
HOMEWORK 2

SOLUTIONS

(1) Draw two graphs on six vertices that are 1-isomorphic but are not isomorphic.
Solution: The graphs given below are clearly 1-isomorphic. However, G has a

vertex of degree 5 while G′ does not. Therefore, the graphs are not isomorphic.
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(2) Let (~G, c; s, t) be a network and f a flow. Show that if S is a source vertex cut,
then val(f) = f+(S)− f−(S) ≤ c+(S).

Solution: A source vertex cut is a set S ⊆ V (~G) such that s ∈ S and t 6∈ S. A
flow is also a weight for a graph, so by Corollary 6.40 in the text

f+(S)− f−(S) =
∑
u∈S

(f+(u)− f−(u)) = f+(s)− f−(s) +

 ∑
u∈S\{s}

(f+(u)− f−(u))

 .

By definition,

val(f) = f+(s)− f−(s).

And by Kirchhoff’s Law,

f+(u) = f−(u) ∀ u ∈ V (~G) \ {s, t}.

Therefore, we have

f+(S)− f−(S) = val(f).

Finally, by the definition of a flow, f+(S) ≤ c+(S) and f−(S) ≥ 0 . Thus,

f+(S)− f−(S) ≤ c+(S).
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(3) Let (~G, c; s, t) be a network, f a flow, and p an augmenting path of ~G from s to t
with a tolerance of δ > 0. Let f ′ be given by

f ′(e) =

 f(e) + δ if η(e) = η(ei) = (ui−1, ui),
f(e)− δ if η(e) = η(ei) = (ui, ui−1),
f(e) if e is not in p.

Show that f ′ is a flow and val(f ′) = val(f) + δ.
Solution: By the definition of a flow and the tolerance of an augmenting path,

we have that

0 ≤ f ′(e) = f(e) + δ ≤ f(e) + c(e)− f(e) = c(e)

for any edge e in the augmenting path with the same orientation as the network.
If e is an edge on the augmenting path with the opposite orientation as that of the
network, then

0 = f(e)− f(e) ≤ f ′(e) = f(e)− δ ≤ f(e) ≤ c(e).

And so, f ′ satisfies condition 1 of a flow.
We now show that f ′ satisfies Kirchhoff’s condition. Let u /∈ {s, t} be a vertex

of the augmenting path p. Then there are exactly two (consecutive) edges of p
incident with u.

Suppose both edges have u as head with respect to the network. Then both
edges contribute to the value of f ′−(u). In this case the network orientation and
augmenting path orientation agree for one edge and disagree for the other. So one
edge increases f ′−(u) over f−(u) by δ and the other decreases f ′−(u) from f−(u)
by δ. Since f−(u) = f+(u), we have that f ′−(u) = f ′+(u). If the two edges share
u as a tail, they contribute a net of zero to f ′+(u) over f+(u), again maintaining
the Kirchhoff condition.

Now, say that one edge has u as head and the other has u as tail. Then one
edge contributes to f ′+(u) and the other contributes to f ′−(u). Furthermore, the
network and augmenting path orientations agree for both edges or disagree for both
edges. In either case, the change of f ′+(u) from f+(u) and of f ′−(u) from f−(u)
is the same. Both quantities are increased by δ or decreased by δ. So again, the
Kirchhoff condition for f ′ is maintained and we have established condition 2 for f ′.

Finally, we show that val(f ′) = val(f) + δ. Let e be the first edge of p. This is
the only edge of p that has s as an endvertex. The network and augmenting path
orientations of e coincide and e contributes δ to f ′+(s) over f+(s). Therefore,

val(f ′) = f ′+(s)− f ′−(s) = δ + f+(s)− f−(s) = δ + val(f).

(4) Give an example of a network ~G with a unique maximum flow f .
Solution: In the example below, the capacity of the network is in bold and the

flow f is given by the numbers in parentheses.
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The value of the flow f is val(f) = f+(s)− f−(s) = 3− 0 = 3. And from the list

c+({s}) = 1 + 2 = 3

c+({s, a}) = 2 + 3 = 5

c+({s, b}) = 1 + 4 = 5

c+({s, a, b}) = 3 + 4 = 7

we see that the capacity of a minimum source vertex cut is also 3. Therefore, the
flow f is maximum.

Now, let g be another maximum flow. The edges (s, a) and (s, b) must have
the same image under g as under f . Otherwise, val(g) 6= 3. But, once g((s, a))
and g((s, b)) are given, g((a, t)) and g((b, t)) are predetermined by Kirchhoff’s Law.
Hence, g = f .

(5) Use the Ford-Fulkerson Algorithm to find a maximum flow for the network ~G given
below. Prove that your flow f is maximum by finding a source vertex cut S such
that val(f) = c+(S).

•
a 7 //

2

&&NNNNNNNNNNNNN •
d

4

��@@@@@@@

•s

5
??~~~~~~~ 6 //

1 ��@@@@@@@ •
b 8

88ppppppppppppp

3

&&NNNNNNNNNNNNN •
e 11 // •

t

•c
10

//
9

88ppppppppppppp •
f

12

??~~~~~~~

Solution: To put just any flow on a network, we simply reduce capacities keeping
Kirchhoff’s condition in mind. The flow f is given below:
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The simple path p = (s, c, f, t) is clearly an augmenting path for f . Since the
network and path orientations agree for each edge, all we have to worry about is
whether the image under the flow is strictly less than capacity. This is obviously
the case.

That path and network orientation coincide means that ε is capacity minus image
under f for each edge. Therefore, we have ε = 1, 10, and 11, respectively, for the
three edges of p. Thus, the tolerance of p is δ = min ε = 1.

By Problem 3, we can create a new flow f ′ with a larger value than f by adding
1 to each of the edges of p.
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We now need to find an augmenting path for f ′. If we start at s we are forced
to go to b, since the other edges are already at capacity. We could then go from
b to d. Once at d we can’t head straight to t, because that edge is at capacity.
We are allowed to go backwards to a, as 3 > 0. But now we are stuck. We can’t
go backwards to s since paths do not repeat vertices and we can’t go forward to e
because that edge is at capacity.

The problems started when we moved on our network from b to d. So let’s try b
to f . This works, as does f to t. Hence r = (s, b, f, t) is an augmenting path for
f ′. The respective ε for the three edges are 4, 2 and 10. Therefore, the tolerance of
r is δ = 2.

We use this δ, as before, to create a new flow f ′′.
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The flow f ′′ has no augmenting path. Starting out s, we are still forced to b. We
could go to d, but we already know that wont get us anywhere. And we can no
longer go to f since that edge is now at capacity. Hence, f ′′ is a maximum flow.

To check our work, we note that val(f ′′) = 10 = C+({s, a, b, d}). Thus, by
Theorem 6.44 from the text, S = {s, a, b, d} is a minimum source vertex cut and
f ′′ is a maximum flow.

(6) Prove Euler’s Formula by induction on the number of vertices.
Solution: If a connected graph G has only 1 vertex, then all of its edges are

loops. Each loop corresponds to a face, its interior. Every face, except for the
infinite face, corresponds to a loop. Thus,

n−m+ f = 1−m+ (m+ 1) = 2.

Now, assume G has n > 1 vertices. Since G is connected, there exists one edge
that is not a loop. By contracting that edge, we get a new graph with n′ vertices,
m′ edges and f ′ faces. A contraction reduces the number of edges and vertices by
one, but does not change the number of faces. So we have

n′ −m′ + f ′ = (n− 1)− (m− 1) + f = n−m+ f.

Hence, the number of vertices minus the number of edges plus the number of
faces remains the same as we contract each nonloop edge. We continue until all
edges are loops, whence we get 2.

(7) Let G be a plane graph with n vertices, m edges, f faces and k components. Show
that

n−m+ f = k + 1.

Solution: Let H1 · · ·Hk be the components of G. Connect these components
in a “path”. That is, introduce an edge from a vertex in H1 to a vertex in H2,
another edge from a vertex in H2 to a vertex in H3, and so on. The new graph is
connected, has the same number of vertices and faces as G and k − 1 additional
edges. Thus,

n− (m+ k − 1) + f = 2⇒ n−m− k + 1 + f = 2⇒ n−m+ f = k + 1.
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(8) Let e be an edge of K3,3. Show that K3,3 − e is planar.
Solution: We systematically deform K3,3 − e to reveal a planar embedding.
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