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Abstract. Let F be a number field with ring of integers OF and let G be a finite group.
We describe an approach to the study of the set of realisable classes in the locally free class
group Cl(OF G) of OF G that involves applying the work of the second-named author in the
context of relative algebraic K theory. For a large class of soluble groups G, including all
groups of odd order, we show (subject to certain mild conditions) that the set of realisable
classes is a subgroup of Cl(OF G). This may be viewed as being a partial analogue in the
setting of Galois module theory of a classical theorem of Shafarevich on the inverse Galois
problem for soluble groups.

Contents

1. Introduction 2

2. Principal homogeneous spaces and resolvends 10

2.1. Principal homogeneous spaces 10

2.2. Resolvends 12

3. Resolvends and cohomology 15

4. Determinants and character maps 20

5. Twisted forms and relative K-groups 25

5.1. Twisted forms 26

5.2. Idelic description and localisation 27

6. Cohomological classes in relative K-groups 30

7. Local extensions I 34

8. Local extensions II 41

9. The Stickelberger pairing 43

10. The Stickelberger map and transpose homomorphisms 47

10.1. The Stickelberger map 47

10.2. Transpose Stickelberger homomorphisms 49

10.3. Prime F-elements 50

10.4. The Stickelberger pairing revisited 53

Date: July10, 2018. Final version. To appear in Algebra and Number Theory.
1



2 A. AGBOOLA AND L. R. MCCULLOH

11. Modified ray class groups 54

12. Proof of Theorem 6.6 57

13. Realisable classes from field extensions 58

14. Abelian groups 63

15. Neukirch’s Lifting Theorem 64

16. Soluble groups 68

References 74

1. Introduction

Suppose that F is a number field with ring of integers OF , and let G be a finite group. If

Fπ/F is any tame Galois G-algebra extension of F , then a classical theorem of E. Noether

implies that the ring of integers Oπ of Fπ is a locally free OFG-module, and so determines a

class (Oπ) in the locally free class group Cl(OFG) of OFG. Hence, if we write H1
t (F,G) for

the pointed set of isomorphism classes of tame G-extensions of F , then we obtain a map of

pointed sets

ψ : H1
t (F,G) → Cl(OFG); [π] 7→ (Oπ).

Even when G is abelian, so that H1
t (F,G) is actually a group, this map is almost never a

group homomorphism. We say that an element c ∈ Cl(OFG) is realisable if c = (Oπ) for

some tame Galois G-algebra extension Fπ/F , and we write R(OFG) for the collection of

realisable classes in Cl(OFG). These classes are natural objects of study, and they have

arisen in a number of different contexts in Galois module theory. The problem of describing

R(OFG) for a given G may be viewed as being a loose analogue of the inverse Galois problem

in the setting of arithmetic Galois module theory.

When G is abelian, the second-named author has given a complete description of R(OFG)

by showing that it is equal to the kernel of a certain Stickelberger homomorphism on

Cl(OFG) (see [21]). In particular, he has shown that R(OFG) is in fact a group. In sub-

sequent unpublished work ([23], [22]) he showed that, for arbitrary G, the set R(OFG) is

always contained in the kernel of this Stickelberger homomorphism, and he raised the ques-

tion of whether or not R(OFG) is in fact always equal to this kernel. This question has

inspired research by a number of different authors, and we refer the reader to e.g. [8], [9],

[13], and to the bibliographies of these papers, for further information concerning previous

work on this problem.

In this paper we shall describe a new approach to studying this topic that involves com-

bining the methods introduced by the second-named author in [21] and [23] with techniques
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involving relative algebraic K-theory and categorical twisted forms introduced by D. Burns

and the first-named author in [3]. This enables us to both clarify certain aspects of the the-

ory of realisable classes and to establish new results. Although our perspective is somewhat

different, it should be stressed that many of the main ideas that we use are in fact already

present in some form in [21] and [23].

Let us now describe the contents of this paper in more detail. In Section 2 we recall some

basic facts concerning principal homogeneous spaces, Galois algebras and resolvends; these

play a key role in everything that follows. Next, we assemble a number of technical results

explaining how resolvends may be used to compute discriminants of rings of integers in Galois

G-extensions. We also discuss how certain Galois cohomology groups may be expressed in

terms of resolvends in a manner that is very useful for calculations in class groups and K-

groups. In Section 4 we explain how determinants of resolvends may be represented in terms

of certain character maps, and we recall an approximation theorem of A. Siviero (which is

in turn a variant of [21, Theorem 2.14]).

We begin Section 5 by outlining the results we need about twisted forms and relative

algebraic K-groups from [3]. Each tame G-extension Fπ/F of F has an associated resolvend

isomorphism

rG : Fπ ⊗F F
c ' F cG

of F cG-modules, and this may be used to construct a categorical twisted form which is rep-

resented by an element [Oπ, OFG; rG] in a certain relative algebraic K-group K0(OFG,F
c).

The groupK0(OFG,F
c) admits a natural surjection onto the locally free class group Cl(OFG),

sending [Oπ, OFG; rG] to (Oπ), and so there is a map of pointed sets

Ψ : H1
t (F,G) → K0(OFG,F

c); [π] 7→ [Oπ, OFG; rG]

which is a refinement (more precisely, a lifting) of the map ψ above.

Crucial to our approach is the fact that each of the constructions that we have just

described admits a local variant. Let v be any place of F , and write H1
t (Fv, G) for the

pointed set of isomorphism classes of tame G-extensions of Fv. Then there is a localisation

homomorphism

λv : K0(OFG,F
c) → K0(OFvG,F

c
v )

as well as a map of pointed sets

Ψv : H1
t (Fv, G) → K0(OFvG,F

c
v ); [πv] 7→ [Oπv , OFvG; rG].

The following result reflects the fact that [Oπ, OFG; rG] is a much finer structure invariant

than (Oπ) (see Proposition 13.1 below):
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Proposition A. The kernel of Ψ is finite.

Let G′ denote the derived subgroup of G. We may identify H1(F,G′) with a subset of

H1(F,G) via the exact sequence 0 → G′ → G → Gab → 0. Proposition A is proved

by showing that Ker(Ψ) is a subset of the pointed set H1
fnr(F,G

′) of isomorphism classes

of G′-Galois F -algebras that are unramified at all finite places of F ; this last set is finite

because there are only finitely many unramified extensions of F of bounded degree. If G

is abelian, the map Ψ is injective (see Proposition 14.3). In many cases one can show that

Ker(Ψ) = H1
fnr(F,G

′), but we do not know whether this equality always holds.

Write KR(OFG) for the image of Ψ, i.e. for the collection of realisable classes of

K0(OFG,F
c). The central conjecture of this paper gives a precise description of KR(OFG)

in terms of a local-global principle for the relative algebraic K-group K0(OFG,F
c). This

may be described as follows.

For each place v of F , let H1
nr(Fv, G) denote the subset H1

t (Fv, G) consisting of iso-

morphism classes of unramified G-extensions of Fv. We define a pointed set of ideles

J(H1
t (F,G)) of H1

t (F,G) to be the restricted direct product over all places v of the sets

H1
t (Fv, G) with respect to the subsets H1

nr(Fv, G) (see Definition 6.2). The natural maps

H1
t (F,G) → H1

t (Fv, G) for each v induce a map H1
t (F,G) → J(H1

t (F,G)). We also define a

group of ideles J(K0(OFG,F
c)) of K0(OFG,F

c) to be the restricted direct product over all

places of F of the groups K0(OFvG,F
c
v ) with respect to the subgroups K0(OFvG,OF c

v
) (see

Definition 5.8). We show that the maps λv above induce an injective localisation map

λ : K0(OFG,F
c) → J(K0(OFG,F

c))

(see Proposition 5.9), and that the maps Ψv induce an idelic version

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

of the map Ψ (see Definition 6.2). We conjecture that KR(OFG) has the following descrip-

tion (see Conjecture 6.5 below):

Conjecture B. KR(OFG) = λ−1(Im(Ψid)).

In other words, our conjecture predicts that an element x lies in the image of Ψ if and

only if λv(x) lies in the image of Ψv for every place v of F . We remark that it follows directly

from the definitions that

KR(OFG) ⊆ λ−1(Im(Ψid)).

We point out that, in contrast to R(OFG), it is not difficult to show that if G is non-

trivial, then KR(OFG) is never a subgroup of K0(OFG,F
c) (cf. [3, Remarks 6.13(i)], [2,
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Remark 2.10(iii)]). Nevertheless, by applying the methods of [21] and [23] in the present

context, we show that Conjecture B implies both an affirmative answer to the second-named

author’s question concerning R(OFG) as well as a positive solution to the inverse Galois

problem for G over F (see Theorems 6.6, 6.7 and 13.6 below):

Theorem C. If Conjecture B holds, then R(OFG) is a subgroup of Cl(OFG). Furthermore,

if c ∈ R(OFG), then there exist infinitely many [π] ∈ H1
t (F,G) such that Fπ is a field

and (Oπ) = c. The extensions Fπ/F may be chosen to have ramification disjoint from any

finite set S of places of F . In particular, the inverse Galois problem for G admits a positive

solution over F .

In order to orient the reader, we shall now briefly indicate the main ideas involved in the

proof of Theorem C.

We begin by observing that the long exact sequence of relative algebraic K-theory yields

a sequence

K1(F
cG)

∂1

−→ K0(OFG,F
c)

∂0

−→ Cl(OFG) → 0.

Hence, in order to show that R(OFG) = Im(ψ) is a subgroup of Cl(OFG), it suffices to show

that ∂1(K1(F
cG)) · Im(Ψ) is a subgroup of K0(OFG,F

c).

To do this, we first show that it suffices to prove that

λ(∂1(K1(F
cG))) · Im(Ψid)

is a subgroup of J(K0(OFG,F
c)). Once this is done, it is not hard to show that ∂1(K1(F

cG))·
Im(Ψ) is equal to the kernel of the homomorphism

K0(OFG,F
c)

λ−→ J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] · Im(Ψid)
,

and so is indeed a subgroup of K0(OFG,F
c) (see Theorem 6.7 below). The crux of the proof

of the first part of Theorem C therefore consists of showing that λ(∂1(K1(F
cG))) · Im(Ψid)

is a subgroup of K0(OFG,F
c).

This is accomplished as follows. Write G(−1) for the group G (viewed as a set) endowed

with an action of ΩF via the inverse cyclotomic character. Although in general this is only an

action on G as a set (rather than via automorphisms of G), the induced action on conjugacy

classes of G does induce an action on the centre Z(F c[G]) of the group ring F cG. We write

Z(F c[G(−1)]) to denote Z(F c[G]) endowed with this action. We set

Λ(FG) := Z(F c[G(−1)])ΩF ,

and we write Λ(OFG) for the (unique) OF -maximal order in Λ(FG). For each place v of

F , we define Λ(FvG) and Λ(OFvG) in an analogous manner. We write J(Λ(FG)) for the
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restricted direct product over all places of F of the groups Λ(FvG)× with respect to the

subgroups Λ(OFvG)×.

Let Irr(G) denote the set of irreducible characters of G. Motivated by an analysis of

normal integral basis generators of tame local extensions, we define a Stickelberger pairing

〈−,−〉G : Irr(G)×G→ Q.

(Loosely speaking, this may be viewed as being a monodromy-type pairing that encodes

ramification data associated to tame extensions of local fields in a uniform manner (cf.

Definition 10.6 below).) We then use this pairing to construct a K-theoretic transpose

Stickelberger homomorphism

KΘt : J(Λ(FG)) → J(K0(OFG,F
c)).

The homomorphism KΘt is closely related to the map Ψid in the following way. We show

that even though the map Ψv is just a map of pointed sets, the image Ψv(H
1
nr(Fv, G)) of the

restriction of Ψv to H1
nr(Fv, G) is in fact a subgroup of K0(OFvG,F

c
v ) for each v. Using an

approximation theorem for J(Λ(FG)), we show further that, for a suitable choice of auxiliary

ideal a of OF , the homomorphism KΘt may be used to construct a homomorphism

Θt
a : Cl′a

+
(Λ(OFG)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Ψv(H1
nr(Fv, G))

,

where Cl′a
+(Λ(OFG)) is a certain finite quotient of J(Λ(FG)). We prove that

Im(Θt
a) = Im(Ψid),

where Ψid denotes the composition of Ψid with the obvious quotient map

J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Ψv(H1
nr(Fv, G))

.

We then show that this in turn implies that

λ(∂1(K1(F
cG))) · Im(KΘt) = λ(∂1(K1(F

cG))) · Im(Ψid). (1.1)

In particular, this proves that the right-hand side of (1.1) is a subgroup of J(K0(OFG,F
c)),

as claimed. This completes our outline of the proof of the first part of Theorem C.

The strategy of the proof of the second part of Theorem C may be very roughly described

as follows. Suppose that x ∈ λ−1(Im(Ψid)). By using the map KΘt together with a suitable

approximation theorem on J(K0(OFG,F
c)), we show that there are infinitely many y ∈

λ−1(Im(Ψid)) such that (i) ∂0(y) = ∂0(x), and (ii) each y corresponds via Conjecture B

to an element [πy] ∈ H1
t (F,G) which is ramified (away from S) in such a way that πy ∈

Hom(ΩF , G) is forced to be surjective. This in turn implies that Fπy is a field (rather than
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just a Galois algebra), and so the inverse Galois problem for G admits a positive solution

over F .

Let us now turn to our results concerning the validity of Conjecture B.

When G is abelian, we obtain the following refinement of [21, Theorem 6.7] (see Theorem

14.2 below):

Theorem D. Conjecture B is true if G is abelian.

By combining our methods with work of Neukirch, we are able to establish a variant

of Conjecture B for a large class of soluble groups, including all groups of odd order (see

Theorems 16.4 and 16.5 below). We thereby obtain the following result, which may be

viewed as being a partial analogue of a classical theorem of Shafarevich (see [29]) on the

inverse Galois problem for soluble groups in the context of arithmetic Galois module theory.

(See Theorem 16.7 of the main text.)

Theorem E. Suppose that G is of odd order and that (|G|, hF ) = 1, where hF denotes

the class number of F . Suppose also that F contains no non-trivial |G|-th roots of unity.

Then R(OFG) is a subgroup of Cl(OFG). If c ∈ R(OFG), then there exist infinitely many

[π] ∈ H1
t (F,G) such that Fπ is a field and (Oπ) = c. The extensions Fπ/F may be chosen

to have ramification disjoint from any finite set S of places of F .

While it is perhaps conceivable that it might be possible to remove the hypothesis (|G|, hF ) =

1 of Theorem E using methods similar to those of the present paper (although we do not as

yet know how to do this), the same probably cannot be said of the condition concerning the

number of roots of unity in F . This latter hypothesis is forced upon us because our proof

makes crucial use of a lifting theorem of Neukirch (see Section 15) where such hypotheses

are unavoidable (cf. the last paragraph of the Introduction of [24]). It would be interesting

to determine whether or not the methods of [29] can be used to prove a result similar to

Theorem E for all soluble groups.

The results and techniques introduced in this paper suggest a number of different avenues

of further investigation. For example, our methods may also be applied in the context of the

relative Galois module structure of the square root of the inverse different as studied by C.

Tsang (see [35], [36]), and it seems reasonable to expect that an analogue of Theorem E holds

in this setting. Applying the methods of [1] to the study of counting and equidistribution

problems involving cohomological classes in relative algebraic K-groups should lead to new

results concerning similar problems for number fields, generalising certain aspects of e.g.

[37] and [19]. Our techniques may also be applied in the setting of global function fields (see
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[3] and [4]), and it would be of interest to further investigate the connection between the

approach adopted here and that taken in e.g. [10] (cf. for example, [3, Section 4]).

Here is an outline of the rest of this paper. In Section 7, we explain a hitherto unpublished

result of the second-named author that describes how resolvends of normal integral bases of

tamely ramified extensions of non-archimedean local fields admit certain Stickelberger fac-

torisations (see Definition 7.12); this is a non-abelian analogue of a version of Stickelberger’s

factorisation of abelian Gauss sums. A somewhat analogous (but much simpler) framework

over R is described in Section 8.

In Section 9, we recall the definition and properties of the Stickelberger pairing. We also

give a new character-theoretic description of this pairing (see Proposition 9.2) as well as an

application of this description (see Corollary 9.4).

We construct a K-theoretic version of the transpose Stickelberger homomorphism in Sec-

tion 10, and we also briefly describe an alternative approach to defining the Stickelberger

pairing and establishing its basic properties. In Section 11 we construct transpose Stickel-

berger homomorphisms Θt
a on modified narrow ray class groups Cl′a

+(Λ(OFG)). These are

used in Section 12 to prove Theorem 6.6, thereby completing the proof of the first part of

Theorem C.

In Section 13 we prove Proposition A, and we explain how a weaker form of Conjecture

B implies that every realisable class in Cl(OFG) may be realised (in infinitely many ways)

by rings of integers of tame field (and not merely Galois algebra) G-extensions of F . This

proves the second part of Theorem C.

We give a proof of Theorem D in Section 14. In Section 15, we describe work of Neukirch

on the solution to an embedding problem that is required for the proof of Theorem E. This

proof is completed in Section 16 via showing that a suitable variant of Conjecture B holds

for a large class of soluble groups (see Definition 16.1 and Theorems 16.3 and 16.4).

We are very grateful indeed to Andrea Siviero for his extremely detailed comments on an

earlier draft of this paper, and to Ruth Sergel for her most perceptive remarks at a critical

stage of this project. We heartily thank Nigel Byott and Cindy Tsang for the many very

helpful comments, questions and corrections that we received from them, and Bob Guralnick

for a very helpful remark concerning the proof of Corollary 9.4 below. We are also extremely

grateful to the anonymous referees whose very careful reading of the manuscript led us to

correct and considerably strengthen our original results, and to significantly improve our

exposition.

Notation and conventions.
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For any field L, we write Lc for an algebraic closure of L, and we set ΩL := Gal(Lc/L).

If L is a number field or a non-archimedean local field (by which we shall always mean a

finite extension of Qp for some prime p), then OL denotes the ring of integers of L. If L is

an archimedean local field, then we adopt the usual convention of setting OL = L.

Throughout this paper, F will denote a number field. For each place v of F , we fix

an embedding F c → F c
v , and we view ΩFv as being a subgroup of ΩF via this choice of

embedding. We write Iv for the inertia subgroup of ΩFv when v is finite.

The symbol G will always denote a finite group upon which ΩF acts trivially. If H is any

finite group, we write Irr(H) for the set of irreducible F c-valued characters of H and RH

for the corresponding ring of virtual characters. We write 1H (or simply 1 if there is no

danger of confusion) for the trivial character in RH . If h ∈ H, then we write c(h) for the

conjugacy class of h in H and C(H) for the set of conjugacy classes of H. We denote the

derived subgroup of H by H ′.

If L is a number field or a local field, and Γ is any group upon which ΩL acts continuously,

we identify Γ-torsors over L (as well as their associated algebras, which are Hopf-Galois

extensions associated to AΓ := (LcΓ)ΩL) with elements of the set Z1(ΩL,Γ) of Γ-valued

continuous 1-cocycles of ΩL (see [27, I.5.2] and Section 2 below). If π ∈ Z1(ΩL,Γ), then

we write Lπ/L for the corresponding Hopf-Galois extension of L, and Oπ for the integral

closure of OL in Lπ. (Thus Oπ = Lπ if L is an archimedean local field.) Each such Lπ is

a principal homogeneous space (p.h.s.) of the Hopf algebra MapΩL
(Γ, Lc) of ΩL-equivariant

maps from Γ to Lc. It may be shown that if π1, π2 ∈ Z1(ΩL,Γ), then Lπ1 ' Lπ2 if and only if

π1 and π2 differ by a coboundary. The set of isomorphism classes of Γ-torsors over L may be

identified with the pointed cohomology set H1(L,Γ) := H1(ΩL,Γ). We write [π] ∈ H1(L,Γ)

for the class of Lπ in H1(L,Γ). If L is a number field or a non-archimedean local field we

write H1
t (L,Γ) for the subset of H1(L,Γ) consisting of those [π] ∈ H1(L,Γ) for which Lπ/L

is at most tamely ramified. If L is an archimedean local field, we set H1
t (L,G) = H1(L,G).

We denote the subset of H1
t (L,Γ) consisting of those [π] ∈ H1

t (L,Γ) for which Lπ/L is

unramified at all (including infinite) places of L by H1
nr(L,Γ). (So, with this convention, if

L is an archimedean local field, we have H1
nr(L,Γ) = 0.) If L is a number field, we write

H1
fnr(F,Γ) for the subset of H1

t (F,Γ) consisting of those [π] ∈ H1
t (F,Γ) for which Lπ/L is

unramified at all finite places of L.

If A is any algebra, we write Z(A) for the centre of A. If A is semisimple, we write

nrd : A× → Z(A)×, nrd : K1(A) → Z(A)×
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for the reduced norm maps on A× and K1(A) respectively (cf. [16, Chapter II, §1]). If A is

an R-algebra for some ring R, and R→ R1 is an extension of R, we write AR1 := A⊗R R1

to denote extension of scalars from R to R1.

If S1 and S2 are sets, we sometimes use the notation S1
epi−→ S2 to denote a surjective map

from S1 to S2.

2. Principal homogeneous spaces and resolvends

In this section we shall describe some basic facts concerning principal homogeneous spaces

and resolvends.

Throughout this section, the symbol L denotes either a number field or a local field.

2.1. Principal homogeneous spaces. [21, Section 1], [7, Section 1]. Let Γ be any finite

group upon which ΩL acts continuously on the left, and write Z1(ΩL,Γ) for the set of Γ-

valued continuous ΩL 1-cocycles. If π ∈ Z1(ΩL,Γ), then we write πΓ for the set Γ endowed

with the following modified action of ΩL: if

Γ → πΓ; γ 7→ γ

is the identity map on the underlying sets, then

γω = π(ω) · γω

for each γ ∈ Γ and ω ∈ ΩL. The group Γ acts on πΓ via right multiplication.

We define an associated L-algebra Lπ by

Lπ := MapΩL
(πΓ, Lc);

this is the algebra of Lc-valued functions on πΓ that are fixed under the action of ΩL. The

Hopf algebra

A = AL := (LcΓ)ΩL

acts on Lπ via the rule

(α · a)(γ) =
∑
g∈Γ

αg · a(γ · g)

for all γ ∈ Γ and α =
∑

g∈Γ αg · g ∈ A. The algebra Lπ is a principal homogeneous space

(p.h.s. for short) of the Hopf algebra

B := MapΩL
(Γ, Lc). (2.1)
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It may be shown that every p.h.s. of B is isomorphic to an algebra of the form Lπ for some

π, and so every such p.h.s. may be viewed as being a subset of the Lc-algebra Map(Γ, Lc).

It is easy to check that

Lπ ⊗L L
c = LcΓ · `Γ,

where `Γ ∈ Map(Γ, Lc) is defined by

`Γ(γ) =

1 if γ = 1;

0 otherwise.

This implies that Lπ is a free, rank one A-module.

The Wedderburn decomposition of Lπ may be described as follows. For any γ ∈ πΓ, write

Stab(γ) for the stabiliser of γ in ΩL, and set

L(γ) := (Lc)Stab(γ).

Then

Lπ '
∏

ΩL\πΓ

L(γ),

where ΩL\πΓ denotes the set of ΩL-orbits of πΓ, and the product is taken over a set of orbit

representatives. In general, the field L(γ) is not normal over L. However, if ΩL acts trivially

on Γ, then Z1(ΩL,Γ) = Hom(ΩL,Γ), and for each γ ∈π Γ, we have

L(γ) = (Lc)Ker(π) =: Lπ, (2.2)

with Gal(Lπ/L) ' π(ΩL). In this case, we have that

Lπ '
∏

Γ/π(ΩL)

Lπ, (2.3)

and this isomorphism depends only upon the choice of a transversal of π(ΩL) in Γ.

Remark 2.1. For most of this paper we shall only need to consider the case in which ΩL

acts trivially on Γ; in this situation A = LΓ, and Lπ is a Γ-Galois L-algebra. A notable

exception to this will occur in Section 7, when we take L to be a non-archimedean local

field, and we construct a canonical subextension of a tame extension Lπ/L (see Definitions

7.4 and 7.6). This canonical sub-extension is complementary to the maximal unramified

sub-extension of Lπ/L, and is not usually a Galois algebra extension of L. It is however, a

p.h.s. of a Hopf algebra of the form (2.1) associated to a certain group Γ equipped (as a set)

with a non-trivial ΩL-action. �



12 A. AGBOOLA AND L. R. MCCULLOH

2.2. Resolvends. [21, Section 1], [7, Section 2].

Since every p.h.s. of B may be viewed as being a subset of Map(Γ, Lc), it is natural to

consider the Fourier transforms of elements of Map(Γ, Lc). These arise via the resolvend

map

rΓ : Map(Γ, Lc) → LcΓ; a 7→
∑
s∈Γ

a(s)s−1.

The map rΓ is an isomorphism of left LcΓ-modules, but not of algebras, because it does

not preserve multiplication. It is easy to show that for any a ∈ Map(Γ, Lc), we have that

a ∈ Lπ if and only if rΓ(a)ω = rΓ(a) · π(ω) for all ω ∈ ΩL. It may also be shown that an

element a ∈ Lπ generates Lπ as an A-module if and only if rΓ(a) ∈ (LcΓ)×. Two elements

a1, a2 ∈ Map(Γ, Lc) with rΓ(a1), rΓ(a2) ∈ (LcΓ)× generate the same p.h.s. as an A-module if

and only if rΓ(a1) = b · rΓ(a2) for some b ∈ A×. If a is any generator of Lπ as an A-module,

then a Γ-valued ΩL 1-cocycle that represents the class [π] of π in the pointed cohomology

set H1(L,Γ) is given by

ω 7→ rΓ(a)−1 · rΓ(a)ω.

We define pointed sets (where in each case the distinguished element is afforded by 1 ∈
A×

Lc = (LcΓ)×):

H(A) :=
{
α ∈ A×

Lc : α−1 · αω ∈ Γ ∀ω ∈ ΩL

}
;

H(A) := H(A)/Γ = {α · Γ : α ∈ H(A)},

and we write rΓ(a) ∈ H(A) for the image in H(A) of rΓ(a) ∈ H(A). The element rΓ(a) is

referred to as the reduced resolvend of a. If A is any OL-order in A, then we define H(A)

and H(A) in a similar manner. Hence we have

H(A) = AOLc ∩H(A), H(A) = H(A)/Γ.

Write Lt for the maximal, tamely ramified extension of L. We set

Ht(A) := {α ∈ H(A) : αω = α ∀ω ∈ ΩLt} ;

Ht(A) := Ht(A)/Γ = {α · Γ : α ∈ Ht(A)},

and we define Ht(A) and Ht(A) analogously for any OL-order A in A.

We shall now give a characterisation of the set H(A) that avoids any explicit mention of

Galois action. This is a non-abelian version of a description of H(A) in terms of primitive

elements of quotients of groups of units in Hopf algebras in the abelian case (see [3, Theorem

6.4]).
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In order to do this, we first note that there are ΩL-equivariant homomorphisms of algebras

∆, i1, i2 : ALc → ALc ⊗Lc ALc

induced by the maps

∆(γ) = γ ⊗ γ, i1(γ) = γ ⊗ 1, i2(γ) = 1⊗ γ

for γ ∈ Γ.

We define a map of pointed sets

P : A×
Lc → (ALc ⊗Lc ALc)×; x 7→ ∆(x) · [i1(x) · i2(x)]−1.

It is easy to verify that

P(x1 · x2) = ∆(x1) · P(x2) · [i1(x1) · i2(x1)]
−1.

As P(γ) = 1 for each γ ∈ Γ, it follows that P induces a map of pointed sets (which we denote

by the same symbol):

P : A×
Lc/Γ → (ALc ⊗Lc ALc)×.

Theorem 2.2. Let x ∈ A×
Lc. Then x ∈ H(A) if and only if P(x) ∈ (A⊗L A)×.

Proof. Suppose that x ∈ H(A). Then if ω ∈ ΩL, we have

xω = x · γω

for some γω ∈ Γ. Hence

[∆(x)(i1(x)i2(x))
−1]ω = ∆(x)(γω ⊗ γω)[i1(x)(γω ⊗ 1)i2(x)(1⊗ γω)]−1

= ∆(x)(γω ⊗ γω)(1⊗ γω)−1i2(x)
−1(γω ⊗ 1)−1i1(x)

−1

= ∆(x)(γω ⊗ γω)(1⊗ γω)−1(γω ⊗ 1)−1i2(x)
−1i1(x)

−1

= ∆(x)[i1(x)i2(x)]
−1.

This shows that

P(x) ∈ [(ALc ⊗Lc ALc)×]ΩL = (A⊗L A)×.

Suppose conversely that P(x) ∈ (A ⊗L A)×, and that xω = x · uω for each ω ∈ ΩL. We

wish to show that uω ∈ Γ. As the maps ∆, i1, and i2 are ΩL-equivariant, we have that

∆(x)ω = ∆(x) ·∆(uω), i1(x)
ω = i1(x) · i1(uω), i2(x)

ω = i2(x) · i2(uω),

and a straightforward computation shows that

P(x)ω = ∆(x) · P(uω) · [i1(x) · i2(x)]−1.
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As P(x) = P(x)ω, this implies that P(uω) = 1, i.e. that

∆(uω) = i1(uω) · i2(uω).

It now follows that uω ∈ Γ via an argument identical to that given in [3, Theorem 6.4]. �

Let F be a number field. Our next result shows that the pointed set H(AF ) of resolvends

satisfies a Hasse principle.

Proposition 2.3. Let F be a number field, and suppose that x ∈ (F cΓ)×. Then x ∈ H(AF )

if and only if locv(x) ∈ H(AFv) for every finite place v of F .

Proof. We first observe that the map P commutes with localisation, i.e. for each finite place

v of F , we have

locv(P(x)) = P(locv(x)) (2.4)

for all x ∈ (F cΓ)×. Hence we have

x ∈ H(AF ) ⇐⇒ P(x) ∈ (AF ⊗F AF )× (from Theorem 2.2);

⇐⇒ locv(P(x)) ∈ (AFv ⊗Fv AFv)
× for each finite v;

⇐⇒ P(locv(x)) ∈ (AFv ⊗Fv AFv)
× for each finite v (from (2.4));

⇐⇒ locv(x) ∈ H(AFv) for each finite v (from Theorem 2.2).

�

Remark 2.4. It is also possible to give a proof of Proposition 2.3 directly from the definition

of H(AF ). The standard such proof that was known to the authors is valid only for abelian

groups Γ; we are grateful to an anonymous referee for explaining how this proof may be

modified so as to hold for arbitrary finite groups.

Suppose that x ∈ A×
F c is such that, for each finite place v of F , we have locv(x) ∈ H(AFv).

We wish to show that x ∈ H(AF ).

Let E/F be any finite Galois extension such that ΩE fixes x. Then the action of ΩF on x

factors through the action of the finite group D := Gal(E/F ). Hence, to prove the desired

result, it suffices to show that for any δ ∈ D, we have xδ = x · γδ, with γδ ∈ Γ.

Let GF denote the subgroup of ΩF generated by the subgroups ΩFv as v runs over the

finite places of F . As each element of ΩF is conjugate to an element of ΩFv for some v, it

follows via the Chebotarev density theorem that the image GF of GF in D has non-trivial

intersection with every conjugacy class of D. A lemma of Jordan now implies that GF must

be equal to the whole of D (see [28, p. 435, Theorem 4’]). The result we seek now follows

at once. �
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3. Resolvends and cohomology

Recall that F is a number field and G is a finite group upon which ΩF acts trivially. In this

section, we explain, following [21, §2], how resolvends may be used to compute discriminants

of rings of integers of G-Galois extensions of F , and to describe certain Galois cohomology

groups.

For each [π] ∈ H1(F,G), the standard trace map

Tr : Map(G,F c) → F c

induces a trace map

Tr : Fπ → F

via restriction. This in turn yields an associated, non-degenerate bilinear form (a, b) 7→
Tr(ab) on Fπ. If M is any full OF -lattice in Fπ, then we set

M∗ := {b ∈ Fπ|Tr(b ·M) ⊆ OF}

and

disc(Oπ/OF ) := [O∗
π : Oπ]OF

,

where the symbol [− : −]OF
denotes the OF -module index. We see from the isomorphism

(2.3) that we have

disc(Oπ/OF ) = disc(OF π/OF )[G:π(ΩF )],

where disc(OF π/OF ) denotes the usual discriminant of the number field F π over F , and so

it follows that

disc(Oπ/OF ) = OF

if and only if Fπ/F is unramified at all finite places of F .

Definition 3.1. We write [−1] for the maps induced on Map(G,F c) and F cG by the map

g 7→ g−1 on G. �

Lemma 3.2. Suppose that a, b ∈ Fπ for some [π] ∈ H1(F,G). Then

rG(a) · rG(b)[−1] =
∑
s∈G

Tr(asb) · s−1 ∈ FG.

Proof. This may be verified via a straightforward calculation (see e.g. [20, (1.6)], and note

that the calculation given there is valid for an arbitrary finite group G). �
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Corollary 3.3. Suppose that Fπ = FG · a. Then we have:

(i) rG(a)−1 = rG(b)[−1], where b ∈ Fπ satisfies Tr(asbt) = δs,t.

(ii) (OFG · a)∗ = OFG · b.
(iii) [(OFG · a)∗ : OFG · a]OF

= [OFG : OFG · rG(a) · rG(a)[−1]]OF
.

(iv) rG(a) ∈ (OF cG)× if and only if Oπ = OFG · a and disc(Oπ/OF ) = OF .

Analogous results hold if F is replaced by Fv for any finite place v of F .

Proof. Exactly as in [21, 2.10 and 2.11]. �

Lemma 3.4. Suppose that L is either a number field or a local field. Then

(i) H1(L, (LcG)×) = 1;

(ii) H1(L,Z(LcG)×) = 1.

Proof. For each χ ∈ Irr(G), write d(χ) for the degree of χ, and Md(χ)(L
c) for the algebra of

d(χ)× d(χ)-matrices over Lc. Then the Wedderburn isomorphism of algebras

LcG '
⊕

χ∈Irr(G)

Md(χ)(L
c)

yields isomorphisms of groups

(LcG)× '
⊕

χ∈Irr(G)

GLd(χ)(L
c), Z(LcG)× '

⊕
χ∈Irr(G)

(Lc)×.

Let χ1, . . . , χm ∈ Irr(G) be a set of representatives of ΩL\ Irr(G). Write Stab(χi) for the

stabiliser of χi in ΩL, and set L[χi] := (Lc)Stab(χi). There are isomorphisms of ΩL-modules

(LcG)× '
m⊕

i=1

IndΩL
ΩL[χi]

(GLd(χi)(L
c)), Z(LcG)× '

m⊕
i=1

IndΩL
ΩL[χi]

(Lc)×.

We have

H1(L, (LcG)×) ' H1(L,
m⊕

i=1

IndΩL
ΩL[χi]

GLd(χi)(L
c))

'
m⊕

i=1

H1(L[χi],GLd(χi)(L
c))

= 1,

where the second isomorphism follows via Shapiro’s Lemma and the third is standard con-

sequence of Hilbert’s Theorem 90. This proves (i). The proof of (ii) is very similar. �

Recall that two pointed sets S1 and S2 are said to be isomorphic if there is a bijection of

sets

f : S1 → S2
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with f(x1) = f(x2), where xi is the distinguished element of Si, (i = 1, 2).

A sequence

· · · → Si−1
fi−→ Si

fi+1−−→ Si+1 → · · ·

of pointed sets is said to be exact if there is an equality of sets

Im(fi) = f−1
i+1(xi+1),

where xi+1 is the distinguished element of Si+1.

Theorem 3.5. (a) There is an exact sequence of pointed sets

1 → G→ (FG)× → H(FG) → H1(F,G) → 1. (3.1)

(b) For each finite place v of F , recall that H1
nr(Fv, G) denotes the subset of H1(Fv, G)

consisting of those [πv] ∈ H1(Fv, G) for which the associated G-Galois extension Fπv/Fv is

unramified. Then there is an exact sequence of pointed sets

1 → G→ (OFvG)× → H(OFvG) → H1
nr(Fv, G) → 1. (3.2)

(c) There are exact sequences of pointed sets

1 → G→ (FG)× → Ht(FG) → H1
t (F,G) → 1, (3.3)

and

1 → G→ (FvG)× → Ht(FvG) → H1
t (Fv, G) → 1 (3.4)

for each place v of F .

Proof. When G is abelian, parts (a) and (b) are proved in [21, pages 268 and 273] by

considering the ΩF and ΩFv -cohomology of the exact sequences of abelian groups

1 → G→ (F cG)× → (F cG)×/G→ 1 (3.5)

and

1 → G→ (OF c
v
G)× → (OF c

v
G)×/G→ 1

respectively. If G is non-abelian, and these exact sequences are viewed as exact sequences

of pointed sets instead, then a similar proof of part (a) also holds, as is pointed out in [21,

page 268]: taking ΩF -cohomology of the exact sequence (3.5) of pointed sets yields an exact

sequence

1 → G→ (FG)× → H(FG) → H1(F,G) → H1(F, (F cG)×), (3.6)

and since H1(F, (F cG)×) = 1 (see Lemma 3.4(i)), (3.1) immediately follows.
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Alternatively, we could also argue directly (as is done in [21]) that the map H(FG) →
H1(F,G) in (3.6) is surjective. Let us briefly describe the argument given in [21]. Suppose

that [π] ∈ H1(F,G), and let a ∈ Fπ be a normal basis generator of Fπ/F . Set α = rG(a);

then the coset α · G ∈ H(FG) lies in the pre-image of [π], and so it follows that (3.6) is

indeed surjective on the right, as claimed.

Part (b) follows from Corollary 3.3(iv) (cf. the proof of (2.12) on [21, page 273]).

The proof of (c) is very similar to that of (a). Let F t and F t
v denote the maximal tamely

ramified extensions of F and Fv respectively, and set Ωt
F := Gal(F t/F ), Ωt

Fv
:= Gal(F t

v/Fv).

Then (c) follows via considering the Ωt
F and Ωt

Fv
-cohomology of the exact sequences of

pointed sets

1 → G→ (F tG)× → (F tG)×/G→ 1

and

1 → G→ (F t
vG)× → (F t

vG)×/G→ 1

respectively, using the direct argument given in [21, page 268] that we have described above.

�

Suppose that L is a number field or a local field. Recall that Z(LG) denotes the centre

of LG. Before stating our next result, we note that the reduced norm map

nrd : (LG)× → Z(LG)×

induces an injectionGab → Z(LG)×. (More explicitly, if we identify Z(LcG)× with
∏

χ∈Irr(G)(L
c)×

via the Wedderburn decomposition of LcG (cf. the proof of Lemma 3.4), then the injection

Gab → Z(LG)× is induced by the map G → Z(LcG)× given by g 7→ [(det(χ))(g)]χ, where

det(χ) is the abelian character of G defined below in Definition 4.3. See also (4.5).) In what

follows, we shall identify Gab with its image in Z(LG)× under this map. We set

H(Z(LG)) :=
{
α ∈ Z(LcG)× : α−1 · αω ∈ Gab ∀ω ∈ ΩL

}
;

H(Z(LG)) := H(Z(LG))/Gab = {α ·Gab : α ∈ H(Z(LG))}.

We define H(Z(A)) and H(Z(A)) analogously for any OL-order A in LG.

Proposition 3.6. Let L be a number field or a local field. Then there is an exact sequence

of abelian groups:

1 → Gab → Z(LG)× → H(Z(LG)) → H1(L,Gab) → 1. (3.7)
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Proof. This follows at once from taking ΩL cohomology of the exact sequence of abelian

groups

1 → Gab → Z(LcG)× → Z(LcG)×/Gab → 1,

arising from the injection Gab → Z(LcG)× induced by the reduced norm map nrd : (LG)× →
Z(LG)× as described above, and noting that H1(ΩL, Z(LcG)×) = 1, via Lemma 3.4(ii). �

It is easy to see that the group (LG)× acts on the pointed setH(LG) by left multiplication.

Write (LG)×\H(LG) for the quotient set afforded by this action. It follows from Theorem

3.5 and Proposition 3.6 that there are isomorphisms

H1(L,G)
∼−→ (LG)×\H(LG)

and

H1(L,Gab)
∼−→ Z(LG)×\H(Z(LG))

of pointed sets and abelian groups respectively, and that the following diagram commutes:

H1(L,G)
∼−−−→ (LG)×\H(LG)y ynrd

H1(L,Gab)
∼−−−→ Z(LG)×\H(Z(LG)).

(3.8)

(Here the left-hand vertical arrow is induced by the quotient map G → Gab, while the

right-hand vertical arrow is induced by the reduced norm map nrd : (LcG)× → Z(LcG)×. )

We shall need the following result in Section 6.

Proposition 3.7. Let F be a number field. For each finite place v of F , the image of the

map

nrd : (OFvG)×\H(OFvG) → Z(OFvG)×\H(Z(OFvG))

of pointed sets is in fact a group.

Proof. Just as in the case of (3.8), we see from the exact sequences (3.2) and (3.7) that there

is a commutative diagram

H1
nr(Fv, G)

∼−−−→ (OFvG)×\H(OFvG)y ynrd

H1
nr(Fv, G

ab) −−−→ Z(OFvG)×\H(Z(OFvG))y∩ y∩
H1(Fv, G

ab)
∼−−−→ Z(FvG)×\H(Z(FvG)).

(3.9)



20 A. AGBOOLA AND L. R. MCCULLOH

The middle horizontal arrow of (3.9) is therefore injective, and its image is a subgroup

of Z(OFvG)×\H(Z(OFvG)). Hence, to prove the desired result, it suffices to show that the

map H1
nr(Fv, G) → H1

nr(Fv, G
ab) is surjective. This is in turn an immediate consequence of

the fact that the Galois group Gal(F nr
v /Fv) is profinite free on a single generator. �

4. Determinants and character maps

In this section we shall describe how determinants of resolvends may be represented in

terms of certain character maps.

Let L be a number field or a local field.

Suppose that Γ is any finite group upon which the absolute Galois group ΩL of L acts

(possibly trivially). Then ΩL also acts on the ring RΓ of virtual characters of Γ according

to the following rule: if χ ∈ Irr(Γ) and ω ∈ ΩL, then, for each γ ∈ Γ, we have χω(γ) =

ω(χ(ω−1(γ))).

We begin by recalling some well-known facts and definitions concerning determinant maps

(see e.g. [16, Chapter II] or [17, Chapter I]).

Definition 4.1. For each element a of GLn(LcG), we define an element

Det(a) ∈ Hom(RG, (L
c)×) ' Z(LcG)× (4.1)

in the following way: if T is any representation of G over Lc with character φ, then we set

Det(a)(φ) := det(T (a)).

It may be shown that this definition depends only upon the character φ, and not upon the

choice of representation T . The map

Det : GLn(LcG) → Hom(RG, (L
c)×)

is ΩL-equivariant, and so induces a map

Det : GLn(LG) → HomΩL
(RG, (L

c)×).

�

Remark 4.2. The map Det in (4.1) above is essentially the same as the reduced norm map.

Let

nrd : (LcG)× → Z(LcG)× (4.2)

denote the reduced norm. Then (4.2) induces an isomorphism

nrd : K1(L
cG)

∼−→ Z(LcG)× ' Hom(RG, (L
c)×) (4.3)
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(see e.g. [12, Theorem 45.3]). Suppose now that φ is any Lc-valued character of G, and let

a ∈ (LcG)×. Then we have that

Det(a)(φ) = nrd(a)(φ)

(see [17, Chapter I, Proposition 2.7]). �

Definition 4.3. Suppose that χ ∈ Irr(G). We define an abelian character det(χ) of G as

follows. Let T be any representation of G over Lc affording χ. For each element g ∈ G, we

set

(det(χ))(g) = Det(T (g)).

Then det(χ) is independent of the choice of T , and may be viewed as being a character of

Gab. We extend det to a homomorphism RG → (Gab)∧, where (Gab)∧ denotes the group of

characters of Gab, by defining

det

 ∑
χ∈Irr(G)

aχχ

 =
∏

χ∈Irr(G)

(det(χ))aχ ,

and we set

AG := Ker(det).

Hence we have an exact sequence of groups

0 → AG → RG
det−→ (Gab)∧ → 0. (4.4)

�

Applying the functor Hom(−, (Lc)×) to (4.4), we obtain an exact sequence

0 → Gab → Hom(RG, (L
c)×)

rag−→ Hom(AG, (L
c)×) → 0, (4.5)

which is surjective on the right because (Lc)× is divisible. It follows that there are ΩL-

equivariant isomorphisms

Hom(AG, (L
c)×) ' Hom(RG, (L

c)×)/Gab ' Z(LcG)×/Gab. (4.6)

In what follows, we shall sometimes identify Hom(AG, (L
c)×) with Z(LcG)×/Gab via (4.6)

without explicit mention.

Taking ΩL-cohomology of (4.5) yields an exact sequence

0 → Gab → HomΩL
(RG, (L

c)×)
rag−→ HomΩL

(AG, (L
c)×) → H1(L,Gab) → 1, (4.7)

which is surjective on the right via Lemma 3.4(ii).
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Definition 4.4. Let Rs
G denote the (additive) subgroup of RG generated by the symplectic

characters of G. Thus, Rs
G is generated by the irreducible symplectic characters of G,

together with elements of the form χ + χ, where χ ∈ RG and χ denotes the complex

conjugate of χ. All virtual characters lying in Rs
G are real-valued.

If F is a number field, and v is a real place of F , we write Hom+
ΩFv

(RG, (F
c
v )×) for those

elements f ∈ HomΩFv
(RG, (F

c
v )×) for which f(η) > 0 for all η ∈ Rs

G. Note that if f ∈
HomΩFv

(RG, (F
c
v )×) and χ ∈ RG, then we automatically have

f(χ+ χ) = f(χ) · f(χ) > 0.

Hence in fact f ∈ Hom+
ΩFv

(RG, (F
c
v )×) if and only if f is positive on all irreducible, symplectic

characters of G. In particular, if G has no non-trivial irreducible symplectic characters (e.g.

if |G| is odd), then we have

Hom+
ΩFv

(RG, (F
c
v )×) = HomΩFv

(RG, (F
c
v )×).

We write Z(FvG)×+ for the image of Hom+
ΩFv

(RG, (F
c
v )×) in Z(FvG)× under the isomor-

phism

HomΩFv
(RG, (F

c
v )×)

∼−→ Z(FvG)×.

�

Proposition 4.5. Let F be a number field. For each place v of F , we write

Det : (F c
vG)× → Hom(RG, (F

c
v )×) ' Z(F c

vG)× (4.8)

for the determinant homomorphism afforded by Definition 4.1.

(i) If v is real, then (4.8) induces an isomorphism

Det((FvG)×) ' Hom+
ΩFv

(RG, (F
c
v )×) ' Z(FvG)×+. (4.9)

(ii) If v is finite or complex, then the map (4.8) induces isomorphisms

Det((FvG)×) ' HomΩFv
(RG, (F

c
v )×) ' Z(FvG)×, (4.10)

Det(H(FvG)) ' HomΩFv
(AG, (F

c
v )×). (4.11)

(iii) If v is finite of residue characteristic coprime to |G|, so OFvG is an OFv-maximal

order in FvG, then (4.8) induces isomorphisms

Det((OFvG)×) ' HomΩFv
(RG, (OF c

v
)×) ' Z(OFvG)×, (4.12)

Det(H(OFvG)) ' HomΩFv
(AG, (OF c

v
)×). (4.13)
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Proof. The isomorphisms (4.9), (4.10) and (4.12) are standard and are explained in e.g. [16,

Chapter II, §1].

Suppose that v is either finite or complex. Theorem 3.5(a) and (4.10) yield the following

commutative diagram:

G
⊆−−−→ (FvG)× −−−→ H(FvG)

epi−−−→ H1(Fv, G)y yDet

yDet

yepi

Gab ⊆−−−→ Det((FvG)×) −−−→ Det(H(FvG))
epi−−−→ H1(Fv, G

ab)∥∥∥ y∼ y ∥∥∥
Gab ⊆−−−→ HomΩFv

(RG, (F
c
v )×) −−−→ HomΩFv

(AG, (F
c
v )×)

epi−−−→ H1(Fv, G
ab),

(4.14)

and this implies that the map

Det(H(FvG)) → HomΩFv
(AG, (F

c
v )×)

is an isomorphism, which proves (4.11).

Suppose now that v is finite of residue characteristic coprime to |G|. In order to establish

(4.13), we first observe that applying the functor Hom(−, (OF c
v
)×) to the exact sequence

(4.4) yields a sequence

0 → Gab → Hom(RG, (OF c
v
)×) → Hom(AG, (OF c

v
)×) → 1 (4.15)

which is surjective on the right because (OF c
v
)× is divisible. Taking ΩFv -cohomology of (4.15)

yields

0 → Gab → HomΩFv
(RG, (OF c

v
)×) → HomΩFv

(AG, (OF c
v
)×) →

→ H1(Fv, G
ab)

f−→ H1(Fv,Hom(RG, (OF c
v
)×)). (4.16)

Now since v - |G|, Z(OFvG) is an OFv -maximal order in (the split algebra) Z(FvG), and

Z(OF c
v
G)× ' Hom(RG, (OF c

v
)×) (cf. (4.12)). Suppose that π ∈ Ker(f). Then there exists

u ∈ Z(OF c
v
G)× such that uω · u−1 = π(ω) for all ω ∈ ΩFv . This implies that u|G

ab| ∈
Z(OFvG)×. As v - |Gab| and Z(OFvG) is a maximal order, it follows that u ∈ Z(OF nr

v
G)×,

and so π ∈ H1
nr(Fv, G

ab). Hence there is an exact sequence

0 → Gab → HomΩFv
(RG, (OF c

v
)×) → HomΩFv

(AG, (OF c
v
)×) → H1

nr(Fv, G
ab). (4.17)

We recall also (see the proof of Proposition 3.7) that the natural map H1
nr(Fv, G) →

H1
nr(Fv, G

ab) is surjective because the group Gal(F nr
v /Fv) is profinite free on a single gener-

ator. Theorem 3.5(b) together with (4.12) and (4.17) now yield the following commutative
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diagram:

G
⊆−−−→ (OFvG)× −−−→ H(OFvG)

epi−−−→ H1
nr(Fv, G)y yDet

yDet

yepi

Gab ⊆−−−→ Det((OFvG)×) −−−→ Det(H(OFvG))
epi−−−→ H1

nr(Fv, G
ab)∥∥∥ y∼ y ∥∥∥

Gab ⊆−−−→ HomΩFv
(RG, (OF c

v
)×) −−−→ HomΩFv

(AG, (OF c
v
)×) −−−→ H1

nr(Fv, G
ab).

(4.18)

It follows from (4.18) that the third row of this diagram is surjective on the right. Since

Det(H(OFvG)) is a subgroup of HomΩFv
(AG, (OF c

v
)×), we see that the map

Det(H(OFvG)) → HomΩFv
(AG, (OF c

v
)×)

is an isomorphism. This establishes (4.13). �

If on the other hand v is finite and v | |G|, so OFvG is not an OFv -maximal order in FvG,

then we have

Det(H(OFvG)) ⊆ HomΩFv
(AG, (O

c
Fv

)×),

but this inclusion is not in general an equality. If a is any integral ideal of OF , set

Ua(OF c
v
) := (1 + aOF c

v
) ∩ (OF c

v
)×,

and write Uα(OF c
v
) instead of Ua(OF c

v
) when a = αOF . We shall need the following result of

A. Siviero (which is a variant of [21, Theorem 2.14]) in Section 11.

Proposition 4.6. (A. Siviero) Let v be a finite place of F . Then if N ∈ Z>0 is divisible by

a sufficiently large power of |G|, we have

HomΩFv
(AG, UN(OF c

v
)) ⊆ Det(H(OFvG)) ⊆ HomΩFv

(AG, (OF c
v
)×).

Proof. This is shown in [30, Theorem 5.1.10] when G is abelian, and the proof for arbitrary

finite G is quite similar. As [30] is not widely accessible, we describe the argument.

If v - |G|, then Proposition 4.5(iii) implies that we have

HomΩFv
(AG, O

×
F c

v
) = Det(H(OFvG)) = HomΩFv

(AG, (OF c
v
)×),

and so it follows that the desired result holds in this case. We may therefore suppose that

v | |G|.
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We first observe that the group

HomΩFv
(AG, (OF c

v
)×)

Det((OFvG)×/G)

is annihilated by |Gab|[Det(M×
v ) : Det(OFvG)×], where Mv denotes any OFv -maximal order

in FvG containing OFvG. Since AG is finitely generated, it follows that Det((OFvG)×/G) is

of finite index in HomΩFv
(AG, (OF c

v
)×), and so is an open subgroup of HomΩFv

(AG, (OF c
v
)×).

The result now follows from the fact that, because v | |G|, the collection of groups{
HomΩFv

(AG, U|G|n(OF c
v
)) | n ≥ 0

}
is a fundamental system of neighbourhoods of the identity of HomΩFv

(AG, (OF c
v
)×). �

Remark 4.7. When G is abelian, it follows from [21, Theorem 2.14] that we may take

N = |G|2 in Proposition 4.6. �

We shall also require the following related result in Section 15.

Proposition 4.8. Let Γ be a finite group with an action of ΩF . Suppose that v | |Γ| is a

finite place of F , and write pv for the maximal ideal of OFv . Then for all sufficiently large

n, we have

HomΩFv
(AΓ, Upn

v
(OF c

v
)) ⊆ rag[HomΩFc

v
(RΓ, (OF c

v
)×)].

Proof. The proof of this is very similar to that of Proposition 4.6. We observe that

|Γab| · HomΩFc
v
(AΓ, (OF c

v
)×) ⊆ rag[HomΩFc

v
(RΓ, (OF c

v
)×)],

which implies that rag[HomΩFc
v
(RΓ, (OF c

v
)×)] is an open subgroup of HomΩFc

v
(AΓ, (OF c

v
)×)

because AΓ is finitely generated. The desired result now follows from the fact that the

collection of groups {HomΩFv
(AΓ, Upn

v
(OF c

v
)) | n ≥ 0} is a fundamental system of neighbour-

hoods of the identity of HomΩFc
v
(AΓ, (OF c

v
)×). �

5. Twisted forms and relative K-groups

Recall that G is a finite group upon which ΩF acts trivially. In this section, we shall recall

some basic facts concerning categorical twisted forms and relative algebraic K-groups. The

reader may consult [3] and [32, Chapter 15] for some of the details that we omit.
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5.1. Twisted forms. Suppose that R is a Dedekind domain with field of fractions L of

characteristic zero. (For notational convenience, we shall sometimes also allow ourselves to

take R = L.) Let A be any R-algebra which is finitely generated as an R-module and which

satisfies A⊗R L ' LG.

Definition 5.1. Let Λ be any extension of R, and write P(A) and P(A ⊗R Λ) for the

categories of finitely generated, projective A and A⊗R Λ-modules respectively. A categorical

Λ-twisted A-form (or twisted form for short) is an element of the fibre product category

P(A)×P(A⊗RΛ) P(A), where the fibre product is taken with respect to the functor P(A) →
P(A ⊗R Λ) afforded by extension of scalars. In concrete terms therefore, a twisted form

consists of a triple (M,N ; ξ), where M and N are finitely generated, projective A-modules,

and

ξ : M ⊗R Λ
∼−→ N ⊗R Λ

is an isomorphism of A⊗R Λ-modules. �

Example 5.2. If Fπ/F is any G-extension, and Lπ ⊆ Fπ is any non-zero projective OFG-

module, then (Lπ, OFG; rG) is a categorical F c-twisted OFG-form. In particular, if Fπ/F is

a tame G-extension, then (Oπ, OFG; rG) is a categorical F c-twisted OFG-form. Similarly, if

v is any place of F , then (still assuming Fπ/F to be tame) (Oπ,v, OFvG; rG) is a categorical

F c
v -twisted OFvG-form. We shall mainly be concerned with twisted forms of these types in

this paper. �

We write K0(A,Λ) for the Grothendieck group associated to the fibre product category

P(A)×P(A⊗RΛ) P(A), and we write [M,N ; ξ] for the isomorphism class of the twisted form

(M,N ; ξ) in K0(A,Λ). The group K0(A,Λ) is often called the relative K-group with respect

to the homomorphism A → Λ. Recall (see [32, Theorem 15.5]) that there is a long exact

sequence of relative algebraic K-theory:

K1(A) → K1(A⊗R Λ)
∂1

A,Λ−−→ K0(A,Λ)
∂0

A,Λ−−→ K0(A) → K0(A⊗R Λ). (5.1)

The first and last arrows in this sequence are afforded by extension of scalars from R to

Λ. The map ∂0
A,Λ is defined by

∂0
A,Λ([M,N ;λ]) = [M ]− [N ].

The map ∂1
A,Λ is defined by first recalling that the group K1(A⊗R Λ) is generated by pairs

of the form (V, φ), where V is a finitely generated, free, A⊗R Λ-module, and φ : V
∼−→ V is
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an A ⊗R Λ-isomorphism. If T is any projective A-submodule of V satisfying T ⊗A Λ ' V ,

then we set

∂1
A,Λ(V, φ) = [T, T ;φ].

It may be shown that this definition is independent of the choice of T .

We shall often ease notation and write e.g. ∂0 rather than ∂0
A,Λ when no confusion is likely

to result.

5.2. Idelic description and localisation. [16, Chapter II, §1]. Let us retain the notation

established above, and suppose in addition that we now work over a number field F . The

reduced norm map

nrd : (FG)× → Z(FG)×

induces isomorphisms

K1(FG) ' nrd(K1(FG)) ' nrd((FG)×) ' Det((FG)×) ⊆ Z(FG)× (5.2)

and

K1(FvG) ' nrd(K1(FvG)) ' nrd((FvG)×) ' Det((FvG)×) ⊆ Z(FvG)× (5.3)

for each place v of F . In general the natural map K1(Av) → K1(FvG) is not injective, and

so the reduced norm map

nrd : K1(Av) → Z(Av)
×

is not an isomorphism (although it is surjective if Av is an OFv -maximal order in FvG). If

we write K1(Av)
′ for the image of K1(Av) in K1(FvG), then (5.3) induces isomorphisms

K1(Av)
′ ' nrd(K1(Av)

′) ' nrd((Av)
×) ' Det(A×

v ). (5.4)

We shall make frequent use of the identifications (5.2), (5.3) and (5.4) (as well as those

afforded by Proposition 4.5) in what follows, sometimes without explicit mention.

For each place v of F , we write

locv : K1(FG) → K1(FvG)

for the obvious localisation map.

Definition 5.3. We define the group of ideles J(K1(FG)) of K1(FG) to be the restricted

direct product over all places v of F of the groups Det(FvG)× ' K1(FvG) with respect to

the subgroups Det(OFvG)×. We define the group of finite ideles Jf (K1(FG)) in a similar

manner but with the restricted direct product taken over all finite places v of F . �
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If E is any extension of F , then the homomorphism

Det(FG)× → J(K1(FG))×Det(EG)×; x 7→ ((locv(x))v, x
−1)

induces a homomorphism

∆A,E : Det(FG)× → J(K1(FG))∏
v Det(Av)×

×Det(EG)×.

Theorem 5.4. (a) There is a natural isomorphism

Cl(A)
∼−→ J(K1(FG))

Det(FG)×
∏

v Det(Av)×
.

(b) There is a natural isomorphism

hA,E : K0(A, E)
∼−→ Coker(∆A,E).

�

Proof. Part (a) is a well-known result of A. Fröhlich (see e.g [17, Chapter I]. Part (b) is

proved in [3, Theorem 3.5]. �

Remark 5.5. If [M,N ; ξ] ∈ K0(A, E) and M , N are locally free A-modules of rank one

(which is the only case that we shall need in this paper), then hA,E([M,N ; ξ]) may be

described explicitly as follows.

For each place v of F , we choose Av-bases mv of Mv and nv of Nv. We also choose an

FG basis n∞ of NF , as well as an FG-module isomorphism θ : MF
∼−→ NF . Then, for each

v, we may write nv = νv · n∞, with νv ∈ (FvG)×. As θ−1(n∞) is an FG-basis of MF , we

may write mv = µv · θ−1(n∞), with µv ∈ (FvG)×. Finally, writing θE for the map ME → NE

afforded by θ via extension of scalars from F to E, we have that (ξ ◦ θ−1
E )(n∞) = ν∞ · n∞

for some ν∞ ∈ (EG)×. Then a representative of hA,E([M,N ; ξ]) is given by the image of

[(µv ·ν−1
v )v, ν∞] in J(K1(FG))×K1(EG), and a representative of ∂0(hA,E([M,N ; ξ])) ∈ Cl(A)

is given by the image of (µv · ν−1
v )v ∈ J(K1(FG)). �

Remark 5.6. As Av = FvG when v is infinite (by convention), we see that

J(K1(FG))∏
v Det(Av)×

' Jf (K1(FG))∏
v-∞ Det(Av)×

.

Hence the infinite places of F in fact play no explicit role on the right-hand sides of the

isomorphisms given by Theorem 5.4, and so these isomorphisms may be formulated using

the finite idele group Jf (K1(FG)) of K1(FG) instead of the full idele group J(K1(FG)). �
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Lemma 5.7. Suppose that v is a place of F and that Ev is any extension of Fv. Then there

is an isomorphism

K0(Av, Ev) ' Det(EvG)×/Det(Av)
×.

Proof. This follows directly from the long exact sequence of relative K-theory (5.1) applied

to K0(Av, Ev), together with (5.3) and (5.4). �

For each place v of F , there is a localisation map on relative K-groups:

λv : K0(A, E) → K0(Av, Ev); [M,N ; ξ] 7→ [Mv, Nv; ξv],

where ξv denotes the map obtained from ξ via extension of scalars from E to Ev. It is not

hard to check that, in terms of the descriptions of K0(A, E) and K0(Av, Ev) afforded by

Theorem 5.4 and Lemma 5.7, the map λv is that induced by the homomorphism (which we

denote by the same symbol λv)

λv : J(K1(FG))×Det(EG)× → Det(EvG)×; [(xv)v, x∞] 7→ [xv · locv(x∞)].

Definition 5.8. We define the idele group J(K0(A, E)) of K0(A, E) to be the restricted

direct product over all places v of F of the groups K0(Av, Ev) with respect to the subgroups

K0(Av, OEv).

We define the group of finite ideles Jf (K0(A, F
c)) in a similar manner, but with the

restricted direct product taken over all finite places of F . �

Proposition 5.9. (a) The homomorphism

λ :=
∏

v

λv : K0(A, E) →
∏

v

K0(Av, Ev)

is injective.

(b) If F has no real places or if G admits no irreducible symplectic characters, then the

homomorphism

λf :=
∏
v-∞

λv : K0(A, E) →
∏
v-∞

K0(Av, Ev)

is injective.

(c) The image of λ lies in the idele group J(K0(A, E)).

Proof. (a) Suppose that α ∈ K0(A, E) lies in the kernel of λ, and let

[(xv)v, x∞] ∈ J(K1(FG))×Det(EG)×

be a representative of α. Then for each v, we have

xv · locv(x∞) ∈ Det(Av)
× ⊆ Det(FvG)×. (5.5)



30 A. AGBOOLA AND L. R. MCCULLOH

Since xv ∈ Det(FvG)× ⊆ Z(FvG)×, we see that locv(x∞) ∈ Z(FvG)× for each v. Hence

x∞ ∈ Z(FG)×, and so via the Hasse–Schilling norm theorem (see [33, Theorem 7.6] or [11,

Theorem 7.8]) we deduce that x∞ ∈ Det(FG)×. Hence α is also represented by the idele

[(locv(x∞))v, x
−1
∞ ] · [(xv)v, x∞] = [(xv · locv(x∞))v, 1],

and now (5.5) and Theorem 5.4(b) imply that α = 0 in K0(A, E). Therefore λ is injective,

as claimed.

(b) The proof of this assertion is virtually identical to that of part (a). Using the same

notation as in the proof of part (a), we see that locv(x∞) ∈ Det(FvG)× ' Z(FvG)× for each

finite place v of F . This implies that x∞ ∈ Z(FG)×. Under our hypotheses, we have that

Det(FG)× ' Z(FG)×, and so x∞ ∈ Det(FG)×. The remainder of the argument proceeds

exactly as in the proof of part (a).

(c) If β = [M,N ; ξ] ∈ K0(A, E), then for all but finitely many places v, the isomorphism

ξv : M ⊗OF
Ev

∼−→ N ⊗OF
Ev obtained from ξ via extension of scalars from E to Ev restricts

to an isomorphism M ⊗OF
OEv

∼−→ N ⊗OF
OEv . Hence, for all but finitely many v, we have

that λv(β) ∈ K0(Av, OEv), and so λ(β) ∈ J(K0(A, E)), as asserted. �

6. Cohomological classes in relative K-groups

Recall that F is a number field and that G is a finite group upon which ΩF acts trivially.

In this section we shall explain how the set of realisable classes R(OFG) ⊆ Cl(OFG) may

be studied via imposing local cohomological conditions on elements of the relative K-group

K0(OFG,F
c).

Definition 6.1. We define maps Ψ and Ψv (for each place v of F ) by

Ψ = ΨG : H1
t (F,G) → K0(OFG,F

c); [π] 7→ [Oπ, OFG; rG]

and

Ψv = ΨG,v : H1
t (Fv, G) → K0(OFvG,F

c
v ); [πv] 7→ [Oπv , OFvG; rG].

We set

KR(OFG) := Im(Ψ).

�

Definition 6.2. We define the pointed set of ideles J(H1
t (F,G)) of H1

t (F,G) to be the

restricted direct product over all places v of F of the pointed sets H1
t (Fv, G) with respect to

the pointed subsets H1
nr(Fv, G), and we write

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))
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for the map afforded by the maps Ψv : H1
t (Fv, G) → K0(OFvG,F

c
v ). �

In general, KR(OFG) is not a subgroup of K0(OFG,F
c). However, although H1

nr(Fv, G)

is in general merely a pointed set and not a group, the following result holds.

Proposition 6.3. Let v be any place of F , and write Ψnr
v for the restriction of Ψv to

H1
nr(Fv, G). Then Im(Ψnr

v ) is a subgroup of K0(OFvG,F
c
v ).

Proof. If v is infinite, then H1
nr(Fv, G) = 0, and so Im(Ψnr

v ) = 0. For finite v, the result

follows from Proposition 3.7 and Lemma 5.7. �

Definition 6.4. We say that an element x ∈ K0(OFG,F
c) is cohomological (respectively

cohomological at v) if x ∈ Im(Ψ) (respectively λv(x) ∈ Im(Ψv)). We say that x is locally

cohomological if x is cohomological at v for all places v of F . We write

LC(OFG) := λ−1(Im(Ψid))

for the subset of K0(OFG,F
c) consisting of locally cohomological elements. �

The long exact sequence of relative K-theory (5.1) applied to K0(OFG,F
c) yields a long

exact sequence

K1(OFG) → K1(F
cG)

∂1

−→ K0(OFG,F
c)

∂0

−→ Cl(OFG) → 0, (6.1)

where Cl(OFG) denotes the locally free class group of OFG. We set

ψ := ∂0 ◦Ψ,

and we write

R(OFG) := Im(ψ).

The second-named author has conjectured that that R(OFG) is always a subgroup of

Cl(OFG), and he has proved that this is true whenever G is abelian (see [21, Corollary

6.20]). The following conjecture gives a precise characterisation of the image KR(OFG) of

Ψ.

Conjecture 6.5. An element of K0(OFG,F
c) is cohomological if and only if it is locally

cohomological. In other words, we have that

KR(OFG) = LC(OFG).

�
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Let us now explain why Conjecture 6.5 implies that R(OFG) is a subgroup of Cl(OFG).

In order to do this, we shall require the following result which is equivalent to a theorem of

the second-named author when G is abelian, and whose proof relies on results contained in

[21] and [23]. Before stating the result, we remind the reader that
∏

v Im(Ψnr
v ) is not merely

a pointed set, but is in fact a subgroup of J(K0(OFG,F
c)) (see Proposition 6.3).

Theorem 6.6. Let

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Im(Ψnr
v )

denote the map of pointed sets given by the composition of the map Ψid with the quotient

homomorphism

J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Im(Ψnr
v )

.

Then the image of Ψid is in fact a group. Hence it follows that

λ[∂1(K1(F
cG))] · Im(Ψid)

is a subgroup of J(K0(OFG,F
c)).

This theorem will be proved in Section 12. It implies the following result.

Theorem 6.7. If Conjecture 6.5 holds, then R(OFG) is a subgroup of Cl(OFG).

Proof. It follows from the exact sequence (6.1) that R(OFG) is a subgroup of Cl(OFG) if

and only if ∂1(K1(F
cG)) ·KR(OFG) is a subgroup of K0(OFG,F

c). However, if Conjecture

6.5 is true, then Theorem 6.6 implies that

∂1(K1(F
cG)) ·KR(OFG) = ∂1(K1(F

cG)) · LC(OFG) (6.2)

is the kernel of the homomorphism

K0(OFG,F
c)

λ−→ J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] · Im(Ψid)
,

where the last arrow denotes the obvious quotient homomorphism. This implies the desired

result. �

We conclude this section with the following result on unramified locally cohomological

classes in K0(OFG,F
c). This will be used in the proofs of Theorem 16.4 and Theorem E of

the Introduction (see Section 16 below).
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Proposition 6.8. (a) Let L be the maximal, abelian, everywhere unramified (including at

all infinite places) extension of F of exponent |Gab|, and suppose that y ∈ K0(OFG,F
c) lies

in the kernel of the map

β : K0(OFG,F
c)

λF−→ J(K0(OFG,F
c)) → J(K0(OFG,F

c))∏
v Im(Ψnr

v )
.

Then y lies in the kernel of the extension of scalars map

eL : K0(OFG,F
c) → K0(OLG,F

c).

Hence, if (h+
F , |Gab|) = 1 (where h+

F denotes the narrow class number of F ), then L = F ,

and so β is injective.

(b) Suppose that G admits no non-trivial irreducible symplectic characters, or that F has

no real places, and that y ∈ K0(OFG,F
c) lies in the kernel of the map

βf : K0(OFG,F
c)

λf,F−−→ Jf (K0(OFG,F
c)) → Jf (K0(OFG,F

c))∏
v-∞ Im(Ψnr

v )
.

Then y lies in the kernel of the extension of scalars map

eM : K0(OFG,F
c) → K0(OMG,F

c),

where M is the maximal, abelian, unramified (at all finite places) extension of F of exponent

|Gab|.
Hence if (hF , |Gab|) = 1 then L = F , and so βf is injective.

Proof. (a) Suppose that y = [(yv), y∞] lies in the kernel of β, and let E/F be the smallest

Galois extension such that ΩE fixes y∞. For each place v of F , let w(v) be the place of E

afforded by our fixed choice of embedding F c → F c
v .

As y lies in the kernel of β, we have that yv · locv(y∞) ∈ Im(Ψnr
v ) for each place v. Hence,

for each v, locv(y∞) ∈ H(Z(FvG)) is an unramified Gab-resolvend over Fv (cf. Proposition

3.6). It follows that, for each v, the extension Ew(v)/Fv is unramified and that [Ew(v) : Fv]

divides |Gab|. This implies that E/F is unramified at all places v, and is of exponent dividing

|Gab|. Hence E ⊆ L, and so y∞ ∈ Det(LG)×.

Now since yv · locv(y∞) ∈ Im(Ψnr
v ) for each place v, we see that in fact yv · locv(y∞) ∈

Det(OLvG)×. Hence eL(y) is in the kernel of the localisation map

λL : K0(OLG,F
c) → J(K0(OLG,F

c)),

and since λL is injective (see Proposition 5.9(a)) it follows that eL(y) = 0.

The final assertion now follows immediately.
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(b) Virtually identical to the proof of (a), except that here, because either G admits no

irreducible symplectic characters or F has no real places, we may appeal to the injectivity

of the localisation map λf,M (see Proposition 5.9(b)) rather than that of λM . �

7. Local extensions I

The goal of this section is to describe how resolvends of normal integral bases of tamely

ramified, non-archimedean local extensions admit Stickelberger factorisations (see Definition

7.12). This reflects the fact that every tamely ramified G-extension of Fv is a compositum

of an unramified extension of Fv and a twist of a totally ramified extension of Fv. All of the

results in this section are based on unpublished notes of the second-named author.

For each finite place v of F , we fix a uniformiser $v of Fv, and we write qv for the order

of the residue field of Fv. We fix a compatible set of roots of unity {ζm}, and a compatible

set {$1/m
v } of roots of $v. So, if m and n are any two positive integers, then we have

(ζmn)m = ζn, and ($
1/mn
v )m = $

1/n
v .

Recall that F nr
v (respectively F t

v) denotes the maximal unramified (respectively tamely

ramified) extension of Fv. Then

F nr
v =

⋃
m≥1

(m,qv)=1

Fv(ζm), F t
v =

⋃
m≥1

(m,qv)=1

Fv(ζm, $
1/m
v ).

The group Ωnr
v := Gal(F nr

v /Fv) is topologically generated by a Frobenius element φv which

may be chosen to satisfy

φv(ζm) = ζqv
m , φv($

1/m
v ) = $1/m

v

for each integer m coprime to qv. Our choice of compatible roots of unity also uniquely

specifies a topological generator σv of Gal(F t
v/F

nr
v ) by the conditions

σv($
1/m
v ) = ζm ·$1/m

v , σv(ζm) = ζm

for all integers m coprime to qv. The group Ωt
v := Gal(F t

v/Fv) is topologically generated by

φv and σv, subject to the relation

φv · σv · φ−1
v = σqv

v . (7.1)

While reading the remainder of this section (especially Proposition 7.7 below), it may be

helpful for the reader to keep in mind the statement and proof of the following well-known

result which provides some motivation for a number of subsequent constructions.
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Proposition 7.1. Set L := Fv. Let n be a positive integer with (n, qv) = 1, and suppose

that µn ⊆ L. Set E = L($
1/n
v ), Γ = Gal(E/L) = Z/nZ, and β =

∑n−1
i=0 $

i/n
v . Then

OE = OLΓ · β.

Proof. We first observe that plainly OLΓ · β ⊆ OE, as β ∈ OE.

Let χ denote the Kummer character of Γ, defined by

χ(γ) =
γ($

1/n
v )

$
1/n
v

∈ µn

for each γ ∈ Γ. Then Γ̂ = 〈χ〉, and for each 0 ≤ j ≤ n− 1, we have(∑
γ

χj(γ)γ−1

)
· β =

(∑
γ

χj(γ)γ−1

)
·

(
n−1∑
i=0

$i/n
v

)

=
n−1∑
i=0

(∑
γ

χj(γ) · χ−i(γ) ·$i/n
v

)
= n ·$j/n

v .

As n ∈ O×
L , we therefore see that {$j/n

v }n−1
j=0 ⊆ OLΓ · β, which implies that OE ⊆ OLΓ · β.

This implies the desired result. �

Definition 7.2. For each finite place v of F , we define

Σv(G) := {s ∈ G | sqv ∈ c(s)}

(recall that c(s) denotes the conjugacy class of s in G). Plainly if s ∈ Σv(G), then both c(s)

and 〈s〉 are subsets of Σv(G). Let us also remark that if s ∈ Σv(G), then the order |s| of s

is coprime to qv. �

Definition 7.3. If s ∈ G, we set

βs :=
1

|s|

|s|−1∑
i=0

$i/|s|
v ;

note that βs depends only upon |s|, and so in particular we have

βs = βg−1sg

for every g ∈ G. We define ϕv,s ∈ Map(G,OF c
v
) by setting

ϕv,s(g) =

σi
v(βs) if g = si;

0 if g /∈ 〈s〉.
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Then

rG(ϕv,s) =

|s|−1∑
i=0

ϕv,s(s
i)s−i =

|s|−1∑
i=0

σi
v(βs)s

−i. (7.2)

We note that for each g ∈ G, we have

rG(ϕv,g−1sg) = g−1 · rG(ϕv,s) · g, (7.3)

and so

Det(rG(ϕv,g−1sg)) = Det(rG(ϕv,s)), (7.4)

i.e. the element Det(rG(ϕv,s)) depends only upon the conjugacy class c(s) of s in G. We

remark that it will be shown later as a consequence of properties of the Stickelberger pairing

that Det(rG(ϕv,s)) in fact determines the subgroup 〈s〉 of G up to conjugation (see Remark

4.2 and Proposition 10.5(b)).

We shall see that generators of inertia subgroups of tame Galois G-extensions of Fv lie

in Σv(G), and that the elements ϕv,s for s ∈ G with (|s|, qv) = 1 may be used to construct

normal integral basis generators of tame (and of course totally ramified) Galois G-extensions

of F nr
v . �

In order to ease notation, we shall now set L := Fv and O := OL, and we shall drop the

subscript v from our notation for the rest of this section.

Suppose now that Lπ/L is a tamely ramified Galois G-extension of L, corresponding

to π ∈ Hom(Ωt, G). We are going to describe the second-named author’s decomposition of

resolvends of normal integral basis generators of Lπ/L (see [23] and also [7, Section 6]). When

G is abelian, this decomposition is an analogue of a version of Stickelberger’s factorisation

of Gauss sums.

Write s := π(σ), t := π(φ); then t · s · t−1 = sq, and so s ∈ Σ(G). We define πr, πnr ∈
Map(Ωt, G) by setting

πr(σ
mφn) = π(σm) = sm, (7.5)

πnr(σ
mφn) = π(φn) = tn. (7.6)

If ωi ∈ Ωt (i = 1, 2) with ωi = σmi ·φni , then a straightforward calculation using (7.1) shows

that

ω1 · ω2 = σm1+m2qn1 · φn1+n2 .

This implies that πnr ∈ Hom(Ωnr, G). Plainly we have

π(ω) = πr(ω) · πnr(ω) (7.7)
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for every ω = σm · φn ∈ Ωt. The map πnr ∈ Hom(Ωnr, G) corresponds to an unramified

Galois G-extension Lπnr of L (see Remark 7.10 below for a more detailed discussion of this

point). Since Lπnr/L is unramified, Oπnr is a free OLG-module. Let anr be any normal

integral basis generator of this extension. Note that rG(anr) ∈ H(OG), because Lπnr/L is

unramified (see Corollary 3.3(iv)).

Definition 7.4. Let G(πnr) denote the group G with Ωt-action given by

ω(g) = πnr(ω) · g · πnr(ω)−1

for ω ∈ Ωt and g ∈ G. �

Lemma 7.5. The map πr is a G(πnr)-valued 1-cocycle of Ωt.

Proof. Suppose that ω1, ω2 ∈ Ωt. Then since πnr ∈ Hom(Ωnr, G) and π = πr · πnr, a

straightforward calculation shows that

πr(ω1ω2) = πr(ω1) · πnr(ω1) · πr(ω2) · πnr(ω1)
−1,

and this establishes the desired result. �

Definition 7.6. We write πrG(πnr) for the set G endowed with the following action of Ωt:

for every g ∈ G and ω ∈ Ωt we have

gω = πr(ω) · πnr(ω) · g · πnr(ω)−1.

Lemma 7.5 implies that if ω1, ω2 ∈ Ωt, then

g(ω1ω2) = (gω2)ω1 .

We set

Lπr(πnr) := MapΩt(πrG(πnr), L
t).

The algebra (LtG(πnr))
Ωt

acts on Lπr(πnr) via the rule

(α · a)(h) =
∑
g∈G

αg · a(h · g)

for all h ∈ G and α =
∑

g∈G αg · g ∈ (LtG(πnr))
Ωt

. �

Proposition 7.7. (a) Recall that s ∈ Σ(G). We have that ϕs ∈ Lπr(πnr).

(b) Set

A(πnr) = (OLcG(πnr))
Ωt

,

and let Oπr(πnr) be the integral closure of OL in Lπr(πnr). Then

A(πnr) · ϕs = Oπr(πnr).
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(c) For any αr ∈ Lπr(πnr) and ω ∈ Ωt, we have

rG(αr)
ω = πnr(ω)−1 · rG(αr) · π(ω).

Proof. (a) Suppose that ω = σm · φn ∈ Ωt. If g ∈ G and g /∈ 〈s〉, then we have that

ϕs(g
ω) = 0 = ϕs(g)

ω.

On the other hand, we also have

ϕs((s
i)ω) = ϕs((s

i)σmφn

)

= ϕs(s
m · tn · si · t−n)

= ϕs(s
m+iqn

)

= σm+iqn

(βs)

= (σm · φn) · σi(βs)

= ϕs(s
i)ω.

Hence ϕs ∈ Lπr(πnr), as claimed.

(b) The proof of this assertion is very similar to that of [7, Lemma 6.6], which is in turn

an analogue of [21, 5.4].

Set H = 〈s〉. Then Ωt acts transitively on πrH(πnr) ⊆πr G(πnr), and so the algebra

Lπr(πnr)
H := MapΩt(πrH(πnr), L

t)

may be identified with a subfield of Lt via identifying b ∈ Lπr(πnr)
H with xb = b(1) ∈ Lt.

We have that

xσm

b = b(sm), xφ
b = xb,

and so it follows that Lπr(πnr)
H is the subfield of Lt consisting of those elements of Lt that

are fixed by both φ and σ|s|. This implies that Lπr(πnr)
H = L[$1/|s|] (which in general will

not be normal over L), and that the integral closure of OL in Lπr(πnr)
H is equal to OL[$1/|s|].

Plainly βs ∈ OL[$1/|s|] (as |s| is invertible in OL), and the element βs corresponds to the

element ϕs|H ∈ Lπr(πnr)
H .

If we set A(πnr)H := (OLtH(πnr))
Ωt

, then for each integer k with 0 ≤ k ≤ |s| − 1, it is not

hard to check that|s|−1∑
i=0

ζ−ki
|s| s

i

φ

=

|s|−1∑
i=0

ζ−ki
|s| s

i,
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and so we see that

|s|−1∑
i=0

ζ−ki
|s| s

i ∈ A(πnr)H .

A straightforward computation (cf. [21, 5.4]) also shows that|s|−1∑
i=0

ζ−ki
|s| s

i

 · βs = $k/|s|.

It therefore follows that A(πnr)H · βs = OL[$1/|s|], and this in turn implies that

A(πnr) · ϕs = Oπr(πnr),

as asserted.

(c) We have

rG(αr)
ω =

∑
g∈G

αr(g)
ω · g−1

=
∑
g∈G

αr(g
ω) · g−1

=
∑
g∈G

αr(πr(ω) · πnr(ω) · g · π−1
nr (ω)) · g−1

=
∑
g∈G

αr(g) · πnr(ω)−1 · g−1 · πr(ω) · πnr(ω)

= πnr(ω)−1 · rG(αr) · π(ω),

as claimed. �

Corollary 7.8. For any αr ∈ Lπr(πnr) and αnr ∈ Lπnr , there is a unique α ∈ Lπ such that

rG(αnr) · rG(αr) = rG(α).

Proof. Proposition 7.7(c) implies that, for any ω ∈ Ωt, we have

[rG(αnr) · rG(αr)]
ω = rG(αnr) · rG(αr) · π(ω),

and so rG(αnr) · rG(αr) ∈ H(LG). As the map rG is bijective, it follows that there is a

unique α ∈ Map(G,Lc) such that

rG(αnr) · rG(αr) = rG(α),

and that α ∈ Lπ. �
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Theorem 7.9. If anr ∈ Lπnr is any normal integral basis generator of Lπnr/L, then the

element a ∈ Lπ defined by

rG(anr) · rG(ϕs) = rG(a) (7.8)

is a normal integral basis generator of Lπ/L.

Proof. The proof of this assertion is very similar to that of the analogous result in the abelian

case described in [21, (5.7), page 283]. We first observe that plainly OLG · a ⊆ Oπ because

anr ∈ Oπnr and ϕs ∈ Oπr(πnr). Hence, to prove the desired result, it suffices to show that

disc(OLG · a/OL) = disc(Oπ/OL).

This will in turn follow if we show that

disc(OLnrG · a/OLnr) = disc(Oπ/OL) ·OLnr .

Recall (see (2.3)) that we may write Lπ '
⊕

G/π(Ωt) L
π, where Lπ is a field with Gal(Lπ/L) '

π(Ωt). Under this last isomorphism, the inertia subgroup of Gal(Lπ/L) is isomorphic to 〈s〉.
The standard formula for tame field discriminants therefore yields

disc(Oπ/OL) = $(|s|−1)|π(Ωt)|/|s| ·OL

and so we have

disc(Oπ/O) = $(|s|−1)|G|/|s| ·OL. (7.9)

Now rG(anr) ∈ (OLnrG)×, and we see from the proof of Proposition 7.7(b) that

OLnrG · a = OLnrG · ϕs

= Oπr(πnr)⊗OL
OLnr

'
⊕
G/〈s〉

OLnr [$1/|s|].

Since

disc(OLnr [$1/|s|]/OLnr) = $|s|−1 ·OLnr ,

it follows that

disc(OLnrG · a/OLnr) = $(|s|−1)|G|/|s| ·OLnr

= disc(Oπ/O) ·OLnr ,

and this establishes the desired result. �
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Remark 7.10. We caution the reader that Lπnr is not in general equal to the maximal

unramified subextension of Lπ/L, even when Lπ is a field. Suppose, for example, that Lπ is

a field, and write L0 for the maximal unramified subextension of Lπ/L. Set f = [L0 : L].

Then it is not hard to check that

Lπnr '
|G|/f∏
i=1

L0, (7.10)

and so Lπnr is a Galois algebra with ‘core field’ L0. If α ∈ OL0 is such that OL0 =

OL[Gal(L0/L)] · α, then we may take anr = (α, 0, . . . , 0) under the identification given by

(7.10).

Suppose further that L contains the |s|-th roots of unity, and that Lπ = L0 · L($1/|s|).

To ease notation, write M := L($1/|s|), and set H = 〈s〉. Then a calculation similar to

(but simpler than) that given in the proof of Proposition 7.7(b) (see also Proposition 7.1)

shows that OM = OL[H] · βs, and it may be shown by computing the coefficient of 1G on

the left-hand side of (7.8) that a = α · βs, as is of course well-known. �

Remark 7.11. Suppose that s ∈ G with (|s|, q) = 1. A straightforward computation (cf.

the proofs of Propositions 7.1 and 7.7(b)) shows that for every ω ∈ ΩLnr , we may write

rG(ϕs)
ω = rG(ϕs) · ϕ̃s(ω)

where [ϕ̃s] ∈ H1
t (Lnr, G), and that ϕs is a normal integral basis generator of Lnr

ϕ̃s
/Lnr. We

have that [ϕ̃s1 ] = [ϕ̃s2 ] in H1
t (Lnr, G) if and only if c(s1) = c(s2). It is easy to show that

every element of H1
t (Lnr, G) is of the form [ϕ̃s] for some s ∈ G with (|s|, q) = 1 (cf. the

proof of Proposition 7.1 again). �

Definition 7.12. Let a be any normal integral basis generator of Lπ/L. Theorem 7.9 implies

that we may write

rG(a) = u · rG(anr) · rG(ϕs), (7.11)

where u ∈ (OG)× and anr is any normal integral basis generator of Lπnr/L. This may

be viewed as being a non-abelian analogue of a version of Stickelberger’s factorisation of

abelian Gauss sums (see [18, pages XXXV–XXXVI, and Theorems 135 and 136] and [21,

Introduction]), and so we call (7.11) a Stickelberger factorisation of rG(a). �

8. Local extensions II

Our goal in this section is to state certain results analogous to, (but very much simpler

than), those in Section 7, for extensions of Fv where v is an infinite place of F . This section

may therefore be viewed as being a ‘supplement at infinity’ to Section 7 (cf. [17, Chapter
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I, §3]). We remind the reader that, if v is infinite, by convention, we set OFvG = FvG and

H1
t (Fv, G) = H1(Fv, G).

Suppose first that v is a complex place of F . Then

K0(OFvG,F
c
v ) = 0, H1(Fv, G) = 0,

and we set Σv(G) = {1}. As this case is totally degenerate, we therefore suppose henceforth

in this section that v is real. We set L = Fv ' R, and for the remainder of this section, we

drop any further reference to v from our notation.

Set Gal(Lc/L) = 〈σ〉, and fix a primitive fourth root of unity ζ4 ∈ Lc (cf. the choice of

compatible roots of unity made at the beginning of Section 7), so Lc = L(ζ4).

Write

Σ(G) := {s ∈ G | s2 = e}. (8.1)

(Note that this set is in fact independent of v.) For each s ∈ Σ(G), we set

βs =
1

2
(1 + ζ4).

Define ϕs ∈ Map(G,Lc) by

ϕs(g) =

σi(βs) if g = si;

0 if g /∈ 〈s〉.

Then it is easy to check that

rG(ϕs) = βs · e+ σ(βs) · s =
1

2
[(1 + ζ4) · e+ (1− ζ4) · s].

Proposition 8.1. Suppose that π ∈ Hom(ΩL, G) with π(σ) = s. Then ϕs ∈ Lπ, and

Lπ = LG · ϕs.

Proof. The first assertion follows directly from the definition of ϕs. The second is an imme-

diate consequence of the fact that rG(ϕs) ∈ (LcG)×, because

1

2
((1 + ζ4) · e+ (1− ζ4) · s) ·

1

2
((1− ζ4) · e+ (1 + ζ4) · s) = 1.

�

Proposition 8.2. Suppose that χ ∈ RG, and write

χ |〈s〉= a · 1 + b · ε,

where ε denotes the unique non-trivial irreducible character of 〈s〉. Then

[Det(rG(ϕs))](χ) = (−1)b/2.
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Proof. This follows via a straightforward computation:

[Det(rG(ϕs))](χ) = 1(rG(ϕs))
a · ε(rG(ϕs))

b

= (βs + σ(βs))
a · (βs − σ(βs))

b

= 1a · ζb
4

= (−1)b/2.

�

Remark 8.3. In terms of the Stickelberger pairing 〈−,−〉G which will be introduced in the

next section, Proposition 8.2 asserts that

[Det(rG(ϕs))](χ) = (−1)〈χ,s〉G .

�

9. The Stickelberger pairing

Definition 9.1. The Stickelberger pairing is a Q-bilinear pairing

〈−,−〉G : QRG ×QG→ Q (9.1)

that is defined as follows.

Let ζ|G| be a fixed, primitive |G|-th root of unity (cf. the conventions established at the

beginning of Section 7), and suppose first that G is abelian. Then if χ ∈ Irr(G) and g ∈ G,

we may write χ(g) = ζr
|G| for some integer r. We define

〈χ, g〉G =

{
r

|G|

}
,

where {x} denotes the fractional part of x ∈ Q, and we extend this to a pairing on QRG×QG

via linearity. For arbitrary finite G, the Stickelberger pairing is defined via reduction to the

abelian case by setting

〈χ, g〉G = 〈χ |〈g〉, g〉〈g〉.

It is easy to check that both definitions agree when G is abelian. �

We shall now explain a different way of expressing the Stickelberger pairing using the

standard inner product on RG. In order to do this, we must introduce some further notation.

For each s ∈ G, we set ms := |G|/|s|. We define a character ξs of 〈s〉 by ξs(s
i) = ζ ims

|G| ; so

ξs is a generator of the group of irreducible characters of 〈s〉. Then it follows from Definition
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9.1 that

〈ξα
s , s

β〉〈s〉 =

{
αβ

|s|

}
.

Define

Ξs :=
1

|s|

|s|−1∑
j=1

jξj
s .

Proposition 9.2. Let (−,−)G denote the standard inner product on RG, and suppose that

χ ∈ RG, s ∈ G. Then we have

(χ, IndG
〈s〉(Ξs))G = 〈χ, s〉G.

Proof. Suppose that

χ |〈s〉=
|s|−1∑
j=0

ajξ
j
s ,

where aj ∈ Z for each j. Then we have

〈χ, s〉G =

|s|−1∑
j=0

aj〈ξj
s , s〉〈s〉

=

|s|−1∑
j=0

aj

{
j

|s|

}

=
1

|s|

|s|−1∑
j=0

ajj.

On the other hand, via Frobenius reciprocity, we have

(χ, IndG
〈s〉(Ξs))G = (χ |〈s〉,Ξ(s))〈s〉

=

|s|−1∑
j=0

ajξ
j
s ,

1

|s|

|s|−1∑
j=0

jξj
s


〈s〉

=
1

|s|

|s|−1∑
j=0

ajj

= 〈χ, s〉G,

and this establishes the desired result. �

In order to apply Poposition 9.2, we shall require the following result concerning traces of

sums of roots of unity.
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Lemma 9.3. Let n > 1 be an integer, and suppose that ζ is any primitive n-th root of unity.

Write

y :=
n−1∑
i=1

i · ζ i.

Then

TrQ(ζ)/Q(y) = −1

2
nφ(n),

where φ is the Euler φ-function. In particular, TrQ(ζ)/Q(y) 6= 0.

Proof. Each ζ i is a primitive d-th root of unity for some divisor d of n, and so it follows that

y =
∑
d|n

∑
1≤r≤d−1

(r,d)=1

nr

d
ζnr/d.

If d|n, then applying Möbius inversion to the identity xd − 1 =
∏

m|d Φm(x) (where Φm(x)

denotes the m-th cyclotomic polynomial) yields Φm(x) =
∏

m|d(x
m. − 1)µ(d/m), whence it

is not hard to show that TrQ(ε)/Q(ε) = µ(d) for any primitive d-th root ε of unity. Hence

TrQ(ζ)/Q(ε) = φ(n)µ(d)/φ(d), and so we have

TrQ(ζ)/Q(y) =
∑
d|n

∑
1≤r≤d−1

(r,d)=1

nr

d
TrQ(ζ)/Q(ζnr/d)

= n
∑
d|n

µ(d)

d

φ(n)

φ(d)
s(d),

where

s(d) =

1 if d = 1;∑
1≤i≤d−1

(i,d)=1
i if d > 1.

It is well known that

s(d) =
1

2
dφ(d)

for any integer d > 1 (see e.g. [6, Theorem 7.7]). It therefore follows that

TrQ(ζ)/Q(y) =
1

2
nφ(n)

∑
d|n
d>1

µ(d)

= −1

2
nφ(n),

as claimed. �

We can now state the following corollary to Proposition 9.2.



46 A. AGBOOLA AND L. R. MCCULLOH

Corollary 9.4. Suppose that s1 and s2 are elements of G.

(i) If c(s1) = c(s2), then 〈χ, s1〉G = 〈χ, s2〉G for all χ ∈ QRG.

(ii) If 〈χ, s1〉G = 〈χ, s2〉G for all χ ∈ QRG, then 〈s1〉 is conjugate to 〈s2〉 in G.

(iii) We have that 〈χ, s1〉G = 0 for all χ ∈ QRG if and only if s1 = e.

Proof. (i) Let χ ∈ RG and s ∈ G. It follows from the definition of the Stickelberger pairing

that for fixed χ, the value of 〈χ, s〉G depends only upon the conjugacy class c(s) of s in G.

Hence, if c(s1) = c(s2), then 〈χ, s1〉G = 〈χ, s2〉G for all χ ∈ QRG.

(ii) To show this we use Proposition 9.2. We first note that a straightforward computation

shows that the degree of the virtual character IndG
〈s〉(Ξs) is equal to |G|(|s| − 1)/2|s|, and so

we see that IndG
〈s〉(Ξs) determines |s|. Next, we remark that If {ti} is a set of representatives

of G/〈s〉, then for each g ∈ G, we have

[IndG
〈s〉(Ξs)](g) =

∑
t−1
i gti∈〈s〉

ξs(t
−1
i gti), (9.2)

and so the character IndG
〈s〉(Ξs) vanishes on all elements of G that are not conjugate to an

element of 〈s〉.
Proposition 9.2 implies that under our hypotheses, IndG

〈s1〉(Ξs1) = IndG
〈s2〉(Ξs2). Hence, to

prove the desired result, it suffices to show that [IndG
〈s1〉(Ξs1)](s1) 6= 0, because then

[IndG
〈s2〉(Ξs1)](s1) = [IndG

〈s1〉(Ξs1)](s1) 6= 0,

which implies (since |s1| = |s2|) that s1 is conjugate to a generator of 〈s2〉.
Now if sa

1 is any generator of 〈s1〉, then ξs1(s
a
1) is a primitive |s1|-th root of unity, and we

have

ξs1(s
a
1) =

|s1|−1∑
i=1

iξs1(s
a
1)

i.

Hence if ζ denotes any primitive |s1|-th root of unity, Lemma 9.3 implies that

TrQ(ζ)Q(ξs1(s
a
1)) = −1

2
|s1|φ(|s1|).

It follows from (9.2) that TrQ(ζ)/Q[IndG
s1

(Ξs1)](s1) is equal to a non-zero multiple of−|s1|φ(|s1|)/2,

and so is non-zero. This in turn implies that [IndG
s1

(Ξs1)](s1) is also non-zero, thereby estab-

lishing the desired result.

(iii) Proposition 9.2 implies that 〈χ, s1〉G = 0 for all χ ∈ QRG if and only if (IndG
〈s1〉(Ξs1), χ)G =

0 for all χ ∈ QRG. The latter condition holds if and only if IndG
〈s1〉(Ξs1) = 0 and this happens

if and only if s1 = e. �
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Remark 9.5. (a) The converse to Corollary 9.4(i) does not hold in general, e.g. it fails for

the dihedral group D2p of order 2p, where p > 3 is a prime. (See [30, Chapter 3] or [31] for

an explicit description of the Stickelberger pairing in this case.)

(b) Let χ1, . . . , χd (respectively c1, . . . , cd) be the set of irreducible characters (respec-

tively conjugacy classes) of G. We refer the reader to [5] for computations and conjectures

concerning the rank of the d × d-matrix [〈χi, cj〉G] associated to the Stickelberger pairing

〈−,−〉G when G is cyclic. �

10. The Stickelberger map and transpose homomorphisms

10.1. The Stickelberger map.

Definition 10.1. The Stickelberger map

Θ = ΘG : QRG → QG (10.1)

is defined by

Θ(χ) =
∑
g∈G

〈χ, g〉G · g.

�

We write G(−1) for the set G endowed with an action of ΩF via the inverse cyclotomic

character. Note that in general, for non-abelian G, this ΩF -action is not an action on G via

group automorphisms; it is only an action on the set G. However, it does induce an action

on the additive group QG(−1), which is all that we shall require.

The following proposition summarises some basic properties of the Stickelberger map.

Proposition 10.2. (a) We have that Θ(χ) ∈ Z(QG) for all χ ∈ RG, i.e. in fact

Θ : QRG → Z(QG).

(b) Suppose that χ ∈ RG. Then Θ(χ) ∈ ZG if and only if χ ∈ AG. Hence Θ induces a

homomorphism AG → ZG.

(c) The map

Θ : QRG → QG(−1)

is ΩF -equivariant.

Proof. The proofs of these assertions for arbitrary G are essentially the same as those in the

case of abelian G. See [21, Propositions 4.3 and 4.5].
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(a) It follows from the definition of the Stickelberger pairing that if χ ∈ RG and g ∈ G,

then 〈χ, g〉G is determined by the conjugacy class c(g) of g in G. This implies that Θ(RG) ⊆
Z(QG), as claimed.

(b) Suppose that χ ∈ RG and g ∈ G. Write

χ |〈g〉=
∑

η

aηη,

where the sum is over irreducible characters of 〈g〉, and set ζ|g| := ζ
|G|/|g|
|G| . Then

(det(χ))(g) = det(χ |〈g〉)(g)

=
∏

η

η(g)aη

=
∏

η

ζ
|g|〈aηη,g〉〈g〉
|g|

= ζ
|g|

P
η〈aηη,g〉〈g〉

|g|

= ζ
|g|〈χ,g〉G
|g| .

It now follows that 〈χ, g〉G ∈ Z for all g ∈ G if and only if χ ∈ Ker(det) = AG, as required.

(c) Let κ denote the cyclotomic character of ΩF , and suppose that χ ∈ RG is of degree

one. Then, for each g ∈ G and ω ∈ ΩF , we have

χω(g) = χ(gκ(ω)),

and so

〈χω, g〉G = 〈χ, gκ(ω)〉G. (10.2)

It follows via bilinearity that (10.2) holds for all χ ∈ RG and all g ∈ G. Hence, if we view

Θ(χ) as being an element of QG(−1), then

Θ(χω) =
∑
g∈G

〈χω, g〉G · g

=
∑
g∈G

〈χ, gκ(ω)〉G · g

=
∑
g∈G

〈χ, g〉G · gκ−1(ω)

= Θ(χ)ω.

�
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10.2. Transpose Stickelberger homomorphisms. We see from Proposition 10.2 that

dualising the homomorphism

Θ : AG → Z(ZG)

and twisting by the inverse cyclotomic character yields an ΩF -equivariant transpose Stickel-

berger homomorphism

Θt : Hom(Z(ZG(−1)), (F c)×) → Hom(AG, (F
c)×). (10.3)

Composing (10.3) with the sequence of homomorphisms

Hom(AG, (F
c)×)

∼−→ Z(F cG)×/Gab → Det(F cG)×

Det(OFG)×
→ K0(OFG,F

c), (10.4)

(where the first arrow is given by (4.6), the second via (the inverse of) (4.3), and the third

is via the homomorphism ∂1 of (6.1)) yields a homomorphism

KΘt : Hom(Z(ZG(−1)), (F c)×) → K0(OFG,F
c). (10.5)

Hence, if we write C(G(−1)) for the set of conjugacy classes of G endowed with ΩF -action

via the inverse cyclotomic character, and set

Λ(OFG) := HomΩF
(Z(ZG(−1)), OF c) = MapΩF

(C(G(−1)), OF c)

= Z(OF c [G(−1)])ΩF ;

Λ(FG) := HomΩF
(Z(ZG(−1)), F c) = MapΩF

(C(G(−1)), F c)

= Z(F c[G(−1)])ΩF ,

then KΘt induces a homomorphism (which we denote by the same symbol):

KΘt : Λ(FG)× → K0(OFG,F
c).

For each place v of F , we may apply the discussion above with F replaced by Fv to obtain

local versions

Θt
v : Hom(Z(ZG(−1)), (F c

v )×) → Hom(AG, (F
c
v )×) (10.6)

and

KΘt
v : Λ(FvG)× → K0(OFvG,F

c
v ) (10.7)

of the maps Θt and KΘt respectively. The homomorphism Θt commutes with local comple-

tion, and KΘt commutes with the localisation maps

λv : K0(OFG,F
c) → K0(OFvG,F

c
v ).
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Definition 10.3. We define the group of ideles J(Λ(FG)) of Λ(FG) to be the restricted

direct product over all places v of F of the groups Λ(FvG)× with respect to the subgroups

Λ(OFvG)×. �

For all finite places v of F not dividing the order of G, as OFvG is an OFv -maximal order

in FvG, we have that (cf. Proposition 4.5(ii))

Θt
v(Λ(OFvG)) ⊆ HomΩFv

(AG, (OF c
v
)×) = Det(H(OFvG)),

and so

KΘt
v(Λ(OFvG)) ⊆ K0(OFvG,OF c

v
).

It follows that the homomorphisms Θt
v combine to yield an idelic transpose Stickelberger

homomorphism

KΘt : J(Λ(FG)) → J(K0(OFG,F
c)). (10.8)

We shall see in the next subsection that the idelic homomorphism KΘt is closely related

to the homomorphism

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

of Definition 6.2.

10.3. Prime F-elements.

Definition 10.4. Let v be a place of F . For each element s 6= e of Σv(G) (see Definition

7.2 and (8.1)), define fv,s ∈ Λ(FvG)× by

fv,s(c) =


−1 if v is real and c = c(s);

$v, if v is finite and c = c(s);

1, otherwise.

(10.9)

Observe that fv,s is ΩFv -equivariant because s ∈ Σv(G) and so ΩFv fixes c(s) when s is

viewed as an element of G(−1). The element fv,s depends only upon the conjugacy class

c(s) of s. For all places v of F , we define fv,e ∈ (Λ(FvG))× to be the constant function

fv,e = 1.

Write

Fv := {fv,s | s ∈ Σv(G)},

and define the subset F ⊂ J(Λ(FG)) of prime F-elements by

f ∈ F ⇐⇒ f ∈ J(Λ(FG)) and fv ∈ Fv for all places v of F .
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Following [7, Definition 7.1], we define the support Supp(f) of f ∈ F to be set of all places

v of F for which fv 6= 1. We say that f is full if, for each s ∈ G there is a place v with

fv = fv,s. �

Our interest in the set F, as well as the relationship between KΘt and Ψid, is explained

by the following result.

Proposition 10.5. Let v be a place of F .

(a) For each s ∈ Σv(G), we have

Det(rG(ϕv,s)) = KΘt
v(fv,s)

in K0(OFvG,F
c
v ).

(b) Suppose that s1, s2 ∈ Σv(G) with

Det(rG(ϕv,s1)) = Det(rG(ϕv,s2)). (10.10)

Then 〈s1〉 is conjugate in G to 〈s2〉.
(c) Suppose that v is finite. Let π1, π2 ∈ Hom(ΩFv , G) with [πi] ∈ H1

t (Fv, G) for each i,

and set si = πi(σv) (cf. (7.5)). Let ai be a normal integral basis generator of Fv,πi
/Fv, and

let

rG(ai) = ui · rG(ai,nr) · rG(ϕsi
)

be a Stickelberger factorisation of rG(ai) (see Definition 7.12). Suppose that

Det(rG(a1)) ·Det(rG(a2))
−1 ∈ Det((OF c

v
G)×). (10.11)

Then

Det(rG(ϕs1)) = Det(rG(ϕs2))

and for some integer m and some h ∈ G, the equality

π1(ω) = h · π2(ω)m · h−1

holds for all ω ∈ Iv.

Proof. (a) The proof of this assertion is very similar to that of [21, Proposition 5.4].

It suffices to show that the equality

Det(rG(ϕv,s)) = Θt
v(fv,s)

holds in Hom(AG, (F
c
v )×).
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Let χ ∈ RG, and write

χ |<s>=
∑

η

aηη,

where the sum is over irreducible characters η of 〈s〉.
Suppose first that v is finite. Using (7.2), we see that (cf. [21, Proposition 5.4])

[Det(rG(ϕv,s))](χ) =
∏

η

|s|−1∑
i=0

σi
v(βs)η(s

−i)

aη

= $
〈
P

η aηη,s〉〈s〉
v

= $〈χ,s〉G
v , (10.12)

and so it follows that

[Det(rG(ϕv,s))](α) = $〈α,s〉G
v

for all α ∈ AG.

If v is real, then then the proof of Proposition 8.2 shows directly that

[Det(rG(ϕv,s))](χ) = (−1)〈χ,s〉G ,

and so we have

[Det(rG(ϕv,s))](α) = (−1)〈α,s〉G

for all α ∈ AG in this case also.

Now suppose that v is either finite or real. If α ∈ AG, then we have

(Θt
v(fv,s))(α) = fv,s(Θ(α))

= fv,s

(∑
g∈G

〈α, g〉G · g

)
=
∏
g∈G

fv,s(g)
〈α,g〉G

=

$
〈α,s〉G
v , if v is finite;

(−1)〈α,s〉G , if v is real.

The desired result now follows.

(b) The proof of (a) above shows that if (10.10) holds, then

〈χ, s1〉G = 〈χ, s2〉G

for every χ ∈ RG. It therefore follows from Corollary 9.4 that 〈s1〉 is conjugate in G to 〈s2〉.
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(c) Observe that (10.11) holds if and only if

Det(rG(ϕs1)) ·Det(rG(ϕs2)
−1) ∈ Det((OF c

v
G)×), (10.13)

and the proof of part (a) (see (10.12)) implies that (10.13) holds if and only if

Det(rG(ϕs1)) = Det(rG(ϕs2)).

Part (b) therefore implies that 〈s1〉 and 〈s2〉 are conjugate. Hence

s1 = h · sm
2 · h−1

for some m ∈ Z and h ∈ G, and so

rG(ϕs1) = h · rG(ϕsm
2
) · h−1

(see (7.3)).

For any ω ∈ ΩF nr
v

, we have

πi(ω) = rG(ai)
−1 · rG(ai)

ω = rG(ϕsi
)−1 · rG(ϕsi

)ω.

Applying the map F c
vG→ F c

vG defined by
∑

g agg 7→
∑

g agg
m to this equality (when i = 2)

yields

π2(ω)m = rG(ϕsm
2
)−1 · rG(ϕsm

2
)ω.

The final assertion now follows. �

10.4. The Stickelberger pairing revisited. In this subsection we shall briefly describe

an alternative definition of the Stickelberger pairing that involves a direct connection with

resolvends of local normal integral basis generators. This will not be used in the sequel.

Let v be a finite place of F . There is a natural pairing

{−,−}G,v : Irr(G)×H1(F nr
v , G) → Q/Z; (χ, [π]) 7→ [v(Det(rG(a(π)))(χ))], (10.14)

where a(π) is any normal basis generator of F nr
v,π/F

nr
v . Recall that every element ofH1

t (F nr
v , G)

is of the form ϕ̃v,s for some s ∈ G with v - |s| (see Remark 7.11). The restriction of {−,−}G,v

to Irr(G)×H1
t (F nr

v , G) yields a refined pairing

{−,−}(1)
G,v : Irr(G)×H1

t (F nr
v , G) → Q; (χ, ϕ̃v,s) 7→ v(Det(rG(ϕv,s))(χ)). (10.15)

This leads to the following definition.

Definition 10.6. Suppose that v is finite and that v - |G|. We define a pairing

[−,−]G,v : Irr(G)×G→ Q; (χ, g) 7→ v(Det(rG(ϕv,g))(χ)), (10.16)

and we extend this to a pairing on QRG ×QG via linearity. �
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Proposition 10.7. Suppose that v is finite and that v - |G|. Then for each χ ∈ Irr(G) and

g ∈ G, we have

[χ, g]G,v = [χ |〈g〉, g]〈g〉,v. (10.17)

Proof. Set H := 〈g〉. The property (10.17) is a direct consequence of the fact that the

restriction map RG → RH induces a homomorphism Hom(RH , (F
c
v )×) → Hom(RG, (F

c
v )×)

such that the following diagram commutes:

(F c
vH)×

⊆−−−→ (F c
vG)×yDet

yDet

Hom(RH , (F
c
v )×) −−−→ Hom(RG, (F

c
v )×)

(see e.g. [15, p. 436] or [17, p. 118]). �

Proposition 10.8. Suppose that v is finite and that v - |G|. Then for each χ ∈ Irr(G) and

g ∈ G, we have

[χ, g]G,v = 〈χ, g〉G. (10.18)

In particular, [−,−]G,v is independent of our choice of v.

Proof. Proposition 10.7 implies that we may assume that G is cyclic. The equality (10.18)

may then be established via an argument identical to that used in the proof of Proposition

10.5(a) (see also [21, Proposition 5.4]). �

11. Modified ray class groups

Definition 11.1. Let a be an integral ideal of OF . For each finite place v of F , recall that

Ua(OF c
v
) := (1 + aOF c

v
) ∩ (OF c

v
)×.

We define

U ′
a(Λ(OFvG)) ⊆ Λ(FvG)× = MapΩFv

(C(G(−1)), (F c
v )×)

by

U ′
a(Λ(OFvG)) :=

{
gv ∈ Λ(FvG)× | gv(c) ∈ Ua(OF c

v
) ∀c 6= 1

}
(with gv(1) allowed to be arbitrary).

Set

U ′
a(Λ(OFG)) :=

(∏
v

U ′
a(Λ(OFvG))

)
∩ J(Λ(FG)).

�
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Definition 11.2. For each real place v of F , we define

Λ(FvG)×+ := {gv ∈ Λ(FvG)× | gv(c) ∈ R×
>0 for all c ∈ C(G(−1))}

(with gv(1) allowed to be arbitrary).

If v is complex, we set Λ(FvG)×+ := Λ(FvG)×. We define

U ′
∞(Λ(OFG)) :=

∏
v|∞

Λ(FG)×

 ∩ J(Λ(FG)),

and

U ′
∞(Λ(OFG))+ :=

∏
v|∞

Λ(FG)×+

 ∩ J(Λ(FG)).

�

Definition 11.3. The modified ray class group modulo a of Λ(OFG) is defined by

Cl′a(Λ(OFG)) :=
J(Λ(FG))

Λ(FG)× · U ′
a(Λ(OFG)) · U ′

∞(Λ(OFG))
.

The modified narrow ray class group modulo a is defined by

Cl′a
+
(Λ(OFG)) :=

J(Λ(FG))

Λ(FG)× · U ′
a(Λ(OFG)) · U ′

∞(Λ(OFG))+

.

We refer to the elements of Cl′a(Λ(OFG)) (respectively Cl′a
+(Λ(OFG))) as the modified ray

classes (respectively modified narrow ray classes) of Λ(OFG) modulo a. �

Remark 11.4. Fix a set of representatives T of ΩF\C(G(−1)), and for each t ∈ T , let F (t)

be the smallest extension of F such that ΩF (t) fixes t. Then the Wedderburn decomposition

of Λ(FG) is given by

Λ(FG) = MapΩF
(C(G(−1)), F c) '

∏
t∈T

F (t), (11.1)

where the isomorphism is induced by evaluation on the elements of T .

The group Cl′a(Λ(OFG)) (respectively Cl′a
+(Λ(OFG))) above is finite, and is isomorphic

to the product of the ray class groups Cla(OF (t)) (respectively the narrow ray class groups

Cl+a (OF (t))) modulo a of the Wedderburn components F (t) of Λ(FG) with t 6= 1. There is

a natural surjection

Cl′a
+
(Λ(OFG)) → Cl′a(Λ(OFG))

with kernel an elementary abelian 2-group.
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If |G| is odd, then (as no non-trivial element of G is conjugate to its inverse), F (t) has no

real places when t 6= 1, and so Cla(OF (t)) = Cl+a (OF (t)). Hence we have

Cl′a
+
(Λ(OFG)) = Cla(Λ(OFG))

whenever G is of odd order. �

Proposition 11.5. Let a be any integral ideal of OF . Then the inclusion F → J(Λ(FG))

induces a surjection F → Cl′a
+(Λ(OFG)). In particular, each modified narrow ray class

modulo a of Λ(OFG) contains infinitely many elements of F.

Proof. Let I(Λ(OFG)) denote the group of fractional ideals of Λ(OFG). Then via the Wed-

derburn decomposition (11.1) of Λ(FG), we see that each fractional ideal B in Λ(OFG) may

be written in the form B = (Bt)t∈T , where each Bt is a fractional ideal of OF (t). For each

conjugacy class t ∈ T , let o(t) denote the ΩF -orbit of t in C(G(−1)), and write |t| for the

order of any element of t.

For each idele ν ∈ J(Λ(FG)), let

co(ν) := [co(ν)t]t∈T ∈ I(Λ(OFG)) '
∏
t∈T

I(OF (t))

denote the ideal obtained by taking the idele content of ν. If v is a place of F , we view Fv

as being a subset of F via the obvious embedding Λ(FvG)× ⊆ J(Λ(FG)), and we set

Fv := {co(fv) | fv ∈ Fv}.

Now suppose that v is finite, and consider the ideal

co(fv,s) = [co(fv,s)t]t∈T

in I(Λ(OFG)). If c(s) /∈ o(t), then it follows from the definition of fv,s that co(fv,s)t = OF (t).

Suppose that c(s) ∈ o(t). Since s ∈ Σv(G), it follows that v(|s|) = 0 and that ΩFv fixes c(s).

Hence Fv(t) = Fv, and so we see that co(fv,s)t is a prime ideal of OF (t) of degree one lying

above v (cf. [21, pages 287–289]). Furthermore, if t ∈ T and if v is a finite place of F that

is totally split in F (t), then fv,s ∈ Fv for all c(s) ∈ o(t).
We therefore deduce that if v is finite, the set Fv consists precisely of the invertible prime

ideals p = (pt)t∈T of Λ(OFG) with pt1 a prime of degree one above v in F (t1) for some t1 ∈ T
with v(|t1|) = 0 and pt = OF (t) for all t 6= t1. For every t ∈ T , the narrow ray class modulo a

of F (t) contains infinitely many primes of degree one, and this implies that F surjects onto

Cl′a
+(Λ(OFG)) as claimed. �
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Our next result describes a transpose Stickelberger homomorphism on modified narrow

ray class groups Cl′a
+(Λ(OFG)) for a suitable choice of a. Before stating it, we remind the

reader that Proposition 6.3 implies that
∏

v Im(Ψnr
v ) is a subgroup of J(K0(OFG,F

c)).

Proposition 11.6. Let N be an integer, and set a := N · OF . Then if N is divisible by a

sufficiently high power of |G|, the idelic transpose Stickelberger homomorphism

KΘt : J(Λ(FG)) → J(K0(OFG,F
c))

induces a homomorphism

Θt
a : Cl′a

+
(Λ(OFG)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Im(Ψnr
v )

.

Proof. To show this, we first observe that Proposition 4.6 implies that if N is divisible by a

sufficiently high power of |G| and v is any finite place of F , then we have

Θt
v(U

′
a(Λ(OFvG))) ⊆ Det((OFvG)×/G) ⊆ Det(H(OFvG)) = Im(Ψnr

v ),

and so it follows that

KΘt(U ′
a(Λ(OFG))) ⊆

∏
v

Im(Ψnr
v )

in J(K0(OFG,F
c)).

Suppose that v is a real place of F and that h ∈ Λ(FvG)×+. Then for each χ ∈ RG, we

have (recalling that 〈χ, e〉G = 0)

Θt
v(h)(χ) =

∏
g∈G

h(c(g))〈χ,g〉G > 0,

and so Θt
v(h) ∈ Hom+

ΩFv
(RG, (F

c
v )×). This implies that KΘt(h) = 1 in K0(OFvG,F

c
v ). Hence

KΘt(U ′
∞(Λ(OFG))) = 1 in J(K0(OFG,F

c)).

It now follows that KΘt induces a homomorphism

Θt
a : Cl′a

+
(Λ(OFG)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Im(Ψnr
v )

,

as claimed. �

12. Proof of Theorem 6.6

In this section we shall prove Theorem 6.6. Recall that we wish to show that if

Ψid : J(H1
t (F,G)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Im(Ψnr
v )
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denotes the map of pointed sets given by the composition of the map Ψid with the quotient

homomorphism

q1 : J(K0(OFG,F
c)) → J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Im(Ψnr
v )

,

then the image of Ψid is in fact a group.

To show this, we choose an ideal a = N · OF as in Proposition 11.6, and we consider the

following diagram:

J(H1
t (F,G))

Ψid

y
F

⊂−−−→ J(Λ(FG))
KΘt

−−−→ J(K0(OFG,F
c))

q2

y q2

y q1

y
Cl′a

+(Λ(OFG)) Cl′a
+(Λ(OFG))

Θt
a−−−→ J(K0(OFG,F

c))

λ[∂1(K1(F cG))] ·
∏

v Im(Ψnr
v )

(12.1)

Here q2 denotes the obvious quotient map. Proposition 11.6 shows that the right-hand

square commutes, and Proposition 11.5 shows that the left-most vertical arrow is surjective.

It follows from Proposition 10.5(a) that

q1[KΘt(F)] = q1[Ψ
id(J(H1

t (F,G)))]

= Im Ψid.

On the other hand, we also have that

q1[KΘt(F)] = Θt
a(Cl′a

+
(Λ(OFG))),

which is a group. It therefore follows that Im(Ψid) is indeed a group, as claimed.

This completes the proof of Theorem 6.6. �

13. Realisable classes from field extensions

In this section, after first proving that the kernel of Ψ is finite, we explain how a slightly

weaker form of Conjecture B implies that every element of R(OFG) may be realised by the

ring of integers of a tame field (as opposed to merely a Galois algebra) G-extension of F .

Recall that G′ denotes the derived subgroup of G, and note that we may view H1(F,G′)

and H1(Fv, G
′) as being pointed subsets of H1(F,G) and H1(Fv, G) respectively via taking

Galois cohomology of the exact sequence of groups

0 → G′ → G→ Gab → 0.
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Recall also that we write H1
fnr(F,G

′) for the set of isomorphism classes of G′-Galois F -

algebras that are unramified at all finite places of F .

Proposition 13.1. (a) Let v be a finite place of F . Then Ker(Ψv) ⊆ H1
nr(Fv, G

′).

(b) Suppose that [π] ∈ Ker(Ψ). Then [π] ∈ H1
fnr(F,G

′) ⊆ H1(F,G). We have that Ker(Ψ)

is finite.

(c) Suppose that F/Q is at most tamely ramified at all primes dividing |G|. Then

H1
nr(F,G

′) ⊆ Ker(Ψ).

(d) Suppose that G has no irreducible symplectic characters or that F has no real places.

Suppose also that F/Q is at most tamely ramified at all primes dividing |G|. Then Ker(Ψ) =

H1
fnr(F,G

′).

Proof. (a) Let v be a finite place of F . Suppose that [πv] ∈ H1
t (Fv, G), and that Oπv =

OFvG · av. Recall (see Sections 5 and 6) that we have

Ψv : H1
t (Fv, G) → K0(OFvG,F

c
v ) ' Det(F c

vG)×

Det(OFvG)×
,

and that Ψv([πv]) = [Det(rG(av))] (see also Definition 4.1 and Remark 4.2). It follows that

Ψv([πv]) = 0 if and only if Det(rG(av)) ∈ Det(OFvG)×.

Hence, if Ψv([πv]) = 0, then for each ω ∈ ΩFv , we have

Det(rG(av)
−1) ·Det(rG(av))

ω = 1,

and so we deduce from (3.8) that [πv] lies in the kernel of the natural map H1(Fv, G) →
H1(Fv, G

ab) of pointed sets. This implies that [πv] ∈ H1(Fv, G
′). Finally, we see from (7.11)

and Proposition 10.5(c) that Det(rG(av)) ∈ Det((OFvG)×) only if [πv] ∈ H1
nr(Fv, G). We

now conclude that if [πv] ∈ Ker(Ψv), then [πv] ∈ H1
nr(Fv, G

′). This establishes part (a).

(b) Suppose that [π] ∈ H1(F,G) satisfies Ψ([π]) = 0. Then Ψv(locv([π])) = 0 for each

place v, and so it follows from part (a) that locv([π]) ∈ H1
nr(Fv, G

′) for all finite places

v of F . Therefore [π] ∈ H1(F,G′), and π is unramified at each finite place of F , i.e.

[π] ∈ H1
fnr(F,G

′). As there are only finitely many unramified extensions of F of bounded

degree, it follows that H1
fnr(F,G

′) is finite, and so Ker(Ψ) is finite, as claimed.

(c) Suppose that [π] ∈ H1
nr(F,G

′) ⊆ H1
t (F,G), and write Oπv = OFvG · av for each finite

place v of F . As π is unramified at v, it follows that Det(rG(av)) ∈ Det(OF nr
v
G)×. Since

locv([π]) lies in the kernel of the natural map H1(Fv, G) → H1(Fv, G
ab), we see from the

diagram (3.8) that the image of Det(rG(av)) in Z(FvG)×\H(Z(FvG)) is trivial, and so in

fact Det(rG(av)) ∈ [Det(OF nr
v
G)×]ΩFv . Note that Det(rG(av)) is defined over the finite,

unramified extension F πv
v of Fv (see (2.2)). Let L denote an arbitrary finite, unramified

extension of Fv.
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If v - |G|, then OLG is an OL-maximal order in LG, and we have (see (4.12))

[Det(OLG)×]ΩFv ' [HomΩL
(RG, (OF c

v
)×)]ΩFv

' HomΩFv
(RG, (OF c

v
)×)

' Det(OFvG)×.

If v | |G|, then because F/Q is at most tamely ramified at all primes dividing |G|, it follows

from M. J. Taylor’s fixed point theorem for group determinants (see e.g. [34, Chapter VIII])

that

[Det(OLG)×]ΩFv = Det(OFvG)×.

Hence, for each finite place v of F , we see that Det(rG(av)) ∈ Det(OFvG)×, and so Ψv([πv]) =

0 (cf. part (a) above).

Since H1
nr(Fv, G) = 0 for all infinite places of F , it follows that Ψv([πv]) = 0 for all places

v of F . This in turn implies that λ(Ψ([π])) = 0. As the localisation map λ is injective (see

Proposition 5.9(a)), it follows that Ψ([π]) = 0. Hence H1
nr(F,G

′) ⊆ Ker(Ψ), as claimed.

(d) The proof of this assertion is very similar to that of part (c) above, and so here we

shall be brief. Suppose that [π] ∈ H1
fnr(F,G

′). Arguing exactly as in part (c), we see that

Ψv([π]v) = 0 for all finite places v of F , which in turn implies that λf (Ψ([π])) = 0. Under

our hypotheses, Proposition 5.9(b) implies that the localisation map λf is injective, and so

Ψ([π]) = 0. Hence we see that H1
fnr(F,G

′) ⊆ Ker(Ψ), and so it follows from part (b) above

that in fact H1
fnr(F,G

′) = Ker(Ψ), as asserted. �

Definition 13.2. Suppose that x ∈ LC(OFG) (see Definition 6.4). We say that x is un-

ramified (respectively ramified) at a place v of F if λv(x) ∈ Im(H1
nr(Fv, G)) (respectively if

λv(x) /∈ Im(H1
nr(Fv, G))).

If S is any finite set of places of F , we denote the set of x ∈ LC(OFG) that are unramified

at all places in S by LC(OFG)S. �

Before stating our next result, it will be helpful to introduce the following notation.

Suppose that x ∈ LC(OFG) and let [(xv)v, x∞] ∈ J(K1(FG)) × Det(F cG)× be a represen-

tative of x. Then λ(x) ∈ J(K0(OFG,F
c)) is represented by the element (xv · locv(x∞)) ∈∏

v Det(F c
vG)×. Hence it follows from Theorem 7.9 and Proposition 10.5(a) that we have an

equality

[(xv · locv(x∞))] = [a(x)] ·KΘt(f(x)) (13.1)

in J(K0(OFG,F
c)), where a(x) = (a(x)v) ∈

∏
v Det(H(OFvG)) and f(x) ∈ F.
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Definition 13.3. We say that x ∈ LC(OFG) is fully ramified if f(x) is full (see Definition

10.4—note in particular that this does not mean that x is ramified at all places of F , which

would of course be absurd!). �

Let us also recall that ∂0(x) ∈ Cl(OFG) is represented by the idele (xv)v ∈ J(K1(FG))

(see Remark 5.5).

Proposition 13.4. Suppose that S is any finite set of places of F , and that x ∈ LC(OFG).

Then there exist infinitely many y ∈ LC(OFG)S with ∂0(y) = ∂0(x) in Cl(OFG). Hence we

have

∂0(LC(OFG)) = ∂0(LC(OFG)S). (13.2)

Proof. Let a be an ideal of F chosen as in Proposition 11.6 (so a is divisible by a sufficiently

high power of |G| for the homomorphism Θt
a to be defined). Proposition 11.5 implies that

there are infinitely many choices of g ∈ F such that Supp(g) is disjoint from S and g lies in

the same modified narrow ray class modulo a as f(x), i.e.

f(x) ≡ g (mod Λ(FG)× · U ′
a(Λ(OFG)) · U ′

∞(Λ(OFG))+).

Hence for any such g, we have

KΘt(f(x)) = KΘt(β · b · g)

where β ∈ Λ(FG)× and b = (bv) ∈ U ′
a(Λ(OFG))·U ′

∞(Λ(OFG))+. NowKΘt(β) ∈ ∂1(K1(F
cG))

(see (10.3), (10.4), and (10.5)), while KΘt(b) lies in the image of
∏

v Det(H(OFvG)) in

J(K0(OFG,F
c)), by virtue of our choice of a. We therefore see from (13.1) that we have the

equality

[(xv · locv(x∞))] ·KΘt(β)−1 = [a(x)] ·KΘt(b) ·KΘt(g)

in J(K0(OFG,F
c)). Then the class

y = [(xv · locv(x∞))] ·KΘt(β)−1

in J(K0(OFG,F
c)) satisfies the desired conditions.

The final assertion follows immediately from the exact sequence (6.1). �

Proposition 13.5. Suppose that S is any finite set of places of F , and that x ∈ LC(OFG).

Then there exist infinitely many y ∈ LC(OFG)S such that y is fully ramified and ∂0(y) =

∂0(x) in Cl(OFG).
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Proof. This is a generalisation of [20, Proposition 6.14], and it may be proved in the same

way as [7, Proposition 7.4].

We begin by constructing a full element h of F as follows. Let M/F be a finite Galois

extension such that ΩM acts trivially on C(G(−1)). For each s ∈ G, choose a place v(s)

of F that splits completely in M/F ; the Chebotarev density theorem implies that this

may be done so that the places v(s) are distinct and disjoint from S. Then the element

h =
∏

s∈G fv(s),s is full.

Next, we choose an ideal a of F as in Proposition 11.6 and observe that Proposition 11.5

implies that there are infinitely many choices of g ∈ F with Supp(g) disjoint from S∪Supp(h)

such that g lies in the same modified narrow ray class of Λ(OFG) modulo a as f(x) · h−1.

Then, for any such g, we have that

f(x) ≡ g · h (mod Λ(FG)× · Ua(Λ(OFG)) · U ′
∞(Λ(OFG))+),

and g ·h ∈ F is full. Now exactly as in the proof of Proposition 13.4 we may replace f(x) by

g ·h in (13.1), changing the other terms in the equality as needed, to obtain y ∈ K0(OFG,F
c)

satisfying the stated conditions. �

Theorem 13.6. Let S be any finite set of places of F , and suppose that Conjecture B holds

for LC(OFG)S, i.e. that

LC(OFG)S ⊆ KR(OFG) = Im(Ψ). (13.3)

Then R(OFG) is a subgroup of Cl(OFG). If c ∈ R(OFG), then there exist infinitely many

[π] ∈ H1
t (F,G) such that Fπ is a field and (Oπ) = c. The extensions Fπ/F may be chosen

to have ramification disjoint from S.

Proof. To prove the first assertion, it suffices to show that, under the given hypotheses, we

have

∂0(LC(OFG)) = R(OFG) (13.4)

(cf. the proof of Theorem 6.7, especially (6.2)).

We plainly have R(OFG) ⊆ ∂0(LC(OFG)). Suppose that x ∈ LC(OFG), and set cx =

∂0(x). Then Proposition 13.5 implies that there exists y ∈ LC(OFG)S with ∂0(y) = cx.

By hypothesis, we have y ∈ Im(Ψ), and so ∂0(y) = cx ∈ R(OFG). This implies that

∂0(LC(OFG)) ⊆ R(OFG). Hence (13.4) holds, and so R(OFG) is a subgroup of Cl(OFG),

as claimed.

Next, we observe that if c ∈ R(OFG), then (13.4) and Proposition 13.5 imply that there

are infinitely many x ∈ LC(OFG)S such that x is fully ramified and ∂0(x) = c. For each

such x, our hypotheses imply that there exists πx ∈ Hom(ΩF , G) with [πx] ∈ H1
t (F,G)
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and Ψ([πx]) = x. The set of primes that ramify in Fπx/F is equal to Supp(f(x)), and so

Fπx/F has ramification disjoint from S. As f(x) is full, we see that for each non-identity

element s ∈ G, there is a place v(s) ∈ Supp(f(x)) such that πx(σv(s)) ∈ c(s) (cf. (7.5)

and Proposition 10.5 (a) and (b)). Hence Im(πx) has non-trivial intersection with every

conjugacy class of G and so is equal to the whole of G, by a lemma of Jordan (see [28, p.

435, Theorem 4’]). Therefore πx is surjective, and so Fπx is a field. This establishes the

result. �

14. Abelian groups

In this section we shall prove that Conjecture 6.5 holds for abelian groups. We shall also

show that the map Ψ is injective in this case.

Let G be abelian, and suppose that L is any finite extension of F or of Fv for some place

v of F . As G is abelian, the reduced norm map induces isomorphisms

(LG)× ' Det(LG)×, (OLG)× ' Det(OLG)×, (LcG)× ' Det(LcG)×. (14.1)

For each finite place v of F , Lemma 5.7 and (14.1) imply that there are isomorphisms

K0(OFvG,F
c
v ) ' Det(F c

vG)×

Det(OFvG)×
' (F c

vG)×

(OFvG)×
.

Proposition 14.1. Let G be abelian, and suppose that v is a finite place of F . Then the

map Ψv is injective.

Proof. Suppose that [πv,i] ∈ H1
t (Fv, G) (i = 1, 2), with Oπv,i

= OFvG · av,i. Then Ψv([πv,i]) =

[rG(av,i)] in (F c
vG)×/(OFvG)×. Hence if Ψ([πv,1]) = Ψ([πv,2]), then we have rG(av,1) ·

rG(av,2)
−1 ∈ (OFvG)×. This implies that [π1,v] = [π2,v] in H1

t (Fv, G), and so it follows

that Ψv is injective, as claimed. �

Again because G is abelian, the pointed set of resolvends Ht(LG) is an abelian group, and

the exact sequences (3.3) and (3.4) show that there is an isomorphism

τ : H1
t (L,G)

∼−→ Ht(LG)

(LG)×
(14.2)

defined as follows: if [π] ∈ H1
t (L,G) with Lπ = LG · bπ, then τ([π]) = [rG(bπ)].

Note also that Theorem 5.4(b) and (14.1) imply that K0(OFG,F
c) is isomorphic to the

cokernel of the homomorphism

∆OF G,F c : (FG)× → J(FG)∏
v(OFvG)×

× (F cG)×
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induced by

(FG)× → J(FG)× (F cG)×; x 7→ ((locv(x))v, x
−1).

Theorem 14.2. Conjecture 6.5 is true when G is abelian.

Proof. Suppose that x ∈ LC(OFG), and let [(xv)v, x∞] ∈ J(FG) × (F cG)× be a repre-

sentative of x. We shall explain how to construct an element [π] ∈ H1
t (F,G) such that

λv(x) = λv(Ψ([π])) for all finite places v of F . Since G is abelian, and therefore admits no

irreducible symplectic characters, this will imply that x = Ψ([π]) (see Proposition 5.9(b)).

For each v, we have that xv · locv(x∞) ∈ Ht(FvG). As xv ∈ (FvG)×, this implies that

locv(x∞) ∈ Ht(FvG) for each v. It follows from Proposition 2.3 that x∞ ∈ H(FG), and

we see in addition that in fact x∞ ∈ Ht(FG). Hence x∞ is the resolvend of a normal basis

generator of a tame extension Fπ/F . Set πv := locv(π). Then for each finite v, we have

τ(Ψ−1
v (λv(x))) = [locv(x∞)] = τ([πv])

in Ht(FvG)/(FvG)×, which in turn implies that

λv(x) = Ψv([πv]) = λv(Ψ([π])).

Hence x = Ψ([π]), as required. �

Proposition 14.3. If G is abelian, then the map Ψ is injective.

Proof. Let [π] ∈ H1
t (Fv, G), and suppose that [(xv)v, x∞] ∈ J(K1(FG)) × (F cG)× is a

representative of Ψ([π]). Then it follows from the proof of Theorem 14.2 that τ([π]) = x∞

in Ht(FG)/(FG)×. Since τ is an isomorphism, we deduce that Ψ is injective. �

15. Neukirch’s Lifting Theorem

Our main purpose in this section is to describe certain results, mainly from [24], that will

be used in the proof of Theorem E. We refer the reader to [24] or [25, IX.5] for full details

regarding these topics.

LetD be an arbitrary finite group. Consider the category D of homomorphisms η : G → D

of arbitrary profinite groups G into D in which a morphism between two objects η1 : G1 → D

and η2 : G2 → D is defined to be a homomorphism ν : G1 → G2 such that η1 = η2 ◦ ν. We

say that two such morphisms νi : G1 → G2 (i = 1, 2) are equivalent if there is an element

k ∈ Ker(η2) such that ν1(ω) = k · ν2(ω) · k−1 for all ω ∈ G1. Write HomD(G1,G2) for the

set of equivalence classes of homomorphisms G1 → G2, and HomD(G1,G2)epi for the subset

of HomD(G1,G2) consisting of equivalence classes of surjective homomorphisms.
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Suppose now that we have an exact sequence

0 → B → G
q−→ D → 0

with B abelian, and that L is a number field or a local field. Let h : ΩL → D be a fixed

homomorphism. We view ΩL
h−→ D and G

q−→ D as being elements of D. The group D acts

on B via inner automorphisms, and this in turn induces an action of ΩL on B via h. We

write L(B) for the smallest extension of L such that ΩL(B) fixes B (i.e. L(B) is the field of

definition of B).

It may be shown that the group H1(L,B) acts on HomD(ΩL, G) in the following way. Let

z ∈ Z1(L,B) be any 1-cocycle representing [z] ∈ H1(L,B), and let ν ∈ Hom(ΩL, G) be any

homomorphism, representing an element [ν] ∈ HomD(ΩL, G). Define z · ν : ΩL → G by

(z · ν)(ω) = z(ω) · ν(ω)

for all ω ∈ ΩL. It is not hard to check that

h = q ◦ (z · ν),

and that the element [z ·ν] ∈ HomD(ΩL, G) is independent of the choices of z and ν. It may

also be shown that HomD(ΩL, G) is a principal homogeneous space over H1(L,B).

For a number field F , and a finite place v of F , we let HomD(ΩFv , G)nr denote the set

of classes of homomorphisms ΩFv → G that are trivial on Iv. We write Jf (HomD(ΩF , G))

for the restricted direct product over all finite places of F of the sets HomD(ΩFv , G) with

respect to the subsets HomD(ΩFv , G)nr.

Now we can state Neukirch’s Lifting Theorem.

Theorem 15.1. Let F be a number field and let h : ΩF → D be a fixed, surjective homo-

morphism. Suppose that

0 → B → G
q−→ D → 0

is an exact sequence for which B is a simple ΩF -module. (This implies that l · B = 0 for a

unique prime l.) Assume that the field of definition F (B) of B contains no non-trivial l-th

roots of unity, and that Jf (HomD(ΩF , G)) 6= ∅. Let S be any finite set of finite places of F .

Then the natural map

HomD(ΩF , G)epi →
∏
v∈S

HomD(ΩFv , G)

is surjective.

Proof. This is [24, Main Theorem, p. 148]. �
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The following result implies that HomD(ΩFv , G) 6= ∅ for all but finitely many v.

Proposition 15.2. ([24, Lemma 5]) Let F be a number field, and let v be a finite place of

F . Suppose that G1 → G2 is a surjective homomorphism of arbitrary profinite groups, and

that there exists an unramified homomorphism hv : ΩFv → G2. Then HomG2(ΩFv ,G1)nr 6= ∅,
and so HomG2(ΩFv ,G1) 6= ∅ also.

Proof. If hv is unramified, then hv factors through ΩFv/Iv ' Ẑ, and a map Ẑ → G2 may

always be lifted to a map Ẑ → G1 by lifting the image of a topological generator of Ẑ. �

We now turn to two results of a local-global nature that will play a role in the proof of

Theorem 16.4. In order to describe them, we let Γ be a finite abelian group equipped with

an action of ΩF such that Γ is a simple ΩF -module. Then l · Γ = 0 for a unique prime l.

Write F (Γ) for the field of definition of Γ.

Theorem 15.3. Let M/F be a Galois extension with F (Γ) ⊆M and µl * M , and let N /M

be a finite abelian extension. Let S be a finite set of finite places of F , and suppose given an

element yv ∈ H1(Fv,Γ) for each v ∈ S. Then there exists an element z ∈ H1(F,Γ) satisfying

the following local conditions:

(i) zv = yv for each v ∈ S.

(ii) If v /∈ S, then zv is cyclic (i.e. is trivialised by a cyclic extension of Fv), and if zv is

ramified, then v splits completely in N /F .

Proof. This is [24, Theorem 1]. �

In order to state our next result, we introduce the following notation.

Definition 15.4. Let T := {v1, . . . , vr} be any finite set of finite places of F containing all

places that ramify in F (Γ)/F and all places above l. Let pi denote the prime ideal of F

corresponding to vi. Proposition 4.8 implies that we may choose an integer N = N(T ) such

that for each 1 ≤ i ≤ r and for every place w of F (Γ) lying above vi, we have

HomΩF (Γ)w
(AΓ, UpN

i
(OF (Γ)c

w
)) ⊆ rag[HomΩF (Γ)w

(RΓ, O
×
F (Γ)c

w
)].

Set

a = a(T ) =
r∏

i=1

pi.

Let F (aN) denote the ray class field of F modulo aN . �
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Theorem 15.5. Let v /∈ T be any finite place of F that splits completely in F (aN), and

suppose that s is any non-trivial element of Γ. Then there is an element b = b(v; s) ∈
H1(F,Γ) satisfying the following local conditions:

(i) locvi
(b) = 0 for 1 ≤ i ≤ r;

(ii) b |Iv= ϕ̃v,s (see Remark 7.11);

(iii) b is unramified away from v.

Proof. Let p be the prime ideal of F corresponding to v. Our hypotheses on v imply that

p is principal, with p ≡ 1 (mod aN). Set M := F (Γ). As Γ is abelian, we have that

H(MΓ) ' HomΩM
(AΓ, (M

c)×) (cf. (4.6)). Let $ be a generator of p, and define ρ ∈
HomΩM

(AΓ, (M
c)×) by

ρ(α) = $〈α,s〉Γ .

(This homomorphism is ΩM -equivariant because ΩM fixes Γ.) Then ρ is the reduced re-

solvend of a normal basis generator of an extension Mπ(ρ)/M corresponding to [π(ρ)] ∈
H1(M,Γ). Since p ≡ 1 (mod aN), for each place w of M lying above a place vi in T , we

have

locw(ρ) ∈ HomΩMw
(AΓ, UpN

i
(OMc

w
)) ⊆ rag[HomΩMw

(RΓ, O
×
Mc

w
)],

and so it follows that locw(π(ρ)) = 0 (see (4.7)). In particular, π(ρ) is unramified at all

places above T .

For all places w′ of M not lying above T or v we have that

locw′(ρ) ∈ HomΩMw′
(AΓ, O

×
Mc

w′
),

and so π(ρ) is unramified at w′. This implies that π(ρ) is unramified away from v, since we

have already seen that π(ρ) does not ramify at any place above T . It is also easy to see that

b |Iw(v)
= ϕ̃w(v),s

for any place w(v) of M lying above v (cf. the proof of Proposition 10.5(a)).

As $ ∈ F , we have that π(ρ) ∈ H1(M,Γ)Gal(M/F ). Since ΓΩF = 0 (because Γ is a

simple ΩF -module), the restriction map H1(F,Γ) → H1(M,Γ) is injective and induces

an isomorphism H1(F,Γ) ' H1(M,Γ)Gal(M/F ). Hence π(ρ) is the image of an element

b ∈ H1(F,Γ) satisfying the conditions (i), (ii) and (iii) of the theorem. �
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16. Soluble groups

In this section we shall use Neukirch’s Lifting Theorem to prove a result (see Theorem

16.4 below) that implies Theorem E of the Introduction. In order to describe this result, it

will be helpful to formulate the following definition.

Definition 16.1. Let S be any finite (possibly empty) set of places of F . We shall say

that LC(OFG)S satisfies Property R if the following holds. Suppose given any fully ramified

x ∈ LC(OFG)S. For each finite place v of F , suppose also given a homomorphism πv,x ∈
Hom(ΩFv , G) such that [πv,x] ∈ H1

t (Fv, G) and λv(x) = Ψv([πv,x]). (Note that in general,

such a choice of πv,x is not unique.) Then there exists Π ∈ Hom(ΩF , G) with [Π] ∈ H1
t (F,G)

such that

(a) x = Ψ([Π]);

(b) Π |Iv= πv,x |Iv for each finite place v of F .

(So in particular, x is cohomological.) �

Proposition 16.2. If G is abelian, then LC(OFG) satisfies Property R.

Proof. We shall in fact prove a slightly stronger result. Suppose that G is abelian, and let

x ∈ LC(OFG). (Note that we do not assume that x is fully ramified.) Then Theorem 14.2

implies that x is cohomological. As G is abelian, the maps Ψ and Ψv are injective (see

Propositions 14.1 and 14.3). Hence it follows that there is a unique [Π] ∈ H1
t (F,G) such

that x = Ψ([Π]), and a unique [πv,x] ∈ H1
t (Fv, G) such that λv(x) = Ψv([πv,x]). We therefore

see that

λv(x) = Ψv([Πv]) = Ψ([πv,x]),

and so Πv = πv,x. This implies that LC(OFG) satisfies Property R. �

Theorem 16.3. Suppose that LC(OFG)S satisfies Property R. Then R(OFG) is a subgroup

of Cl(OFG). If c ∈ R(OFG), then there exist infinitely many [π] ∈ H1
t (F,G) such that Fπ

is a field and (Oπ) = c. The extensions Fπ/F may be chosen to have ramification disjoint

from S.

Proof. This is an immediate consequence of Theorem 13.6. �

Our proof of Theorem E rests on the following result.

Theorem 16.4. Suppose that there is an exact sequence

0 → B → G→ D → 0,
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where B is an abelian minimal normal subgroup of G with l ·B = 0 for an odd prime l. Let

S be any finite set of finite places of F containing all places dividing |G|. Assume that the

following conditions hold:

(i) The set LC(OFD)S satisfies Property R;

(ii) We have (|G|, hF ) = 1, where hF denotes the class number of F ;

(iii) Either G admits no irreducible symplectic characters, or F has no real places;

(iv) The field F contains no non-trivial l-th roots of unity.

Then LC(OFG)S satisfies Property R.

Proof. We shall establish this result in several steps, one of which crucially involves Neukirch’s

Lifting Theorem (see Theorem 15.1).

Suppose that x ∈ LC(OFG)S is fully ramified. For each finite place v of F , choose

πv,x ∈ Hom(ΩFv , G) such that [πv,x] ∈ H1
t (Fv, G) with

λv(x) = Ψv([πv,x]).

The choice of πv,x is not unique. However, if a(πv,x) is any normal integral basis generator

of Fπv,x/Fv, with Stickelberger factorisation (see Definition 7.12)

rG(a(πv,x)) = u(a(πv,x)) · rG(anr(πv,x)) · rG(ϕ(πv,x)), (16.1)

then Proposition 10.5(c) implies that Det(rG(ϕ(πv,x))) is independent of the choice of πv,x.

Hence, if ϕ(πv,x) = ϕv,s, say, then it follows from Proposition 10.5(b) that the subgroup 〈s〉
of G (up to conjugation) and the determinant Det(rG(ϕv,s)) of the resolvend rG(ϕv,s) do not

depend upon the choice of πv,x.

We write q : G→ D for the obvious quotient map, and we use the same symbol q for the

induced maps

K0(OFG,F
c) → K0(OFD,F

c), H1(F,G) → H1(F,D),

H1(Fv, G) → H1(Fv, D).

Set

x := q(x), πv,x := q(πv,x).

Then x ∈ LC(OFD)S with

λv(x) = ΨD,v(πv,x)

for each finite place v of F , and x is fully ramified.
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By hypothesis, LC(OFD)S satisfies Property R, and so there exists ρ ∈ Hom(ΩF , D) with

[ρ] ∈ H1
t (F,D) such that

x = ΨD([ρ]) (16.2)

and

ρ |Iv= πv,x |Iv (16.3)

for each finite place v of F . Hence, for each such v, we have that

Det(rD(ϕ(ρv))) = Det(rD(ϕ(πv,x))),

using the notation established in (16.1) above concerning Stickelberger factorisations. As x

is fully ramified, we see from the proof of Theorem 13.6 that ρ is surjective, and so Fρ is a

field. We also see that, as x ∈ LC(OFD)S, the extension Fρ/F is unramified at all places

dividing |D|. Furthermore, if v | l (so v ∈ S), then since πv,x is unramified, the same is true

of πv,x, and so Fρ/F is also unramified at v. Hence, as F ∩µl = {1} by hypothesis, it follows

that Fρ ∩ µl = {1} also.

For each finite place v of F , we are now going to use the fact that x ∈ LC(OFG) to

construct a lift ρ̃v ∈ Hom(ΩFv , G) of ρv such that [ρ̃v] ∈ H1
t (Fv, G) with

ρ̃v |Iv= πv,x |Iv . (16.4)

To do this, we first observe that if ϕ(πv,x) = ϕv,s, then ϕ(πv,x) = ϕv,s, where s = q(s),

and so we have

ϕ(ρv) = ϕ(πv,x) = ϕv,s

(see (16.3)).

Next, we write

ρv = ρv,r · ρv,nr,

with [ρv,nr] ∈ H1
nr(Fv, D) (see (7.7)). Since ρv,nr is unramified, Proposition 15.2 implies that

[ρv,nr] may be lifted to [ρ̃v,nr] ∈ H1
nr(Fv, G). Let a(ρ̃v,nr) be a normal integral basis generator

of Fρ̃v,nr/Fv. Then rG(a(ρ̃v,nr)) ·rG(ϕv,s) is the resolvend of a normal integral basis generator

of a tame Galois G-extension Fρ̃v/Fv such that q([ρ̃v]) = ρv (cf. Corollary 7.8 and Theorem

7.9). As ϕ(πv,x) = ϕv,s, we see from the construction of ρ̃ that

ρ̃v |Iv= πv,x |Iv= ϕ̃v,s,

where [ϕ̃v,s] ∈ H1
t (Iv, G) is defined in Remark 7.11. The map ρ̃v is our desired lift of ρv.
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We are now ready to apply the results contained in Section 15. Consider the following

diagram:

0 −−−→ B −−−→ G
q−−−→ D −−−→ 0xρ

ΩF

The group D acts on B via inner automorphisms, and we view B as being an ΩF -module

via ρ. Then B is a simple ΩF -module because B is a minimal normal subgroup of G and

ρ is surjective. The field of definition F (B) of B is contained in the field Fρ, and so in

particular F (B) contains no non-trivial l-th roots of unity. We are going to construct an

element Π ∈ HomD(ΩF , G) such that

Π |Iv= πv,x |Iv

for each finite place v of F . This will be accomplished in the following three steps:

I. We begin by observing that our construction above of a lift ρ̃v of ρv for each finite v

shows that Jf (HomD(ΩF , G)) is non-empty. Let S be the set of finite places v of F at which

x is ramified or v | |G|. Theorem 15.1 implies that there exists Π1 ∈ HomD(ΩF , G) such

that Π1,v = ρ̃v for all v ∈ S. Observe that Π1 is unramified at all v | |G| because ρ̃v is

unramified at these places (see (16.4)). Note also that Π1 may well be ramified outside S.

II. Recall that HomD(ΩF , G) (respectively HomD(ΩFv , G) for each finite v) is a principal

homogeneous space over H1(F,B) (respectively H1(Fv, B)). Let S1 denote the set of finite

places v /∈ S of F at which Π1 is ramified. For each v ∈ S1, choose yv ∈ H1(Fv, B) so that

yv · Π1,v ∈ HomD(ΩFv , G) is unramified.

Now apply Definition 15.4 (with Γ = B and T = S) to obtain an ideal a = a(S) and an

integer N = N(S) as described there. Theorem 15.3 implies that there exists an element

z ∈ H1(F,B) such that

(z1) zv = yv for all v ∈ S1;

(z2) zv = 1 for all v ∈ S;

(z3) If v /∈ S ∪ S1, then zv is cyclic, and if zv is ramified, then v splits completely in

(F (B) · F (aN))/F , where F (aN) denotes the ray class field of F modulo aN .

Set Π2 := z · Π1 ∈ HomD(ΩF , G). Note that, as z might possibly be ramified, the

homomorphism Π2 might be ramified outside S. We shall eliminate any such potential

ramification in the third and final step.

III. Let Sz be the set of places of F at which z is ramified (so S ∩ Sz = ∅). We see from

(z3) that each v ∈ Sz is totally split in F (aN)/F . Hence Theorem 15.5 implies that for each

v ∈ Sz, we may choose b(v) ∈ H1(F,B) such that
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(b1) b(v)w = 1 for all w ∈ S;

(b2) b(v) |Iv= z−1
v |Iv ;

(b3) b(v) is unramified away from v.

Set

Π :=

[(∏
v∈Sz

b(v)

)
· z

]
· Π2.

Then it follows directly from the construction of Π that we have

Π |Iv= πv,x |Iv (16.5)

for all finite places v of F .

We claim that

x = Ψ(Π).

To show this, let τ = Ψ(Π)−1 · x. We see from (16.5) that

λv(τ) ∈ Im(Ψnr
v )

for every finite place v of F . As either G admits no irreducible symplectic characters or F

has no real places, and as (hF , |G|) = 1 by hypothesis, Proposition 6.8(b) implies that τ = 0.

Hence x = Ψ(Π), as claimed.

This completes the proof that LC(OFG)S satisfies Property R. �

Theorem 16.4 (in conjunction with Proposition 16.2) yields an abundant supply of groups

G for which LC(OFG)S satisfies Property R (for a suitable choice of S), and therefore also

for which Theorem 16.3 holds. Here is an example of this.

Theorem 16.5. Let G be of odd order. Suppose that (|G|, hF ) = 1 and that F contains no

non-trivial |G|-th roots of unity. Let S be any finite set of finite places of F containing all

places dividing |G|. Then LC(OFG)S satisfies Property R.

Proof. We shall establish this result by induction on the order of G. We first note that

Proposition 16.2 implies that the theorem holds if G is abelian.

Suppose now that G is an arbitrary finite group of odd order. As |G| is odd, a well known

theorem of Feit and Thompson (see [14]) implies that G is soluble. Hence G has an abelian

minimal normal subgroup B such that l ·B = 0 for some odd prime l (see e.g. [26, Theorem

5.24]), and there is an exact sequence

0 → B → G→ D → 0
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with D soluble. As |G| is odd, G admits no non-trivial irreducible symplectic characters.

We may therefore suppose by induction on the order of G that LC(OFD)S satisfies Property

R. The desired result now follows from Theorem 16.4. �

Remark 16.6. It follows from Theorem 14.2 that in Theorem 16.4, we may take D to be a

finite abelian group of arbitrary order (subject of course to the obvious constraint that the

number field F is such that all other conditions of Theorem 16.4 are satisfied). This enables

one to show that Property R holds for many non-abelian groups of even order (e.g. S3).

However, if for example G is a non-abelian 2-group (e.g. H8), then because µ2 ⊆ F for any

number field F , we can no longer appeal to Neukirch’s Lifting Theorem, and our proof of

Theorem 16.4 fails. It appears very likely that new ideas are needed to establish Property

R in such cases (cf. also the remarks contained in the final paragraph of [24, Introduction],

where a similar difficulty is briefly discussed in the context of the inverse Galois problem for

finite groups). �

We can now prove Theorem E of the Introduction.

Theorem 16.7. Let G be of odd order and suppose that (|G|, hF ) = 1, where hF denotes

the class number of F . Suppose also that F contains no non-trivial |G|-th roots of unity.

Then R(OFG) is a subgroup of Cl(OFG). If c ∈ R(OFG), then there exist infinitely many

[π] ∈ H1
t (F,G) such that Fπ is a field and (Oπ) = c. The extensions Fπ/F may be chosen

to have ramification disjoint from any finite set S of places of F .

Proof. This is an immediate consequence of Theorems 16.5 and 16.3. �
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