
HOMEWORK 1

SOLUTIONS

(1) Determine allm,n ∈ N such that the complete bipartite graphKm,n is Hamiltonian.
Solution:

Claim 1. The complete bipartite graph Kn,n is Hamiltonian, for all n ≥ 2.

Proof. Kn,n is a simple graph on 2n vertices. So for n ≥ 2, we have that Kn,n has
at least 3 vertices. Under this restriction, a sufficient condition for Hamiltonicity
is that the degree of every vertex is greater than or equal to half the number of
vertices. As the degree of each vertex in Kn,n is n (= 2n/2), we have our desired
result. �

We note here that for n = 1 or 2, Kn,n is a tree, and is therefore not Hamiltonian.

Claim 2. The complete bipartite graph Km,n is not Hamiltonian when m 6= n.

Proof. WLOG we assume that n < m. Let V ′ ⊆ V (Km,n) be the bipartition set of
order n. A necessary condition for the Hamiltonicity of a simple graph G is that
for each nonempty S ⊆ V (G), the number of components of G− S is less than or
equal to the order of S.

For S = V ′, G − S is the null graph on m vertices. Hence, the number of
components of G − S is m, which is greater than n = |S|. Thus, Km,n is not
Hamiltonian for m 6= n. �

(2) Give an example of a strongly connected digraph whose underlying graph is not
Hamiltonian.

Solution: One way to think of strongly connected is that the graph is in some
way a composition of cycles. In that sense, one can reach any point from any other.
To frustrate Hamiltonicity, there must not be one “big” cycle, that is, a cycle that
includes all vertices.

This line of thought leads us to the idea of a “bottleneck” and the example below.
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(3) Let ~G be a digraph on n ≥ 2 vertices. Let

Y = A(~G) +A(~G)2 +A(~G)3 + · · ·+A(~G)n−1.

Prove that ~G is strongly connected if, and only if, all entries of Y that do not lie
on the main diagonal are nonzero.

Solution: We begin with an observation for digraphs that is analogous to what
was described in the undirected case last term.

If ~G is a digraph on n vertices and aij and a
(2)
ij are the ij-entries of A(~G) and

A(~G)2 respectively, then by the rules of matrix multiplication

a
(2)
ij = ai1a1j + ai2a2j + · · ·+ ainanj .

Thus, a
(2)
ij counts the number of directed walks of length two from the vertex of

~G labeled ui to the vertex labeled uj . We can make a similar statement for a
(k)
ij ,

1 ≤ k ≤ n− 1. Thus, the ij-entry of Y ,

yij = aij + a
(2)
ij + · · ·+ a

(n−1)
ij ,

counts the number of directed walks in ~G from ui to uj of length less than n.
Now suppose that for each distinct pair i, j, yij 6= 0. Then, there is at least 1

directed walk between ui and uj , for all i, j, i 6= j. Hence, ~G is strongly connected.

On the other hand, assume ~G is strongly connected. Then, there exists a directed

walk from any vertex of ~G to any other. This walk is of positive length, if the
vertices are distinct. Another result for digraphs analogous to an established result
for undirected graphs is that the existence of a directed walk of positive length

implies the existence of a directed path. Since ~G has n vertices, such a path has
length less than n. At least one path of length less than n for every pair of distinct
vertices implies that yij 6= 0 for all i 6= j.

(4) Show that there exists a vertex labeling of ~G such that A(~G) is a strictly lower

triangular matrix if, and only if, ~G is an acyclic digraph.

Solution: Assume there exists a vertex labeling of ~G such that A(~G) is a strictly

lower triangular matrix. This means that, aij , the ij-entry of A(~G), is nonzero if,
and only if, i < j. Thus, there is a directed edge between ui and uj only when

i < j. Hence, a directed walk in ~G can never repeat a vertex. Therefore, ~G contains
no directed cycles.

Now if ~G is an acyclic digraph, by a result proven in class, there exists a partial

order � on V (~G) given by

u � v ⇔ there is a directed path from v to u in ~G.

A vertex v ∈ V (~G) is maximal with respect to the partial order � if @ u ∈ V (~G)

such that v � u. As V (~G) is assumed to be finite, there exists at least one maximal
element. Give this vertex the label 1.
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If there is another maximal vertex, give it the label 2. Continue until all maximal
elements all labeled. Next, label the vertices that are adjacent to the maximal
vertices. Following this labeling, a directed edge from ui to uj will only exist if

i < j. Hence, A(~G) will be strictly lower triangular.

(5) Let G be a graph with n vertices, where n ≥ 2. Prove that G has at least two
vertices which are not cut vertices.

Solution: Proof by contradiction. If G does not have at least two vertices which
are not cut vertices, then G has 0 or 1 vertices which are not cut vertices. In other
words, G has at most one vertex that is not a cut vertex.

Now, suppose G is connected. Let u and v be vertices in G such that the distance
between them is maximal. That is, the shortest path from u to v is longer than
the shortest path between any pair of distinct vertices in G. Since G has at least 2
vertices, u 6= v. By assumption, one of these vertices, say u, is a cut vertex.

Hence G − u is disconnected. Let w ∈ V (G − u) be such that w and v lie
in different components of G − u. Therefore, any path from w to v contains u.
Thus, the shortest path from w to v in G contains the shortest path from u to v.
Contradiction.

If G is disconnected, do the same proof on any connected component with two
or more vertices. If all the components of G contain only one vertex, then G has
no cut vertices.

(6) Let v be a cut vertex of a simple connected graph G. Prove that v is not a cut
vertex of its complement G.

Solution: Consider the connected components of G− v. By definition of com-
plement, any pair of vertices lying in distinct components are adjacent in G. Hence,
any pair of vertices in G− v are connected by a path of length at most two. Thus,
v is not a cut vertex of G.

(7) Let G be a simple connected graph with at least two vertices. Prove that

κ(G) ≤ 2m

n
,

where m is the number of edges and n is the number of vertices.
Solution: We showed in class that the connectivity of a graph G is less than or

equal to the minimum degree of the vertices. That is,

κ(G) ≤ δ(G).

By the Hand-Shaking Theorem

nδ(G) =
∑

u∈V (G)

δ(G) ≤
∑

u∈V (G)

dG(u) = 2|E(G)| = 2m.

Therefore,

δ(G) ≤ 2m

n
.



4 SOLUTIONS

(8) Draw the block cut-point graph for the graph G.
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