) 6= 0.

Note that the principal Dirichlet character modulo p is admissible since∑p−1
i=1 i 6= 0.
Taking into account Remark 24, we obtain the following.

Remark 31 If p is prime, the rank of Hp is equal to the number of admissible
Dirichlet characters modulo p.
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In order to see which Dirichlet characters are admissible, we need some
well-known results from the theory of Dirichlet L-functions.

Definition 32 (Dirichlet L-function)[1, Sections 11 and 12] Let χ be a Dirich-
let character modulo n and s ∈ C with real part greater than 1. The associated
Dirichlet L-series is the absolutely convergent series given by

L(s, χ) =
∞∑
i=1

χ(i)

is
.

If χ is non principal, L(s, χ) is a complex-valued function in s that can be
analytically extended to an entire function on the whole complex plane [1,
Theorem 12.5]. This function is called a Dirichlet L-function and is also
denoted by L(s,χ).

The following is a well-known result in Analytic Number Theory.

Lemma 33 [1, Thm. 12.20] If χ is a nonprincipal Dirichlet character mod-
ulo n, then

L(0, χ) = − 1

n

n−1∑
i=1

iχ(i).

Remark 34 The admissible Dirichlet characters modulo p, where p is prime,
are exactly the principal Dirichlet character and the nonprincipal Dirichlet
characters such that L(0, χ) 6= 0.

In order to determine when L(0, χ) 6= 0, we introduce the Functional
Equation for Dirichlet L-functions.

Let χ denote the complex conjugate of the Dirichlet character χ.

Lemma 35 (Functional Equation)[1, Thm. 12.11] Let χ be a primitive
Dirichlet character modulo n. Then, for all s ∈ C, we have

L(1− s, χ) =
ns−1Γ(s)

(2π)s
(e−πis/2 + χ(−1)eπis/2)G(1, χ)L(s, χ),

where Γ(s) is the Gamma Function and G(1, χ) =
∑n

r=1 χ(r)e2πir/n is the
Gauss sum associated with χ.
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The following are well-known results in Analytic Number Theorem.

Lemma 36 [1, Theorem 8.15] Let χ be a primitive Dirichlet character mod-
ulo n. Then, G(1, χ) 6= 0.

Lemma 37 [1, Section 7.3] Let χ be a nonprincipal Dirichlet character mod-
ulo n. Then, L(1, χ) is finite and nonzero.

The next result gives necessary and sufficient conditions for a Dirichlet
character modulo p to be admissible.

Lemma 38 Let p > 2 be a prime number and consider the primitive (p−1)th
root of unity w = e2πi/(p−1). Let g be a generator of Z×p and let fk be the
character of Z×p defined by fk(g) := wk−1, k = 1, . . . , p− 1. Let χ1,. . . ,χp−1,
be the Dirichlet characters modulo p induced by f1, . . . , fk, respectively. Then,
for k = 2, . . . , p− 1, χk is admissible if and only if k is even.

Proof Since g is a generator of Z×p , we have gp−1 ≡ 1 (mod p) and gs 6= 1

(mod p) for s = 1, . . . , p−2. Thus, g
p−1
2 ≡ −1 (mod p). So, for k = 2, . . . , p−

1, χk(−1) = χk

(
g

p−1
2

)
= (w

p−1
2 )k−1 = (−1)k−1. Therefore, χk(−1) = −1 if

k is even and χk(−1) = 1 if k is odd. Since p is prime and χk is nonprincipal,
χk is primitive by Lemma 29. By Lemma 35,

L(0, χk) =
1

2π
(−i+ χk(−1)i)G(1, χk)L(1, χk)

Note that if χk is a nonprincipal Dirichlet character, then χ is also nonprin-
cipal. Taking into account Lemmas 36 and 37 it follows that, if k is even,
L(0, χk) 6= 0; if k is odd, L(0, χk) = 0. Now the result follows from Remark
34.

We can now give the rank of the matrix Hp when p > 2 is a prime number.

Lemma 39 Let p > 2 be a prime number. Then, rank(Hp) = p+1
2

.

Proof By Lemma 38, the nonprincipal Dirichlet characters modulo p χ2,χ4,...,χp−1

are admissible, while χ3,χ5,...,χp−2 are not admissible. Since, by Remark 34,
χ1 is admissible, the result follows taking into account Remark 31.
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Observe that, by Lemma 39, Conjecture 14 is true when n > 2 is prime.
Then, by Remark 15, Lemma 7, and Theorem 12, we can obtain a basis for
the kernel of Hp when p > 2 is prime (note that when p = 2, the kernel of
Hp is {0}). From this basis for the kernel of Hp, we can easily obtain a basis
for the kernel of Cp, the p× p matrix whose (i, j)th entry is i · j (mod p).

Theorem 40 Let p > 2 be a prime number and Cp ∈ Mp be defined by
Cp(i, j) = i · j (mod p). Let K be as in Lemma 7. Let uj := ej − e1 ∈
M p−1

2
,1 and wj = [0(p−1)/2, uj, 0]T ∈ Mp,1, with j = 2, . . . , p−1

2
. Then, the

set of vectors {K−1w2, . . . , K
−1w p−1

2
, ep} is a basis for the kernel of Cp. In

particular, rank(Cp) = p+1
2

.

4 Application.

We now present an application to Number Theory of the problem we have
considered in this paper. This application, which motivated our work, ap-
pears in the context of the study of Stickelberger relations on class groups of
group rings.

Let G be a finite abelian group and let n be the order of G. Fix a primitive
nth root z of unity. Then, for each g ∈ G and f ∈ Ĝ, there is a unique integer
r, with 1 ≤ r ≤ n, such that f(g) = zr. We therefore can define the function

〈·, ·〉 : G× Ĝ→ Q/Z

given by

〈g, f〉 =
{ r
n

}
,

where
{
r
n

}
denotes the fractional part of r/n.

Note that the group rings Q[G] and Q[Ĝ] are Q-vector spaces with di-
mension |G| = |Ĝ|, and G and Ĝ are bases for Q[G] and Q[Ĝ], respectively.
Thus, we may extend the function above via linearity to

〈·, ·〉 : Q[G]×Q[Ĝ]→ Q

defined by 〈∑
g∈G

cg · g,
∑
f∈Ĝ

cf · f

〉
=
∑
g∈G

∑
f∈Ĝ

cg · cf〈g, f〉,
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where cg, cf ∈ Q. Now consider the function h: Q[Ĝ]→ Q[G] given by

h(a) =
∑
g∈G

〈g, a〉g, for any a ∈ Q[Ĝ]. (6)

We may view h as a linear map between two Q-vector spaces of dimension
|G|. An interesting problem, which motivated our work, is the study of the
kernel of h.

When the group G is cyclic (and, therefore, isomorphic to Zn for some n),
we can determine explicitly the matrix representation of h as the following
lemma states.

Lemma 41 Let G be the additive group Zn and g be a generator of G. Let
Ĝ = {f1, f2, . . . , fn}, where fi(g) = zi−1 and z is a primitive nth root of unity.
Then, the matrix representation Rn of h in the bases β1 = {f2, f3, . . . , fn, f1}
and β2 = {g, g2, . . . , gn−1, e} is given by

Rn(i, j) =

{
ij

n

}
=
i · j (mod n)

n
, i, j = 1, 2, ..., n.

Proof For i, j = 1, . . . , n − 1, since fj+1(g
i) = zij, the (i, j)th entry of Rn

is given by 〈gi, fj+1〉 =
{
i·j
n

}
= i·j (modn)

n
. Since fj(e) = 1 = z0, we have

〈e, fj〉 = 0 for j = 1, . . . , n, which implies that the last row of Rn is zero.
Since f1(g

i) = 1 = z0, we have 〈gi, f1〉 = 0 for i = 1, . . . , n, and, then, the
last column of Rn is zero. Thus, the claim follows.

Note that

Rn =
1

n
Cn =

1

n

(
Hn 0
0 0

)
.

Finally, we observe that, although the function h given in (6) is defined
between Q-vector spaces, the determination of the kernel and rank of the
matrix representation of h can be done by considering it a matrix over the
real numbers.
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