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1. Introduction

Let F be a number field with ring of intege@r, and letS be a finite set of
places ofF . Assume tha¥F contains the sef,, of archimedean places &f, and
write Sy for the set of finite places contained $h Let O (or O, when there
is no danger of confusion) denote the ringSpfintegers ofF. Write F< for an
algebraic closure of .

LetY be any scheme over Sgez). Suppose that is a finite, flat commuta-
tive group scheme ovéf of exponentV, and letG” denote the Cartier dual of
G.Letn : X — Y be aG-torsor, and writerg : G — Y for the trivial G-torsor.
ThenQOy is anOg-comodule, and so it is also &&;»-module (see [12]). As an
Ogp-module,Oy is locally free of rank one, and it therefore gives a line bundle
M overG”. SetL, := M, ® M_}. Then the map

v HY(Y, G) — Pic(GP): [n]+— [L:]

is a homomorphism which is often referred to as the ‘class invariant homomor-
phism’.

Suppose now that = Spec0), and seG = SpecB), G” = Spec2), and
X = Spec?). Thenthe algebrd is a twisted form of3, and the homomorphism
¥ measures the Galois module structure of this twisted form (see [8]). The class
invariant homomorphism was first introduced by W. Waterhouse (see [33], but
also [15],éxpo® VII) and was later further developed in the context of Galois
module theory by M. J. Taylor (see [31], [32]). Taylor originally considered group
schemes given by torsion points on abelian varieties with complex multiplication;
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the corresponding torsors are obtained by dividing points in the Mordell-Weil
groups of these abelian varieties. In [30], it was shown that, for elliptic curves
with complex multiplication, the class invariant homomorphism vanishes on the
classes of torsors obtained by dividing torsion points of order coprime to 6. This
implies the existence of Galois generators for certain rings of integers of abelian
extensions of imaginary quadratic fields. This vanishing result was extended to
all elliptic curves in [3] and [22]. The class invariant homomorphism for torsors
that are obtained by dividing points on abelian varieties has subsequently been
studied in greater generality (see for example [2], [5], [23]).

The main goal of this paper is to introduce and study an arithmetic (i.e.
‘Arakelov’) refinement of the class invariant homomorphism and to study its
values on torsors obtained by dividing points on abelian varieties. Assume as
above that we havE = Spe¢0). We shall show that the line bundlg, associ-
ated to the torsar carries canonical metrics at all of the placesjim particular
it carries canonical hermitian metrics at all archimedean placgsAs a result
of this, we shall see that the homomorphigm H*(Spec0), G) — Pic(GP)
lifts to a homomorphism

¥ : H'(Spec0), G) — Pic(G?),

wherePic(GP) is the Picard group of isomorphism classes of line bu/lldlefslbn
endowed with metrics at all places $n In particular, ifS = S, thenPic(G?)
is just the Arakelov Picard group of the one-dimensional schéfe

Now let G? denote the normalisation «f”. By composingy a andx/f with
the natural pullback maps RiG") — Pic(GP) andPic(GP) — PI(GP), we
obtain homomorphisms

¢ : HX(Spec0), G) — Pic(GP) and ¢ : H(Spec0), G) — Pic(GD).

We show that if the generic fibre @? is a constant group scheme (i@? is
‘generically constant’), then the kernel @fis very small (see Theorem 4.1).

In the remainder of the paper, we apply our results to study torsors that are
obtained by dividing points on abelian varieties. [Eebe an abelian scheme of
dimensiond over O, and write E? for its dual. For each integev, let [N] :

E — E denote the multiplication-by¥ map onE, and writeE[N] for the O-
group scheme oN-torsion onE. The Cartier dual o£E[N] may be identified

with the O-group schemé& ?[N] of N-torsion onE”. We write EP[N] for the
normalisation ofE”[N].

Suppose thaP : Spe¢0O) — E is an O-valued point ofE. Then we may
form the following fibre product:

[N]7Y(P) := Spe¢O) xg vy E —— E

| I

Speco) L, E
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Since[N] : E — E is an E[N]-torsor,[N]~1(P) is also anE[N]-torsor and
it is determined up to isomorphism by the imagefomodulo[N] - E(O). In
fact,[N]1(P) is just theE[N]-torsor given by the image @t under the natural
injection
E(O)

[N]- E(O)
afforded by Kummer theory oA. Let L y-1», denote the line bundle aB”[N]
thatis associated {&]~(P). By our earlier resultsg;y,-1.py carries a canonical
metric at all places ir§. Let Z[N]—l(p) denote the corresponding metrised line
bundle. Then sinc&(0) ~ E(F), we obtain a map

~  E(F)

YN E(F)

which is a group homomorphism. By composiig with the natural pullback
homomorphisnP/ﬁ:(ED[N]) — F/>i\c(E/D\[ﬁ]), we obtain a homomorphism
E(F)

[N]- E(F)

The classy(P) may be described in terms of the restriction of metrised
line bundles onE? to subgroup schemes of torsion points. &tP) denote
the rigidified line bundle orE” that corresponds to the poiftvia the duality
betweenE and EP. Then, at each place i, £(P) carries a natural ‘Bfon
metric’ which arises via a canonical splitting of the extensionzéf by G,,
which corresponds t® (see [17], [19], [20]). Write£(P) for the line bundle

L(P) endowed with these metrics. We show the following result.

Theorem 1.1. With the above notation, we hawey(P) = (L(P) |zo v)) in
Pic(EP[N)).

In order to describe our main result on the arithmetic class invariants for
abelian varieties, we have to introduce some further notation. heta prime
number. Then, for each positive integer the inclusion mapE (-1 —
EP[I"] induces pullback homomorphisn®&c(EL[1"]) — Pic(EP["1]) and

Pic(EL[I"]) — PIC(EAD[I" l]) These homomorphisms are compatible with the
corresponding mapg andg. Hence, we may pass to inverse limits to obtain
homomorphisms

@ = lim Y : E(F) ®z Z; — lim Pic(EP[1"])

— H'(SpecO0), E[N])

— PIEP[ND);  [P]— [Lovaep]

Pn — PiC(EP[NY)).

and

@, :=lim ¢ : E(F) ® 2, — lim Pic(EP[I"]).
Let disa F/Q) denote the discriminant af/Q. The following result shows
that, for almost all primek the class invariantg. (P) (and therefore alsg;: (P))
determineP when P is not a torsion point of order coprime to
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Theorem 1.2. Assume that none of the placegthat lie above are contained
in S. Suppose also thatdoes not divides - disa(F/Q). Theng, is injective.

The main ingredients of the proof of this theorem are results of Serre and
Bogomolov concerning theadic representation attachedddgsee [7], [25], [26],

[27]), and a result of Fontaine which essentially gives an integral comparison
theorem between the crystalline agi@le cohomology of thedivisible group
scheme off (see [14]).

We remark that Theorem 1.2 is currently the only known general injectivity
result about class invariants that applies to all abelian varieties defined over
number fields. For example, apart from certain cases involving elliptic curves, it
is not known whether the invarianis. (P) (asn varies) determine® if P is a
point of infinite order (see the remarks at the end of Sect. 5 of this paper).

In the final section of the paper we show that a natural paigng> it
constructed using the arithmetic class invariant homomorphism on Mordell-Weil
groups coincides with a certain height pairing constructed by Mazur and Tate
(see [19]). This enables us to give a new interpretation of the Mazur-Tate circle
and ideal class pairings in terms of Galois module structure invariants attached
to torsors of finite group schemes.

AcknowledgementsWe are very grateful to D. Bertrand, Ph. Cassou-NesglX. J. de Jong,

B. Erez, M. Larsen, K. Ribet and M. J. Taylor for helpful conversations. The first author was
partially supported by NSF grant no. DMS-9700937. He would like to thank the Uneetsit’
Bordeaux | and Harvard University for their hospitality while part of this work was carried out. The
second author was partially supported by NSF grant no. DMS-9970378 and by a Sloan Research
Fellowship.

Notation. If K is any field, thenK“ denotes an algebraic closurefof

If K is a number field, andis any place oK, then we writekK,, for the local
completion ofK atv andOkg , (or O, when there is no danger of confusion) for
the ring of integers oK. For anyOg-moduleM, we setM, := M Q¢, Ok .

If visanon-archimedean placeffandw, denotes a uniformising parameter
of Ok ., then we suppose thatis normalised so thai(w,) = 1. If ¢, is the
cardinality of the residue field € ,, then for eaclx € K, we seta|, = g, @ .

2. Torsors and canonical metrics

Let : X — SpecO) be aG-torsor, and let,, denote its associate@”-line
bundle. In this section, we shall explain how to enddywwith canonical metrics
at all places contained ifi. (In fact, the construction will show that, carries

a canonical metric at all places #t) This will then enable us to construct the
homomorphism} and the pairing<, > arith
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For each place € S, we fix an algebraic closurgS of the field F, and we
leto, : F — F¢ denote the corresponding embedding. We also write for
the unique extension tB¢ of thev-adic absolute valug- |, on F,.

Suppose tha¥ is any scheme over Spae). A metrised line bundl&€ on V
is a pair(Z, || - ||) which consists of a line bundié on V together with a family
[l -1l = {ll - ll,}ves Of metrics on the line bundles ® ¢ ,, F¢. (HereL denotes
the restriction of_ to the generic fibre o¥ .) We require that each metrig. ||,
take values iR~ and satisfy

lla - x|y = laly - [Ix]],

foralla € F{ andx € L ®r,, FS. We also require that eagh ||, is invariant
under the action of GaF¢/F,).

The set of isomorphism classes of metrised line bundleig torms a group
(with the group operation being given by tensor product) which we denote by
Pic(V). The identity element of this group is the isomorphism class of the struc-
ture sheaf®y of V endowed with the trivial metri¢ - |, at all placesv in S.

We next recall (see [33], [15EXpo€ VII, or [23]) that there is a canonical
isomorphism

HY(Spec0), G) ~ Ext'(G?, G,,). (2.1)
In particular one can associate a canonical central extension
1->G,—> Gxn)—> G >1 (2.2)

to the torsorr which is such that the corresponding line bundle o@é} is
equal toL,;. (This construction is explained in detail in [33].) Lt denote the
restriction ofZ,, to the generic fibre of; .

Now suppose that is a place inS, and consider the extension

1— G, (FS) — G(m)(F)) - GP(FS) - 1

over F¢. SinceG () is the complement of the zero section4p, it follows
that each metric on the fibres 6f(r) (F¢) aboveGP” (F¢) uniquely determines
a metric on the line bundlg, ®r,, FS. In order to specify a canonical metric
onG(m)(FY), we appeal to the following result.

Proposition 2.1. Let K be any locally compact field. Suppose tit is a
commutative, locally compact group ovkr, and let H, be a closed subgroup

of H; which is such thatH,/H, is compact. Then any continuous homomor-
phismi : H>(K) — R has a unique extension to a continuous homomorphism
X Hi(K) —> R.

Proof. A proof of this resultis given in [17], Chapter 11, Lemma 6.1. O
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Proposition 2.1 implies that, for each finite extensi&nof F,, there is a
unigue continuous homomorphisof : G(7)(K) — R which is such that
v (z) =log|z|,forallz € K* C G(m)(K).If F, C K C Lwith[L : F,] < oo,
then the uniqueness assertion of Proposition 2.1 impliestat. k) = v¥.
Hence, by passing to the direct limit over all finite extensiong,ofwe see that
there is a unique homomorphism

vy G(m)(Fy) = R
which is such that, (z) = log |z|, for all z € (F$)* C G(x)(F¢). We define
|1l : G(m)(F) = R.o (2.3)

by setting||x||, = exp(v; (x)) for allx € G(w)(FY). Then, ifz € F¢, we have
that||z.x||, = |zlv|Ix||,, and so it follows that| - ||, defines a metric on each
fibre of G(r) (F¢) lying aboveGP (F¢). Itis easy to see that - ||, is invariant
under the action of GaF;/ F,). We use the same symbi¢} ||, for the induced
metric on the line bundlé, ®r ,, F;. The metricq]| - ||,},es are the canonical
metrics associated t6,,, and we writeZ,, for the corresponding metrised line
bundle onG®.

Now suppose that’ : X’ — SpecO) is anothelG-torsor, and writer” for

the compositum ofr andx’. The producG () - G(z') of the extension&; ()
andG (') is given by the following pullback diagram:

G() G(n') —— G(n)me G(1')

l l

GD i) GD X GD,
where A denotes the diagonal map. It follows from the construction of the ex-
tension (2.2) (see [33]) that there are canonical isomorphisms

G(")~G(r) G(x') and L~ L; ® Lo, (2.4)

The uniqueness assertion of Proposition 2.1 implies that for eachS, the

homomorphism,,» : G(z”)(F¢) — R is induced by the homomorphism ®

v @ GT)(FY) x G(a)(FS) — R which is defined byv, ® v,)(x,x") =

Ve (x) + v (x") forx € G(m)(F)) andx” € G(z')(FY). Thisin turnimplies that
(2.4) induces an isometry

Zﬂ// ~ ZT[ ® ‘CT[/

of metrised line bundles o&”. We therefore obtain the following result.



On arithmetic class invariants 345

Theorem 2.2. With the above notation, the map
¥ : H'(Spec0), G) — Pic(G”); ] — [Ly]
is a group homomorphism which lifts the homomorphism O

Remark 2.3 An alternative (and somewhat more explicit) description of the
canonical metricg|| - ||, }yes ON £, may be given as follows. Recall tha :

G — SpecO0) denotes the triviaG-torsor overQ, and thatV is the exponent
of G. We observe that there are canonical isomorphisms

GV ~G#"Y) ~ G(m) ~ GP x G,

of extensions. Itfollows via functoriality that these isomorphisms induce a canon-
ical isometry

£ L S Ogn (2.5)

of metrised line bundles of”. Hence, ifv € S ands isa sectionof., ®r.,, F¢,
then

lIs]ly = 1&2 (s®V)[HN

We therefore see that the mettic ||, is the pullback vi&, of the Nth root of
the trivial metric onOgn. |

Suppose thaG? is generically constant, and recall th@® denotes the
normalisation ofG”. Then it follows that

Ogp = Map(G”(F), 0), (2.6)
and so we have
PIC(GP) ~ Map(G” (F). Pic(0)),
Pic(GP) ~ Map(GP (F), Pic(0)).
We define
<, >aitn: H(Spee0), G) x G’ (F) — Pic(0) (2.7)
to be the pairing which is induced by the homomorphism
¢ : HX(Spec0), G) — Pio(GP) ~ Map(GP (F), Pic(0)).  (2.8)

Thus, ifR € G(F), then we extend® to anO-valued pointR : Spec¢0) — GP
of G?, and we have

< [7], R >aitr= [R*L]. (2.9)
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We write
<, >cass H}(Spec0), G) x GP(F) — Pic(0) (2.10)
for the pairing that is induced by composiag > 4ith With the natural map
Pic(GP) — Pic(GP) (2.11)

given by forgetting metrics. It follows immediately from the definitions that this
is the same as the pairing induced by the homomorphism

¢ : HX(Spec0), G) — Pic(GP) ~ Map(G°(F), Pic(0)). (2.12)

We refer to<, >gassas the ‘ideal class pairing’.

LetC(GD) denote the kernel of the natural map (2.11), and wi{@) for the
subgroup oPic(0) which is similarly defined. We refer RO(GD) andC(0) as
the ‘circle groups’ ofGP and O respectively. Thegp induces a homomorphism

Ker(p) — C(GP) ~ Map(GP (F), C(0)). (2.13)
We write
<, > Ker(p) x GP(F) — C(0) (2.14)

for the pairing induced by (2.13), and we refer to this as the ‘circle pairing’.

In Sect. 7 we shall show that the pairings defined above are related to certain
pairings defined by Mazur and Tate (see [19]) in the case in wiha torsion
subgroup scheme of an abelian scheme.

Remark 2.4 An explicit description of the group§ﬁ:(0) andC(0) may be
given as follows.
Let J(F) denote the group of ideles @f, and define

Js(F) :={a € J(F) | a, = 1 forall placesv of F lying aboves }.
Write 1 : F* — J,s(F) for the obvious natural map, and define

S2: F* > [[Rio: ar []lal;?

ves ves

Let

Js(F
5. e s x [TR%0
HU¢S ves

be the homomorphism induced by the map> (§1(a), §2(a)). Then it is not
hard to show (cf. [9], Chapter 1, Cor. 5.5, for example) that

Pic(0) ~ (l_f”( ) < []R: )/(S(F*) (2.15)
vgéS

ves
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and

[Toes R0
C(O) ~ 222 =2, 2.16
(0= s (216)
It may also be shown (see e.g. no. 3.5.2 of [19], or [9]) that there is a (non-
canonical) isomorphisr@(0) ~ R x (R/Z)5I71, i.e.C(0) is isomorphic to a
direct product of a real line anid| — 1 circles. This is the motivation for our
choice of terminology with regard to the circle group.

3. Kummer theory

Our main aim in this section is to apply Kummer theory in order to study torsors
over SpecF). Throughout this section, we will assume that our base scieme
is equal to Sped).

Suppose therefore thétis a group scheme over Sgéd, and letr : X —
SpecF) be aG-torsor. WriteG” = SpecA), and letZ,, denote the line bundle
on GP associated tor. Since Pi¢cG”) = 0, we may choose a trivialisation
¢, : A — L., and this induces a trivialisation

oY A S LoV,
Now sincel,, is associated to &”-torsor, there is a canonical trivialisation
£ L2V S A (3.1)

(cf. (2.5)). Then the isomorphis#y, o ¢2 : A = A is multiplication by an
elements, € A*. Itis not hard to check that changigg or replacingX by an
isomorphiaG-torsor alters:,, by multiplying it by an element od*V . Also, if 7' :

X' — SpecF) is anothelG-torsor, then since there is a canonical isomorphism
Lrz =~ L, ® L, it follows that we have the equaliy,., = a, - a, in
A*/(A*)N. We thus have the following result.

Proposition 3.1. The mapyr : HX(Spe¢F), G) — A*/(A*)" givenby[n] —
a, is a homomorphism. O

Now suppose that? is a constant group scheme over Sg@éc Then
A*/(AHY = Map(GP (F), F*/(F")Y).

For each elememk : SpecF) — G in GP(F), write xz : G — uy for the
corresponding character @f. Then xx induces a homomorphism (which we
denote by the same symbol)

xx : H'(SpecF), G) — HY(SpecF), uy); [r] — [r(xz)]
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We write
evg : A*/(AHN ~ Map(GP (F), F*/(F*)Y) — F*/(F*)V

for the mapa — a(R) given by ‘evaluation aR’. The following result shows
that the homomorphism; may be described in terms of Kummer theory.

Proposition 3.2. Let the hypotheses and notation be as above. Then the follow-
ing diagram is commutative:

HY(SpecF), G) —* H(Spec¢F), ux)
ﬂFl TKummer (3-2)

Arjany S Y.
(Here the right-hand vertical arrow is the natural isomorphism afforded by Kum-
mer theory.)

Proof. Let x2 : nX = Z/NZ — GP” denote the homomorphism induced by
xr Via Cartier duality, and writd : SpecF) — Z/NZ for the F-valued point
of Z/NZ corresponding to the character @f; given by the identity map Id
un — pn. Then we have thak = x2 o 1. Now the extension oty = Z/NZ

by G,, corresponding to th@g y-torsorm (xz) is canonically isomorphic to the
pullback viay ? of the extension o&? by G,, corresponding to th&-torsorz .
Hence if£,(,,) denotes the line bundle qn} associated ta (xz), then there
is a natural isomorphism

(X]?)*ﬁn = EN(XR)-

We therefore deduce that there is a canonical isomorpRisfiy >~ 1L, of

line bundles on Spé&¢’). Hence it follows from the definitions of, anda, ()

that we have the equali@y, (R) = Gy, (1) in F*/(F*)Y. Thus, to prove the

proposition, it suffices to show thatf: V — SpedF) is anyuy-torsor, then

T is represented i/ L(SpecF), uy) ~ F*/(F*)V by the element, (1) € F*.

This follows from the standard proof of the main statement of Kummer theory.
O

Corollary 3.3. Suppose that” is a constant group scheme over S@éc Then
the homomorphismy is injective.

Proof. Since G? is a direct sum of cyclic constant group schemes, we may
assume without loss of generality ti@f ~ Z/NZ andG ~ . Suppose that

7 is aG-torsor which is such thatr () = 0. Then Proposition 3.2 implies that
xr(m) =0forall R e GP(F). Hencer is a trivial torsor. O
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Corollary 3.4. Suppose that” is a constant group scheme over Sgéc Then
the image of;r is equal to

Hom(G” (F), F*/(F*)") C Map(G"(F), F*/(F*)) ~ A*/(A")".

Proof. In order to prove this result, it suffices to consider the case in which
GP ~ Z/NZ andG =~ puy. Suppose thaR and R’ are elements of;” (F).
Then (using additive notation for the group lawGr (F))

XR+R = XR * XR'»

and this implies that - (r) € Hom(G?(F), F*/(F*)V).
Since

Hom(G” (F), F*/(F*)") = F*/(F")" ~ H'(Spe¢F), uy),

we see that the image af- is equal to HoniG? (F), F*/(F*)V) by applying
Proposition 3.2 with anyR which is such thajy is an isomorphism. O

4. Cyclotomic extensions

In this section we shall apply Proposition 3.2 to give a criterion that will enable
us to detect elements lying in the kernekof

Let G be a group scheme over Spéo which is such thaG? is generically
constant. We writ& , » andG 7). for the generic fibres af andG” respectively.

SetG” = Spee?l) andG7;. = SpecA). Then
A=) ®p F~Map(GP(F), F).

If GP denotes the normalisation o6f°, then we hav® 5 = Map(G”(F), 0).

Letw : X — SpecO) be aG-torsor, and letry : X, — SpecF) be its
generic fibre. We shall view as aG, p-torsor. Suppose that(F) is the group
of all roots of unity inF, and writeL := F(u(F)Y") for the field obtained
by adjoining allNth roots of all elements ip(F) to F. We have the following
result.

Theorem 4.1. Let the hypotheses and notation be as above, and suppose in
addition that¢(sr) = 0. Then the torsorr becomes trivial over the field.

Proof. Write ¢ : GP — GP for the obvious natural map. Singgr) = 0, we
may choose an isometgy, 5@ = e*L,, and this induces an isometry

N A~ N
¢, Ocp —> e L.
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Next we note that the canonical isometry (2.5) of metrised line bundlgs’on
induces an isometry

~ —QN ~ —
. Lk —~
E oLy 5 0.

The compositiorf, o ¢Y : Og5 — Ogp is multiplication by an element, e
0*57)- Since this composition is an isometry, it follows thgt(R) € O* and
lax(R)|, = 1forall R € GP(F) and all place® € S. As S contains all infinite
places ofF, this implies thati, (R) is a root of unity for allR € G?(F).

Now consider thes z-torsorzx. It follows from the definition of the map
nr given at the begining of Sect. 3 that we have

Nr(tp) = dr € A" /(AN

Hence Proposition 3.2 implies that for eatlke G” (F),the element, (R) € F*
is a Kummer representative ii* (Spe¢ F), iy ) of the torsorr(xz). Therefore
7r(xg) becomes trivial over the fiel#f (a, (R)Y") € L. We therefore deduce
that if

Res: H'(Spec¢F), GJ,) — H'(SpecL), G7))

denotes the restriction homomorphism on cohomology, théResrx)) = 0.
Hence Corollary 3.3 implies that Res-) = 0, as claimed. m|

5. Arithmetic class invariants attached to abelian varieties

In this section we shall discuss arithmetic class invariants arising via the division
of points on abelian varietieS.
Let E be an abelian scheme of dimensibover Spe¢0), and writeE? for
the dual abelian scheme. LBtdenote the Poincarline bundle orE x, EP.
For eachO-valued pointP : Spe€O) — E of E, we set

L(P) := (P x¢o ld)*(P).

ThenL(P) is a rigidified line bundle or£?, and it corresponds to the poiRt
under the duality betwee and E”. For each place in S, we may endow
L(P) ®r,, F¢ with a metric in the following way.

Since theG,,-torsor associated t® supports the structure of a biextension
onE xo EP, it follows that there exists a commutative extension

1-G, »>GP) —EP>1 (5.2)

which is such that the total spag&P) is equal to the complement of the zero
section inL(P). Then, just as in the case 6f-torsors described in Sect. 2, it
follows from Proposition 2.1 that there exists a unique homomorphism

vp : G(P)(Fy)) - R
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which is such that»(z) = log|z|, for all z € (F,)** C G(P)(F¢). Hence the
map

I+ v := expovp : G(P)(Fy) = R-o

induces a metri¢l - ||, on L(P) ®r.,, F, and this metric is invariant under the
action of GalF¢/F,). We refer to|| - ||, as the Nron metric ab on L(P). We
write £(P) for the metrised line bundle oB” which is obtained by endowing
L with the Néron metric at all places € S.

Now let

1—> G, — Gy(P)—> EP[N]> 1

denote the extension &#”[N] by G,, that is obtained by pulling back (5.1)
along the inclusion mag”[N] — EP. This corresponds to aB[N]-torsor
an(P) : Xy(P) — SpegO) via the isomorphism (2.1). Lefmp) be the
metrised line bundle o®”[N] associated tary (P), as described in Sect. 2.
Then it follows from the definitions that there is a natural isometry

Lovp) = Z(P)|ED[N]-

Recall from the introduction that there is d#jN]-torsor[N]~1(P) which is
obtained by dividing the poinP by N. We have the following result.

Theorem 5.1. There is an isometry
Z[N]_l(P) ~ Z(P)|ED[N] (52)
of metrised line bundles oB”[N].

Proof. As Ly;-1py aNdL(P)| oy, are the metrised line bundles associated to
the E[N]-torsors|N]~1(P) andX y (P) respectively, in order to prove the result
it suffices to show that

[NT(P) =~ Xn(P). (5.3)

Write [N]-X(P),r (respectivelyX y(P),r) for the generic fibre of N]71(P)
(respectivelyX y (P)). Since anyE[N]-torsor over Spa@) is determined by its
generic fibre, (5.3) will follow if we show that

[NTH(P)/r = Xn(P)F. (5.4)

This isomorphism (5.4) is explained in [1] (see especially (10) in the proof of
Theorem 1. See also Proposition 3.1 of [24] for a detailed proof of this isomor-
phism.) O
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Remark 5.2.Note that Theorem 1.1 is an immediate consequence of Theorem
5.1. This stregnthens results of [1] and [22], and it shows that the arithmetic
class invariant homomorphismy may be interpreted in terms of restricting
the metrised line bundI€(P) on EP to the torsion subgroup schent® [N].

The reader may consult [4] for a further discussion concerning the restriction of
metrised line bundles on arithmetic varieties to horizontal subschemes.o

We shall now discuss certain inverse limits. Lbe a prime number. For each

positive integen, let

P 2 PIG(EP[1"]) — PIC(EP ")
be the pullback homomorphism induced by the inclusion m&gi" '] —
EP[I"]. Write

E(F) E(F)
ed: —
["]- E(F) [I"=1]- E(F)

for the homomorphism given by reduction moduto!. The following result
follows directly from Theorems 5.1 and 1.1.

Proposition 5.3. The following diagram is commutative:

E(F)/(I"]- E(F)) ", BieEPEm)
redl lpn (5.5)

E(F)/([I"Y - E(F)) = Bie(EL["-1).
O

Taking inverse limits using the diagram (5.5) yields a homomorphism
¥ = lim g : E(F) ®z Z; — lim Pio(E”[I"])).
By composingZ, with the natural maps

lim Pic(E”[1"]) — lim Pic(E”[1"]),

lim Pic(E”[1"]) — lim Pic(EP[i"),

and

lim Pic(E”[1"]) — lim Pic(E”[i"),
respectively, we obtain homomorphisms
W : E(F) ®2Z; — lim Pic(EP[1"]), (5.6)

—_——

@, : E(F) ® Z, — lim Pic(EP[I"]), (5.7)
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and

®; : E(F) ® Z; — lim Pi(EP[I"]). (5.8)
We shall now make a few remarks concerning these maps.

() If E is an elliptic curve, and > 3, then it is shown in [30], [2], and [22]
that all/-power torsion points itk (F) lie in the kernel of;. If [ < 3, then this
is no longer true in general (see [6], [11]).

(2) Suppose thak is an elliptic curve with complex multiplication, and that
[ is a prime of ordinary reduction. Then it is shown in [5] that (subject to certain
technical hypotheses) the mépis injective modulo torsion. On the other hand,
the kernel of®; is infinite in general (see [1], [5]), and it may be described in
terms of thd-adic height pairing orE.

(3) It follows from Theorem 6.4 below thak, and¥; are injective modulo
torsion for all abelian schemdsand all primed. It seems reasonable to expect
that the same is true fa¥; (but not for®;).

6. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2.

Throughout this section (unless explicitly stated otherwise), we assume that
[ is a prime number satisfying the hypotheses of Theorem 1.2. We shallEyrite
andE,l,? for the groupsE[I"](F€) and EP[1"](F€) respectively.

Fix compatible identification&;» ~ (Z/1"Z)?, n > 0 which give

Epx :=1im , Ep =~ (Q/Z)*, TH(E):= lim , Epm ~ z#,
We shall use thé-adic representation
p:GalF/F) — Autz,(T)(E)) ~ GL(2d, Z)).
The composition dep is equal toe?, where
€:Gal(F‘/F) — Z;
is the/-adic cyclotomic character. We shall also use the Galois representations
pn - Gal(F®/F) — Auty,(Em) ~ GL(2d,Z/1"2).

Let K, denote the fixed field of K&p,); this is the extension of that is
obtained by adjoining the coordinates of point&jnto F. Write F,, := K,, ().
Then it follows from the existence of the Weil pairing éirthat the points ofz?
are rational over,,. We setk, := U, K, andF, := U, F,,.
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Our main strategy for proving Theorem 1.2 may be described as follows.
Suppose thaP € E(F) ®z Z, lies in the kernel ofp,. For each integet > 0,
chooseP, € E(F) so that

P, ®1=P mod!"[E(F)®z Z]

Then Theorem 4.1 implies that for every integer 0, the extensioi, (P) :=

Fn(l%Pn) of F, is obtained by adjoining t@, ani"th root of a root of unity in
F,. The fieldL,(P) is independent of the choices Bf andl%Pn. Thus, for all
n > 0, we have

We shall prove the Theorem 1.2 by establishing the following result, which is
itself of some independent interest.

Theorem 6.1. Suppose thaP € E(F) ®z Z;. Then, for all sufficiently large,
the extensiorL, (P)/F, is hot a cyclotomic extension.

We shall require the following lemma.
Lemma6.2. Ky, = Fo.

Proof. We first observe that plainli{,, C Fx..

Let 8 : E — EP be a polarisation ofz which is defined ovef. Thel-
primary part of the kernel oB is a finite, flat, commutative group scherfie
Suppose thatf is of exponent”. Then, forn >> 0, 8 induces an injection
E[I"]/H — EP[I"], and so we may viewE[/"]/H as being a subscheme of
EP[I"].

The points of the group schenig/”]/ H are rational over the fiel&,. Since
H is of exponent”, not all points ofE[/"]/H are killed by/"~¥~1, and so it
follows that there is some point @[/"]/H which is of exact ordef" V.

Now composing the Weil pairing

E[I" N x EP[I"l = v
with the natural magg (/"] — E[I"]/H C EP[I"] gives a pairing
E[I" V] x E[I"] = E[I"™M] x EP[I"] = ppm-n.

We therefore deduce that far>> 0, we haveu;.—~ C K,. This implies that
Fy, C K4, and so it follows tha¥,, = K, as asserted. O

Let w(F,) denote the group of all roots of unity if,, and write M,, :=
F,(uw(F,)Y!") for the field obtained by adjoining dllth roots of all elements in
w(F,) to F,.SetM, := U, M,. Then, since,» C F,, itfollows thatM,, = F,
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and so Lemma 6.2 implies thad,, = K,,. Consider the restriction homomor-
phism

Res: HY(F, TI(E)) - H'(Kw, TI(E)) = HY(Mw, Ti(E)).

The restriction-inflation sequence implies that the kernel of this homomorphism
is equal toH*(Gal(K ./ F), T;(E)). This is a finite group (see [26], Corollary to
Theorem 2).

Proposition 6.3. Let/ be any prime, and suppose thate E(F) ®z Z; is of
infinite order. Then Theorem 6.1 holds for the elem@nand so®,;(P) # 0.

Proof. We shall argue via contradiction. Suppose that Theorem 6.1 does not hold
for P, and hence thad;(P) = 0. Let[P] € H'(F, T;(E)) denote the image of
P under the natural injective map

E(F)®zZ, — HYF, Ti(E))

arising from Kummer theory ot. For each integet > 0, let[ P,] denote the
image of[P]in HY(F, Ep).

We now observe that, (P) is the smallest extension &f, which trivialises
the image of P,1in H(F,, E;»). Since, by our initial assumptiof,,(P) C F»,
(see (6.1)), it follows that the image ¢P,] in H'(F, E;») is trivial for all
n > 0. This in turn implies that R€gP]) = 0, which is a contradiction, since
Res has finite kernel.

ThusL,(P)/F, is not a cyclotomic extension if is sufficiently large, and
henced,(P) # 0. O

The following result is an immediate corollary of the proof of Proposition
6.3.

Theorem 6.4. The map®,; (and therefore alsa”) is injective modulo torsion
for all primesl. |

We now consider the case in whi¢he E(F) ®z Z; is a non-trivial torsion
point. SinceP is torsion, it follows that in facP € E(F). Itis sufficient to show
thatif/ - P = 0, thend,(P) # 0.

Assume therefor® € E(F) with!- P = 0andP # 0. We shall again argue
via contradiction. Suppose th@j(P) = 0 and hence that Theorem 6.1 does not
hold for the pointP. SetF’ := F(u;~). Then it follows from (6.1) that for all
n>0,

L,(P)C M, C F,F'.

Let p" and p;, denote the restrictions gf and p, respectively to the subgroup
Gal(F¢/F') of Gal(F¢/F). Write F, for the extension of"’ which is fixed by
I, := Ker(p,). Consider the field

L (P) = L,(P)F..
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Our assumption that Theorem 6.1 does not hold for the pimplies that
L (P)=F, (6.2)
forall n > 0. This will lead to the desired contradiction.

We shall use the following facts about the Galois representatiaee [7]):

A. Let & denote the algebraic group ov@y which is given by the Zariski
closure of In{p) in GL(2d, Q;). Then Imp) is open with respect to thieadic
topology on&(Q)).

B. The algebraic groug /Q, contains the diagonal torus of homothetizs.

For simplicity of notation, we shall often writ€ instead of7;(E) in what
follows.

Let &’ denote the algebraic subgroup®fconsisting of elements with de-
terminant 1.

Proposition 6.5. For n >> 0, we have
p(I;,) = p(Ker(p,)) = Ker(SUT) — SKT/I"T)) N &"(Qy).

Proof. Notice that since d¢b) = €, it follows that, for alln > 0, det(p) is
trivial on the subgroug’, corresponding t@&,. Hence it is clear that

p(I)) € Ker(SL(T) — SL(T/I"T)) N &'(Q)).

By (A) above, In{p) is open in thd-adic topology of&(Q;), and therefore
Im(p) N&'(Q,) is open in thé-adic topology of®’(Q,). We have that Intp’) C
&'(Q,). We will show that Injp’) is open in thd-adic topology of'(Q)).

The subgroup Irfp’) of &'(Q,) is equal to the subgroup of Ign) N &' (Q,)
which consists of images(o) of o € Gal(F¢/F) for whiche(o) = 1. Since
every element of Infp) N &'(Q,) is the imagep (o) of someo € Gal(F¢/F) for
whiche‘ (o) = 1, it follows that there are a finite number of cosets (parametrised
by a subset of thé-th roots of unity inZ7) of Im(p’) inIm(p)N&'(Q;). Therefore
Im(p’) is I-adically open in InGp) N &'(Q,), and so it is alsé-adically open in
®'(Q;). Now since

Ker(SL(T) — SL(T/I"T)) N &'(Q))

for n >> 0 gives a fundamental system of neighbourhoods of the identity in
®’'(Q;), we have that

Ker(SL(T) — SL(T/I"T)) N &' (Q,) = Ker(SL(T) — SL(T/I"T)) N Im(p")

whenevenm is sufficiently large.
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The result now follows since
Ker(SL(T) — SL(T/I"T)) NIm(p’) = p(Ker(p.)) = p(I'}).
O

We now observe that (6.2) implies that the natural action of the gogu])
onT/I"*1T fixes the eIemen;tP. (Note that there is no well-defined choice of

Z%P. However, any two choices differ by &htorsion point, and so, singe(I’,)

fixes all/"-torsion points, it makes sense to say thaf) fixes I%P.) Hence,
Proposition 6.5 implies that for all sufficiently largethe natural action of the

group
Ker(SL(T) — SL(T/I"T)) N &'(Q))

onT/I"'T also fixes the element P.

Let A be any prime ideal oF which divides/OF. Let F, denote the local
completion of F at ». We write C,; for the completion of the algebraic closure
Fy of F,, and we letR denote the completion of the ring of integersi/gf Then
R is a flat (non-noetheriaryg;-algebra which is a valuation ring with valuation
v:R—{0} - Qso, say. The fieldC,; is the fraction field ofR. We setTy :=
T ®z, Rand

A, = Ker(SL(Tg) — SL(Tx/["Tg)) N &' (C)).
ThenAa, acts onTx/ 1" 1Ty = (T/1"1T) ®z, R.

Proposition 6.6. Assume that Theorem 6.1 does not hold for the pBir&nd
hence tha(6.2)is true for alln > 0. Then the element

1
Z7P ®1e (T/I"7T)®z R

is fixed byA, for all sufficiently largen.

Proof. Let g’ denote the Lie algebra a¥'(Q;). Theng’ is a Q,-vector space
which is aQ;-subspace of Erg(T ®z, Q;). Set

y' =g NENd,(T).
There is an exact sequence
00—y — End,(T) ® g — Endy, (T ®z, Q)) (6.3)

of Z,-modules, ang’ is aZ;-lattice ing’. SinceR is flat overZ;, andQ, ®z, R =
C,, (6.3) gives an exact sequence

0— v ' ®z, R — Endr(Tx) ® (¢’ ®q, C/) — End;, (T ®z, C)). (6.4)
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Hence it follows that
(9 ®q, C) NENdr(Tx) = y' ®z, R.
The natural map End(T) — Endy,(T/1"T) induces a Lie homomorphism
7,1y — End, (T/I"T)

whose kernel we denote by. It follows from Proposition 6.5 together with
standard properties of the exponential eadic Lie groups (see for example [16]
or [18]) that, for alln >> 0, the exponential map gives a bijection betwegn
and thel-adic Lie groupp (7). We now assume thatis large enough for the
exponential map to satisfy this property.

Now consider the homomorphism

T, ®2 Ry ®z, R — Endr(Ta/ " Tw).

The kernel ofr, ®z, R is equal toy, ®z, R. The Lie algebra o®’(C)) is
equal to

g’ ®Q1 Cl C End:[(TCl).

The exponential is defined on elements of k(i) C End;, (7¢,) which reduce
to zero moduldR, and so it is defined on Ker, ®z, R). The values of the
exponential map on elements of Key®z, R) belong on the one hand & (C))
because

Ker(z, ®z, R) C g’ ®q, Ci,
and on the other hand to K&L(Tx) — SL(Tx/!"Tx)). Hence we obtain a map
Exp: Ker(r, ®z, R) — A,.

A similar argument shows that the logarithm defines a map in the other di-
rection which is inverse to Exp. We conclude that Exp gives a bijection between

Ker(t, ®z, R) =y, ®z, R

andA,. Now, by our initial assumptiorg (I')) fixesl%P e T/1"T and there-

fore, since we have choserto be largey, annihilatest P. We conclude that

¥, ®z, R annihilates; P ® 1, and therefore, fixes + P ® 1, as asserted.
This completes the proof of the Proposition. |
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We now continue with the proof of Theorem 1.2. Consider the canonical
Hodge-Tate decomposition

T ®z C = VC[ =V o V@D,

with eachV (i) (i = 0, 1) aC,;-subspace oV, of dimensiord. By [14] (Propo-
sition 11 on p. 406; see also 5.10 and 5.11), theréRalaticesA (i) (i = 0, 1)
in V (i), and an element e R of valuationv(«) = (I — 1)~ such that

a(A0)® AD) CT ®z RC A0 & AD).

(Using the terminology of [14]A(0) = 1},,(Oc,) andA(1) = 15 (T;(£2)), where
H stands for theé-divisible group of the abelian schenfieover O, . The stated
property ofa follows from [14], Corollary to Theorem 3 (see 4.10). Note that
here we are using our assumption thaQ is unramified at.)

Set

A= A0) @ AD). (6.5)
This grading defines a cocharacter
T : G,z — GL(A)
which when basechanged® produces the Hodge cocharacter
Yc, : Cf — GL(Vg,) = GL(T ®z, C)).

It follows from the canonicity of the Hodge-Tate decomposition and Tannakian
equivalence that the image of the Hodge cocharacter is contaireddp) (cf.
[27], 1.4). We therefore see that

Y (Guy®)) = Tc,(R) C GL(A) N B(Cy).

On the other hand, (B) above implies that we have @&y C &(C,). This
implies that

diag(R*) c GL(A) N &(C)).
Hence there is a homomorphism
R* x R* — GL(A) NB(C))

defined by(ry, r2) = T (r1) - diag(rz). Since detY (r1) - diag(rp)) = rird?, it
follows that there exists an injective homomorphism

Kk R* = SL(A) NG (C)

which is defined by — 7' (r)? - diag(r—1).
Let R}, denote the subgroup 6t* consisting of those elementswhich
satisfyr = 1 modal"R.
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Lemma 6.7. We have that
k(Rh,) C A, = Ker(SWTx) — SUTr/I"Tr)) N &'(C)). (6.6)

Proof. Write r = 1 + "7’ andr=! = 14 /7", with 7', r” € R. Itis easy to
see thav (') = v(r”). Now choose a basis(0), ¢; (1) (i =1, ..., g) of A which
respects the decomposition (6.5). With respect to this basis, we can write

k(ry=1I+al"M(r), (6.7)

whereM (r) = diag(r”, ... ,r”, ', ..., r")isadiagonal matrix with coefficients
in R. We have that

al"Tg Cal"A =1"(aA) CI"Ty.

Thereforex (r) preserved and is congruent to the identity moduld'x. This
shows thak (r) € A,, and so (6.6) holds as asserted. |

Proposition 6.8. Suppose that € R, is such that
1 1
k(r) (l_"P®1) :l_"P®l (6.8)

in T/ "1 Tx. Then
r=1 mod/" e 1R, (6.9)

Proof. Lift I%P e T/I"*'T to an elemen®, of T. Then (6.7) and (6.8) imply
that

al"M )P, @ 1) € " Ty,
which gives
M) (P, ®1) €laTx.

SinceP # 0, we have tha}%P ® 1 is an element of ai//"*1R-basis of
Tx/1"t1T, and P, ® 1 is an element of afk-basis of7z. Hence, since

aA CTrC A,

it follows that P, ® 1 is an element of aft-basis ofA multiplied by an element
B € R with v(a) > v(B) > 0. Therefore, with respect to the bagig0), ¢; (1),
we may write

ﬁn®1:ﬂ'(x1s--~ > Xds Xd+15 - - - 7-x2d)a
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where at least one of the coordinaigss a unit (i.e. satisfies(x;) = 0). From
diagr”, ... .r" r', ..., i) P, ®1) €la Ty C latA,

we now obtain that
(F"x1, .o P Xy F Xy o P Xx2g) €la”BTIA € laT2A.

Asv(r') = v(r”), we can write”” = r'u, whereu is a unit inR. Settingx! = x;u
fori =1,...,d, we obtain

1A,

(X!, oo Xy Xdg1s - -+ » X24) € lo=%r
Since at least one of the or x; is a unit, we conclude thatla~2r'"1) < 0, and
o)

v(r) = v(r") > vla"?).
Hence it follows that = 1 mod/"*1a~1R as claimed. o

Lemma 6.7 and Proposition 6.8 imply thatrifis any element oft;;,, (i.e.
r =1 mod/"aR) which is not congruent to 1 modult™ta—1R, thenk (r) is a
non-trivial element ofA,, which does not fix the eleme;%{P ®1e Tg/I"1Tx.
Sincev(a) = (I — )"t and! > 3, such elements do exist. This contradicts
Proposition 6.6. We therefore deduce that in fact Theorem 6.1 holds for the point
P. Henced,(P) # 0.

This completes the proof of Theorem 1.2.

7. Class invariants and Mazur-Tate pairings

In this section we shall explain the relationship between the pairings constructed
at the end of Sect. 2 and a refinement of the canonical height pairing on abelian
varieties constructed by Mazur and Tate in [19]. A good reference for background
concerning this material is [9] (see also [10]).

We retain the notation established at the begining of Sect. 5. Throughout this
section we shall assume that= S, and so0O is the ring of integers of. If X
is any scheme over Sp@e), then we shall writeX ,» for the generic fibre oX.

Write Divo(E/DF) for the group of divisors o ;. that are rational oveF and
algebraically equivalent to zero. LEb(E/DF) denote the group of zero-cycles on

E}} of degree zero which are of the form

Z=Y ni(Q:)
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with eachQ, rational overr. If L is any metrised line bundle of”, then the
metrised line bundl&* L on Spec¢0) is defined by

zC:=Q L™,

(Here we have identified each poi@t on E/DF with its Zariski closure ort?.)

Suppose thaZ € Zo(E},) andD; € Divo(E/DF) have disjoint supports, and
let v be any place of". Then the Nfon symbok Z, D, >, may be described
as follows (see [17], Chapter 11, Theorem 6.2). Pet Spe¢F) — E,r be
the point onE, » corresponding td; under the duality betweeli andE”. We
may identify P with the corresponding Spé@)-valued point ofE. Choose any
rational section

sp, : EP — G(P)

of (5.1) such that the generic fibre of the divisorsgf is equal toD,. Thensp,
induces a map (which we denote by the same symbol)

spy @ EP(FS) — G(P)(FY).
The Néron symbok Z, D; >, is then equal to
< Z, D]_ >,= —UVpoO SDl(Z), (71)

where we extendp, to ZO(E;JF) via linearity. It may be shown that this is
independent of the choice o5, .

If v is a non-archimedean place Bfandw, is a local uniformiser of" atwv,
then it may be shown that

< Z, Dl >y= iv(ZaDl) Ioglwv|vs (72)

wherei,(Z, D;) denotes the intersection multiplicity 8f; andZ atv (see [17],
Chapter 11§5).
For each place of F, write

wil’(Zle)’

3o(Z. Dy) = { v v foo; (7.3)

exp(< Z, Dy >,), ifv]oo.
Then we may view [, A,(Z, D;) as being an element dfs(F) x [ [, s(F9)*.
Hence, via the isomorphism (2.15), we obtain an elenghtr,(Z, D1)] €
Pic(0). By using the sectiomp, to compgteZ*Z(P), we see from (7.2), (7.3)
and the definition of the Bfon metrics orC(P) (see Sect. 5) that we have

[Z*L(P)] = {1‘[ (2, Dl)} (7.4)
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in Pic(0).
We shall now recall the definition of the Mazur-Tate pairing
but : E(F) x EP(F) — Pic(0) (7.5)

(cf. [9], [10], or [19]).
Suppose thaP € E(F) andQ € EP(F). It may be shown that we may
chooseDp ¢ Divo(E/DF) andZ, € Zo(E})) satisfying the following properties:

(1) ThedivisorDp corresponds to the poidt under the duality betweef and
EP;

(2) It Zg =) ;ni(Q)), then)_,[n;10; = O;

(3) Dp andZ, have disjoint supports.
Then we define

bur (P, Q) = []‘[ (Zo, Dp)} € Pic(0).

It may be shown thatyt (P, Q) is independent of all choices made in its defi-
nition.

It will be helpful to express the definition of the pairibgr in terms of
metrised line bundles as follows. L&), = (Q) — (O). We may then choose
Dp to satisfy conditions (1) and (3) above. 8 L(P) is the trivial line bundle,
it follows from (7.4) that we have

bur(P, Q) = [Q*L(P)IIO*L(P)I ™t = [Q*L(P)]. (7.6)

Now suppose thadV is a positive integer, and tha@?”[N] is generically
constant. Write£2 = EP[N](F). Then we have a pairing

<, >ait: H'(Spe0), E[N]) x Ey — Pic(0)
as defined in (2.7). The following result shows that the pairing
bur : E(F) x ER — Pic(0)

induced by (7.5) has an interpretation in terms of the Galois module structure of
E[N]-torsors.

Theorem 7.1. Suppose thaP € E(F) andR € EX. Then
but (P, R) =< [N]X(P), R >aritn -

Proof. This just follows from unwinding the definitions, using (7.6), Theorem
5.1, and (2.9). We have

bur (P, R) = [R*L(P)] = [R*Liy-1py] =< [N]H(P), R >arith -
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Mazur and Tate have used (7.5) to construct two further pairings that are of
interest. These may be described as follows.

By composinghyt with the natural surjectioRic(0) — Pic(0), we obtain
a pairing

beass: E(F) x EP(F) — Pic(0). (7.7)

The pairingbassis called the Mazur-Tate ideal class pairing. It has been exten-
sively studied by G. Call (see [9], [10]).
To define the second pairing, we set

E(F) Xcic EP(F) :={(P, Q) € E(F) x EP(F) | baas{ P, Q) = 0}.
Thenif(P, Q) € E(F) x¢irc EP(F), we have thabyt (P, Q) € C(0O). We write
beirc : E(F) Xcirc ED(F) — C(0)

for the restriction ofbyr to E(F) xre EP(F), and we refer tahgc as the
Mazur-Tate circle pairing.
Set
E(F) Xcirc EN == (E(F) x EQ) N (E(F) Xcire EP (F)).

The following result is an immediate corollary of Theorem 7.1. It gives a new
interpretation of the Mazur-Tate pairings in terms of the Galois structure of
E[N]-torsors.

Corollary 7.2. Suppose thak € EL and P € E(F). Then
beas{ P, R) =< [N]_l(P), R >¢lass.
If (INT"1(P)) = 0,then(P, R) € E(F) xcirc E{ forall R € EX, and we have

beirc(P, R) =< [N]_l(P)’ R >irc .
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