
ON THE RELATIVE GALOIS MODULE STRUCTURE OF RINGS OF
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A. AGBOOLA AND L. R. MCCULLOH

Abstract. Let F be a number field with ring of integers OF and let G be a finite group.
We describe an approach to the study of the set of realisable classes in the locally free class
group Cl(OFG) of OFG that involves applying the work of the second-named author in the
context of relative algebraic K theory. When G is nilpotent, we show (subject to certain
conditions) that the set of realisable classes is a subgroup of Cl(OFG). This may be viewed
as being an analogue of a classical theorem of Scholz and Reichardt on the inverse Galois
problem for nilpotent groups in the setting of Galois module theory.
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1. Introduction

Suppose that F is a number field with ring of integers OF , and let G be

a finite group. If Fπ/F is any tame Galois G-algebra extension of F , then a

classical theorem of E. Noether implies that the ring of integers Oπ of Fπ is

a locally free OFG-module, and so determines a class (Oπ) in the locally free

classgroup Cl(OFG) of OFG. Hence, if we write H1
t (F,G) for the pointed set

of isomorphism classes of tame G-extensions of F , then we obtain a map of

pointed sets

ψ : H1
t (F,G) → Cl(OFG); [π] 7→ (Oπ)

which is never a group homomorphism, even when G is abelian. We say that

an element c ∈ Cl(OFG) is realisable if c = (Oπ) for some tame Galois G-

algebra extension Fπ/F , and we write R(OFG) for the collection of realisable

classes in Cl(OFG). These classes are natural objects of study, and they have

arisen in a number of different contexts in Galois module theory.

When G is abelian, the second-named author has given a complete de-

scription of R(OFG) by showing that it is equal to the kernel of a certain

Stickelberger homomorphism on Cl(OFG) (see [9]). In particular, he has

shown that R(OFG) is in fact a group. In subsequent unpublished work

[11], he showed that, for arbitrary G, the set R(OFG) is always contained in

the kernel of this Stickelberger homomorphism, and he raised the question

of whether or not R(OFG) is in fact always equal to this kernel. We refer

the reader to the papers [3] and [4], and to their bibliographies for further

information concerning some of the more recent work on this problem.

In this paper we shall describe a new approach to studying this topic that

involves combining the methods introduced by the second-named author in [9]

and [11] with techniques involving relative algebraicK-theory and categorical

twisted forms introduced by D. Burns and the first-named author in [1]. This

enables us to both clarify certain aspects of the theory of realisable classes

and to establish new results. Although our perspective is perhaps somewhat
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different, it should be stressed that many of the main ideas that we use are

in fact already present in some form in [9] and [11].

Let us now describe the contents of this paper in more detail. In Section

2 we recall some basic facts concerning Galois algebras and resolvends; the

latter play a key role in everything that follows. Next, we assemble a number

of technical results explaining how resolvends may be used to compute dis-

criminants of rings of integers in Galois G-extensions. We also discuss how

certain Galois cohomology groups may be expressed in terms of resolvends in

a manner that is very useful for calculations in class groups and K-groups.

We begin Section 4 by outlining the results we need about twisted forms and

relative algebraic K-groups from [1]. We show how each tame G-extension

Fπ/F of F may be used to construct a categorical twisted form which is

represented by an element [Oπ, OFG; rG] in a certain relative algebraic K-

group K0(OFG,F
c). The group K0(OFG,F

c) admits a natural surjection

onto the locally free class group Cl(OFG), sending [Oπ, OFG; rG] to (Oπ),

and so there is a map of pointed sets

Ψ : H1
t (F,G) → K0(OFG,F

c); [π] 7→ [Oπ, OFG; rG]

which is a refinement of the map ψ above. The following result reflects the

fact that [Oπ, OFG; rG] is a much finer structure invariant than (Oπ) (see

Proposition 8.12 below):

Proposition A. The kernel of Ψ is finite.

Write KR(OFG) for the image of Ψ, i.e. for the collection of realis-

able classes of K0(OFG,F
c). The central conjecture of this paper gives

a precise description of KR(OFG) in terms of a local-global principle for

the relative algebraic K-group K0(OFG,F
c). We define a pointed set of

ideles J(H1
t (F,G)) of H1

t (F,G) (see Definition 5.2) and a group of ideles

J(K0(OFG,F
c)) of K0(OFG,F

c) (see Definition 4.6). We show that there is
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an injective localisation map

λ : K0(OFG,F
c) → J(K0(OFG,F

c))

(see Proposition 4.7), and we construct an idelic version

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

of the map Ψ (see Definition 5.2). We conjecture that λ(KR(OFG)) may be

described as follows (see Conjecture 5.5 below):

Conjecture B. λ(KR(OFG)) = Im(λ) ∩ Im(Ψid).

By applying the methods of [9] and [11] in the present context, we show that

Conjecture B implies an affirmative answer to the second-named author’s

question concerning R(OFG) (see Theorems 5.6 and 5.7 below):

Theorem C. If Conjecture B holds, then R(OFG) is a subgroup of Cl(OFG).

When G is abelian, we obtain the following refinement of [9, Theorem 6.7]

(see Theorem 5.8 below):

Theorem D. Conjecture B is true if G is abelian.

We also prove the following result, which may be viewed as being a Galois

module analogue of a classical theorem of Scholz and Reichardt (see e.g.

[13, Theorem 2.1.1]) on the inverse Galois problem for nilpotent groups (see

Theorem 5.9 below):

Theorem E. Suppose that G is a nilpotent, and that (|Gab|, hF ) = 1, where

hF denotes the class number of F . If the order of G is even, we further

suppose that F has no real places. Then Conjecture B holds, and so R(OFG)

is a subgroup of Cl(OFG).

Here is an outline of the rest of this paper. In Section 6, we explain a

hitherto unpublished result of the second-named author that describes how
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resolvends of normal integral bases of tamely ramified local extensions admit

certain Stickelberger factorisations (see Definition 6.7); this is a non-abelian

analogue of Stickelberger’s factorisation of abelian Gauss sums. In Section

7 we explain how determinants of resolvends may be represented in terms

of certain character maps, and we recall an approximation theorem of A.

Siviero (which is in turn a variant of [9, Theorem 2.14]).

In Section 8, we recall the definitions and properties of the Stickelberger

pairing and Stickelberger homomorphism from [11], and we give a new de-

scription of the former (see Proposition 8.2) that is used to prove Proposition

A. By using variants of the Stickelberger homomorphism taking values in

relative algebraic K-groups, we give a proof of Theorem C in Section 9. In

Section 10, we recall certain facts concerning embedding problems for nilpo-

tent groups that are required for the proof of Theorem E. Finally, in Section

11, we complete the proof of Theorem E.

We are very grateful to Andrea Siviero for extremely detailed and helpful

comments on an earlier draft of this paper.

Notation and conventions. For any field L, we write Lc for an algebraic

closure of L, and we set ΩL := Gal(Lc/L). If L is a number field or a local

field, then OL denotes the ring of integers of L.

Throughout this paper, F will denote a number field. For each finite place

v of F , we fix an embedding F c → F c
v , and we view ΩFv

as being a subgroup

of ΩF via this choice of embedding. We write Iv for the inertia subgroup of

ΩFv
.

The symbol G will always denote a finite group upon which ΩF acts triv-

ially. If H is any finite group, we write Irr(H) for the set of irreducible

F c-valued characters of H and RH for the corresponding ring of virtual char-

acters of H. We write 1H (or simply 1 if there is no danger of confusion) for

the trivial character in RH . If h ∈ H, then we write c(h) for the congugacy
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class of h in H and C(H) for the set of conjugacy classes of H. We denote

the derived subgroup of H by H ′.

For any group Γ upon which ΩF acts continuously, we identify Γ-Galois

algebras of F with elements of the set Z1(ΩF , G) of Γ-valued continuous 1-

cocycles of ΩF (see Section 2 below). If π ∈ Z1(ΩF ,Γ), then we write Fπ/F

for the corresponding Γ-extension of F , and Oπ for the integral closure of OF

in Fπ. It may be shown that if π1, π2 ∈ Z1(ΩF ,Γ), then Fπ1
' Fπ2

if and

only if π1 and π2 differ by a coboundary. Every Γ-Galois algebra Fπ is a Γ-

torsor over F in the sense of [14, Chapter I, §5.2], and the set of isomorphism

classes of Γ-Galois algebra extensions of F may be identified with the pointed

cohomology set H1(F,Γ) := H1(ΩF ,Γ). We write [π] ∈ H1(F,Γ) for the class

of Fπ in H1(F,Γ), and we write H1
t (F,Γ) for the subset of H1(F,Γ) consisting

of those [π] ∈ H1(F,Γ) for which Fπ/F is at most tamely ramified. We denote

the subset of H1
t (F,Γ) consisting of those [π] ∈ H1

t (F,Γ) for which Fπ/F is

everywhere unramified by H1
nr(F,Γ).

If A is any algebra, we write Z(A) for the centre of A. If in addition A is

semisimple, we write

nrd : A× → Z(A)×, nrd : K1(A) → Z(A)×

for the reduced norm maps on A× and K1(A) respectively (cf. [6, Chapter

II, §1]).

2. Galois algebras and resolvends

In this section we shall describe some basic facts concerning Galois algebras

and resolvends.

2.1. Galois algebras. [9, Section 1], [2, Section 1]. Let Γ be any finite

group upon which ΩF acts continuously from the left, and write Z1(ΩF ,Γ)

for the set of Γ-valued continuous ΩF 1-cocycles. If π ∈ Z1(ΩF ,Γ), then we
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write πΓ for the set Γ endowed with the following modified action of ΩF : if

Γ →π Γ; γ 7→ γ

is the identity map on the underlying sets, then

γω = γω · π(ω)

for each γ ∈ Γ and ω ∈ Ω. The group Γ acts on πΓ via right multiplication.

We define an associated Γ-Galois F -algebra Fπ by

Fπ := MapΩF
(πΓ, F c);

this consists of the algebra of F c-valued functions on πΓ that are fixed under

the action of ΩF . The algebra

A := (F cΓ)ΩF

acts on Fπ via the rule

(α · a)(γ) =
∑
g∈G

αg · a(γ · g)

for all γ ∈ Γ and α =
∑

g∈G αg · g ∈ A. It may be shown that every Γ-Galois

F -algebra is isomorphic to an algebra of the form Fπ for some π, and so every

Γ-Galois F -algebra may be viewed as lying in the F c-algebra Map(Γ, F c). It

is easy to check that

Fπ ⊗F F
c = F cΓ · `Γ,

where `Γ ∈ Map(Γ, F c) is defined by

`Γ(γ) =

1 if γ = 1

0 otherwise.

This implies that Fπ is a free, rank one A-module.

The Wedderburn decomposition of Fπ may be described as follows. For

any γ ∈ πΓ, write Stab(γ) for the stabiliser of γ in ΩF , and set

F π := (F c)Stab(γ).
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Then

Fπ '
∏

ΩF \πΓ

F π.

where ΩF\πΓ denotes the set of ΩF -orbits of πΓ. In general, the field F π is

not normal over F . However, if ΩF acts trivially on Γ, then Z1(ΩF ,Γ) =

Hom(ΩF ,Γ), and

F π = (F c)Ker(π)

with Gal(F π/F ) ' π(ΩF ). In this case, we have that

Fπ '
∏

Γ/π(ΩF )

F π, (2.1)

and this isomorphism depends only upon the choice of a transversal of π(ΩF )

in Γ.

2.2. Resolvends. [9, Section 1] [2, Section 2].

Since every Galois algebra may be viewed as lying in Map(Γ, F c), it is

natural to consider the Fourier transforms of elements of Map(Γ, F c). These

arise via the resolvend map

rΓ : Map(Γ, F c) → F cΓ; a 7→
∑
s∈G

a(s)s−1.

The map rΓ is an isomorphism of left F cΓ-modules, but not of algebras,

because it does not preserve multiplication. It is easy to show that for any

a ∈ Map(Γ, F c), we have that a ∈ Fπ if and only if rΓ(a)ω = rΓ(a) · π(ω) for

all ω ∈ ΩF . It may also be shown that an element a ∈ Fπ generates Fπ as an

A-module if and only if rΓ(a) ∈ (F cΓ)×. Two elements a1, a2 ∈ Map(Γ, F c)

with rΓ(a1), rΓ(a2) ∈ (F cΓ)× generate the same Γ-Galois F -algebra as an

A-module if and only if rΓ(a1) = b · rΓ(a2) for some b ∈ A×. Every Galois Γ-

algebra Fπ is a Γ-torsor over F (see [14, Chapter I, §5.2]). If a is any generator

of Fπ as an A-module, then a Γ-valued ΩF 1-cocycle that represents the class
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of Fπ/F in the pointed cohomology set H1(F,Γ) is given by

ω 7→ (rG(a))−1 · ω(rG(a)).

Suppose that L is any extension of F , and set AL := A⊗F L. We define

H(AL) :=
{
α ∈ (LcΓ)× : α−1 · αω ∈ Γ ∀ω ∈ ΩL

}
;

H(AL) := H(AL)/Γ = {α · Γ : α ∈ H(AL)},

and we write rΓ(a) ∈ H(AL) for the image in H(AL) of rΓ(a) ∈ H(AL). The

element rΓ(a) is referred to as the reduced resolvend of a. If A is any OL-order

in AL, then we define H(A) and H(A) in a similar manner.

If v is a finite place of F , and Lv is any algebraic extension of Fv, write Ltv
for the maximal, tamely ramified extension of Lv. We set

Ht(ALv
) :=

{
α ∈ H(ALv

) : αω = α ∀ω ∈ ΩLt
v

}
;

Ht(ALv
) := Ht(ALv

)/Γ = {α · Γ : α ∈ Ht(ALv
)},

and we define Ht(A) and Ht(A) analogously for any OLv
-order A in ALv

.

3. Resolvends and cohomology

Recall that G is a finite group upon which ΩF acts trivially. In this sec-

tion, we explain, following [9, §2], how resolvends may be used to compute

discriminants of rings of integers of G-Galois extensions of F , and how this

may be applied to describe certain cohomology groups in terms of resolvends.

For each [π] ∈ H1(F,G), the standard trace map

Tr : Map(G,F c) → F c

yields a trace map

Tr : Fπ → F

via restriction. This in turn gives an associated, non-degenerate bilinear form

(a, b) 7→ Tr(ab) on Fπ. If M is any full OF -lattice in Fπ, then we set

M ∗ := {b ∈ Fπ|Tr(b ·M) ⊆ OF}
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and

disc(Oπ/OF ) := [O∗
π : OF ]OF

,

where the symbol [− : −]OF
denotes the OF -module index. We see from the

isomorphism (2.1) that we have

disc(Oπ/OF ) = disc(OFπ/OF )[G:π(ΩF )],

where disc(OFπ/OF ) denotes the usual discriminant of the number field F π

over F , and so it follows that

disc(Oπ/OF ) = OF

if and only if Fπ/F is unramified at all finite places of F .

Definition 3.1. We write [−1] for the maps induced onH1(F,G), Map(G,F c),

and F cG by the map g 7→ g−1 on G. �

Lemma 3.2. Suppose that a, b ∈ Fπ for some [π] ∈ H1(F,G). Then

rG(a) · rG(b)[−1] =
∑
s∈G

Tr(asb) · s−1 ∈ FG.

Proof. This may be verified via a straightforward calculation (see e.g. [8,

(1.6)], and note that the calculation given there is valid for an arbitrary

finite group G). �

Corollary 3.3. Suppose that Fπ = FG · a. Then we have:

(i) rG(a)−1 = rG(b)[−1], where b ∈ Fπ satisfies Tr(asbt) = δs,t.

(ii) (OFG · a)∗ = OFG · b.
(iii) [(OFG · a)∗ : OFG · a]OF

= [OFG : OFG · rG(a) · rG(a)[−1]]OF
.

(iv) rG(a) ∈ (Oc
FG)× if and only if Oπ = OFG · a and disc(Oπ/OF ) = OF .

Analogous results hold if F is replaced by Fv for any finite place v of F .

Proof. Exactly as in [9, 2.10 and 2.11]. �
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Theorem 3.4. (a) There is an exact sequence of pointed sets

1 → G→ (FG)× → H(FG) → H1(F,G) → 1. (3.1)

.

(b) For each finite place v of F , recall that H1
nr(Fv, G) denotes the subset

of H1(Fv, G) consisting of those [πv] ∈ H1(Fv, G) for which the associated

G-Galois extension Fπv
/Fv is unramified. Then there is an exact sequence of

pointed sets

1 → G→ (OFv
G)× → H(OFv

G) → H1
nr(Fv, G) → 1. (3.2)

(c) There are exact sequences of pointed sets

1 → G→ (FG)× → Ht(FG) → H1
t (F,G) → 1. (3.3)

and

1 → G→ (FvG)× → Ht(FvG) → H1
t (Fv, G) → 1 (3.4)

for any finite place v of F .

Proof. When G is abelian, parts (a) and (b) are proved in [9, pages 268 and

273] by considering the ΩF and ΩFv
-cohomology of the exact sequences of

abelian groups

1 → G→ (F cG)× → (F cG)×/G→ 1 (3.5)

and

1 → G→ (Oc
Fv
G)× → (Oc

Fv
G)×/G→ 1

respectively. If G is non-abelian, and these exact sequences are viewed as

exact sequences of pointed sets instead, then a similar proof of part (a) also

holds, as is pointed out in [9, page 268]. Let us briefly describe the argument.

Taking ΩF -cohomology of the exact sequence (3.5) of pointed sets yields an

exact sequence

1 → G→ (FG)× → H(FG) → H1(F,G), (3.6)
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and we wish to show that this sequence is surjective on the right. Suppose

therefore, that [π] ∈ H1(F,G), and let a ∈ Fπ be a normal basis generator of

Fπ/F . Set α = rG(a); then the coset α ·G ∈ H(FG) lies in the pre-image of

[π], and so it follows that (3.6) is indeed surjective on the right, as required.

Part (b) follows from Corollary 3.3(iv) (cf. the proof of (2.12) on [9, page

273]).

The proof of (c) is very similar to that of (a). Let F t and F t
v denote

the maximal tamely ramified extensions of F and Fv respectively, and set

Ωt
F := Gal(F t/F ), Ωt

Fv
:= Gal(F t

v/Fv). Then (c) follows via considering the

Ωt
F and Ωt

Fv
-cohomology of the exact sequences of pointed sets

1 → G→ (F tG)× → (F tG)×/G→ 1

and

1 → G→ (F t
vG)× → (F t

vG)×/G→ 1

respectively, using the argument given in [9, page 268] that we have described

above. �

Recall that Z(FG) denotes the centre of FG. Before stating our next

result, we note that the reduced norm map

nrd : (FG)× → Z(FG)×

induces an injection Gab → Z(FG)×. In what follows, we shall identify Gab

with its image in Z(FG)× under this map. For any extension L of F , we set

H(Z(LG)) :=
{
α ∈ Z(LcG)× : α−1 · αω ∈ Gab ∀ω ∈ ΩL

}
;

H(Z(LG)) := H(Z(LG))/Gab = {α ·Gab : α ∈ H(Z(LG))},

We define H(Z(A)) analogously for any OL-order A in LG.

Proposition 3.5. For any extension L of F , there is an exact sequence of

abelian groups:

1 → Gab → Z(LG) → H(Z(LG)) → H1(L,Gab) → 1. (3.7)
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Proof. This follows at once from taking ΩL cohomology of the exact sequence

of abelian groups

1 → Gab → Z(LcG)× → Z(LcG)×/Gab → 1,

and noting that H1(ΩL, Z(LcG)×) = 0, via Hilbert’s Theorem 90. �

It follows from Theorem 3.4 and Proposition 3.5 that, for any extension L

of F , there are isomorphisms

H1(L,G)
∼−→ (LG)×\H(LG)

and

H1(L,Gab)
∼−→ Z(LG)×\H(Z(LG))

of pointed sets and abelian groups respectively, and that the following dia-

gram commutes:

H1(L,G)
∼−−→ (LG)×\H(LG)y ynrd

H1(L,Gab)
∼−−→ Z(LG)×\H(Z(LG)).

(3.8)

(Here the left-hand vertical arrow is induced by the quotient map G→ Gab,

while the right-hand vertical arrow is induced by the reduced norm map

nrd : (LcG)× → Z(LcG)×. )

We shall need the following result in Section 5.

Proposition 3.6. For each finite place v of F , the image of the map

nrd : (OFv
G)×\H(OFv

G) → Z(OFv
G)×\H(Z(OFv

G)

of pointed sets is in fact a group.

Proof. Just as in the case of (3.8), there is a commutative diagram

H1
nr(Fv, G)

∼−−→ (OFv
G)×\H(OFv

G)y ynrd

H1
nr(Fv, G

ab) −−→ Z(OFv
G)×\H(Z(OFv

G)).

(3.9)
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The lower horizontal arrow is injective, and its image is a subgroup of

Z(OFv
G)×\H(Z(OFv

G)). Hence, to prove the result, it suffices to show that

the left vertical arrow is surjective. That this is indeed the case is an immedi-

ate consequence of the fact that the Galois group Gal(F nr
v /Fv) is topologically

cyclic. �

4. Twisted forms and relative K-groups

Recall that G is a finite group upon which ΩF acts trivially. In this section,

we shall recall some basic facts concerning categorical twisted forms and

relative algebraic K-groups. The reader may consult [1] and [17, Chapter 15]

for some of the details that we omit.

Suppose that R is a Dedekind domain with field of fractions L of char-

acteristic zero. (For notational convenience, we shall sometimes also allow

ourselves to take R = L.) Let A be any finitely generated R-algebra satisfy-

ing A⊗R L ' LG.

Definition 4.1. Let Λ be any extension of R, and write P(A) and P(A⊗RΛ)

for the categories of finitely generated, projective A and A ⊗R Λ-modules

respectively. A categorical Λ-twisted A-form (or twisted form for short) is an

element of the fibre product category P(A) ×P(A⊗RΛ) P(A), where the fibre

product is taken with respect to the functor P(A) → P(A ⊗R Λ) afforded

by extension of scalars. In concrete terms, therefore, a twisted form consists

of a triple (M,N ; ξ), where M and N are finitely generated, projective A-

modules, and

ξ : M ⊗R Λ
∼−→ N ⊗R Λ

is an isomorphism of A⊗R Λ-modules. �

Example 4.2. If Fπ/F is any G-extension, and Lπ ⊆ Fπ is any projective

OFG-module, then (Lπ, OFG; rG) is a categorical F c-twisted OFG-form. In

particular, if Fπ/F is a tame G-extension, then (Oπ, OFG; rG) is a categorical

F c-twisted OFG-form. Similarly, if v is any place of F , then (still assuming
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Fπ/F to be tame) (Oπ,v, OvG; rG) is a categorical F c
v -twisted OvG-form. We

shall mainly be concerned with twisted forms of these types in this paper. �

We write K0(A,Λ) for the Grothendieck group associated to the fibre prod-

uct category P(A)×P(A⊗RΛ)P(A), and we write [M,N ; ξ] for the isomorphism

class of the twisted form (M,N ; ξ) in K0(A,Λ). Recall (see [17, Theorem

15.5] that there is a long exact sequence of relative algebraic K-theory:

K1(A) → K1(A⊗R Λ)
∂1

A,Λ−−→ K0(A,Λ)
∂0

A,Λ−−→ K0(A) → K0(A⊗R Λ). (4.1)

The first and last arrows in this sequence are afforded by extension of

scalars from R to Λ. The map ∂0
A,Λ is defined by

∂0
A,Λ([M,N ;λ]) = [M ]− [N ].

The map ∂1
A,Λ is defined by first recalling that the group K1(A ⊗R Λ) is

generated by pairs of the form (V, φ), where V is a finitely generated, free,

A ⊗R Λ-module, and φ : V
∼−→ V is an A ⊗R Λ-isomorphism. If T is any

projective A-submodule of V satisfying T ⊗A Λ ' V , then we set

∂1
A,Λ(V, φ) = [T, T ;φ].

It may be shown that this definition is independent of the choice of T .

We shall often ease notation and write e.g. ∂0 rather than ∂0
A,Λ when no

confusion is likely to result.

4.1. Idelic description and localisation. Let us retain the notation es-

tablished above, and suppose in addition that we now work over our number

field F . For each finite place v of F , the reduced norm map

nrd : K1(FvG)
∼−→ Z(FvG)×

is an isomorphism, and it is frequently convenient to identify K1(Av) with

its image in K1(FvG) via this map. We write

locv : K1(FG) → K1(FvG)
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for the obvious localisation map.

Definition 4.3. We define the idele group J(K1(FG)) of K1(FG) to be the

restricted direct product of the groupsK1(FvG) with respect to the subgroups

K1(OFv
G) for all finite places v of F . �

If E is any extension of F , then the homomorphism

K1(FG) → J(K1(FG))×K1(EG); x 7→ ((locv(x))v, x
−1)

induces a homomorphism

∆A,E : K1(FG) → J(K1(FG))∏
vK1(Av)

×K1(EG).

The following result is proved in [1, Theorem 3.5].

Theorem 4.4. There is a natural isomorphism

hA,E : K0(A, E)
∼−→ Coker(∆A,E).

�

If [M,N ; ξ] ∈ K0(A, E) and M , N are locally free A-modules of rank one

(which is the only case that we shall need in this paper), then hA,E([M,N ;λ])

may be described as follows.

For each finite place v of F , we choose Av-bases mv of M and nv of N . We

also choose an FG basis n∞ of NF , as well as an FG-module isomorphism

θ : MF
∼−→ NF . Then, for each v, we may write nv = νv ·n∞, wth νv ∈ (FvG)×.

As θ−1(n∞) is an FG-basis of MF , we may write mv = µv · θ−1(n∞), with

µv ∈ (FvG)×. Finally, writing θE for the map ME → NE afforded by θ via

extension of scalars from F to E, we have that (θ−1
E ◦ ξ)(n∞) = ν∞ · n∞ for

some ν∞ ∈ (EG)×. Then a representative of hA,E([M,N ;λ]) is given by the

image of [(µv · ν−1
v )v, ν∞] in J(K1(FG))×K1(EG).
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Lemma 4.5. Suppose that v is a finite place of F and that Ev is any extension

of Fv. Then there is an isomorphism

K0(Av, Ev) ' K1(EvG)/K1(Av).

Proof. This follows directly from the long exact sequence of relative K-theory

(4.1) applied to K0(Av, Ev). �

For each finite place v of F , there is a localisation map on relativeK-groups:

λv : K0(A, E) → K0(Av, Ev); [M,N ; ξ] 7→ [Mv, Nv; ξv],

where ξv denotes the map obtained from ξ via extension of scalars from E

to Ev. It is not hard to check that, in terms of the descriptions of K0(A, E)

and K0(Av, Ev) afforded by Theorem 4.4 and Lemma 4.5, the map λv is that

induced by the homomorphism (which we denote by the same symbol λv)

λv : J(K1(FG))×K1(EG) → K1(EvG); [(xv)v, x∞] 7→ [xv · locv(x∞)].

Definition 4.6. We define the idele group J(K0(OFG,F
c)) of K0(OFG,F

c)

to be the restricted direct product of the groups K0(OFv
G,F c

v ) with respect

to the subgroups K0(OFv
G,OF c

v
). �

Proposition 4.7. (a) The homomorphism

λ :=
∏
v

λv : K0(A, E) →
∏
v

K0(Av, Ev)

is injective.

(b) The image of λ lies in the idele group J(K0(OFG,F
c)).

Proof. (a) Suppose that α ∈ K0(A, E) lies in the kernel of λ, and let [(xv)v, x∞] ∈
J(K1(FG)) × K1(EG) be a representative of α. Then for each v, we have

that xv · locv(x∞) ∈ K1(Av). Hence, α is also represented by

[(xv · locv(x∞))v, 1]−1 · [(xv)v, x∞] = [(locv(x∞)−1)v, x∞].
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This implies that locv(x∞) ∈ K1(FvG) for every v, whence it follows that

x∞ ∈ K1(FG). Hence we see that α = 0 in K0(A, E), and so λ is injective,

as claimed.

(b) If β = [M,N ; ξ] ∈ K0(OFG,F
c), then for all but finitely many places v,

the isomorphism ξv : M⊗OF
F c
v

∼−→ N⊗OF
F c
v obtained from ξ via extension of

scalars from F c to F c
v restricts to an isomorphism M ⊗OF

OF c
v

∼−→ N ⊗OF
OF c

v
.

Hence, for all but finitely many v, we have that λv(β) ∈ K0(OFv
G,OF c

v
), and

so λ(β) ∈ J(K0(OFG,F
c)), as asserted. �

5. Cohomological classes in relative K-groups

Recall that F is a number field and that G is a finite group upon which

ΩF acts trivially. In this section we shall explain how the set of realisable

classesR(OFG) ⊆ Cl(OFG) may be studied via imposing local cohomological

conditions on elements of the relative K-group K0(OFG,F
c).

Definition 5.1. We define maps Ψ and Ψv (for each finite place v of F ) by

Ψ : H1
t (F,G) → K0(OFG,F

c); [π] 7→ [Oπ, OFG; rG]

and

Ψv : H1
t (Fv, G) → K0(OFv

G,F c
v ); [π] 7→ [Oπ, OFv

G; rG].

We set

KR(OFG) := Im(Ψ).

�

Definition 5.2. We define the pointed set of ideles J(H1
t (F,G)) of H1

t (F,G)

to be the restricted direct product of the pointed sets H1
t (Fv, G) with respect

to the pointed subsets H1
nr(Fv, G), and we write

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

for the map afforded by the maps Ψv : H1
t (Fv, G) → K0(OFv

G,F c
v ). �
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In general, KR(OFG) is not a subgroup of K0(OFG,F
c). However, the

following result holds.

Proposition 5.3. Let v be any finite place of F , and write Ψnr
v for the

restriction of Ψv to H1
nr(Fv, G). Then Im(Ψv) is a subgroup of K0(OFv

G,F c
v ).

Proof. This follows from Proposition 3.6 and Lemma 4.5. �

Definition 5.4. We say that an element x ∈ K0(OFG,F
c) is cohomological

(respectively cohomological at v) if x ∈ Im(Ψ) (respectively λv(x) ∈ Im(Ψv)).

We say that x is locally cohomological if x is cohomological at v for all finite

places v of F . �

The long exact sequence of relative K-theory (4.1) applied to K0(OFG,F
c)

yields a long exact sequence

K1(OFG) → K1(F
cG)

∂1

−→ K0(OFG,F
c)

∂0

−→ Cl(OFG) → 0, (5.1)

where Cl(OFG) denotes the locally free class group of OFG. We set

ψ := ∂0 ◦Ψ,

and we write

R(OFG) := Im(ψ).

The second-named author has conjectured that that R(OFG) is always a

subgroup of Cl(OFG), and he has proved that this is true whenever G is

abelian (see [9]). The following conjecture gives a precise characterisation of

the image KR(OFG) of Ψ.

Conjecture 5.5. An element of K0(OFG,F
c) is cohomological if and only

if it is locally cohomological. In other words, we have that

λ(KR(OFG)) = Im(λ) ∩ Im(Ψid).

�
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Let us now explain why Conjecture 5.5 implies that R(OFG) is a subgroup

of Cl(OFG). In order to do this, we shall require the following result which

is equivalent to a theorem of the second-named author when G is abelian,

and whose proof relies on results contained in [9] and [11].

Theorem 5.6. Let

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

λ ◦ ∂1(K1(F cG)) ·
∏

v Im(Ψnr
v )

denote the map of pointed sets given by the composition of the map Ψid with

the quotient homomorphism

J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ ◦ ∂1(K1(F cG)) ·
∏

v Im(Ψnr
v )
.

Then the image of Ψid is in fact a group. Hence it follows that

λ ◦ ∂1(K1(F
cG)) · Im(Ψid)

is a subgroup of J(K0(OFG,F
c)). �

This theorem will be proved in Section 9 . It implies the following result.

Theorem 5.7. If Conjecture 5.5 holds, thenR(OFG) is a subgroup of Cl(OFG).

Proof. It follows from the exact sequence (5.1) that R(OFG) is a subgroup of

Cl(OFG) if and only if ∂1(K1(F
cG))·KR(OFG) is a subgroup ofK0(OFG,F

c).

However, if Conjecture 5.5 is true, then Theorem 5.6 implies that ∂1(K1(F
cG))·

KR(OFG) is the kernel of the homomorphism

K0(OFG,F
c)

λ−→ J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ ◦ ∂1(K1(F cG)) · Im(Ψid)
,

where the last arrow denotes the obvious quotient homomorphism. This

implies the desired result. �

Theorem 5.8. Conjecture 5.5 is true when G is abelian.
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Proof. When G is abelian, the maps Ψ and Ψid are injective because the

reduced norm map induces an isomorphism (EG)× ' K1(EG) for any ex-

tension E of F . Suppose that x ∈ K0(OFG,F
c) is locally cohomological, and

let [(xv)v, x∞] ∈ J(FG)× (F cG)× be a representative of x. Then, for each v,

we have that xv · locv(x∞) ∈ Ht(FvG), and so it follows that x∞ ∈ Ht(FG).

If π denotes the element of Hom(ΩF , G) afforded by x∞, then [π] ∈ H1
t (F,G)

and x = Ψ([π]). �

In Section 11 we shall prove the following result.

Theorem 5.9. Suppose that G is a nilpotent group of and that (|Gab|, hF ) =

1, where hF denotes the class number of F . If |G| is even, suppose also that

F has no real places. Then Conjecture 5.5 holds.

Theorem 5.7 therefore implies:

Corollary 5.10. Under the hypotheses of Theorem 5.9, we have thatR(OFG)

is a subgroup of Cl(OFG).

6. Local extensions

The goal of this section is to describe how resolvends of normal integral

bases of tamely ramified local extensions admit Stickelberger factorisations

(see Definition 6.7). This reflects the fact that every tamely ramified G-

extension of Fv is a compositum of an unramified extension of Fv and a twist

of a totally ramified extension of Fv. All of the results in this section are

from unpublished notes of the second-named author.

For each finite place v of F , we fix a uniformiser $v of Fv, and we write

qv for the order of the residue field of Fv. We fix a compatible set of roots of

unity {ζm}, and a compatible set {$1/m
v } of roots of $v. So, if m and n are

any two positive integers, then we have (ζmn)
m = ζn, and ($

1/mn
v )m = $

1/n
v .
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Recall that F t
v (resp. F nr

v ) denotes the maximal tamely ramified (resp.

unramified) extension of Fv. Then

F t
v =

⋃
m≥1

(m,qv)=1

Fv(ζm, $
1/m), F nr

v =
⋃
m≥1

(m,qv)=1

Fv(ζm).

The group Ωnr
v := Gal(F nr

v /Fv) is topologically generated by the Frobenius

element φv, and we have that

φv(ζm) = ζqvm , φv($
1/m) = $1/m

for each integer m coprime to qv. Our choice of compatible roots of unity also

uniquely specifies a topological generator σv of Gal(F t
v/F

nr
v ) by the conditions

σv($
1/m) = ζm ·$1/m, σv(ζm) = ζm

for all integers m coprime to qv. The group Gal(F t
v/Fv) is topologically

generated by φv and σv, subject to the relation

φv · σv · φ−1
v = σqvv . (6.1)

We set Ωtot
v := Gal(F t

v)/F
nr
v .

Definition 6.1. For each finite place v of F , we define

Σv(G) := {s ∈ G | sqv ∈ c(s)}

(recall that c(s) denotes the conjugacy class of s in G). Plainly if s ∈ Σv(G),

then c(s) ⊆ Σv(G). Let us also remark that if s ∈ Σv(G), then the order |s|
of s is coprime to qv.

If s ∈ Σv(G), we set

βs :=
1

|s|

|s|−1∑
i=0

$i/|s|,
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and we define ϕv,s ∈ Map(G,OF c
v
) by setting

ϕv,s(g) =

σi(β) if g = si;

0 if g /∈ 〈s〉.

Then

rG(ϕv,s) =

|s|−1∑
i=0

ϕv,s(s
i)s−i =

|s|−1∑
i=0

σi(β)s−i. (6.2)

We note that for each g ∈ G, we have

rG(ϕv,g−1sg) = g−1 · rG(ϕv,s) · g,

and so

nrd(rG(ϕv,g−1sg)) = nrd(rG(ϕv,s)), (6.3)

i.e. the element nrd(rG(ϕv,s)) depends only upon the conjugacy class c(s) of

s in G.

We shall see that generators of inertia subgroups of tame GaloisG-extensions

of Fv lie in Σv(G), and that the elements ϕv,s are n.i.b. generators of tame

(of course totally ramified) Galois G-extensions of F nr
v . �

In order to ease notation, we shall now set L := Fv and O := OL, and we

shall drop the subscript v from our notation for the rest of this section.

Suppose now that Lπ/L is a tamely ramified Galois G-extension of L,

corresponding to π ∈ Hom(Ωt, G). We are going to describe McCulloh’s

decomposition of resolvends of normal integral basis generators of Lπ/L (see

[11] and also [2, Section 6]). When G is abelian, this is an analogue of

Stickelberger’s factorisation of Gauss sums.

Write s := π(σ), t := π(φ); then t · s · t−1 = sq, and so s ∈ Σ(G). We define

πr, πnr ∈ Hom(Ωt, G) by setting

πr(σ
mφn) = π(σm) = sm,

πnr(σ
mφn) = π(φn) = tn.
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If ωi ∈ Ωt (i = 1, 2) with ωi = σmi · φni, then a straightforward calculation

using (6.1) shows that

ω1 · ω2 = sm1+qm1m2 · tm1+m2.

This implies that πnr ∈ Hom(Ωnr, G). Plainly we have

π(ω) = πr(ω) · πnr(ω) (6.4)

for every ω = φn · σn ∈ Ωt. The map πnr ∈ Hom(Ωnr, G) corresponds to an

unramified Galois G-extension Lπnr
of L. Since Lπnr

/L is unramified, Oπnr
is

a free OLG-module. Let anr be any normal integral basis generator of this

extension. Note that rG(anr) ∈ H(OG), because Lπnr
/L is unramified (see

Corollary 3.3(iv)).

Let G(πnr) denote the group G with Ωt-action given by

ω(g) = πnr(ω) · g · πnr(ω)−1

for ω ∈ ΩL and g ∈ G.)

Lemma 6.2. The map πr is a G(πnr)-valued 1-cocycle of Ωt.

Proof. Suppose that ω1, ω2 ∈ Ωt. Then since π, πnr ∈ Hom(Ωt, G) and π =

πr · πnr, a straightforward calculation shows that

πr(ω1ω2) = πr(ω1) · πnr(ω1) · πr(ω2) · πnr(ω1)
−1,

and this establishes the desired result. �

Definition 6.3. We write πrG(πnr) for the group G endowed with the fol-

lowing action of Ωt: for every g ∈ G and ω ∈ Ωt we have

gω = πr(ω) · πnr(ω) · g · πnr(ω)−1.

Lemma 6.2 implies that if ω1, ω2 ∈ Ωt, then

g(ω1ω2) = (gω2)ω1.
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We set

Lπr
(πnr) := MapΩt(πrG(πnr), L

c).

The algebra (LcG(πnr))
Ωt

acts on Lπr
(πnr) via the rule

(α · a)(h) =
∑
g∈G

αg · a(h · g)

for all h ∈ G and α =
∑

g∈G αg · g ∈ (LcG(πnr))
Ωt

.

Proposition 6.4. (a) We have that ϕs ∈ Lπr
(πnr).

(b) Set

A(πnr) = (OLcG(πnr))
Ωt

,

and let Oπr
(πnr) be the integral closure of OL in Lπr

(πnr). Then

A(πnr) · ϕs = Oπr
(πnr).

(c) For any αr ∈ Lπr
(πnr) and ω ∈ Ωt, we have

rG(αr)
ω = πnr(ω)−1 · rG(αr) · π(ω).

Proof. (a) Suppose that ω = σm · φn ∈ Ωt. If g ∈ G and g /∈ 〈s〉, then we

have that

ϕs(g
ω) = 0 = ϕs(g)

ω.

On the other hand, we also have

ϕs((s
i)ω) = ϕs((s

i)σ
mφn

)

= ϕs(s
m · tn · si · t−n)

= ϕs(s
m+iqn

)

= σm+iqn

(βs)

= (σm · φn) · σi(βs)

= ϕs(s
i)ω.

Hence ϕs ∈ Lπr
(πnr), as claimed.
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(b) The proof of this assertion is very similar to that of [2, Lemma 6.6],

which is in turn an analogue of [9, 5.4].

Set H = 〈s〉, viewed as a subset of πrG(πnr). Then Ωt acts transitively on

H, and so the algebra

Lπr
(πnr)

H := MapΩt(H,Lc)

may be identified with a subfield of Lt via identifying b ∈ LH with xb =

b(1) ∈ Lt. We have that

xσ
m

b = b(sm), xφb = xb,

and so it follows that Lπr
(πnr)

H is the subfield of Lt consisting of those

elements of Lt that are fixed by both φ and σ|s|. This implies that Lπr
(πnr)

H =

L[$1/|s|] (which in general will not be normal over L), and that the integral

closure of OL in Lπr
(πnr)

H is equal to OL[$
1/|s|]. Plainly βs ∈ OL[$

1/|s|]

(as |s| is invertible in OL), and the element βs corresponds to the element

ϕs|H ∈ Lπr
(πnr)

H .

If we set A(πnr)H := (OLcH)Ωt

, then for each integer k with 0 ≤ k ≤ e− 1,

it is not hard to check that 1

|s|

|s|−1∑
i=0

ζkie s
i

φ

=
1

|s|

|s|−1∑
i=0

ζkie s
i,

and so we see that

1

|s|

|s|−1∑
i=0

ζki|s|s
i ∈ A(πnr)H .

A straightforward computation (cf. [9, 5.4]) also shows that 1

|s|

|s|−1∑
i=0

ζkie s
i

 · βs = $k/|s|.
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It therefore follows that A(πnr)H · βs = OL[$
1/|s|], and this in turn implies

that

A(πnr) · ϕs = Oπr
(πnr),

as asserted.

(c) We have

rG(αr)
ω =

∑
g∈G

αr(g)
ω · g−1

=
∑
g∈G

αr(g
ω) · g−1

=
∑
g∈G

αr(πr(ω) · πnr(ω) · g · π−1
nr ) · g−1

=
∑
g∈G

αr(g) · πnr(ω)−1 · g · πr(ω) · πnr(ω)

= πnr(ω)−1 · rG(αr) · π(ω),

as claimed.

�

Corollary 6.5. For any αr ∈ Lπr
(πnr) and αnr ∈ Lπnr

, there is a unique

α ∈ Lπ such that

rG(αnr) · rG(αr) = rG(α).

Proof. Proposition 6.4 implies that, for any ω ∈ Ωt, we have

[rG(αnr) · rG(αr)]
ω = rG(αnr) · rG(αr) · π(ω),

and so rG(αnr) · rG(αr) ∈ H(LG). As the map rG is bijective, it follows that

there is a unique α ∈ Map(G,Lc) such that

rG(αnr) · rG(αr) = rG(α),

and that α ∈ Lπ. �
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Theorem 6.6. If anr ∈ Lπnr
is any n.i.b. generator of Lπnr

/L, then the

element a ∈ Lπ defined by

rG(anr) · rG(ϕs) = rG(a)

is an n.i.b. generator of Lπ/L.

Proof. The proof of this assertion is very similar to that of the analogous

result in the abelian case described in [9, (5.7), page 283]. We first observe

that plainly OLG · a ⊆ Oπ because anr ∈ Oπnr
and ϕs ∈ Oπr

(πnr). Hence, to

prove the desired result, it suffices to show that

disc(OLG · a/OL) = disc(Oπ/OL).

This will in turn follow if we show that

disc(OLnrG · a/OLnr) = disc(Oπ/OL) ·OLnr .

Recall (see (2.1)) that we may write Lπ ' ⊕G/π(Ωt)L
π, where Lπ is a field

with Gal(Lπ/L) ' π(Ωt). Under this last isomorphism, the inertia subgroup

of Gal(Lπ/L) is isomorphic to 〈s〉. The standard formula for tame field

discriminants therefore yields

disc(Oπ/OL) = $(|s|−1)|π(Ωt)|/|s| ·OL

and so we have

disc(Oπ/O) = $(|s|−1)|G|/|s| ·OL. (6.5)

Now rG(anr) ∈ (OLnrG)×, and we see from the proof of Proposition 6.4(b)

and that

OLnrG · a = OLnrG · ϕs
= Oπr

(πnr)⊗OL
OLnr

'
⊕
G/〈s〉

OLnr [$1/|s|].
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Since

disc(OLnr [$1/|s|]/OLnr) = $|s|−1 ·OLnr ,

it follows that

disc(OLnrG · a/OLnr) = $(|s|−1)|G|/|s| ·OLnr

= disc(Oπ/O) ·OLnr ,

and this establishes the desired result. �

Definition 6.7. Let a be any n.i.b. generator of Lπ/L. Theorem 6.6 implies

that we may write

rG(a) = u · rG(anr) · rG(ϕs), (6.6)

where u ∈ (OG)× and anr is any n.i.b. generator of Lπnr
/L. This may

be viewed as being a non-abelian analogue of Stickelberger’s factorisation

of abelian Gauss sums, and so we call (6.6) a Stickelberger factorisation of

rG(a). �

7. Determinants and character maps

In this section we shall describe how determinants of resolvends may be

represented in terms of certain character maps.

We first recall that the absolute Galois group ΩF of F acts on the ring RG

of virtual characters of G according to the following rule: if χ ∈ Irr(G) and

ω ∈ ΩF , then, for each g ∈ G, we have (ω ◦ χ)(g) = ω(χ(ω−1(g))).

Definition 7.1. For each element a of GLn(F
cG), we define an element

Det(a) ∈ HomΩF
(RG, (F

c)×) ' Z(FG)×

in the following way: if T is any representation of G over F c with character

φ, then we set

Det(a)(φ) := det(T (a)).



30 A. AGBOOLA AND L. R. MCCULLOH

It may be shown that this definition depends only upon the character φ, and

not upon the choice of representation T . (See [6, Chapter II], for example.)

�

Remark 7.2. The map Det above is essentially the same as the reduced

norm map. Let

nrd : (F cG)× → Z(F cG)× (7.1)

denote the reduced norm. If G is abelian, then (7.1) is an isomorphism; in

general, (7.1) induces an isomorphism

nrd : K1(F
cG) → Z(F cG)× ' Hom(RG, (F

c)×).

Suppose now that φ is any F c-valued character of G, and let a ∈ (F cG)×.

Then we have that

Det(a)(φ) = nrd(a)(φ)

(see [7, Chapter I, Proposition 2.7]). A similar result holds if (F cG)× is

replaced by (F c
vG)× for any place v of F .

If v is any finite place of F , and Mv is a maximal order in FvG containing

OFv
G, then we have

nrd(M×
v ) = Z(Mv)

× ' HomΩFv
(RG, (O

c
Fv

)×). (7.2)

We shall make frequent use of these facts in what follows. �

Definition 7.3. Suppose that χ ∈ Irr(G). We define an abelian character

det(χ) of G as follows. Let T be any representation of G over F c affording

χ. For each element g ∈ G, we set

(det(χ))(g) = Det(T (g)).

Then det(χ) is independent of the choice of T , and may be viewed as being

a character of Gab. We extend det to a homomorphism RG → Irr(Gab) by
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defining

det

 ∑
χ∈Irr(Gab)

aχχ

 =
∏

χ∈Irr(Gab)

(det(χ))aχ,

and we set

AG := Ker(det).

Hence we have an exact sequence of groups

0 → AG → RG
det−→ Irr(Gab) → 0. (7.3)

�

Applying the functor Hom(−, (F c)×) to (7.3), we obtain the sequence

0 → Gab → Hom(RG, (F
c)×)

rag−→ Hom(AG, (F
c)×) → 0,

which is exact on the right because (F c)× is divisible. It follows that there

is an ΩF -equivariant isomorphism

Hom(AG, (F
c)×) ' Hom(RG, (F

c)×)/Gab ' Z(F cG)×/Gab.

A similar argument with F replaced by Fv for any finite place v of F yields

an analogous ΩFv
-equivariant isomorphism

Hom(AG, (F
c
v )
×) ' Hom(RG, (F

c
v )
×)/Gab ' Z(F c

vG)×/Gab.

In what follows, we shall sometimes identify Hom(AG, (F
c)×) with Z(F cG)×/Gab

and Hom(AG, (F
c
v )
×) with Z(F c

vG)×/Gab via these isomorphisms without ex-

plicit mention.

Recall that if v is a finite place of F , of residue characteristic coprime to

|G|, then OFv
G is a maximal order in FvG, and we have that

Det((Oc
Fv
G)×) = Hom(RG, (O

c
Fv

)×),

and

Det(H(OFv
G)) = Z(OF v

c
G)/Gab = HomΩFv

(AG, (O
c
Fv

)×).
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On the other hand, if v is not coprime to |G|, then we have

Det(H(OFv
G)) = Z(OF v

c
G)/Gab ⊆ HomΩFv

(AG, (O
c
Fv

)×),

but this last inclusion is not in general an equality. If a is any integral ideal

of OF , set

Ua(O
c
Fv

) := (1 + aOc
Fv

) ∩ (Oc
Fv

)×,

and write Uα(O
c
Fv

) instead of Ua(O
c
Fv

) when a = αOF . We shall need the

following result of Siviero (which is variant of [9, Theorem 2.14]) in Section

8 .

Proposition 7.4. (Siviero) If N is any sufficiently large power of |G|, then

HomΩFv
(AG, UN(Oc

Fv
)) ⊆ Det((OFv

G)×/G) ⊆ HomΩFv
(AG, (O

c
Fv

)×)

for all finite places v of F .

Proof. This is shown in [16, Theorem 5.1.10] when G is abelian, and the proof

for arbitrary finite G is quite similar.

We first observe that the group

HomΩFv
(AG, (O

c
Fv

)×)

Det((OFv
G)×/G)

is annihilated by |Gab|[Det(M×
v ) : (OFv

G)×], where Mv denotes any maximal

order in FvG containing OFv
G. Since AG is finitely generated, it follows

that Det((OFv
G)×/G) is of finite index in HomΩFv

(AG, (O
c
Fv

)×) and so is an

open subgroup of HomΩFv
(AG, (O

c
Fv

)×). The result now follows from the

fact that the groups HomΩFv
(AG, Un(O

c
Fv

)) form a fundamental system of

neighbourhoods of the identity of HomΩFv
(AG, (O

c
Fv

)×) as n varies.

�
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8. The Stickelberger pairing and homomorphism

Definition 8.1. The Stickelberger pairing is a Q-bilinear pairing

〈−,−〉 : QRG ×QG→ Q (8.1)

that is defined as follows.

Let ζ|G| be a fixed, primitive |G|-th root of unity (cf. the conventions

established at the begining of Section 6), and suppose first that G is abelian.

Then if χ ∈ Irr(G) and g ∈ G, we may write χ(g) = ζrN for some integer r.

We define

〈χ, g〉 =

{
r

|G|

}
,

where {x} denotes the fractional part of x ∈ Q, and we extend this to a

pairing on QRG×QG via linearity. For arbitrary finite G, the Stickelberger

pairing is defined via reduction to the abelian case by setting

〈χ, g〉 = 〈Res<g>G (χ), g〉.

�

We shall now explain a different way of expressing the Stickelberger pair-

ing using the standard inner product on RG. In order to do this, we must

introduce some further notation.

For each s ∈ G, we write |s| for the order of s, and we set ms := |G|/|s|.
We define a character ξs of 〈s〉 by ξs(s

i) = ζ ims

|G| ; so ξs is a generator of the

group of characters of 〈s〉. Then it follows from Definition 8.1 that

〈ξαs , sβ〉 =

{
αβ

|s|

}
.

Define

Ξ(s) :=
1

|s|

|s|−1∑
j=1

jξjs .
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Proposition 8.2. Let (−,−)G denote the standard inner product on RG, and

suppose that χ ∈ RG, s ∈ G. Then we have

(χ, IndG〈s〉(Ξ(s)))G = 〈χ, s〉G.

Proof. Suppose that

χ |〈s〉=
|s|−1∑
j=0

ajξ
j
s ,

where aj ∈ Z for each j. Then we have

〈χ, s〉G =

|s|−1∑
j=0

aj〈ξjs , s〉〈s〉

=

|s|−1∑
j=0

aj

{
j

|s|

}

=
1

|s|

|s|−1∑
j=0

ajj.

On the other hand, via Frobenius reciprocity, we have

(χ, IndG〈s〉(Ξ(s)))G = (χ |〈s〉,Ξ(s))〈s〉

=

|s|−1∑
j=0

ajξ
j
s ,

1

|s|

|s|−1∑
j=0

jξjs


〈s〉

=
1

|s|

|s|−1∑
j=0

ajj

= 〈χ, s〉G,

and this establishes the desired result. �

Corollary 8.3. Suppose that s1 and s2 are elements of G. Then 〈χ, s1〉 =

〈χ, s2〉 for all χ ∈ RG if and only if c(s1) = c(s2).
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Proof. Let χ ∈ RG and s ∈ G. It follows from the definition of the Stick-

elberger pairing that for fixed χ, the value of 〈χ, s〉 depends only upon the

conjugacy class of s in G. Hence, if c(s1) = c(s2), then 〈χ, s1〉 = 〈χ, s2〉 for

all χ ∈ RG.

To show the converse, we use Proposition 8.2. We first note that a straight-

forward computation shows that the degree of the virtual character Ξ(s) is

equal to |G|(|s| − 1)/2|s|, and so Ξ(s) determines |s|.
To ease notation, set H := 〈s〉, and let M be a ZH-module with character

|s| · Ξ(s). Let t1 = 1, . . . , tms
be a set of coset representatives of G/H.

Then ⊕ms

i=1tiM is a ZG-module with character |s| · IndGH(Ξ(s)), and G acts

transitively on the set {t1M = M, . . . , t|s|M}. Since the stabiliser of M is

H, this last set is isomorphic to G/H as a G-set, and so it follows that Ξ(s)

determines the G-set G/H.

Hence if 〈χ, s1〉 = 〈χ, s2〉 for all χ ∈ RG, then Proposition 8.2 implies that

IndG〈s1〉 Ξ(s1) = IndG〈s2〉 Ξ(s2),

and so G/〈s1〉 ' G/〈s2〉 as G-sets, whence c(s1) = c(s2), as claimed. �

Definition 8.4. The Stickelberger map

Θ = ΘG : QRG → QG (8.2)

is defined by

Θ(χ) =
∑
g∈G

〈χ, g〉 · g.

�

The following proposition summarises some basic properties of the Stickel-

berger map.

Proposition 8.5. (a) We have that Θ(χ) ∈ Z(QG) for all χ ∈ RG, i.e. in

fact

Θ : QRG → Z(QG).
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(b) We have that Θ(χ) ∈ ZG if and only if χ ∈ AG. Hence Θ induces a

homomorphism AG → ZG.

(c) Let G(−1) denote the group G endowed with an action of ΩF via the

inverse cyclotomic character. Then the map

Θ : QRG → QG(−1)

is ΩF -equivariant.

Proof. The proofs of these assertions are essentially the same as those in the

case of abelian G. See [9, Propositions 4.3 and 4.5].

(a) It follows from the definition of the Stickelberger pairing that if χ ∈ RG

and g ∈ G, then 〈χ, g〉 depends only on the conjugacy class c(g) of g in G.

This implies that Θ(RG) ⊆ Z(QG), as claimed.

(b) Suppose that χ ∈ RG and g ∈ G. Write

res<g>G (χ) =
∑
η

aηη,

where the sum is over irreducible characters of < g >, and set ζ|g| := ζ
|G|/|g|
|G| .

Then

(det(χ))(g) = det(res<g>G (χ))(g)

=
∏
η

η(g)aη

=
∏
η

ζ
|g|〈aη,g〉
|g|

= ζ
|g|
∑

η〈aηη,g〉
|g|

= ζ
|g|
∑

η〈res
<g>
G (χ),g〉

|g| .

It now follows that 〈res<g>G (χ), g〉 ∈ Z for all g ∈ G if and only if χ ∈
Ker(det) = AG, as required.
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(c) Let κ denote the cyclotomic character of ΩF , and suppose that χ ∈ RG

is of degree one. Then, for each g ∈ G and ω ∈ ΩF , we have

χω(g) = χ(gκ(ω)),

and so

〈χω, g〉 = 〈χ, gκ(ω)〉. (8.3)

It follows via bilinearity that (8.3) holds for all χ ∈ RG and all g ∈ G. Hence,

if we view ΘG(χ) as being an element of QG(−1), then

ΘG(χ) =
∑
g∈G

〈χω, g〉g

=
∑
g∈G

〈χ, gκ(ω)〉g

=
∑
g∈G

〈χ, g〉gκ−1(ω).

�

We see from Proposition 8.5 that dualising the homomorphism

Θ : AG → Z(ZG)

and twisting by the inverse cyclotomic character yields an ΩF -equivariant

transpose Stickelberger homomorphism

Θt : Hom(Z(ZG(−1)), (F c)×) → Hom(AG, (F
c)×). (8.4)

Composing (8.4) with the homomorphism

Hom(AG, (F
c)×)

∼−→ Z(F cG)×/Gab → K1(F
cG)

K1(OFG)
→ K0(OFG,F

c)

yields an ΩF -equivariant homomorphism

KΘt : Hom(Z(ZG(−1)), (F c)×) → K0(OFG,F
c). (8.5)
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Hence, if we write C(G(−1)) for the set of conjugacy classes of G endowed

with ΩF -action via the inverse cyclotomic character, and set

Λ(OFG) := HomΩF
(Z(ZG(−1)), Oc

F ) = MapΩF
(C(G(−1)), Oc

F )

= Z(OF c[G(−1)])ΩF ;

Λ(FG) := HomΩF
(Z(ZG(−1)), F c) = MapΩF

(C(G(−1)), F c)

= Z(F c[G(−1)])ΩF ,

then KΘt induces a homomorphism (which we denote by the same symbol)

KΘt : Λ(FG)× → K0(OFG,F
c).

For each finite place v of F , we may apply the discussion above with F

replaced by Fv to obtain local versions

Θt
v : Hom(Z(ZG(−1)), (F c

v )
×) → Hom(AG, (F

c
v )
×) (8.6)

and

KΘt
v : Λ(FvG)× → K0(OFv

G,F c
v ) (8.7)

of the maps Θt and KΘt respectively. The homomorphism Θt commutes

with local completion, and KΘt commutes with the localisation maps

λv : K0(OFG,F
c) → K0(OFv

G,F c
v ).

Definition 8.6. We define the group of ideles J(Λ(FG)) of Λ(FG) to be the

restricted direct product of the groups Λ(FvG)× with respect to the subgroups

Λ(OFv
G)×. �

For all places v of F not dividing the order of G, we have that

Θt(Λ(OFv
G)) ⊆ HomΩFv

(AG, (OF c
v
)×) = Det(H(OFv

G)),

and so

KΘt(Λ(OFv
G)) ⊆ K0(OFv

G,OF c
v
).
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It follows that the homomorphisms Θt
v combine to yield an idelic transpose

Stickelberger homomorphism

KΘt : J(Λ(FG)) → J(K0(OFG,F
c)). (8.8)

Definition 8.7. Let a be an integral ideal of OF . For each finite place v of

F , recall that

Ua(O
c
Fv

) := (1 + aOc
Fv

) ∩ (Oc
Fv

)×.

We define

U ′
a(Λ(OFv

G)) ⊆ (Λ(FvG))× = MapΩv
(C(G(−1)), (F c

v )
×)

by

U ′
a(Λ(OFv

G)) :=
{
gv ∈ (Λ(FvG))× | gv(s) ∈ Ua(O

c
F,v) ∀s 6= 1

}
(with gv(1) allowed to be arbitrary).

Set

U ′
a(Λ(OFG)) :=

(∏
v

U ′
a(Λ(OFv

G))

)
∩ J(Λ(FG)).

The modified ray class group modulo a of Λ(OFG) is defined by

Cl′a(Λ(OFG)) :=
J(Λ(FG))

(Λ(FG))× · U ′
a(Λ(OFG))

.

�

Remark 8.8. Fix a set of representatives T of ΩF\C(G(−1)), and for each

t ∈ T , let F (t) be the smallest extension of F such that ΩF (t) fixes t. Then

the Wedderburn decomposition of Λ(FG) is given by

Λ(FG) = MapΩF
(C(G(−1)), F c) '

∏
t∈T

F (t), (8.9)

where the isomorphism is induced by evaluation on the elements of T .

The group Cl′a(Λ(OFG)) above is finite, and is isomorphic to the product of

the ray class groups modulo a of the Wedderburn components F (t) of Λ(FG)

with t 6= 1. �
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Definition 8.9. Let v be a finite place of F . For each element s of Σv(G),

define fv,s ∈ (Λ(FvG))× by

fv,s(c) =

$v, if c = c(s) 6= 1;

1, otherwise.
(8.10)

Observe that we have fv,1 = 1, and that fv,s is ΩFv
-equivariant because

s ∈ Σv(G) and so ΩFv
fixes c(s) when s is viewed as an element of G(−1).

The element fv,s depends only upon the conjugacy class c(s) of s.

Write

Fv := {fv,s | s ∈ Σv(G)},

and define F ⊂ J(Λ(FG)) by

f ∈ F ⇐⇒ f ∈ J(Λ(FG)) and fv ∈ Fv for all v.

Proposition 8.10. Let A be any integral ideal of OF . Then the inclusion

F → J(Λ(FG)) induces a surjection F → Cl′A(Λ(OFG)).

Proof. Let I(Λ(OFG)) denote the group of fractional ideals of Λ(OFG). Then

via the Wedderburn decomposition (8.9) of Λ(FG), we see that each ideal

B in Λ(OFG) may be written in the form B = (Bt)t∈T , where each Bt is a

fractional ideal of OF (t). For each conjugacy class t ∈ T , let o(t) denote the

ΩF -orbit of t in C(G)(−1), and write |t| for the order of any element of t.

For each idele ν ∈ J(FΛ), let co(ν) ∈ I(Λ(OFG) denote the ideal obtained

by taking the idele content of ν. If v is a finite place of F , we view Fv as

being a subset of F via the obvious embedding Λ(FvG)× ⊆ J(Λ(FG)), and

we set

Fv := {co(fv) | fv ∈ Fv}.

Now consider the ideal

co(fv,s) = [co(fv,s)t]t∈T
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in I(Λ(OFG)). If c(s) /∈ o(t), then it follows from the definition of fv,s that

co(fv,s)t = OF (t). Suppose that c(s) ∈ o(t). Since s ∈ Σv(G), it follows that

v(|s|) = 0 and that ΩFv
fixes c(s). Hence Fv(t) = Fv, and so we see that

co(fv,s)t is a prime ideal of OF (t) of degree one lying above v (cf. [9, pages

287–289]). Furthermore, if t ∈ T and if v is a finite place of F that is totally

split in F (t), then fv,s ∈ Fv for all c(s) ∈ o(t).
We therefore deduce that the set Fv consists precisely of the invertible

prime ideals p = (pt)t∈T of Λ with pt1 a prime of degree one above v in F (t1)

for some t1 ∈ T with v(|t1|) = 0 and pt = OF (t) for all t 6= t1. For every t ∈ T ,

the ray class modulo A of F (t) contains infinitely many primes of degree one,

and this implies that F surjects onto Cl′A(Λ) as claimed. �

Proposition 8.11. Let v be a finite place of F .

(a) For each s ∈ Σv(G), we have

Det(rG(ϕv,s)) = KΘt
v(fv,s)

in K0(OFv
G,F c

v ).

(b) Suppose that s1, s2 ∈ Σv(G) with

Det(rG(ϕv,s1)) = Det(rG(ϕv,s2)). (8.11)

Then c(s1) = c(s2).

Proof. (a) The proof of this assertion is very similar to that of [9, Proposition

5.4].

It suffices to show that

rG(ϕv,s) = Θt
v(fv,s)

Suppose that χ ∈ RG, and write

χ |<s>=
∑
η

aηη,
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where the sum is over irreducible characters η of < s >. Using (6.2), we see

that (cf. [9, Proposition 5.4])

rG(ϕv,s)(χ) =
∏
ψ

(
e−1∑
i=0

σiv(βs)η(s
−i)

)aη

= $
〈
∑

η η,s〉
v

= $〈χ,s〉
v ,

and so it follows that

rG(ϕv,s)(α) = $〈α,s〉
v

for all α ∈ AG.

On the other hand, if α ∈ AG, then we have

(Θt(fv,s))(α) = fv,s(Θ(α))

= fv,s

∑
g∈G

〈α, g〉g


=
∏
g∈G

fv,s(g)
〈α,g〉

= $〈α,s〉
v ,

and so the desired result follows.

(b) The proof of (a) above shows that if (8.11) holds, then

〈χ, s1〉 = 〈χ, s2〉

for every χ ∈ RG. It follows from Corollary 8.3(b) that c(s1) = c(s2). �

Our next result concerns the kernels of the maps Ψ and Ψv. Before stating

it, we recall that G′ denotes the derived subgroup of G, and we note that we

may view H1(F,G′) and H1(Fv, G
′) as being pointed subsets of H1(F,G) and
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H1(Fv, G) respectively via taking Galois cohomology of the exact sequence

of groups

0 → G′ → G→ Gab → 0.

Proposition 8.12. Let S be the set of all finite places of F such that v

divides |G′| and F/Q is wildly ramified at v.

(a) Let v be a finite place of F . Then ker(Ψv) ⊆ H1
nr(Fv, G

′).

(b) If v /∈ S, then ker(Ψv) = H1
nr(Fv, G

′).

(c) We have that ker(Ψ) ⊆ H1
nr(F,G

′). In particular, ker(Ψ) is finite.

Proof. (a) Suppose that [πv] ∈ H1
t (Fv, G), and that Oπv

= OFv
G · av. Then it

follows from the definition of Ψv that Ψv([πv]) = 0 if and only if nrd(rG(av)) ∈
nrd(K1(OFv

G)). We see from (6.6) and Proposition 8.11 that nrd(rG(av)) ∈
nrd(K1(OFv

G)) only if [πv] ∈ H1
nr(Fv, G). Furthermore, if Ψv([πv]) = 0, then

for each ω ∈ ΩFv
, we have that rG(av)

−1 · rG(av)
ω ∈ G′, which in turn implies

that [πv] ∈ H1
nr(Fv, G

′). This establishes (a).

(b) If [πv] ∈ H1
nr(Fv, G

′), then rG(av) ∈ H(OFv
G), and for every ω ∈ ΩFv

, we

have that rG(av)
−1·rG(av)

ω ∈ G′. Hence nrd(rG(av)) lies in (nrd(OFnr
v
G′)×)ΩFv .

It follows from M. J. Taylor’s fixed point theorem for group determinants (see

[18, Chapter VIII]) that

(nrd(OFnr
v
G′)×)ΩFv = nrd(OFv

G′)×,

except possibly when both v divides |G′| and F/Q is wildly ramified at v.

Hence, if v /∈ S, and [πv] ∈ H1
nr(Fv, G

′) we see that Ψv([πv]) = 0, as claimed.

(c) Suppose that [π] ∈ H1(F,G) satisfies Ψ([π]) = 0. Then Ψv(locv([π])) =

0 for each v, and so it follows from part (a) that locv([π]) ∈ H1
nr(Fv, G

′) for

all finite places v of F . This implies the result. �
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9. Proof of Theorem 5.6

In this section we shall prove Theorem 5.6. Recall that we wish to show

that if

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

λ ◦ ∂1(K1(F cG)) ·
∏

v Im(Ψnr
v )

denotes the map of pointed sets given by the composition of the map Ψid

with the quotient homomorphism

J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ ◦ ∂1(K1(F cG)) ·
∏

v Im(Ψnr
v )
,

then the image of Ψid is in fact a group.

We see from Theorem 6.6 and Proposition 8.11(a) that the desired result

will follow if we show that the image ι(KΘt(F)) of KΘt(F) in

J(K0(OFG,F
c))

λ ◦ ∂1(K1(F cG)) ·
∏

v Im(Ψnr
v )

is a group.

To show this last fact, we first observe that Proposition 7.4 implies that if

N is any sufficiently large power of |G| and v is any finite place of F with

v | |G|, then, setting a := NOF , we have

Θt(U ′
a(Λ(OFv

G))) ⊆ Det((OFv
G)×/G) ⊆ Det(H(OFv

G)) = Im(Ψnr
v ).

Since for any v with v - |G| we have

Θt(Λ(OFv
G)) ⊆ Det(H(OFv

G)) = Im(Ψnr
v ),

it follows that

KΘt(U ′
a(Λ(OFG))) ⊆

∏
v

Im(Ψnr
v )

in J(K0(OFG,F
c)), and so KΘt induces a homomorphism

KΘt
a : Cl′a(Λ(OFG)) → J(K0(OFG,F

c))

λ ◦ ∂1(K1(F cG)) ·
∏

v Im(Ψnr
v )
.
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Proposition 8.10 implies that

KΘt
a(Cl′a(Λ(OFG)) = ι(KΘt(F)),

and so we see that ι(KΘt(F)) is indeed a group, as claimed. �

10. An embedding problem

In this section we shall describe, following [14, §2.1], a solution to a certain

embedding problem for nilpotent groups that will be used in the proof of

Theorem 5.9.

Let G be a nilpotent group, and let l be the smallest prime dividing the

order of G. If l = 2, we also assume that F is totally imaginary. Let C be

a central subgroup of G of order l, and set G := G/C. Recall that, for each

finite place v of F , we write Iv for the inertia subgroup of ΩFv
. Suppose that

π ∈ Hom(ΩF , G) with [π] ∈ H1
t (F,G). We first show that, under our given

hypotheses, π may always be lifted to an element of Hom(ΩF , G).

Lemma 10.1. ([14, Lemma 2.1.5]) Let ξ ∈ H2(F,G) denote the class of the

extension

1 → C → G
q−→ G→ 1,

and write π∗ : H2(G,C) → H2(F,C) for the homomorphism induced by π.

Then π∗(ξ) = 0, and so there exists a lift of π to Hom(ΩF , G).

Proof. We first observe that the restriction map

H2(F,C) → H2(F (µl), C)

is injective and so so we may without loss of generality assume that F =

F (µl). Next, we note that the Brauer-Hasse-Noether theorem implies that

the natural map

H2(F,C) →
∏
v

H2(Fv, C)

(where the product is over all finite places of v—the infinite places may be

ignored when l is odd or F has no real places) is injective. Hence, in order
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to show that π∗(ξ) = 0, it suffices to show that each local homomorphism

πv ∈ Hom(ΩFv
, G) may be lifted to Hom(ΩFv

, G). To show that such local

liftings exist, we may without loss of generality further suppose that the order

of G is a power of l.

If πv is unramified, then πv factors through ΩFv
/Iv ' Ẑ, and a map Ẑ → G

may always be lifted to a map Ẑ → G by lifting the image of a generator of

Ẑ.

If πv is ramified, then by hypothesis, πv is tamely ramified, and so πv factors

through a Galois group Gal(E/Fv), where E/Fv is tame, and Gal(E/Fv) is

abelian of type (lm, lm) for some integer m; this last group is a projective

object in the category of abelian groups annihilated by lm. It therefore follows

that q−1(G) is abelian and annihilated by lm, and that πv may be lifted (see

[14, pages 14–15]). �

Lemma 10.2. (cf. [14, Lemma 2.1.6]) For each finite place v of F , let

εv ∈ Hom(ΩFv
, C). Suppose that almost all of the homomorphisms εv are

unramified. Then there exists ε ∈ Hom(ΩF , C) such that

ε|Iv = εv|Iv

for all v.

Proof. We may view the homomorphisms εv as being homomorphisms εv :

F×
v → C, via local class field theory. Each map εv|O×Fv

is trivial on a closed

subgroup of the form 1 +$nv
v OFv

, and almost all of the integers nv are equal

to zero. For each v, let pv denote the prime ideal of OF corresponding to v,

and set N :=
∏

v pnv
v . We define ε to be the Galois character associated to

the homomorphism

ε̃ : (OF/N )× → C; α 7→
∏
v

εv(α
−1);

then it follows via class field theory that ε |Iv= εv |Iv for each v, as desired. �
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For each place v of F , let π̃v ∈ Hom(ΩFv
, G) be a lift of πv chosen so that

π̃v is unramified if πv is unramified. (Such a choice is always possible because

there is no obstruction to lifting an element of Hom(Ẑ, G)—cf. the proof of

Lemma 10.1.)

Proposition 10.3. With the above hypotheses and notation, there exists Π ∈
Hom(ΩF , G) with [Π] ∈ H1

t (F,G) such that Π is a lift of π and

Π|Iv = π̃v|Iv

for each finite place v of F . (Hence Π is unramified at every finite place of

F at which π is unramified.)

Proof. As [π] ∈ H1
t (F,G), Lemma 10.1 implies that we may choose a lifting

Π̃ ∈ Hom(ΩF , G) of π. For each place v of F , let π̃v ∈ Hom(ΩFv
, G) be a

lift of πv chosen so that π̃v is unramified if πv is unramified. (Such a choice

is always possible because there is no obstruction to lifting an element of

Hom(Ẑ, G)—cf. the proof of Lemma 10.1.)

As C is central in G, it is easy to see that for every v, there exists a

homomorphism εv : ΩFv
→ C such that Π̃(α) = εv(α)π̃v(α) for all α ∈ ΩFv

.

Lemma 10.2 implies that there exists a homomorphism ε : ΩF → C such

that ε|Iv = εv|Iv for all v. Hence, if we set Π := Π̃ · ε−1, then it follows that

Π is unramified at every finite place of F at which π is unramified, and that

Π|Iv = π̃v|Iv

for all v, as required. �

11. Proof of Theorem 5.9

In this section we shall prove Theorem 5.9.

Let G be a nilpotent group, and let l be the smallest prime dividing |G|. If

l = 2, assume also that F has no real places. Let C be a central subgroup of
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G of order l, and set G := G/C. We may assume by induction on the order

of G that Theorem 5.9 holds for G.

Suppose that x ∈ K0(OFG,F
c) is locally cohomological. Then, for each v,

we may write

λv(x) = ΨG,v([πv(x)])

for some [πv(x)] ∈ H1
t (Fv, G). The choice of πv(x) is not unique. However, if

a(πv(x)) is any n.i.b. generator of Fπv(x)/Fv, with Stickelberger factorisation

(see Definition 6.7)

rG(a(πv(x))) = u(πv(x)) · rG(anr(πv(x))) · rG(ϕ(πv(x))),

then Det(rG(ϕ(πv(x)))) is independent of the choice of πv(x). Hence, if

ϕ(πv(x)) = ϕv,s, say, then c(s) does not depend upon πv(x).

Write

q1 : K0(OFG,F
c) → K0(OFG,F

c), q2 : H1(F,G) → H1(F,G),

q2,v : H1(Fv, G) → H1(Fv, G),

for the maps induced by the quotient map q : G→ G. Set

x := q2(x), πv(x) := q2,v(πv(x)).

Then x ∈ K0(OFG,F
c) is locally cohomological, with

λv(x) = ΨG,v(q2,v(πv(x)))

for each finite place v of F . By induction, x is globally cohomological, and

so there exists [ρ(x)] ∈ H1
t (F,G) such that

ΨG,v([ρv(x)]) = ΨG,v([πv(x)])

for each v. Hence, for each v, we have that

Det(rG(ϕ(ρv(x)))) = Det(rG(ϕ(πv(x)))),

using the notation established above concerning Stickelberger factorisations.
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For each v, we shall now construct a lift ρv(x) ∈ Hom(ΩFv
, G) of ρv(x) such

that

Det(rG(ϕ(ρv(x)))) = Det(rG(ϕ(πv(x)))).

To do this, we first observe that if ϕ(πv(x)) = ϕv,s, then ϕ(πv(x)) = ϕv,s,

where s = q(s), and that ϕv(ρv(x)) = ϕv,s1 for some s1 ∈ G with c(s1) = c(s).

Next, we write

ρv(x) = ρv(x)r · ρv(x)nr,

with ρv(x)nr ∈ H1
nr(Fv, G) (see (6.4)). Since ρv(x)nr is unramified, it may

be lifted to [ρv(x)nr] ∈ H1
nr(Fv, G). Let a(ρv(x)nr) be an n.i.b. generator

of Fρv(x)nr
/Fv. Then rG(a(ρv(x)nr)) · rG(ϕv,s1) is an n.i.b. generator of a

tame Galois G-extension Fρv(x) of Fv such that q2,v([ρv(x)]) = ρv(x). By

construction, we have that

Det(rG(ϕ(ρv(x)))) = Det(rG(ϕv,s1)) = Det(rG(ϕv,s)) = Det(rG(ϕ(πv(x)))),

as desired.

We now apply Proposition 10.3 to choose Π(x) ∈ Hom(ΩF , G) such that

Π(x)|Iv = ρv(x)|Iv . If a(Πv(x)) is any n.i.b. generator of FΠv(x)/Fv, with

Stickelberger factorisation

rG(a(Πv(x))) = u(Πv(x)) · rG(anr(Πv(x))) · rG(ϕ(Πv(x))),

then

Det(rG(ϕ(Πv(x)))) = Det(rG(ϕ(πv(x)))).

Hence, for each v, it follows that λv(x
−1 ·ΨG([Π(x)])) is represented by

nrd[u(πv(x))
−1rG(anr(πv(x)))

−1u(Πv(x))rG(anr(Πv(x)))] ∈ K1(OF c
v
G).

We deduce that x−1 ·ΨG([Π(x)])) lies in the kernel of the map

β : K0(OFG,F
c)

λ−→ J(K0(OFG,F
c) → J(K0(OFG,F

c))∏
v Im(Ψnr

G,v)
,
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(where the last arrow denotes the obvious quotient homomorphism). To

conclude the proof, we appeal to the following result.

Proposition 11.1. Let L be the maximal, abelian, extension of F of exponent

|Gab|, and suppose that y ∈ K0(OFG,F
c) lies in the kernel of the map

β : K0(OFG,F
c) → J(K0(OFG,F

c))∏
v Im(Ψnr

G,v)
.

Then y lies in the kernel of the extension of scalars map

e : K0(OFG,F
c) → K0(OLG,F

c).

Hence, if (hF , |Gab|) = 1, then L = K, and so β is injective.

Proof. Suppose that y = [(yv), y∞] lies in the kernel of β. Then yv · locv(y∞) ∈
Im(Ψnr

G,v) for each v. Hence, for each v, locv(y∞) is an unramified Gab-

resolvend over Fv. This implies that y∞ is a global unramified Gab-resolvend

over F , and so y∞ ∈ K1(LG). Now since yv · locv(y∞) ∈ Im(Ψnr
v ) for each v,

we see that in fact yv · locv(y∞) ∈ K1(OLv
G) for each v. Hence e(y) is in the

kernel of the localisation map

λL : K0(OLG,F
c) → J(K0(OLG,F

c)),

and since λL is injective (see Proposition 4.7) it follows that e(y) = 0. �

It follows from Proposition 11.1 that if (hF , |Gab|) = 1, then

x = ΨG(Π(x)),

and so x is globally cohomological as claimed. This completes the proof of

Theorem 5.9.
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