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1. Introduction

Let F be a number field with ring of integersOF , and letS be a finite set of
places ofF . Assume thatS contains the setS∞ of archimedean places ofF , and
write Sf for the set of finite places contained inS. Let OS (or O, when there
is no danger of confusion) denote the ring ofSf -integers ofF . WriteFc for an
algebraic closure ofF .

LetY be any scheme over Spec(O). Suppose thatG is a finite, flat commuta-
tive group scheme overY of exponentN , and letGD denote the Cartier dual of
G. Letπ : X → Y be aG-torsor, and writeπ0 : G→ Y for the trivialG-torsor.
ThenOX is anOG-comodule, and so it is also anOGD -module (see [12]). As an
OGD -module,OX is locally free of rank one, and it therefore gives a line bundle
Mπ overGD. SetLπ := Mπ ⊗M−1

π0
. Then the map

ψ : H 1(Y,G)→ Pic(GD) ; [π ] 
→ [Lπ ]
is a homomorphism which is often referred to as the ‘class invariant homomor-
phism’.

Suppose now thatY = Spec(O), and setG = Spec(B),GD = Spec(A), and
X = Spec(C). Then the algebraC is a twisted form ofB, and the homomorphism
ψ measures the Galois module structure of this twisted form (see [8]). The class
invariant homomorphism was first introduced by W. Waterhouse (see [33], but
also [15],éxposé VII) and was later further developed in the context of Galois
module theory by M. J. Taylor (see [31], [32]). Taylor originally considered group
schemes given by torsion points on abelian varieties with complex multiplication;
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the corresponding torsors are obtained by dividing points in the Mordell-Weil
groups of these abelian varieties. In [30], it was shown that, for elliptic curves
with complex multiplication, the class invariant homomorphism vanishes on the
classes of torsors obtained by dividing torsion points of order coprime to 6. This
implies the existence of Galois generators for certain rings of integers of abelian
extensions of imaginary quadratic fields. This vanishing result was extended to
all elliptic curves in [3] and [22]. The class invariant homomorphism for torsors
that are obtained by dividing points on abelian varieties has subsequently been
studied in greater generality (see for example [2], [5], [23]).

The main goal of this paper is to introduce and study an arithmetic (i.e.
‘Arakelov’) refinement of the class invariant homomorphism and to study its
values on torsors obtained by dividing points on abelian varieties. Assume as
above that we haveY = Spec(O). We shall show that the line bundleLπ associ-
ated to the torsorπ carries canonical metrics at all of the places inS; in particular
it carries canonical hermitian metrics at all archimedean places inS. As a result
of this, we shall see that the homomorphismψ : H 1(Spec(O),G) → Pic(GD)

lifts to a homomorphism

ψ̂ : H 1(Spec(O),G)→ P̂ic(GD),

whereP̂ic(GD) is the Picard group of isomorphism classes of line bundles onGD

endowed with metrics at all places inS. In particular, ifS = S∞, thenP̂ic(GD)

is just the Arakelov Picard group of the one-dimensional schemeGD.
Now let G̃D denote the normalisation ofGD. By composingψ andψ̂ with

the natural pullback maps Pic(GD) → Pic(G̃D) andP̂ic(GD) → P̂ic(G̃D), we
obtain homomorphisms

ϕ : H 1(Spec(O),G)→ Pic(G̃D) and ϕ̂ : H 1(Spec(O),G)→ P̂ic(G̃D).

We show that if the generic fibre ofGD is a constant group scheme (i.e.GD is
‘generically constant’), then the kernel ofϕ̂ is very small (see Theorem 4.1).

In the remainder of the paper, we apply our results to study torsors that are
obtained by dividing points on abelian varieties. LetE be an abelian scheme of
dimensiond overO, and writeED for its dual. For each integerN , let [N ] :
E → E denote the multiplication-by-N map onE, and writeE[N ] for theO-
group scheme ofN -torsion onE. The Cartier dual ofE[N ] may be identified

with theO-group schemeED[N ] of N -torsion onED. We writeẼD[N ] for the
normalisation ofED[N ].

Suppose thatP : Spec(O) → E is anO-valued point ofE. Then we may
form the following fibre product:

[N ]−1(P ) := Spec(O)×E,[N ] E −−−→ E� �[N ]
Spec(O)

P−−−→ E.
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Since[N ] : E → E is anE[N ]-torsor,[N ]−1(P ) is also anE[N ]-torsor and
it is determined up to isomorphism by the image ofP modulo[N ] · E(O). In
fact,[N ]−1(P ) is just theE[N ]-torsor given by the image ofP under the natural
injection

E(O)

[N ] · E(O)
↪→ H 1(Spec(O),E[N ])

afforded by Kummer theory onE. LetL[N ]−1(P ) denote the line bundle onED[N ]
that is associated to[N ]−1(P ). By our earlier results,L[N ]−1(P ) carries a canonical
metric at all places inS. Let L[N ]−1(P ) denote the corresponding metrised line
bundle. Then sinceE(O) � E(F), we obtain a map

ψ̂N : E(F)

[N ] · E(F)
→ P̂ic(ED[N ]) ; [P ] 
→ [L[N ]−1(P )]

which is a group homomorphism. By composingψ̂N with the natural pullback

homomorphism̂Pic(ED[N ])→ P̂ic(ẼD[N ]), we obtain a homomorphism

ϕ̂N : E(F)

[N ] · E(F)
→ P̂ic(ẼD[N ]).

The classψ̂(P ) may be described in terms of the restriction of metrised
line bundles onED to subgroup schemes of torsion points. LetL(P ) denote
the rigidified line bundle onED that corresponds to the pointP via the duality
betweenE andED. Then, at each place inS, L(P ) carries a natural ‘N´eron
metric’ which arises via a canonical splitting of the extension ofED by Gm

which corresponds toP (see [17], [19], [20]). WriteL(P ) for the line bundle
L(P ) endowed with these metrics. We show the following result.

Theorem 1.1.With the above notation, we havêψN(P ) = (L(P ) |ED[N ]) in
P̂ic(ED[N ]).

In order to describe our main result on the arithmetic class invariants for
abelian varieties, we have to introduce some further notation. Letl be a prime
number. Then, for each positive integern, the inclusion mapED[ln−1] →
ED[ln] induces pullback homomorphismŝPic(ED[ln]) → P̂ic(ED[ln−1]) and

P̂ic(ẼD[ln])→ P̂ic( ˜ED[ln−1]). These homomorphisms are compatible with the
corresponding mapŝψ and ϕ̂. Hence, we may pass to inverse limits to obtain
homomorphisms

Ψ̂l := lim←− ψ̂ln : E(F)⊗Z Zl → lim←− P̂ic(ED[ln])
and

Φ̂l := lim←− ϕ̂ln : E(F)⊗Z Zl → lim←− P̂ic(ẼD[ln]).
Let disc(F/Q) denote the discriminant ofF/Q. The following result shows

that, for almost all primesl, the class invariantŝϕln(P ) (and therefore alsôψln(P ))
determineP whenP is not a torsion point of order coprime tol.
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Theorem 1.2. Assume that none of the places ofF that lie abovel are contained
in S. Suppose also thatl does not divide6 · disc(F/Q). ThenΦ̂l is injective.

The main ingredients of the proof of this theorem are results of Serre and
Bogomolov concerning thel-adic representation attached toE (see [7], [25], [26],
[27]), and a result of Fontaine which essentially gives an integral comparison
theorem between the crystalline and ´etale cohomology of thel-divisible group
scheme ofE (see [14]).

We remark that Theorem 1.2 is currently the only known general injectivity
result about class invariants that applies to all abelian varieties defined over
number fields. For example, apart from certain cases involving elliptic curves, it
is not known whether the invariantsψln(P ) (asn varies) determineP if P is a
point of infinite order (see the remarks at the end of Sect. 5 of this paper).

In the final section of the paper we show that a natural pairing< , >arith

constructed using the arithmetic class invariant homomorphism on Mordell-Weil
groups coincides with a certain height pairing constructed by Mazur and Tate
(see [19]). This enables us to give a new interpretation of the Mazur-Tate circle
and ideal class pairings in terms of Galois module structure invariants attached
to torsors of finite group schemes.

Acknowledgements.We are very grateful to D. Bertrand, Ph. Cassou-Nogu´es, A. J. de Jong,
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partially supported by NSF grant no. DMS-9700937. He would like to thank the Universit´e de
Bordeaux I and Harvard University for their hospitality while part of this work was carried out. The
second author was partially supported by NSF grant no. DMS-9970378 and by a Sloan Research
Fellowship.

Notation. If K is any field, thenKc denotes an algebraic closure ofK.
If K is a number field, andv is any place ofK, then we writeKv for the local

completion ofK atv andOK,v (orOv when there is no danger of confusion) for
the ring of integers ofKv. For anyOK -moduleM, we setMv := M ⊗OK

OK,v.
If v is a non-archimedean place ofK and"v denotes a uniformising parameter

of OK,v, then we suppose thatv is normalised so thatv("v) = 1. If qv is the
cardinality of the residue field ofKv, then for eachα ∈ Kv we set|α|v = q−v(α)

v .

2. Torsors and canonical metrics

Let π : X → Spec(O) be aG-torsor, and letLπ denote its associatedGD-line
bundle. In this section, we shall explain how to endowLπ with canonical metrics
at all places contained inS. (In fact, the construction will show thatLπ carries
a canonical metric at all places ofF .) This will then enable us to construct the
homomorphismψ̂ and the pairing< , >arith.
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For each placev ∈ S, we fix an algebraic closureFc
v of the fieldFv and we

let σv : F ↪→ Fc
v denote the corresponding embedding. We also write| · |v for

the unique extension toFc
v of thev-adic absolute value| · |v onFv.

Suppose thatV is any scheme over Spec(O). A metrised line bundleL onV
is a pair(L, || · ||) which consists of a line bundleL onV together with a family
|| · || = {|| · ||v}v∈S of metrics on the line bundlesL⊗F,σv F

c
v . (HereL denotes

the restriction ofL to the generic fibre ofV .) We require that each metric|| · ||v
take values inR≥0 and satisfy

||a · x||v = |a|v · ||x||v
for all a ∈ Fc

v andx ∈ L⊗F,σv F
c
v . We also require that each|| · ||v is invariant

under the action of Gal(F c
v /Fv).

The set of isomorphism classes of metrised line bundles onV forms a group
(with the group operation being given by tensor product) which we denote by
P̂ic(V ). The identity element of this group is the isomorphism class of the struc-
ture sheafOV of V endowed with the trivial metric| · |v at all placesv in S.

We next recall (see [33], [15], ´exposé VII, or [23]) that there is a canonical
isomorphism

H 1(Spec(O),G) � Ext1(GD,Gm). (2.1)

In particular one can associate a canonical central extension

1→ Gm → G(π)→ GD → 1 (2.2)

to the torsorπ which is such that the corresponding line bundle overGD is
equal toLπ . (This construction is explained in detail in [33].) LetLπ denote the
restriction ofLπ to the generic fibre ofGD.

Now suppose thatv is a place inS, and consider the extension

1→ Gm(F
c
v )→ G(π)(F c

v )→ GD(F c
v )→ 1

overFc
v . SinceG(π) is the complement of the zero section inLπ , it follows

that each metric on the fibres ofG(π)(F c
v ) aboveGD(F c

v ) uniquely determines
a metric on the line bundleLπ ⊗F,σv F

c
v . In order to specify a canonical metric

onG(π)(F c
v ), we appeal to the following result.

Proposition 2.1. Let K be any locally compact field. Suppose thatH1 is a
commutative, locally compact group overK, and letH2 be a closed subgroup
of H1 which is such thatH1/H2 is compact. Then any continuous homomor-
phismλ : H2(K) → R has a unique extension to a continuous homomorphism
λ̃ : H1(K)→ R.

Proof. A proof of this result is given in [17], Chapter 11, Lemma 6.1. ��



344 A. Agboola, G. Pappas

Proposition 2.1 implies that, for each finite extensionK of Fv, there is a
unique continuous homomorphismvKπ : G(π)(K) → R which is such that
vKπ (z) = log |z|v for all z ∈ K∗ ⊂ G(π)(K). If Fv ⊆ K ⊆ Lwith [L : Fv] <∞,
then the uniqueness assertion of Proposition 2.1 implies thatvLπ |G(π)(K) = vKπ .
Hence, by passing to the direct limit over all finite extensions ofFv, we see that
there is a unique homomorphism

vπ : G(π)(F c
v )→ R

which is such thatvπ(z) = log |z|v for all z ∈ (F c
v )
∗ ⊂ G(π)(F c

v ). We define

|| · ||v : G(π)(F c
v )→ R>0 (2.3)

by setting||x||v = exp(vπ(x)) for all x ∈ G(π)(F c
v ). Then, ifz ∈ Fc

v , we have
that ||z.x||v = |z|v||x||v, and so it follows that|| · ||v defines a metric on each
fibre ofG(π)(F c

v ) lying aboveGD(F c
v ). It is easy to see that|| · ||v is invariant

under the action of Gal(F c
v /Fv). We use the same symbol|| · ||v for the induced

metric on the line bundleLπ ⊗F,σv F
c
v . The metrics{|| · ||v}v∈S are the canonical

metrics associated toLπ , and we writeLπ for the corresponding metrised line
bundle onGD.

Now suppose thatπ ′ : X′ → Spec(O) is anotherG-torsor, and writeπ ′′ for
the compositum ofπ andπ ′. The productG(π) ·G(π ′) of the extensionsG(π)

andG(π ′) is given by the following pullback diagram:

G(π) ·G(π ′) −−−→ G(π)
Gm× G(π ′)� �

GD ∆−−−→ GD ×GD,

where∆ denotes the diagonal map. It follows from the construction of the ex-
tension (2.2) (see [33]) that there are canonical isomorphisms

G(π ′′) � G(π) ·G(π ′) and Lπ ′′ � Lπ ⊗ Lπ ′ . (2.4)

The uniqueness assertion of Proposition 2.1 implies that for eachv ∈ S, the
homomorphismvπ ′′ : G(π ′′)(F c

v )→ R is induced by the homomorphismvπ ⊗
vπ ′ : G(π)(F c

v ) × G(π ′)(F c
v ) → R which is defined by(vπ ⊗ vπ ′)(x, x

′) =
vπ(x)+vπ ′(x

′) for x ∈ G(π)(F c
v ) andx ′ ∈ G(π ′)(F c

v ). This in turn implies that
(2.4) induces an isometry

Lπ ′′ � Lπ ⊗ Lπ ′

of metrised line bundles onGD. We therefore obtain the following result.
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Theorem 2.2.With the above notation, the map

ψ̂ : H 1(Spec(O),G)→ P̂ic(GD) ; [π ] 
→ [Lπ ]
is a group homomorphism which lifts the homomorphismψ . ��
Remark 2.3.An alternative (and somewhat more explicit) description of the
canonical metrics{|| · ||v}v∈S on Lπ may be given as follows. Recall thatπ0 :
G → Spec(O) denotes the trivialG-torsor overO, and thatN is the exponent
of G. We observe that there are canonical isomorphisms

G(π)N � G(πN) � G(π0) � GD ×Gm

of extensions. It follows via functoriality that these isomorphisms induce a canon-
ical isometry

ξπ : L⊗N

π

∼−→OGD (2.5)

of metrised line bundles onGD. Hence, ifv ∈ S ands is a section ofLπ⊗F,σv F
c
v ,

then

||s||v = |ξπ(s⊗N)|1/Nv

We therefore see that the metric|| · ||v is the pullback viaξπ of theN th root of
the trivial metric onOGD . ��

Suppose thatGD is generically constant, and recall that̃GD denotes the
normalisation ofGD. Then it follows that

O
G̃D = Map(GD(F ),O), (2.6)

and so we have

P̂ic(G̃D) � Map(GD(F ), P̂ic(O)),

Pic(G̃D) � Map(GD(F ),Pic(O)).

We define

< , >arith: H 1(Spec(O),G)×GD(F)→ P̂ic(O) (2.7)

to be the pairing which is induced by the homomorphism

ϕ̂ : H 1(Spec(O),G)→ P̂ic(G̃D) � Map(GD(F ), P̂ic(O)). (2.8)

Thus, ifR ∈ G(F), then we extendR to anO-valued pointR : Spec(O)→ GD

of GD, and we have

< [π ], R >arith= [R∗Lπ ]. (2.9)
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We write

< , >class: H 1(Spec(O),G)×GD(F)→ Pic(O) (2.10)

for the pairing that is induced by composing< , >arith with the natural map

P̂ic(G̃D)→ Pic(G̃D) (2.11)

given by forgetting metrics. It follows immediately from the definitions that this
is the same as the pairing induced by the homomorphism

ϕ : H 1(Spec(O),G)→ Pic(G̃D) � Map(GD(F ),Pic(O)). (2.12)

We refer to< , >classas the ‘ideal class pairing’.
LetC(G̃D) denote the kernel of the natural map (2.11), and writeC(O) for the

subgroup of̂Pic(O) which is similarly defined. We refer toC(G̃D) andC(O) as
the ‘circle groups’ of̃GD andO respectively. Then̂ϕ induces a homomorphism

Ker(ϕ)→ C(G̃D) � Map(GD(F ), C(O)). (2.13)

We write

< , >circ: Ker(ϕ)×GD(F)→ C(O) (2.14)

for the pairing induced by (2.13), and we refer to this as the ‘circle pairing’.
In Sect. 7 we shall show that the pairings defined above are related to certain

pairings defined by Mazur and Tate (see [19]) in the case in whichG is a torsion
subgroup scheme of an abelian scheme.

Remark 2.4.An explicit description of the groupŝPic(O) andC(O) may be
given as follows.

Let J (F ) denote the group of ideles ofF , and define

J/S(F ) := {α ∈ J (F ) | αv = 1 for all placesv of F lying aboveS }.
Write δ1 : F ∗ → J/S(F ) for the obvious natural map, and define

δ2 : F ∗ →
∏
v∈S

R∗
>0 ; a 
→

∏
v∈S

|a|−1
v .

Let

δ : F ∗ → J/S(F )∏
v /∈S O∗

v

×
∏
v∈S

R∗
>0

be the homomorphism induced by the mapa 
→ (δ1(a), δ2(a)). Then it is not
hard to show (cf. [9], Chapter 1, Cor. 5.5, for example) that

P̂ic(O) �
(

J/S(F )∏
v /∈S O∗

v

×
∏
v∈S

R∗
>0

)/
δ(F ∗) (2.15)
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and

C(O) �
∏

v∈S R
∗
>0

δ2(O∗)
. (2.16)

It may also be shown (see e.g. no. 3.5.2 of [19], or [9]) that there is a (non-
canonical) isomorphismC(O) � R × (R/Z)|S|−1, i.e. C(O) is isomorphic to a
direct product of a real line and|S| − 1 circles. This is the motivation for our
choice of terminology with regard to the circle group.

3. Kummer theory

Our main aim in this section is to apply Kummer theory in order to study torsors
over Spec(F ). Throughout this section, we will assume that our base schemeY

is equal to Spec(F ).
Suppose therefore thatG is a group scheme over Spec(F ), and letπ : X →

Spec(F ) be aG-torsor. WriteGD = Spec(A), and letLπ denote the line bundle
on GD associated toπ . Since Pic(GD) = 0, we may choose a trivialisation
φπ : A→ Lπ , and this induces a trivialisation

φN
π : A ∼−→L⊗N

π .

Now sinceLπ is associated to aGD-torsor, there is a canonical trivialisation

ξπ : L⊗N
π

∼−→A (3.1)

(cf. (2.5)). Then the isomorphismξπ ◦ φN
π : A ∼−→ A is multiplication by an

elementaπ ∈ A∗. It is not hard to check that changingφπ or replacingX by an
isomorphicG-torsor altersaπ by multiplying it by an element ofA∗N .Also, ifπ ′ :
X′ → Spec(F ) is anotherG-torsor, then since there is a canonical isomorphism
Lπ ·π ′ � Lπ ⊗ Lπ ′, it follows that we have the equalityaπ ·π ′ = aπ · aπ ′ in
A∗/(A∗)N . We thus have the following result.

Proposition 3.1. ThemapηF : H 1(Spec(F ),G)→ A∗/(A∗)N given by[π ] →
aπ is a homomorphism. ��

Now suppose thatGD is a constant group scheme over Spec(F ). Then

A∗/(A∗)N � Map(GD(F ), F ∗/(F ∗)N).

For each elementR : Spec(F ) → GD in GD(F), write χR : G → µN for the
corresponding character ofG. ThenχR induces a homomorphism (which we
denote by the same symbol)

χR : H 1(Spec(F ),G)→ H 1(Spec(F ), µN) ; [π ] → [π(χR)]
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We write

evR : A∗/(A∗)N � Map(GD(F ), F ∗/(F ∗)N)→ F ∗/(F ∗)N

for the mapa 
→ a(R) given by ‘evaluation atR’. The following result shows
that the homomorphismηF may be described in terms of Kummer theory.

Proposition 3.2. Let the hypotheses and notation be as above. Then the follow-
ing diagram is commutative:

H 1(Spec(F ),G)
χR−−−→ H 1(Spec(F ), µN)

ηF

� 
Kummer

A∗/(A∗)N evR−−−→ F ∗/(F ∗)N .

(3.2)

(Here the right-hand vertical arrow is the natural isomorphism afforded by Kum-
mer theory.)

Proof. Let χD
R : µD

N = Z/NZ → GD denote the homomorphism induced by
χR via Cartier duality, and write1 : Spec(F ) → Z/NZ for theF -valued point
of Z/NZ corresponding to the character ofµN given by the identity map Id:
µN → µN . Then we have thatR = χD

R ◦ 1. Now the extension ofµD
N = Z/NZ

by Gm corresponding to theµN -torsorπ(χR) is canonically isomorphic to the
pullback viaχD

R of the extension ofGD byGm corresponding to theG-torsorπ .
Hence ifLπ(χR) denotes the line bundle onµD

N associated toπ(χR), then there
is a natural isomorphism

(χD
R )∗Lπ � Lπ(χR).

We therefore deduce that there is a canonical isomorphismR∗Lπ � 1∗Lπ(χR) of
line bundles on Spec(F ). Hence it follows from the definitions ofaπ andaπ(χR)
that we have the equalityaπ(R) = aπ(χR)(1) in F ∗/(F ∗)N . Thus, to prove the
proposition, it suffices to show that ifτ : V → Spec(F ) is anyµN -torsor, then
τ is represented inH 1(Spec(F ), µN) � F ∗/(F ∗)N by the elementaτ (1) ∈ F ∗.
This follows from the standard proof of the main statement of Kummer theory.

��
Corollary 3.3. Suppose thatGD is a constant group schemeover Spec(F ). Then
the homomorphismηF is injective.

Proof. SinceGD is a direct sum of cyclic constant group schemes, we may
assume without loss of generality thatGD � Z/NZ andG � µN . Suppose that
π is aG-torsor which is such thatηF (π) = 0. Then Proposition 3.2 implies that
χR(π) = 0 for all R ∈ GD(F). Henceπ is a trivial torsor. ��
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Corollary 3.4. Suppose thatGD is a constant group schemeover Spec(F ). Then
the image ofηF is equal to

Hom(GD(F ), F ∗/(F ∗)N) ⊂ Map(GD(F ), F ∗/(F ∗)N) � A∗/(A∗)N .

Proof. In order to prove this result, it suffices to consider the case in which
GD � Z/NZ andG � µN . Suppose thatR andR′ are elements ofGD(F).
Then (using additive notation for the group law inGD(F))

χR+R′ = χR · χR′,

and this implies thatηF (π) ∈ Hom(GD(F ), F ∗/(F ∗)N).
Since

Hom(GD(F ), F ∗/(F ∗)N) � F ∗/(F ∗)N � H 1(Spec(F ), µN),

we see that the image ofηF is equal to Hom(GD(F ), F ∗/(F ∗)N) by applying
Proposition 3.2 with anyR which is such thatχR is an isomorphism. ��

4. Cyclotomic extensions

In this section we shall apply Proposition 3.2 to give a criterion that will enable
us to detect elements lying in the kernel ofϕ̂.

LetG be a group scheme over Spec(O) which is such thatGD is generically
constant. We writeG/F andGD

/F for the generic fibres ofG andGD respectively.
SetGD = Spec(A) andGD

/F = Spec(A). Then

A = (A)⊗O F � Map(GD(F ), F ).

If G̃D denotes the normalisation ofGD, then we haveO
G̃D = Map(GD(F ),O).

Let π : X → Spec(O) be aG-torsor, and letπF : X/F → Spec(F ) be its
generic fibre. We shall viewπF as aG/F -torsor. Suppose thatµ(F) is the group
of all roots of unity inF , and writeL := F(µ(F )1/N) for the field obtained
by adjoining allN th roots of all elements inµ(F) to F . We have the following
result.

Theorem 4.1. Let the hypotheses and notation be as above, and suppose in
addition thatϕ̂(π) = 0. Then the torsorπF becomes trivial over the fieldL.

Proof. Write e : G̃D → GD for the obvious natural map. Sincêϕ(π) = 0, we
may choose an isometrỹφπ : OG̃D

∼−→ e∗Lπ , and this induces an isometry

φ̃N
π : O

G̃D

∼−→ e∗L⊗N

π .
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Next we note that the canonical isometry (2.5) of metrised line bundles onGD

induces an isometry

ξ̃π : e∗L⊗N

π

∼−→O
G̃D .

The compositioñξπ ◦ φ̃N
π : O

G̃D

∼−→O
G̃D is multiplication by an elementaπ ∈

O∗̃
GD

. Since this composition is an isometry, it follows thataπ(R) ∈ O∗ and

|aπ(R)|v = 1 for all R ∈ GD(F) and all placesv ∈ S. As S contains all infinite
places ofF , this implies thataπ(R) is a root of unity for allR ∈ GD(F).

Now consider theG/F -torsorπF . It follows from the definition of the map
ηF given at the begining of Sect. 3 that we have

ηF (πF ) = aπ ∈ A∗/(A∗)N .

Hence Proposition 3.2 implies that for eachR ∈ GD(F), the elementaπ(R) ∈ F ∗
is a Kummer representative inH 1(Spec(F ), µN) of the torsorπF (χR). Therefore
πF (χR) becomes trivial over the fieldF(aπ(R)1/N) ⊆ L. We therefore deduce
that if

Res: H 1(Spec(F ),GD
/F )→ H 1(Spec(L),GD

/L)

denotes the restriction homomorphism on cohomology, thenηL(Res(πF )) = 0.
Hence Corollary 3.3 implies that Res(πF ) = 0, as claimed. ��

5. Arithmetic class invariants attached to abelian varieties

In this section we shall discuss arithmetic class invariants arising via the division
of points on abelian varietiesO.

LetE be an abelian scheme of dimensiond over Spec(O), and writeED for
the dual abelian scheme. LetP denote the Poincar´e line bundle onE ×O ED.
For eachO-valued pointP : Spec(O)→ E of E, we set

L(P ) := (P ×O Id)∗(P).

ThenL(P ) is a rigidified line bundle onED, and it corresponds to the pointP
under the duality betweenE andED. For each placev in S, we may endow
L(P )⊗F,σv F

c
v with a metric in the following way.

Since theGm-torsor associated toP supports the structure of a biextension
onE ×O ED, it follows that there exists a commutative extension

1→ Gm → G(P )→ ED → 1 (5.1)

which is such that the total spaceG(P ) is equal to the complement of the zero
section inL(P ). Then, just as in the case ofG-torsors described in Sect. 2, it
follows from Proposition 2.1 that there exists a unique homomorphism

vP : G(P )(F c
v )→ R
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which is such thatvP (z) = log |z|v for all z ∈ (Fv)
c∗ ⊂ G(P )(F c

v ). Hence the
map

|| · ||v := exp◦vP : G(P )(F c
v )→ R>0

induces a metric|| · ||v onL(P )⊗F,σv F
c
v , and this metric is invariant under the

action of Gal(F c
v /Fv). We refer to|| · ||v as the Néron metric atv onL(P ). We

write L(P ) for the metrised line bundle onED which is obtained by endowing
L with the Néron metric at all placesv ∈ S.

Now let

1→ Gm → GN(P )→ ED[N ] → 1

denote the extension ofED[N ] by Gm that is obtained by pulling back (5.1)
along the inclusion mapED[N ] → ED. This corresponds to anE[N ]-torsor
πN(P ) : XN(P ) → Spec(O) via the isomorphism (2.1). LetLπN(P ) be the
metrised line bundle onED[N ] associated toπN(P ), as described in Sect. 2.
Then it follows from the definitions that there is a natural isometry

LπN(P ) � L(P )|ED[N ].

Recall from the introduction that there is anE[N ]-torsor [N ]−1(P ) which is
obtained by dividing the pointP by N . We have the following result.

Theorem 5.1. There is an isometry

L[N ]−1(P ) � L(P )|ED[N ] (5.2)

of metrised line bundles onED[N ].
Proof. As L[N ]−1(P ) andL(P )|ED[N ] are the metrised line bundles associated to
theE[N ]-torsors[N ]−1(P ) andXN(P ) respectively, in order to prove the result
it suffices to show that

[N ]−1(P ) � XN(P ). (5.3)

Write [N ]−1(P )/F (respectivelyXN(P )/F ) for the generic fibre of[N ]−1(P )

(respectivelyXN(P )). Since anyE[N ]-torsor over Spec(O) is determined by its
generic fibre, (5.3) will follow if we show that

[N ]−1(P )/F � XN(P )/F . (5.4)

This isomorphism (5.4) is explained in [1] (see especially (10) in the proof of
Theorem 1. See also Proposition 3.1 of [24] for a detailed proof of this isomor-
phism.) ��
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Remark 5.2.Note that Theorem 1.1 is an immediate consequence of Theorem
5.1. This stregnthens results of [1] and [22], and it shows that the arithmetic
class invariant homomorphism̂ψN may be interpreted in terms of restricting
the metrised line bundleL(P ) onED to the torsion subgroup schemeED[N ].
The reader may consult [4] for a further discussion concerning the restriction of
metrised line bundles on arithmetic varieties to horizontal subschemes.��

We shall now discuss certain inverse limits. Letl be a prime number. For each
positive integern, let

pn : P̂ic(ED[ln])→ P̂ic(ED[ln−1])
be the pullback homomorphism induced by the inclusion mapED[ln−1] →
ED[ln]. Write

red : E(F)

[ln] · E(F)
→ E(F)

[ln−1] · E(F)

for the homomorphism given by reduction moduloln−1. The following result
follows directly from Theorems 5.1 and 1.1.

Proposition 5.3. The following diagram is commutative:

E(F)/([ln] · E(F))
ψ̂ln−−−→ P̂ic(ED[ln])

red

� �pn

E(F )/([ln−1] · E(F))
ψ̂
ln−1−−−→ P̂ic(ED[ln−1]).

(5.5)

��
Taking inverse limits using the diagram (5.5) yields a homomorphism

Ψ̂l := lim←− ψ̂ln : E(F)⊗Z Zl → lim←− P̂ic(ED[ln])).
By composingΨ̂l with the natural maps

lim←− P̂ic(ED[ln])→ lim←−Pic(ED[ln]),
lim←− P̂ic(ED[ln])→ lim←− P̂ic(ẼD[ln]),

and

lim←− P̂ic(ED[ln])→ lim←−Pic(ẼD[ln]),
respectively, we obtain homomorphisms

Ψl : E(F)⊗Z Zl → lim←−Pic(ED[ln]), (5.6)

Φ̂l : E(F)⊗Z Zl → lim←− P̂ic(ẼD[ln]), (5.7)
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and

Φl : E(F)⊗Z Zl → lim←−Pic(ẼD[ln]). (5.8)

We shall now make a few remarks concerning these maps.

(1) If E is an elliptic curve, andl > 3, then it is shown in [30], [2], and [22]
that alll-power torsion points inE(F) lie in the kernel ofΨl. If l ≤ 3, then this
is no longer true in general (see [6], [11]).

(2) Suppose thatE is an elliptic curve with complex multiplication, and that
l is a prime of ordinary reduction. Then it is shown in [5] that (subject to certain
technical hypotheses) the mapΨl is injective modulo torsion. On the other hand,
the kernel ofΦl is infinite in general (see [1], [5]), and it may be described in
terms of thel-adic height pairing onE.

(3) It follows from Theorem 6.4 below that̂Φl andΨ̂l are injective modulo
torsion for all abelian schemesE and all primesl. It seems reasonable to expect
that the same is true forΨl (but not forΦl).

6. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2.

Throughout this section (unless explicitly stated otherwise), we assume that
l is a prime number satisfying the hypotheses of Theorem 1.2. We shall writeEln

andED
ln for the groupsE[ln](F c) andED[ln](F c) respectively.

Fix compatible identificationsEln � (Z/lnZ)2d, n > 0 which give

El∞ := lim−→ nEln � (Ql/Zl)
2d, Tl(E) := lim←− nEln � Z2d

l .

We shall use thel-adic representation

ρ : Gal(F c/F )→ AutZl
(Tl(E)) � GL(2d,Zl).

The composition det·ρ is equal toεd , where

ε : Gal(F c/F )→ Z∗l

is thel-adic cyclotomic character. We shall also use the Galois representations

ρn : Gal(F c/F )→ AutZl
(Eln) � GL(2d,Z/lnZ).

Let Kn denote the fixed field of Ker(ρn); this is the extension ofF that is
obtained by adjoining the coordinates of points inEln toF .WriteFn := Kn(µln).
Then it follows from the existence of the Weil pairing onE that the points ofED

ln

are rational overFn. We setK∞ := ∪nKn andF∞ := ∪nFn.
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Our main strategy for proving Theorem 1.2 may be described as follows.
Suppose thatP ∈ E(F)⊗Z Zl lies in the kernel ofΦ̂l. For each integern > 0,
choosePn ∈ E(F) so that

Pn ⊗ 1≡ P mod ln[E(F)⊗Z Zl]
Then Theorem 4.1 implies that for every integern > 0, the extensionLn(P ) :=
Fn(

1
ln
Pn) of Fn is obtained by adjoining toFn an lnth root of a root of unity in

Fn. The fieldLn(P ) is independent of the choices ofPn and 1
ln
Pn. Thus, for all

n > 0, we have

F ⊆ Fn ⊆ Ln(P ) ⊆ F2n. (6.1)

We shall prove the Theorem 1.2 by establishing the following result, which is
itself of some independent interest.

Theorem 6.1. Suppose thatP ∈ E(F)⊗Z Zl. Then, for all sufficiently largen,
the extensionLn(P )/Fn is not a cyclotomic extension.

We shall require the following lemma.

Lemma 6.2. K∞ = F∞.

Proof. We first observe that plainlyK∞ ⊂ F∞.
Let β : E → ED be a polarisation ofE which is defined overF . The l-

primary part of the kernel ofβ is a finite, flat, commutative group schemeH .
Suppose thatH is of exponentlN . Then, forn >> 0, β induces an injection
E[ln]/H → ED[ln], and so we may viewE[ln]/H as being a subscheme of
ED[ln].

The points of the group schemeE[ln]/H are rational over the fieldKn. Since
H is of exponentlN , not all points ofE[ln]/H are killed byln−N−1, and so it
follows that there is some point ofE[ln]/H which is of exact orderln−N .

Now composing the Weil pairing

E[ln−N ] × ED[ln] → µln−N

with the natural mapE[ln] → E[ln]/H ⊂ ED[ln] gives a pairing

E[ln−N ] × E[ln] → E[ln−N ] × ED[ln] → µln−N .

We therefore deduce that forn >> 0, we haveµln−N ⊂ Kn. This implies that
F∞ ⊂ K∞, and so it follows thatF∞ = K∞ as asserted. ��

Let µ(Fn) denote the group of all roots of unity inFn, and writeMn :=
Fn(µ(Fn)

1/ln) for the field obtained by adjoining alllnth roots of all elements in
µ(Fn) toFn. SetM∞ := ∪nMn. Then, sinceµln ⊂ Fn, it follows thatM∞ = F∞
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and so Lemma 6.2 implies thatM∞ = K∞. Consider the restriction homomor-
phism

Res: H 1(F, Tl(E))→ H 1(K∞, Tl(E)) = H 1(M∞, Tl(E)).

The restriction-inflation sequence implies that the kernel of this homomorphism
is equal toH 1(Gal(K∞/F ), Tl(E)). This is a finite group (see [26], Corollary to
Theorem 2).

Proposition 6.3. Let l be any prime, and suppose thatP ∈ E(F) ⊗Z Zl is of
infinite order. Then Theorem 6.1 holds for the elementP , and soΦ̂l(P ) "= 0.

Proof. We shall argue via contradiction. Suppose that Theorem 6.1 does not hold
for P , and hence that̂Φl(P ) = 0. Let [P ] ∈ H 1(F, Tl(E)) denote the image of
P under the natural injective map

E(F)⊗Z Zl → H 1(F, Tl(E))

arising from Kummer theory onE. For each integern > 0, let [Pn] denote the
image of[P ] in H 1(F,Eln).

We now observe thatLn(P ) is the smallest extension ofFn which trivialises
the image of[Pn] in H 1(Fn, Eln). Since, by our initial assumption,Ln(P ) ⊆ F2n

(see (6.1)), it follows that the image of[Pn] in H 1(F∞, Eln) is trivial for all
n > 0. This in turn implies that Res([P ]) = 0, which is a contradiction, since
Res has finite kernel.

ThusLn(P )/Fn is not a cyclotomic extension ifn is sufficiently large, and
henceΦ̂l(P ) "= 0. ��

The following result is an immediate corollary of the proof of Proposition
6.3.

Theorem 6.4. The mapΦ̂l (and therefore alsoΨ̂l) is injective modulo torsion
for all primesl. ��

We now consider the case in whichP ∈ E(F)⊗Z Zl is a non-trivial torsion
point. SinceP is torsion, it follows that in factP ∈ E(F). It is sufficient to show
that if l · P = 0, thenΦ̂l(P ) "= 0.

Assume thereforeP ∈ E(F) with l ·P = 0 andP "= 0. We shall again argue
via contradiction. Suppose thatΦ̂l(P ) = 0 and hence that Theorem 6.1 does not
hold for the pointP . SetF ′ := F(µl∞). Then it follows from (6.1) that for all
n > 0,

Ln(P ) ⊂ Mn ⊂ FnF
′.

Let ρ ′ andρ ′n denote the restrictions ofρ andρn respectively to the subgroup
Gal(F c/F ′) of Gal(F c/F ). Write F ′

n for the extension ofF ′ which is fixed by
Γ ′
n := Ker(ρ ′n). Consider the field

L′n(P ) := Ln(P )F ′
n.
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Our assumption that Theorem 6.1 does not hold for the pointP implies that

L′n(P ) = F ′
n (6.2)

for all n > 0. This will lead to the desired contradiction.

We shall use the following facts about the Galois representationρ (see [7]):

A. Let G denote the algebraic group overQl which is given by the Zariski
closure of Im(ρ) in GL(2d,Ql). Then Im(ρ) is open with respect to thel-adic
topology onG(Ql).

B. The algebraic groupG/Ql contains the diagonal torus of homothetiesGm.

For simplicity of notation, we shall often writeT instead ofTl(E) in what
follows.

Let G′ denote the algebraic subgroup ofG consisting of elements with de-
terminant 1.

Proposition 6.5. For n >> 0, we have

ρ(Γ ′
n) = ρ(Ker(ρ ′n)) = Ker(SL(T )→ SL(T /lnT )) ∩G′(Ql).

Proof. Notice that since det(ρ) = εd , it follows that, for alln > 0, det(ρ) is
trivial on the subgroupΓ ′

n corresponding toF ′
n. Hence it is clear that

ρ(Γ ′
n) ⊆ Ker(SL(T )→ SL(T /lnT )) ∩G′(Ql).

By (A) above, Im(ρ) is open in thel-adic topology ofG(Ql), and therefore
Im(ρ)∩G′(Ql) is open in thel-adic topology ofG′(Ql). We have that Im(ρ ′) ⊂
G′(Ql). We will show that Im(ρ ′) is open in thel-adic topology ofG′(Ql).

The subgroup Im(ρ ′) of G′(Ql) is equal to the subgroup of Im(ρ) ∩G′(Ql)

which consists of imagesρ(σ) of σ ∈ Gal(F c/F ) for which ε(σ ) = 1. Since
every element of Im(ρ)∩G′(Ql) is the imageρ(σ) of someσ ∈ Gal(F c/F ) for
whichεd(σ ) = 1, it follows that there are a finite number of cosets (parametrised
by a subset of thed-th roots of unity inZ∗l ) of Im(ρ ′) in Im(ρ)∩G′(Ql). Therefore
Im(ρ ′) is l-adically open in Im(ρ) ∩G′(Ql), and so it is alsol-adically open in
G′(Ql). Now since

Ker(SL(T )→ SL(T /lnT )) ∩G′(Ql)

for n >> 0 gives a fundamental system of neighbourhoods of the identity in
G′(Ql), we have that

Ker(SL(T )→ SL(T /lnT )) ∩G′(Ql) = Ker(SL(T )→ SL(T /lnT )) ∩ Im(ρ ′)

whenevern is sufficiently large.
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The result now follows since

Ker(SL(T )→ SL(T /lnT )) ∩ Im(ρ ′) = ρ(Ker(ρ ′n)) = ρ(Γ ′
n).

��
We now observe that (6.2) implies that the natural action of the groupρ(Γ ′

n)

onT/ln+1T fixes the element1
ln
P . (Note that there is no well-defined choice of

1
ln
P . However, any two choices differ by anln-torsion point, and so, sinceρ(Γ ′

n)

fixes all ln-torsion points, it makes sense to say thatρ(Γ ′
n) fixes 1

ln
P .) Hence,

Proposition 6.5 implies that for all sufficiently largen, the natural action of the
group

Ker(SL(T )→ SL(T /lnT )) ∩G′(Ql)

onT/ln+1T also fixes the element1
ln
P .

Let λ be any prime ideal ofF which divideslOF . Let Fλ denote the local
completion ofF at λ. We writeCl for the completion of the algebraic closure
Fc
λ of Fλ, and we letR denote the completion of the ring of integers ofFc

λ . Then
R is a flat (non-noetherian)Zl-algebra which is a valuation ring with valuation
v : R − {0} → Q≥0, say. The fieldCl is the fraction field ofR. We setTR :=
T ⊗Zl

R and

∆n := Ker(SL(TR)→ SL(TR/l
nTR)) ∩G′(Cl).

Then∆n acts onTR/l
n+1TR = (T /ln+1T )⊗Zl

R.

Proposition 6.6. Assume that Theorem 6.1 does not hold for the pointP , and
hence that(6.2) is true for alln > 0. Then the element

1

ln
P ⊗ 1 ∈ (T /ln+1T )⊗Zl

R

is fixed by∆n for all sufficiently largen.

Proof. Let g′ denote the Lie algebra ofG′(Ql). Theng′ is aQl-vector space
which is aQl-subspace of EndQl

(T ⊗Zl
Ql). Set

γ ′ := g′ ∩ EndZl
(T ).

There is an exact sequence

0→ γ ′ → EndZl
(T )⊕ g′ → EndQl

(T ⊗Zl
Ql) (6.3)

of Zl-modules, andγ ′ is aZl-lattice ing′. SinceR is flat overZl, andQl⊗Zl
R =

Cl, (6.3) gives an exact sequence

0→ γ ′ ⊗Zl
R → EndR(TR)⊕ (g′ ⊗Ql

Cl)→ EndCl
(T ⊗Zl

Cl). (6.4)
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Hence it follows that

(g′ ⊗Ql
Cl) ∩ EndR(TR) = γ ′ ⊗Zl

R.

The natural map EndZl
(T )→ EndZl

(T / lnT ) induces a Lie homomorphism

τn : γ ′ → EndZl
(T / lnT )

whose kernel we denote byγ ′n. It follows from Proposition 6.5 together with
standard properties of the exponential onl-adic Lie groups (see for example [16]
or [18]) that, for alln >> 0, the exponential map gives a bijection betweenγ ′n
and thel-adic Lie groupρ(Γ ′

n). We now assume thatn is large enough for the
exponential map to satisfy this property.

Now consider the homomorphism

τn ⊗Zl
R : γ ′ ⊗Zl

R → EndR(TR/l
nTR).

The kernel ofτn ⊗Zl
R is equal toγ ′n ⊗Zl

R. The Lie algebra ofG′(Cl) is
equal to

g′ ⊗Ql
Cl ⊂ EndCl

(TCl
).

The exponential is defined on elements of EndR(TR) ⊂ EndCl
(TCl

)which reduce
to zero modulolR, and so it is defined on Ker(τn ⊗Zl

R). The values of the
exponential map on elements of Ker(τn⊗Zl

R) belong on the one hand toG′(Cl)

because

Ker(τn ⊗Zl
R) ⊂ g′ ⊗Ql

Cl ,

and on the other hand to Ker(SL(TR)→ SL(TR/l
nTR)).Hence we obtain a map

Exp : Ker(τn ⊗Zl
R)→ ∆n.

A similar argument shows that the logarithm defines a map in the other di-
rection which is inverse to Exp. We conclude that Exp gives a bijection between

Ker(τn ⊗Zl
R) = γ ′n ⊗Zl

R

and∆n. Now, by our initial assumption,ρ(Γ ′
n) fixes 1

ln
P ∈ T/ln+1T and there-

fore, since we have chosenn to be large,γ ′n annihilates1
ln
P . We conclude that

γ ′n ⊗Zl
R annihilates1

ln
P ⊗ 1, and therefore∆n fixes 1

ln
P ⊗ 1, as asserted.

This completes the proof of the Proposition. ��
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We now continue with the proof of Theorem 1.2. Consider the canonical
Hodge-Tate decomposition

T ⊗Zl
Cl := VCl

= V (0)⊕ V (1),

with eachV (i) (i = 0,1) aCl-subspace ofVCl
of dimensiond. By [14] (Propo-

sition 11 on p. 406; see also 5.10 and 5.11), there areR-latticesΛ(i) (i = 0,1)
in V (i), and an elementα ∈ R of valuationv(α) = (l − 1)−1 such that

α(Λ(0)⊕Λ(1)) ⊂ T ⊗Zl
R ⊂ Λ(0)⊕Λ(1).

(Using the terminology of [14],Λ(0) = t∗H ′(OCl
) andΛ(1) = tH (Tl(Ω)), where

H stands for thel-divisible group of the abelian schemeE overOFλ
. The stated

property ofα follows from [14], Corollary to Theorem 3 (see 4.10). Note that
here we are using our assumption thatF/Q is unramified atl.)

Set

Λ := Λ(0)⊕Λ(1). (6.5)

This grading defines a cocharacter

Υ : Gm/R → GL(Λ)

which when basechanged toCl produces the Hodge cocharacter

ΥCl
: C∗

l → GL(VCl
) = GL(T ⊗Zl

Cl).

It follows from the canonicity of the Hodge-Tate decomposition and Tannakian
equivalence that the image of the Hodge cocharacter is contained inG(Cl) (cf.
[27], 1.4). We therefore see that

Υ (Gm/R)) = ΥCl
(R∗) ⊂ GL(Λ) ∩G(Cl).

On the other hand, (B) above implies that we have diag(C∗
l ) ⊂ G(Cl). This

implies that

diag(R∗) ⊂ GL(Λ) ∩G(Cl).

Hence there is a homomorphism

R∗ × R∗ → GL(Λ) ∩G(Cl)

defined by(r1, r2) 
→ Υ (r1) · diag(r2). Since det(Υ (r1) · diag(r2)) = rd1 r
2d
2 , it

follows that there exists an injective homomorphism

κ : R∗ → SL(Λ) ∩G′(Cl)

which is defined byr 
→ Υ (r)2 · diag(r−1).
Let R∗

lnα denote the subgroup ofR∗ consisting of those elementsr which
satisfyr ≡ 1 modαlnR.
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Lemma 6.7.We have that

κ(R∗
lnα) ⊂ ∆n = Ker(SL(TR)→ SL(TR/l

nTR)) ∩G′(Cl). (6.6)

Proof. Write r = 1+ αlnr ′ andr−1 = 1+ αlnr ′′, with r ′, r ′′ ∈ R. It is easy to
see thatv(r ′) = v(r ′′). Now choose a basisei(0), ei(1) (i = 1, ..., g) of Λ which
respects the decomposition (6.5). With respect to this basis, we can write

κ(r) = I + αlnM(r), (6.7)

whereM(r) = diag(r ′′, . . . , r ′′, r ′, . . . , r ′) is a diagonal matrix with coefficients
in R. We have that

αlnTR ⊂ αlnΛ = ln(αΛ) ⊂ lnTR.

Thereforeκ(r) preservesTR and is congruent to the identity modulolnTR. This
shows thatκ(r) ∈ ∆n, and so (6.6) holds as asserted. ��
Proposition 6.8. Suppose thatr ∈ R∗

lnα is such that

κ(r)

(
1

ln
P ⊗ 1

)
= 1

ln
P ⊗ 1 (6.8)

in TR/l
n+1TR. Then

r ≡ 1 mod ln+1α−1R. (6.9)

Proof. Lift 1
ln
P ∈ T/ln+1T to an elementP̃n of T . Then (6.7) and (6.8) imply

that

αlnM(r)(P̃n ⊗ 1) ∈ ln+1TR,

which gives

M(r)(P̃n ⊗ 1) ∈ lα−1TR.

SinceP "= 0, we have that1
ln
P ⊗ 1 is an element of anR/ln+1R-basis of

TR/l
n+1TR, andP̃n ⊗ 1 is an element of anR-basis ofTR. Hence, since

αΛ ⊂ TR ⊂ Λ,

it follows thatP̃n⊗ 1 is an element of anR-basis ofΛ multiplied by an element
β ∈ R with v(α) ≥ v(β) ≥ 0. Therefore, with respect to the basisei(0), ei(1),
we may write

P̃n ⊗ 1= β · (x1, . . . , xd, xd+1, . . . , x2d),
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where at least one of the coordinatesxi is a unit (i.e. satisfiesv(xi) = 0). From

diag(r ′′, . . . , r ′′, r ′, . . . , r ′)(P̃n ⊗ 1) ∈ lα−1TR ⊂ lα−1Λ,

we now obtain that

(r ′′x1, . . . , r
′′xd, r ′xd+1, . . . , r

′x2d) ∈ lα−1β−1Λ ∈ lα−2Λ.

As v(r ′) = v(r ′′), we can writer ′′ = r ′u, whereu is a unit inR. Settingx ′i = xiu

for i = 1, . . . , d, we obtain

(x ′i , . . . , x
′
d, xd+1, . . . , x2d) ∈ lα−2r ′−1

Λ.

Since at least one of thexi or x ′i is a unit, we conclude thatv(lα−2r ′−1
) ≤ 0, and

so

v(r ′) = v(r ′′) ≥ v(lα−2).

Hence it follows thatr ≡ 1 mod ln+1α−1R as claimed. ��
Lemma 6.7 and Proposition 6.8 imply that ifr is any element ofR∗

lnα (i.e.
r ≡ 1 mod lnαR) which is not congruent to 1 moduloln+1α−1R, thenκ(r) is a
non-trivial element of∆n which does not fix the element1

ln
P ⊗1 ∈ TR/l

n+1TR.
Sincev(α) = (l − 1)−1 andl > 3, such elementsr do exist. This contradicts
Proposition 6.6. We therefore deduce that in fact Theorem 6.1 holds for the point
P . HenceΦ̂l(P ) "= 0.

This completes the proof of Theorem 1.2.

7. Class invariants and Mazur-Tate pairings

In this section we shall explain the relationship between the pairings constructed
at the end of Sect. 2 and a refinement of the canonical height pairing on abelian
varieties constructed by Mazur and Tate in [19].A good reference for background
concerning this material is [9] (see also [10]).

We retain the notation established at the begining of Sect. 5. Throughout this
section we shall assume thatS = S∞, and soO is the ring of integers ofF . If X
is any scheme over Spec(O), then we shall writeX/F for the generic fibre ofX.

Write Div0(ED
/F ) for the group of divisors onED

/F that are rational overF and
algebraically equivalent to zero. LetZ0(E

D
/F ) denote the group of zero-cycles on

ED
/F of degree zero which are of the form

Z =
∑
i

ni(Qi)
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with eachQi rational overF . If L is any metrised line bundle onED, then the
metrised line bundleZ∗L on Spec(O) is defined by

Z∗L :=
⊗
i

Q∗
i L

⊗ni
.

(Here we have identified each pointQi onED
/F with its Zariski closure onED.)

Suppose thatZ ∈ Z0(E
D
/F ) andD1 ∈ Div0(ED

/F ) have disjoint supports, and
let v be any place ofF . Then the N´eron symbol< Z,D1 >v may be described
as follows (see [17], Chapter 11, Theorem 6.2). LetP : Spec(F ) → E/F be
the point onE/F corresponding toD1 under the duality betweenE andED. We
may identifyP with the corresponding Spec(O)-valued point ofE. Choose any
rational section

sD1 : ED → G(P )

of (5.1) such that the generic fibre of the divisor ofsD1 is equal toD1. ThensD1

induces a map (which we denote by the same symbol)

sD1 : ED(F c
v )→ G(P )(F c

v ).

The Néron symbol< Z,D1 >v is then equal to

< Z,D1 >v= −vP ◦ sD1(Z), (7.1)

where we extendsD1 to Z0(E
D
/F ) via linearity. It may be shown that this is

independent of the choice ofsD1.
If v is a non-archimedean place ofF and"v is a local uniformiser ofF atv,

then it may be shown that

< Z,D1 >v= iv(Z,D1) log |"v|v, (7.2)

whereiv(Z,D1) denotes the intersection multiplicity ofD1 andZ atv (see [17],
Chapter 11,§5).

For each placev of F , write

λv(Z,D1) =
{
" iv(Z,D1)

v , if v � ∞;

exp(< Z,D1 >v), if v | ∞.
(7.3)

Then we may view
∏

v λv(Z,D1) as being an element ofJ/S(F )×∏v∈S(F
c
v )
∗.

Hence, via the isomorphism (2.15), we obtain an element[∏v λv(Z,D1)] ∈
P̂ic(O). By using the sectionsD1 to computeZ∗L(P ), we see from (7.2), (7.3)
and the definition of the N´eron metrics onL(P ) (see Sect. 5) that we have

[Z∗L(P )] =
[∏

v

λv(Z,D1)

]
(7.4)
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in P̂ic(O).

We shall now recall the definition of the Mazur-Tate pairing

bMT : E(F)× ED(F)→ P̂ic(O) (7.5)

(cf. [9], [10], or [19]).
Suppose thatP ∈ E(F) andQ ∈ ED(F). It may be shown that we may

chooseDP ∈ Div0(ED
/F ) andZQ ∈ Z0(E

D
/F ) satisfying the following properties:

(1) The divisorDP corresponds to the pointP under the duality betweenE and
ED;

(2) If ZQ =∑
i ni(Qi), then

∑
i[ni]Qi = Q;

(3) DP andZQ have disjoint supports.

Then we define

bMT(P,Q) =
[∏

v

λv(ZQ,DP )

]
∈ P̂ic(O).

It may be shown thatbMT(P,Q) is independent of all choices made in its defi-
nition.

It will be helpful to express the definition of the pairingbMT in terms of
metrised line bundles as follows. LetZQ = (Q) − (O). We may then choose
DP to satisfy conditions (1) and (3) above. AsO∗L(P ) is the trivial line bundle,
it follows from (7.4) that we have

bMT(P,Q) = [Q∗L(P )][O∗L(P )]−1 = [Q∗L(P )]. (7.6)

Now suppose thatN is a positive integer, and thatED[N ] is generically
constant. WriteED

N = ED[N ](F ). Then we have a pairing

< , >arith: H 1(Spec(O),E[N ])× ED
N → P̂ic(O)

as defined in (2.7). The following result shows that the pairing

bMT : E(F)× ED
N → P̂ic(O)

induced by (7.5) has an interpretation in terms of the Galois module structure of
E[N ]-torsors.

Theorem 7.1. Suppose thatP ∈ E(F) andR ∈ ED
N . Then

bMT(P,R) =< [N ]−1(P ), R >arith .

Proof. This just follows from unwinding the definitions, using (7.6), Theorem
5.1, and (2.9). We have

bMT(P,R) = [R∗L(P )] = [R∗L[N ]−1(P )] =< [N ]−1(P ), R >arith .

��
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Mazur and Tate have used (7.5) to construct two further pairings that are of
interest. These may be described as follows.

By composingbMT with the natural surjection̂Pic(O)→ Pic(O), we obtain
a pairing

bclass : E(F)× ED(F)→ Pic(O). (7.7)

The pairingbclassis called the Mazur-Tate ideal class pairing. It has been exten-
sively studied by G. Call (see [9], [10]).

To define the second pairing, we set

E(F)×circ E
D(F) := {(P,Q) ∈ E(F)× ED(F) | bclass(P,Q) = 0}.

Then if(P,Q) ∈ E(F)×circE
D(F),we have thatbMT(P,Q) ∈ C(O). We write

bcirc : E(F)×circ E
D(F)→ C(O)

for the restriction ofbMT to E(F) ×circ ED(F), and we refer tobcirc as the
Mazur-Tate circle pairing.

Set
E(F)×circ E

D
N := (E(F )× ED

N ) ∩ (E(F )×circ E
D(F)).

The following result is an immediate corollary of Theorem 7.1. It gives a new
interpretation of the Mazur-Tate pairings in terms of the Galois structure of
E[N ]-torsors.

Corollary 7.2. Suppose thatR ∈ ED
N andP ∈ E(F). Then

bclass(P,R) =< [N ]−1(P ), R >class .

If ϕ([N ]−1(P )) = 0, then(P,R) ∈ E(F)×circE
D
N for all R ∈ ED

N , and we have

bcirc(P,R) =< [N ]−1(P ), R >circ .

��
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