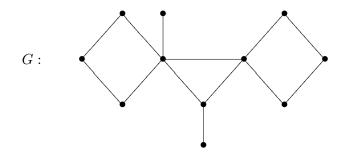
HOMEWORK 1

8 PROBLEMS DUE: WEDNESDAY, APRIL 13, 2011

- (1) Determine all $m, n \in \mathbb{N}$ such that the complete bipartite graph $K_{m,n}$ is Hamiltonian.
- (2) Give an example of a strongly connected digraph whose underlying graph is not Hamiltonian.
- (3) Let \vec{G} be a digraph on $n \ge 2$ vertices. Let

$$Y = A(\vec{G}) + A(\vec{G})^2 + A(\vec{G})^3 + \dots + A(\vec{G})^{n-1}.$$


Prove that \vec{G} is strongly connected if, and only if, all entries of Y are nonzero.

- (4) Show that there exists a vertex labeling of \vec{G} such that $A(\vec{G})$ is a strictly lower triangular matrix if, and only if, \vec{G} is an acyclic digraph.
- (5) Let G be a graph with n vertices, where $n \ge 2$. Prove that G has at least two vertices which are not cut vertices.
- (6) Let v be a cut vertex of a simple connected graph G. Prove that v is not a cut vertex of its complement \overline{G} .
- (7) Let G be a simple connected graph with at least two vertices. Prove that

$$\kappa(G) \le \frac{2m}{n}$$

where m is the number of edges and n is the number of vertices.

(8) Draw the block cut-point graph for the graph G.

