
HOMEWORK 4

SOLUTIONS

(1) Determine the chromatic number of the Petersen graph.
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Solution: The Petersen graph contains a cycle of odd length as a subgraph.
Hence,

3 ≤ χ(C5) ≤ χ(P ).

As the Petersen graph is neither a complete graph nor itself a cycle of odd length,
we can invoke Brooks’s Theorem:

χ(P ) ≤ ∆(P ) = 3.

Thus,

χ(P ) = 3.

We demonstrate a proper 3-vertex coloring below.
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(2) Determine the chromatic number of the Grötzsch graph.
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Solution: As in the solution to Problem 1, Brooks’ theorem and the fact that
the Grötzsch graph has C5 as a subgraph gives

3 ≤ χ(G) ≤ 5.

Below is a proper 4-vertex coloring for the Grötzsch graph.
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Hence,

3 ≤ χ(G) ≤ 4.

That is, χ(G) is either 3 or 4.
Now suppose there existed a proper 3-vertex coloring for the Grötzsch graph.

WLOG, we can assume that the center vertex has coloring 3. This forces the five
neighbors of the center vertex to have coloring 1 or 2. This, in turn, creates a
conflict with the coloring of the 5-cycle that bounds the Grötzsch graph, which as
an odd cycle, requires at least 3 colors.

Therefore, χ(G) = 4.

(3) Draw a self-dual plane graph on four vertices.
Solution: For any graph isomorphic to its plane dual, the number of vertices

must equal the number of faces. So we are looking for a graph with four vertices
and four faces. Therefore, the complete graph K4 is a reasonable candidate.

Remember, when dealing with plane dual the embedding (how a graph is drawn)
matters. We consider the standard plane embedding of K4:
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The plane dual of this graph will have four vertices and six edges, as does the
original graph. Note that every face of K4 (including the infinite face) is bounded
by 3 edges. This tells that the degree of each vertex in K∗

4 is 3. It is also clear that
K∗

4 is simple. A simple graph on four vertices where every vertex has degree 3 is
isomorphic to K4.

(4) Draw a self-dual plane graph on seven vertices.
Solution: Using similar considerations as above, we obtain the following self-

dual plane graph on seven vertices.
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(5) For a simple connected graph G, with at least two vertices, prove that χ(G) = 2 if
and only if G is bipartite.

Solution: Assume G is bipartite with bipartition V (G) = X ∪ Y . Assign color
1 to all the vertices in X and color 2 to all the vertices in Y . Since any edge in G
has exactly one endvertex in each set, G has a proper 2-vertex coloring. We have
to check that χ(G) 6= 1. But this is only possible if G has no edges.

Now assume χ(G) = 2. Let X ⊂ V (G) be the set of vertices colored 1 and
Y ⊂ V (G) the set of vertices colored 2. Clearly, X ∪ Y = V (G) and X ∩ Y = ∅.
Any edge in G must have one vertex in X and the other in Y since G has a proper
2-vertex coloring. Thus X and Y form a bipartition for G.

(6) For a simple connected graph G, with at least two vertices, prove that χ(G) ≤ k if
and only if G is k-partite.

Solution: Assume G is k-partite. Assign the colors 1, · · · , k to the partition
sets. As above, this defines a proper k-vertex coloring for G. Note that this does
not imply that χ(G) = k, only that χ(G) ≤ k. But that is all we are asked to
prove.

Now assume that χ(G) ≤ k. Clearly, by sorting vertices by color, we get a χ(G)-
partition. By subdividing partition sets (if we have enough vertices) or allowing
empty sets (if we don’t) we can increase the number of partition sets to any number,
including k.
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(7) For a simple connected graph G, with n vertices, prove that χ(G) = n if and only
if G = Kn.

Solution: Clearly, G = Kn ⇒ χ(G) = n. So we need only prove the other
direction. Here, we prove the contrapositive.

Let G be a graph on n vertices such that G 6= Kn. Then, there exists u ∈ V (G)
such that dG(u) < n− 1.

Now G− u is a simple graph on n− 1 vertices, therefore

χ(G− u) ≤ ∆(G− u) + 1 = (n− 2) + 1 = n− 1.

We can then extend the at most n − 1 coloring of G − u to G without adding
any additional colors.

(8) Let G be a simple graph on n vertices and G its complement. Show that

χ(G) + χ(G) ≥ 2
√
n.

Solution: First we show that

n = χ(Kn) ≤ χ(G) · χ(G).

That is, we can color the complete graph with χ(G) · χ(G) colors.
Color the complete graph with the χ(G) colors. Clearly, this is not yet a proper

coloring. The vertices which were colored 1 in G are now all pairwise adjacent by
the addition of the edges from G. Recolor all those vertices with χ(G) different
colors. This is enough since G has a χ(G)-vertex coloring.

Move on to the vertices colored 2 by G. Recolor these vertices by a new set of
χ(G) colors. And so on.

This process is, of course, overkill. But in the end, no adjacent vertices will have
the same color. Hence we have a proper χ(G) · χ(G)-vertex coloring of Kn.

Now for any two positive numbers x and y,

(x− y)2 ≥ 0 ⇒ x2 + y2 − 2xy ≥ 0

⇒ x2 + y2 + 2xy ≥ 4xy

= (x+ y)2 ≥ 4xy

= x+ y ≥ 2
√
xy

So we have,

χ(G) + χ(G) ≥ 2

√
χ(G) · χ(G) = 2

√
n.


