HOMEWORK 4

SOLUTIONS

(1) Determine the chromatic number of the Petersen graph.

Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence,

$$
3 \leq \chi\left(C_{5}\right) \leq \chi(P) .
$$

As the Petersen graph is neither a complete graph nor itself a cycle of odd length, we can invoke Brooks's Theorem:

$$
\chi(P) \leq \Delta(P)=3 .
$$

Thus,

$$
\chi(P)=3
$$

We demonstrate a proper 3-vertex coloring below.

(2) Determine the chromatic number of the Grötzsch graph.

Solution: As in the solution to Problem 1, Brooks' theorem and the fact that the Grötzsch graph has C_{5} as a subgraph gives

$$
3 \leq \chi(G) \leq 5
$$

Below is a proper 4 -vertex coloring for the Grötzsch graph.

Hence,

$$
3 \leq \chi(G) \leq 4
$$

That is, $\chi(G)$ is either 3 or 4 .
Now suppose there existed a proper 3 -vertex coloring for the Grötzsch graph. WLOG, we can assume that the center vertex has coloring 3. This forces the five neighbors of the center vertex to have coloring 1 or 2 . This, in turn, creates a conflict with the coloring of the 5 -cycle that bounds the Grötzsch graph, which as an odd cycle, requires at least 3 colors.

Therefore, $\chi(G)=4$.
(3) Draw a self-dual plane graph on four vertices.

Solution: For any graph isomorphic to its plane dual, the number of vertices must equal the number of faces. So we are looking for a graph with four vertices and four faces. Therefore, the complete graph K_{4} is a reasonable candidate.

Remember, when dealing with plane dual the embedding (how a graph is drawn) matters. We consider the standard plane embedding of K_{4} :

The plane dual of this graph will have four vertices and six edges, as does the original graph. Note that every face of K_{4} (including the infinite face) is bounded by 3 edges. This tells that the degree of each vertex in K_{4}^{*} is 3 . It is also clear that K_{4}^{*} is simple. A simple graph on four vertices where every vertex has degree 3 is isomorphic to K_{4}.
(4) Draw a self-dual plane graph on seven vertices.

Solution: Using similar considerations as above, we obtain the following selfdual plane graph on seven vertices.

(5) For a simple connected graph G, with at least two vertices, prove that $\chi(G)=2$ if and only if G is bipartite.

Solution: Assume G is bipartite with bipartition $V(G)=X \cup Y$. Assign color 1 to all the vertices in X and color 2 to all the vertices in Y. Since any edge in G has exactly one endvertex in each set, G has a proper 2-vertex coloring. We have to check that $\chi(G) \neq 1$. But this is only possible if G has no edges.

Now assume $\chi(G)=2$. Let $X \subset V(G)$ be the set of vertices colored 1 and $Y \subset V(G)$ the set of vertices colored 2. Clearly, $X \cup Y=V(G)$ and $X \cap Y=\emptyset$. Any edge in G must have one vertex in X and the other in Y since G has a proper 2-vertex coloring. Thus X and Y form a bipartition for G.
(6) For a simple connected graph G, with at least two vertices, prove that $\chi(G) \leq k$ if and only if G is k-partite.

Solution: Assume G is k-partite. Assign the colors $1, \cdots, k$ to the partition sets. As above, this defines a proper k-vertex coloring for G. Note that this does not imply that $\chi(G)=k$, only that $\chi(G) \leq k$. But that is all we are asked to prove.

Now assume that $\chi(G) \leq k$. Clearly, by sorting vertices by color, we get a $\chi(G)$ partition. By subdividing partition sets (if we have enough vertices) or allowing empty sets (if we don't) we can increase the number of partition sets to any number, including k.
(7) For a simple connected graph G, with n vertices, prove that $\chi(G)=n$ if and only if $G=K_{n}$.

Solution: Clearly, $G=K_{n} \Rightarrow \chi(G)=n$. So we need only prove the other direction. Here, we prove the contrapositive.

Let G be a graph on n vertices such that $G \neq K_{n}$. Then, there exists $u \in V(G)$ such that $d_{G}(u)<n-1$.

Now $G-u$ is a simple graph on $n-1$ vertices, therefore

$$
\chi(G-u) \leq \Delta(G-u)+1=(n-2)+1=n-1 .
$$

We can then extend the at most $n-1$ coloring of $G-u$ to G without adding any additional colors.
(8) Let G be a simple graph on n vertices and \bar{G} its complement. Show that

$$
\chi(G)+\chi(\bar{G}) \geq 2 \sqrt{n} .
$$

Solution: First we show that

$$
n=\chi\left(K_{n}\right) \leq \chi(G) \cdot \chi(\bar{G}) .
$$

That is, we can color the complete graph with $\chi(G) \cdot \chi(\bar{G})$ colors.
Color the complete graph with the $\chi(G)$ colors. Clearly, this is not yet a proper coloring. The vertices which were colored 1 in G are now all pairwise adjacent by the addition of the edges from \bar{G}. Recolor all those vertices with $\chi(\bar{G})$ different colors. This is enough since \bar{G} has a $\chi(\bar{G})$-vertex coloring.

Move on to the vertices colored 2 by G. Recolor these vertices by a new set of $\chi(\bar{G})$ colors. And so on.

This process is, of course, overkill. But in the end, no adjacent vertices will have the same color. Hence we have a proper $\chi(G) \cdot \chi(\bar{G})$-vertex coloring of K_{n}.

Now for any two positive numbers x and y,

$$
\begin{aligned}
(x-y)^{2} \geq 0 & \Rightarrow x^{2}+y^{2}-2 x y \geq 0 \\
& \Rightarrow x^{2}+y^{2}+2 x y \geq 4 x y \\
& =(x+y)^{2} \geq 4 x y \\
& =x+y \geq 2 \sqrt{x y}
\end{aligned}
$$

So we have,

$$
\chi(G)+\chi(\bar{G}) \geq 2 \sqrt{\chi(G) \cdot \chi(\bar{G})}=2 \sqrt{n} .
$$

