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ANTICYCLOTOMIC IWASAWA THEORY OF CM
ELLIPTIC CURVES

by Adebisi AGBOOLA & Benjamin HOWARD (*)

Abstract. — We study the Iwasawa theory of a CM elliptic curve E in the
anticyclotomic Zp-extension of the CM field, where p is a prime of good, ordinary
reduction for E. When the complex L-function of E vanishes to even order, Ru-
bin’s proof of the two variable main conjecture of Iwasawa theory implies that the
Pontryagin dual of the p-power Selmer group over the anticyclotomic extension is
a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg
show that it is not a torsion module. In this paper we show that in the case of odd
order of vanishing the dual of the Selmer group has rank exactly one, and we prove
a form of the Iwasawa main conjecture for the torsion submodule.

Résumé. — Nous étudions la théorie d’Iwasawa d’une courbe elliptique E à
multiplication complexe, dans la Zp-extension anticyclotomique du corps de mul-
tiplication complexe (ici p est un nombre premier ou E a une bonne réduction
ordinaire). Si la fonction L complexe de E a un zero à s = 1 de multiplicité
paire, la preuve de Rubin de la conjecture principale d’Iwasawa en deux variables
impliquent que le dual de Pontryagin de la composante p-primaire du groupe de
Selmer est de torsion comme module d’Iwasawa. Si la multiplicité est impaire, les
travaux de Greenberg impliquent que ce module n’est pas un module de torsion. Ici
nous montrons que, en cas de multiplicité impaire, le dual de Pontryagin du groupe
de Selmer est un module de rang un, et nous prouvons une conjecture principale
d’Iwasawa pour le sous-module de torsion.

0. Introduction and statement of results

Let K be an imaginary quadratic field of class number one, and let E/Q
be an elliptic curve with complex multiplication by the maximal order OK

Keywords: Ellipic curves, Iwasawa theory, main conjecture, anticyclotomic, p-adic L-
function.
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of K. Let ψ denote the K-valued grossencharacter associated to E, and fix
a rational prime p > 3 at which E has good, ordinary reduction.

Write Qunr
p ⊂ Cp for the maximal unramified extension of Qp, and let R0

denote the completion of its ring of integers. If F/K is any Galois extension,
then we write Λ(F ) = Zp[[Gal(F/K)]] for the generalised Iwasawa algebra,
and we set Λ(F )R0 = R0[[Gal(F/K)]]. Let C∞ and D∞ be the cyclotomic
and anticyclotomic Zp-extensions of K, respectively, and let K∞ = C∞D∞
be the unique Z2

p-extension of K.
As p is a prime of ordinary reduction for E, it follows that p splits into

two distinct primes pOK = pp∗ over K. A construction of Katz gives a
canonical measure

L ∈ Λ(K∞)R0 ,

the two-variable p-adic L-function, denoted µp∗(K∞, ψp∗) in the text, which
interpolates the value at s = 0 of twists of L(ψ−1, s) by characters of
Gal(K∞/K). It is a theorem of Coates [3] that the Pontryagin dual of
the Selmer group Selp∗(E/K∞) ⊂ H1(K∞, E[p∗∞]) is a torsion Λ(K∞)-
module, and a fundamental theorem of Rubin, the two-variable Iwasawa
main conjecture, asserts that the characteristic ideal of this torsion module
is generated by L. In many cases this allows one to deduce properties of
the p∗-power Selmer group of E over subfields of K∞. For example, if we
identify

Λ(K∞) ∼= Λ(D∞)[[Gal(C∞/K)]]

and choose a topological generator γ ∈ Gal(C∞/K), then we may expand
L as a power series in (γ − 1)

L = L0 + L1(γ − 1) + L2(γ − 1)2 + · · ·

with Li ∈ Λ(D∞)R0 . Standard “control theorems” imply that the charac-
teristic ideal of

X∗(D∞) def= Hom
(
Selp∗(E/D∞),Qp/Zp

)
(the reader should note Remark 1.1.8) is then generated by the constant
term L0. If the sign in the functional equation of L(E/Q, s) is equal to 1,
then theorems of Greenberg imply that L0 6= 0, and so X∗(D∞) is a torsion
Λ(D∞)-module. In sharp contrast to this, when the sign of the functional
equation is −1, the constant term vanishes and X∗(D∞) is not torsion, as
was proved by Greenberg even before Rubin’s proof of the main conjecture
(see [5]).

The following is the main result of this paper (which appears in the text
as Theorems 2.4.17 and 3.1.5) and was inspired by conjectures of Mazur
[10], Perrin-Riou [17] and Mazur-Rubin [13] concerning Heegner points.

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC IWASAWA THEORY 1003

Theorem A. — Suppose the sign of the functional equation of
L(E/Q, s) is −1. Then X∗(D∞) is a rank one Λ(D∞)-module. If X ⊂
Λ(D∞) is the characteristic ideal of the torsion submodule of X∗(D∞),
then

X · R = (L1)

as ideals of Λ(D∞)R0 ⊗Zp Qp, where R is the regulator of the Λ(D∞)-adic
height pairing (defined in Section 3).

A different statement of the Iwasawa main conjecture over D∞, involv-
ing elliptic units and including the case where the sign in the functional
equation is equal to 1, is also contained in Theorem 2.4.17. Similar results
in the Heegner point case alluded to above can be found in [7]. T. Arnold
[1] has recently generalized Theorem A from the case of elliptic curves with
complex multiplication to CM modular forms of higher weight.

The following result is due to K. Rubin. It establishes a conjecture made
in an earlier version of this paper, and a proof is given in the Appendix.

Theorem B. — Under the assumptions and notation of the Theorem
A, the linear term L1 is nonzero.

While we have stated our results in terms of the p∗-adic Selmer group,
they may equally well be stated in terms of the p-adic Selmer group. If one
replaces p∗ by p in the above theorem, then X , L1, and R are replaced by
X ι, Lι1, and Rι, respectively, where ι is the involution of Λ(D∞) induced
by inversion on Gal(D∞/K). The decomposition E[p∞] ∼= E[p∞]⊕E[p∗∞]
of Gal(Kal/K)-modules induces a decomposition of Λ(D∞)-modules

Selp(E/D∞) ∼= Selp(E/D∞)⊕ Selp∗(E/D∞)

which shows that, when the sign in the functional equation is −1, the full p-
power Selmer group Selp(E/D∞) has Λ(D∞)-corank 2, as was conjectured
by Mazur [10].

An outline of this paper is as follows. The first section gives definitions
and fundamental properties of various Selmer groups associated to E, with
special attention to the anticyclotomic tower. In the second section, we
recall the definition of Katz’s p-adic L-function and the Euler system of
elliptic units, and we state a theorem of Yager which relates the two. Our
discussion of these topics closely follows the excellent book of de Shalit
[25]. Work of Rubin allows one to “twist” the elliptic unit Euler system
into an Euler system for the p-adic Tate module Tp(E), and we show, using
nonvanishing results of Greenberg, that the restriction of the resulting Euler
system to the anticyclotomic extension is nontrivial. Applying the main

TOME 56 (2006), FASCICULE 4



1004 Adebisi AGBOOLA & Benjamin HOWARD

results of [24] shows that a certain “restricted” Selmer group, contained in
Selp∗(E/D∞), is a cotorsion module; using this we show that X∗(D∞) has
rank one. Using a form of Mazur’s control theorem, we then deduce that the
characteristic ideal of a restricted Selmer group over K∞ does not have an
anticyclotomic zero. This restricted two-variable Selmer group is related to
elliptic units by Rubin’s proof of the two-variable main conjecture, and the
nonvanishing of its characteristic ideal along the anticyclotomic line allows
us to descend to the anticyclotomic extension and relate the restricted
Selmer group over D∞ to the elliptic units. In the third section we use
results of Perrin-Riou and Rubin on the p-adic height pairing to relate the
twisted elliptic units to the linear term L1 of Katz’s L-function.

Acknowledgments. — We are very grateful to Karl Rubin for writing
an appendix to this paper.

0.1. Notation and conventions

We write ψ for the K-valued grossencharacter associated to E, and we
let f denote its conductor. Note that since p is a prime of good reduction
for E, it follows that p is coprime to f.

Let Qal ⊂ C be the algebraic closure of Q in C, and let τ be complex
conjugation, also denoted by z 7→ z̄. Fix an embedding ip : Qal ↪→ Cp lying
above the prime p, and let ip∗ = ip ◦ τ be the conjugate embedding.

We write R for the field of fractions of R0. If M is any Zp-module, we
define

MR0 = M⊗̂ZpR0, MR = MR0 ⊗R0 R.

The Pontryagin dual of M is denoted

M∨
def= HomZp(M,Qp/Zp).

If M is any Zp-module of finite or cofinite type equipped with a con-
tinuous action of GK = Gal(Qal/K) and F is a (possibly infinite) Galois
extension of K, we let

Hi(F,M) = lim
←
Hi(F ′,M)

where the inverse limit is over all subfields F ′ ⊂ F finite over K and is
taken with respect to the natural corestriction maps. If q is p or p∗, we
define

Hi(Fq,M) = lim
←

⊕
w|q

Hi(F ′w,M), Hi(Fq,M) = lim
→

⊕
w|q

Hi(F ′w,M).

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC IWASAWA THEORY 1005

(Here the inverse (respectively, direct) limit is taken with respect to the
corestriction (respectively, restriction) maps.) These groups have natural
Λ(F ) := Zp[[Gal(F/K)]]-module structures.

For a positive integer n, Cn is the unique subfield of C∞ with [Cn : K] =
pn; the field Dn is defined similarly. If m is an ideal of K, we denote by
K(m) the ray class field of conductor m. If n is another ideal of K, we
let K(mn∞) = ∪kK(mnk). We write N(m) for the absolute norm of the
ideal m.

1. A little cohomology

We define canonical generators π and π∗ of the ideals p and p∗ by π =
ψ(p) and π∗ = ψ(p∗), so that π∗ = πτ . Define GK-modules

Wp = E[p∞], Wp∗ = E[p∗∞],

and let Tp and Tp∗ be the π and π∗-adic Tate modules, respectively. Note
that the action of τ on E[p∞] interchanges Wp and Wp∗ , and so induces a
group isomorphism Tp

∼= Tp∗ . If we set Vp = Tp ⊗Qp and Vp∗ = Tp∗ ⊗Qp,
then there is an exact sequence

(1.1) 0 −→ Tq −→ Vq −→ Wq −→ 0

where q = p or p∗. For every place v of K and any finite extension F of K
or Kv, the GF -cohomology of this sequence implies that

H0(F,Wp)/div
∼= H1(F, Tp)tor,

where the subscript /div indicates the quotient by the maximal divisible
submodule, and the subscript tor indicates the Zp-torsion submodule. The
Weil pairing restricts to a perfect pairing Tp × Tp∗ −→ Zp(1).

1.1. Selmer modules

Let q be either p or p∗ and set q∗ = τ(q).

Lemma 1.1.1. — The primes of K above p are finitely decomposed
in K∞.

Proof. — This follows from Proposition II.1.9 of [25]. �

Lemma 1.1.2. — The degree of Kq(E[q]) over Kq is p− 1.

TOME 56 (2006), FASCICULE 4



1006 Adebisi AGBOOLA & Benjamin HOWARD

Proof. — This follows from the theory of Lubin-Tate groups. See for
example Chapter 1 of [25]. �

Lemma 1.1.3. — For any intermediate field K ⊂ F ⊂ K∞ the Λ(F )-
module

Af(F ) =
⊕
v|f

H0(Fv,Wp)

has finite exponent. If all primes dividing f are finitely decomposed in F ,
then Af(F ) is finite.

Proof. — Fix a place v|f of F . The extension Fv/Kv is unramified, while
Wp is a ramified Gal(Kalg

v /Kv)-module (by the criterion of Néron-Ogg-
Shafarevich). Since Wp

∼= Qp/Zp has no proper infinite submodules we
conclude that E(Fv)[p∞] is finite, and so

⊕
v|fH

0(Fv,Wp∗) has finite ex-
ponent. This group is finite if all primes above f are finitely decomposed
in F . �

Lemma 1.1.4. — Let F/K be a finite extension, let v be a prime of F
not dividing p, and let V be a finite dimensional Qp-vector space with a
linear action of GFv . If V and Hom(V,Qp(1)) both have no GFv -invariants
then H1(Fv, V ) = 0.

Proof. — This follows from Corollary 1.3.5 of [24] and local duality, or
from standard properties of local Euler characteristics. �

In particular, Lemma 1.1.4 implies that H1(Fv, Vq) = 0 for v not dividing
p. If v is any place of F , we define the finite or Bloch-Kato local conditions

H1
f (Fv, Tq) =

{
H1(Fv, Tq)tor if v | q∗

H1(Fv, Tq) else

H1
f (Fv, Vq) =

{
H1(Fv, Vq) if v | q
0 else

H1
f (Fv,Wq) =

{
H1(Fv,Wq)div if v | q
0 else

The submodules H1
f (Fv, Tq) and H1

f (Fv,Wq) are the preimage and im-
age, respectively, of H1

f (Fv, Vq) under the maps on cohomology induced
by the exact sequence (1.1). If M is any object for which we have defined
H1
f (Fv,M), we define the relaxed Selmer group Selrel(F,M) to be the set

of all c ∈ H1(F,M) such that locv(c) ∈ H1
f (Fv,M) for every place v not

dividing p. We define the true Selmer group Sel(F,M) to be the subgroup
consisting of all c ∈ Selrel(F,M) such that locv(c) ∈ H1

f (Fv,M) for all v,

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC IWASAWA THEORY 1007

including those above p. Finally, we define the strict Selmer group to be
all those c ∈ Sel(F,M) such that locv(c) = 0 at the v lying above p. By
definition there are inclusions

Selstr(F,M) ⊂ Sel(F,M) ⊂ Selrel(F,M)

and all are Λ(F )-modules. Our definitions of Sel(F, Tq) and Sel(F,Wq)
agree with the usual definitions of the Selmer groups defined by the local
images of the Kummer maps; see Section 6.5 of [24].

Lemma 1.1.5. — Let S denote the set of places of K dividing pf and
let KS/K be the maximal extension of K unramified outside S. For any
K ⊂ F ⊂ KS finite over K,

H1(KS/F, Tp) = Selrel(F, Tp).

Proof. — For any v 6∈ S, the local condition H1
f (Fv, Tp) is exactly the

subgroup of unramified classes by [24, Lemma 1.3.5], while for v ∈ S the
local condition defining the relaxed Selmer group is all of H1(Fv, Tp). �

If F/K is a (possibly infinite) extension we define Λ(F )-modules

S(F, Tq) = lim
←

Sel(F ′, Tq), Sel(F,Wq) = lim
→

Sel(F ′,Wq)

where the limits are with respect to corestriction and restriction respec-
tively, and are taken over all subfields F ′ ⊂ F finite over K. We also
define strict and relaxed Selmer groups over F in the obvious way, e.g.
Sstr(F, Tq) = lim

←
Selstr(F ′, Tq), and so on. Recall the notation

Hi(Fq,M) = lim
←

⊕
v|q

Hi(F ′v,M),

and set

H1
f (Fq,M) = lim

←

⊕
v|q

H1
f (F

′
v,M), H1

f (Fq,M) = lim
→

⊕
v|q

H1
f (F

′
v,M).

The canonical involution of Λ(F ) which is inversion on group-like ele-
ments is denoted ι : Λ(F ) −→ Λ(F ). This involution induces a functor
from the category of Λ(F )-modules to itself, which on objects is written as
M 7→M ι. If q = p or p∗, there is a perfect local Tate pairing

(1.2) H1(Fq, Tp)×H1(Fq,Wp∗) −→ Qp/Zp

which satisfies (λx, y) = (x, λιy) for λ ∈ Λ(F ). Under this pairing, the sub-
modules H1

f (Fq, Tp) and H1
f (Fq,Wp∗) are exact orthogonal complements.

TOME 56 (2006), FASCICULE 4



1008 Adebisi AGBOOLA & Benjamin HOWARD

Proposition 1.1.6. — Suppose F/K is a Zp-extension in which p∗

ramifies. Then H1(Fp, Tp) and H1(Fp∗ , Tp) are rank one, torsion-free Λ(F )-
modules.

Proof. — Let q = p or p∗. The claim that H1(Fq, Tp) has rank 1 is
Proposition 2.1.3 of [18]. By Proposition 2.1.6 of the same, the Λ(F )-torsion
submodule of H1(Fq, Tp) is isomorphic to H0(Fq, Tp), so it suffices to show
that E(Fv)[p∞] is finite for every place v of F above q. If q = p this is
immediate from Lemma 1.1.2. If q = p∗ then E[p∞] generates an unramified
extension of Kq, and by hypothesis the intersection of this extension with
Fv is of finite degree over Kq. Hence E(Fv)[p∞] is finite. �

Proposition 1.1.7. — If F/K is an abelian extension such thatH1
f (Fp∗ ,

Tp) = 0, then there are exact sequences

(1.3) 0 −→ S(F, Tp) −→ Srel(F, Tp)
locp∗−−−→ H1(Fp∗ , Tp)

(1.4) 0 −→ Selstr(F,Wp∗) −→ Sel(F,Wp∗)
locp∗−−−→ H1(Fp∗ ,Wp∗),

and the images of the rightmost arrows are exact orthogonal complements
under the local Tate pairing. Under the same hypotheses there are exact
sequences

(1.5) 0 −→ Sstr(F, Tp) −→ S(F, Tp)
locp−−→ H1(Fp, Tp)

(1.6) 0 −→ Sel(F,Wp∗) −→ Selrel(F,Wp∗)
locp−−→ H1(Fp,Wp∗),

and again the images of the rightmost arrows are exact orthogonal com-
plements under the sum of the local pairings. The hypotheses hold if F
contains a Zp-extension in which p∗ ramifies.

Proof. — If H1
f (Fp∗ , Tp) = 0 then H1

f (Fp∗ ,Wp∗) = H1(Fp∗ ,Wp∗) by lo-
cal duality. The exactness of the sequences is now just a restatement of
the definitions. The claims concerning orthogonal complements are conse-
quences of Poitou-Tate global duality, cf. Theorem 1.7.3 of [24].

Let v be a place of F above p∗ and let F ′ ⊂ Fv be finite over Kp∗ . >From
the cohomology of (1.1) and the fact that H0(F ′, Vp) = 0 we have

H1
f (F

′, Tp) ∼= H0(F ′,Wp) ∼= E(F ′)[p∞].

Taking the inverse limit over F ′ ⊂ Fv, we see that

lim
←
H1
f (F

′, Tp) = 0

ANNALES DE L’INSTITUT FOURIER
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whenever Fv contains an infinite pro-p extension of Kp∗ whose intersection
with Kp∗(E[p∞]) is of finite degree over Kp∗ . The extension of Kp∗ gener-
ated by E[p∞] is unramified, so this will be the case whenever F contains
a Zp-extension in which p∗ ramifies. �

If F/K is an abelian extension we define Λ(F )-modules

X(F ) = Sel(F,Wp)∨

Xrel(F ) = Selrel(F,Wp)∨

Xstr(F ) = Selstr(F,Wp)∨.

Define X∗(F ), X∗rel(F ), and X∗str(F ) similarly, replacing p by p∗.

Remark 1.1.8. — Because of the behavior of the local pairing (1.2) under
the action of Λ(F ), we adopt, for the entirety of the paper, the convention
that Λ(F ) acts on X(F ) via (λ · f)(x) = f(λιx). Thus the map

H1(Fp∗ , Tp) −→ X∗(F )

induced by localization at p∗ and the local pairing is a map of Λ(D∞)-
modules. The same convention is adopted for X∗(F ), Xrel(F ), etc.

Lemma 1.1.9. — Let F/K be a Zp or Z2
p extension of K. There is a

canonical isomorphism of Λ(F )-modules

Srel(F, Tp) ∼= HomΛ(F )(Xrel(F ),Λ(F )).

In particular Srel(F, Tp) and Xrel(F ) have the same Λ(F )-rank, and
Srel(F, Tp) is torsion-free.

Proof. — The proof is essentially the same as that of [18, Proposition
4.2.3]. Suppose that L ⊂ F is finite over K. Let S denote the set of places
of K consisting of the infinite place and the prime divisors of pf, and let
KS/K be the maximal extension of K unramified outside S. By Lemma
1.1.5

Srel(L, Tp) ∼= H1(KS/L, Tp) ∼= lim
←
H1(KS/L,E[pk]).

On the other hand, Lemma 1.1.2 shows that E(L)[p] = 0 (since [L : K] is
a power of p), and so the Gal(KS/L)-cohomology of

0 −→ E[pk] −→ Wp
πk−−→ Wp −→ 0

shows that H1(KS/L,E[pk]) ∼= H1(KS/L,Wp)[pk].
If we define

XS(L) = H1(KS/L,Wp)∨

then
HomΛ(L)(XS(L),Λ(L)) ∼= HomZp(XS(L),Zp)

TOME 56 (2006), FASCICULE 4



1010 Adebisi AGBOOLA & Benjamin HOWARD

via the augmentation map Λ(L) −→ Zp. The right hand side is isomorphic
to the p-adic Tate module of H1(KS/L,Wp), so by the above

(1.7) Srel(L, Tp) ∼= HomΛ(L)(XS(L),Λ(L)).

As in the proof of Lemma 1.1.5, for any v 6∈ S the unramified classes in
H1(Lv,Wp) agree with the local condition H1

f (Lv,Wp), and so we have the
exact sequence

(1.8) 0 −→ Selrel(L,Wp) −→ H1(KS/L,Wp) −→
⊕
v|f

H1(Lv,Wp).

The Pontryagin dual of the final term is isomorphic to⊕
v|f

H1(Lv, Tp∗) ∼=
⊕
v|f

H0(Lv,Wp∗),

where we have used Lemma 1.1.4 and the cohomology of the short exact
sequence relating Tp∗ , Vp∗ , and Wp∗ .

If A∗f (F ) denotes the module of Lemma 1.1.3, with p replaced by p∗, we
may take the limit as L varies, and the dual sequence to (1.8) reads

A∗f (F )∨ −→ XS(F ) −→ Xrel(F ) −→ 0

where the first term is a torsion Λ(F )-module (even a torsion Zp-module)
by Lemma 1.1.3. Applying the functor HomΛ(F )(·,Λ(F )) and combining
this with (1.7) gives the result. �

Remark 1.1.10. — A similar argument can be used to show that S(F, Tp)
and X(F ) have the same Λ(F )-rank, and similarly for the strict Selmer
groups. See [18, Proposition 4.2.3], for example. When F = D∞, these
facts will fall out during the more detailed analysis of the relationship be-
tween Xstr and and Xrel given in Theorem 1.2.2.

1.2. Anticyclotomic Iwasawa modules

Lemma 1.2.1. — There are isomorphisms of Λ(D∞)-modules

S(D∞, Tp)ι ∼= S(D∞, Tp∗), X(D∞)ι ∼= X∗(D∞),

and similarly for the relaxed and restricted Selmer groups.

Proof. — The action of GK on the full Selmer group

Sel(D∞, E[p∞]) ∼= Sel(D∞,Wp)⊕ Sel(D∞,Wp∗)

ANNALES DE L’INSTITUT FOURIER
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extends to an action of GQ, and complex conjugation interchanges the p

and p∗-primary components. Since Gal(D∞/Q) is of dihedral type, we may
view complex conjugation as an isomorphism

Sel(D∞,Wp)ι ∼= Sel(D∞,Wp∗),

and so X(D∞)ι ∼= X∗(D∞). The other claims are proved similarly. �

The remainder of this subsection is devoted to a proof of the following
result.

Theorem 1.2.2. — If r(·) denotes Λ(D∞)-rank, then r(X(D∞)) =
r(S(D∞)) and the same holds for the strict and relaxed Selmer groups.
Furthermore,

r(Xrel(D∞)) = 1 + r(Xstr(D∞))

and the Λ(D∞)-torsion submodules of Xrel(D∞) and Xstr(D∞) have the
same characteristic ideals, up to powers of pΛ(D∞).

Let O be the ring of integers of some finite extension Φ/Qp, and let

χ : Gal(D∞/K) −→ O×

be a continuous character of Gal(D∞/K). If M is any Zp-module, define
M(χ) = M ⊗O(χ). From Lemma 1.1.2 it follows that ψq : GK −→ Z×p −→
(Zp/pZp)× is surjective, and from this it is easy to see that the residual
representation of Tq(χ) is nontrivial and absolutely irreducible. Combining
this with Lemma 1.1.4 and the duality

Vp(χ)× Vp∗(χ−1) −→ Qp(1),

we have that H1(Kv, Vq(χ)) = 0 for every v not dividing p. We define
generalized Selmer groups

H1
rel(K,Wq(χ)), H1

str(K,Wq(χ)),

where the first group consists of classes which are everywhere trivial at
primes not dividing p, and which lie in the maximal divisible subgroup
of H1(Kv,Wq(χ)) at primes v above p, and the second group consists of
classes which are everywhere locally trivial.

If χ is the trivial character, then H1
str(K,Wq) = Selstr(K,Wq), but

H1
rel(K,Wq) may be slightly smaller than Selrel(K,Wq). If we define

Selrel(K,Wq(χ)) ⊂ H1(K,Wq(χ))

to be the subgroup of classes which are locally trivial at all primes not
dividing p, and impose no conditions at all above p (so that this agrees
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with our previous definition when χ is trivial), then we can bound the
index of

(1.9) H1
rel(K,Wq(χ)) ⊂ Selrel(K,Wq(χ))

as follows. The quotient injects into

H1(Kp,Wq(χ))⊕H1(Kp∗ ,Wq(χ))

modulo its maximal divisible subgroup. Thus, using the exact sequence
(1.1) and local duality, the order of the quotient is bounded by the order of

H0(Kp,Wq∗(χ−1))⊕H0(Kp∗ ,Wq∗(χ−1)).

It is easy to see that this group is finite, and bounded by some constant
which does not depend on χ, provided O remains fixed.

Our reason for working with the slightly smaller group H1
rel is the fol-

lowing

Proposition 1.2.3. — (Mazur-Rubin) For every character χ there is a
non-canonical isomorphism of O-modules

H1
rel(K,Wp(χ)) ∼= (Φ/O)⊕H1

str(K,Wp∗(χ−1)).

Proof. — All references in this proof are to [15]. It follows from Theorem
4.1.13 and Lemma 3.5.3 that

H1
rel(K,Wp(χ))[pi] ∼= (Φ/O)r[pi]⊕H1

str(K,Wp∗(χ−1))[pi]

for every i, where r is the core rank (Definition 4.1.11) of the local condi-
tions defining the Selmer group H1

rel(K,Wp(χ)). A formula of Wiles, Propo-
sition 2.3.5, shows that the core rank is equal to

corank H1(Kp,Wp(χ))+corank H1(Kp∗ ,Wp(χ))−corank H0(Kv,Wp(χ)),

in which v denotes the unique archimedean place of K and corank means
corank as an O-module. The first two terms are each equal to 1 by the local
Euler characteristic formula, and the third is visibly 1. Hence the core rank
is 1. Letting i→∞ proves the claim. �

Restriction gives a map

H1(K,Wq(χ)) −→ H1(D∞,Wq)(χ)Gal(D∞/K),

and since H0(D∞,Wq(χ)) = 0, the Hochschild-Serre sequence (see Propo-
sition B.2.5 of [24]) implies that this map is an isomorphism.
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Lemma 1.2.4. — The above restriction isomorphism induces injective
maps

H1
str(K,Wq(χ)) −→ Selstr(D∞,Wq)(χ)Gal(D∞/K)

H1
rel(K,Wq(χ)) −→ Selrel(D∞,Wq)(χ)Gal(D∞/K)

whose cokernels are finite and bounded as χ varies (provided O remains
fixed).

Proof. — A class d ∈ Selstr(D∞,Wq)(χ)Gal(D∞/K) is the restriction of
some class c ∈ H1(K,Wq(χ)) which is in the kernel of

(1.10) H1(Kv,Wq(χ)) −→ H1(D∞,v,Wq(χ))

for every place v of D∞. Let Γv = Gal(D∞,v/Kv), so that Γ is either trivial
or isomorphic to Zp. If Γv = 0 then (1.10) is an isomorphism. If Γv ∼= Zp
with generator γ, then the cokernel is trivial and the kernel is isomorphic
to M/(γ − 1)M where M = H0(D∞,vWq) ⊗ O. If v is a prime of good
reduction not dividing p, then D∞,v is the unique unramified Zp-extension
of Kv. It follows that M = 0 if E[q] 6⊂ Kv, while M = Wq if E[q] ⊂ Kv. In
either case, since (γ − 1) acts as a nontrivial scalar on Wq, we must have
M/(γ− 1)M = 0. If v is a prime of bad reduction, or if v lies above p, then
M is finite. Thus the kernel of (1.10) is trivial for almost all v, and finite
and bounded by a constant independent of χ.

A class d ∈ Selrel(D∞,Wq)(χ)Gal(D∞/K) is the restriction of some class
c ∈ H1(K,Wq(χ)) which is in the kernel of (1.10) at every prime not
dividing p. The above argument shows that the cokernel of

Selrel(K,Wq(χ)) −→ Selrel(D∞,Wq)(χ)Gal(D∞/K)

is finite with a bound of the desired sort, and so the claim follows from our
bound on the index of (1.9). �

Corollary 1.2.5. — For any χ : Gal(D∞/K) −→ O×, theO-coranks of

Selrel(D∞,Wp)(χ)Gal(D∞/K), Selstr(D∞,Wp)(χ)Gal(D∞/K)

differ by 1, and the quotients by the maximal O-divisible submodules have
the same order, up to O(1) as χ varies.

Proof. — By Lemma 1.2.1,

Selstr(D∞,Wp∗)(χ−1)Gal(D∞/K) ∼= Selstr(D∞,Wp)(χ)Gal(D∞/K).

Combining this with Proposition 1.2.3 and Lemma 1.2.4 gives the stated
result. �
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Lemma 1.2.6. — We have the equality r(Xrel(D∞)) = 1+r(Xstr(D∞)),
and the Λ(D∞)-torsion submodules of Xrel(D∞) and Xstr(D∞) have the
same characteristic ideals, up to powers of pΛ(D∞).

Proof. — Choose a generator γ ∈ Gal(D∞/K) and identify Λ(D∞) with
Zp[[S]] via γ − 1 7→ S. Assume O is chosen large enough that the charac-
teristic ideals of the torsion submodules of X∗str(D∞) and X∗rel(D∞) split
into linear factors. Let m ⊂ O be the maximal ideal, and fix pseudo-
isomorphisms

X∗rel(D∞)⊗Zp O ∼ A⊕Ap, X∗str(D∞)⊗Zp O ∼ B ⊕Bp
where Ap and Bp are torsion modules with chracteristic ideals generated
by powers of p, and A and B are of the form

A ∼= O[[S]]a ⊕
⊕
ξ∈m

Aξ, B ∼= O[[S]]b ⊕
⊕
ξ∈m

Bξ

where each Aξ is isomorphic to
⊕

iO[[S]]/(S − ξ)ei for some exponents
ei = ei(A, ξ), and similarly for B. Define

P = {ξ ∈ m | Aξ 6= 0 or Bξ 6= 0},

and to any ξ 6∈ P we define a character χξ by χξ(γ) = (ξ + 1)−1. Then for
any ξ 6∈ P we have

a = rankO A/(S − ξ)A = corankO Selrel(D∞,Wp)(χξ)Gal(D∞/K)

and similarly for B. The corollary above immediately implies that a = b+1,
hence r(Xrel(D∞)) = r(Xstr(D∞)) + 1.

Now fix ξ ∈ P and choose a sequence xk → ξ with xk ∈ m − P for all
k. As k varies, the O-length of the torsion submodule of A/(S − xk)A is
given by

v(xk − ξ) ·
∑
i

ei(A, ξ) +O(1)

where v is the valuation on O, and similarly for B. Applying the corollary,
we have

v(xk − ξ) ·
∑
i

ei(A, ξ) = v(xk − ξ) ·
∑
i

ei(B, ξ),

up toO(1) as k varies. Letting k →∞ shows that
∑
i ei(A, ξ) =

∑
i ei(B, ξ),

proving that the torsion submodules of Xstr(D∞) and Xrel(D∞) have the
same characteristic ideals, up to powers of pΛ(D∞). �

The following corollary completes the proof of Theorem 1.2.2.

Corollary 1.2.7. — We have the equality of ranks r(X(D∞)) =
r(S(D∞)), and the same holds for the strict and relaxed Selmer groups.
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Proof. — For the relaxed Selmer groups, this equality of ranks was proved
in Lemma 1.1.9. Let A and B be the cokernels of

Srel(D∞, Tp) −→ H1(D∞,p∗ , Tp), S(D∞, Tp) −→ H1(D∞,p, Tp),

respectively. Then Propositions 1.1.7 and 1.2.1 give

r(A) + r(Xstr(D∞)) = r(X(D∞))

r(B) + r(X(D∞)) = r(Xrel(D∞))

r(A) + r(Srel(D∞, Tp)) = 1 + r(S(D∞, Tp))

r(B) + r(S(D∞, Tp)) = 1 + r(Sstr(D∞, Tp)).

By Lemma 1.2.6, the first two equalities imply that r(A) + r(B) = 1. The
second two equalities then imply that r(Srel(D∞, Tp)) = 1+r(Sstr(D∞, Tp)).
We deduce, using Lemma 1.1.9, that r(Xstr(D∞)) = r(Sstr(D∞, Tp)). Sim-
ilarly, the equality r(X(D∞)) = r(S(D∞, Tp)) is deduced from Lemma
1.1.9 by adding the middle two equalities. �

2. L-functions and Euler systems

In this section we recall the definition of Katz’s L-function, the construc-
tion of the elliptic units, and state Yager’s theorem relating the two. Our
presentation follows [25], to which the reader is referred for more details
on these topics. Using results of Rubin, we then twist the elliptic units into
an Euler system more suitable for our purposes and use the twisted Euler
system to compute the corank of the p∗-power Selmer group over D∞.

2.1. The p-adic L-function

For any integers k, j, we define a grossencharacter (of type A0, although
we shall never consider any other type) of type (k, j) to be a Qal-valued
function, ε, defined on integral ideals prime to some ideal m, such that if
a = αOK with α ≡ 1 (mod m) then ε(a) = αkᾱj . We have the usual notion
of the conductor of a grossencharacter, and the usual L-function defined to
be (the analytic continuation of)

L(ε, s) =
∏

l

1
1− ε(l)N(l)−s

where the product is over all primes l of K, with the convention that
ε(l) = 0 for l dividing the conductor of ε. For any ideal m, the notation
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Lm(ε, s) means the L-function without Euler factors at primes dividing m,
and

L∞,m(ε, s) =
Γ(s−min(k, j))
(2π)s−min(k,j)

Lm(ε, s).

Finally, if ε has conductor fε and type (k, j), set

R(ε, s) = (dKN(fε))s/2L∞,fε(ε, s),

where dK denotes the discriminant of K. Then we have the functional
equation R(ε, s) = Wε ·R(ε̄, 1+k+ j− s) for some constant Wε of absolute
value one (the “root number” associated to ε). If we take ε = ψ to be the
grossencharacter of our elliptic curve, then the functional equation reads
R(ψ, s) = Wψ ·R(ψ, 2−s), since ψ̄(l) = ψ(̄l) implies that L(ψ, s) = L(ψ̄, s).
In particular Wψ must be ±1.

To any grossencharacter of conductor dividing m, we associate p-adic
Galois characters

εq : Gal(K(mp∞)/K) −→ C×p
by the rule εq(σa) = iq(ε(a)), where q is p or p∗, and σa is the Frobenius
of a. The character ψq agrees with the character

Gal(K(fq∞)/K) −→ Aut(Tq) ∼= Z×p ,

and the formalism of the Weil pairing implies that ψpψp∗ is the cyclotomic
character.

Theorem 2.1.1 (Katz). — There are measures

(2.1) µp ∈ Λ(K(fp∞))R0 , µp∗ ∈ Λ(K(fp∞))R0

such that if ε is a grossencharacter of conductor dividing fp∞ of type (k, j)
with 0 6 −j < k, one has the interpolation formula

(2.2) αp(ε)
∫
εp dµp =

(
1− ε(p)

p

)
· L∞,fp∗(ε−1, 0)

where αp(ε)∈Cp is a nonzero constant, the integral is over Gal(K(fp∞)/K),
and the right hand side is interpreted as an element of Cp via the embedding
ip. As usual, ε(p) = 0 if p divides the conductor of ε. Similarly, if ε has
infinity type (k, j) with 0 6 −j < k and conductor dividing fp∞, then

αp∗(ε)
∫
εp∗ dµp∗ =

(
1− ε(p∗)

p

)
· L∞,fp(ε−1, 0)

for some nonzero αp∗(ε) where the right hand side is embedded in Cp

via ip∗ .

Proof. — This is Theorem II.4.14 of [25]. �
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Remark 2.1.2. — Our measure µp is de Shalit’s µp(fp∗∞). The measure
µp is canonically associated to the field K, the ideal f and the embedding
ip. In particular it does not depend on the elliptic curve E. The constants
αp(ε) and αp∗(ε) can be made explicit.

Remark 2.1.3. — It can be deduced either from the interpolation formu-
lae (2.1), (2.2) or from a result of Yager (see Theorem 2.2.1 below) that the
involution of Λ(K(fp∞))R0 induced by complex conjugation interchanges
µp and µp∗ .

If ε is a grossencharacter of conductor dividing fp∞, we define

Lp,f(ε) =
∫

Gal(K(fp∞)/K)

ε−1
p dµp,

and similarly with p replaced by p∗, so that the interpolation formula reads

(2.3) Lp,f(ε) =
(
1− ε(p)−1

p

)
· L∞,fp∗(ε, 0)

up to a nonzero constant, provided that ε has infinity type (k, j) with
0 > −j > k.

If χ is a Z×p -valued character of Gal(F/K) for some abelian extension
F/K, we let

Twχ : Λ(F )R0 −→ Λ(F )R0

be the ring automorphism induced by γ 7→ χ(γ)γ on group-like elements.
Suppose q = p or p∗, F is an extension of K contained in K(fp∞), and χ is
a Z×p -valued character of Gal(K(fp∞)/K). Define µq(F ;χ) to be the image
of Twχ(µq) under the natural projection

Λ(K(fp∞))R0 −→ Λ(F )R0 ,

and for any integral OK-ideal a prime to fp, define λ(F ;χ, a) to be the
image of Twχ(σa −Na). Let

µq(F ;χ, a) = µq(F ;χ)λ(F ;χ, a).

In particular, the measure µq(D∞;ψp∗ , a) will be of crucial interest.
If F/K is any subextension of K(fp∞) and ε is a grossencharacter such

that εq factors through Gal(F/K), then∫
ε−1
q dµq(F ;ψp∗ , a) =

(
ε−1
q ψp∗(σa)−Na

) ∫
ε−1
q ψp∗ dµq

=


ip

(
ε−1ψ̄(a)−Na

)
· Lp,f(εψ̄−1) if q = p

ip∗
(
ε−1ψ(a)−Na

)
· Lp∗,f(εψ−1) if q = p∗

(2.4)
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where the integral on the left is over Gal(F/K) and the integral on the
right is over Gal(K(fp∞)/K).

Fix a generator σ of Gal(K∞/D∞). The cyclotomic character defines a
canonical isomorphism

〈 〉 : Gal(K∞/D∞) ∼= Gal(C∞/K) ∼= 1 + pZp.

Following Greenberg, we define the critical divisor

Θ = σ − 〈σ〉σ−1 ∈ Λ(K∞)R0 .

If q is p or p∗, we have a canonical factorization ψq = χqηq where χq takes
values in µp−1 and ηq takes values in 1 + pZp. It is trivial to verify, using
the fact that ηpηp∗ = 〈 〉, that Twηq (Θ) generates the kernel of the natural
projection Λ(K∞)R0 −→ Λ(D∞)R0 .

Let K = K(E[p∞]) so that K ⊂ K(fp∞) by the theory of complex
multiplication. We have a natural isomorphism

Gal(K/K)
ψp×ψp∗−−−−−→ Z×p × Z×p ,

and hence if we define ∆ = Gal(K/K∞), every character of ∆ is of the form
χapχ

b
p∗ for some unique 0 6 a, b < p − 1. If χ is any character of ∆, we let

e(χ) ∈ Λ(K)R0 be the associated idempotent, satisfying γe(χ) = χ(γ)e(χ)
We may also view e(χ) as a map Λ(K)R0 −→ Λ(K∞)R0 , hopefully without
confusion. If χ is the trivial character, this map is the natural projection.

Theorem 2.1.4 (Greenberg). — Let q = p or p∗, q∗ = q̄, and denote
by W the sign in the functional equation of ψ. If 1 denotes the trivial
character, so that µq(K, 1) is the image of µq in Λ(K)R0 , then

(1) the critical divisor divides e(χq)µq(K, 1) if and only if W = −1,
(2) the critical divisor divides e(χq∗)µq(K, 1) if and only if W = 1.

Proof. — The first claim is exactly the case k0 = 0 of [5, Proposition 6].
For the second claim, the case k0 = p−2 of the same proposition shows that
the critical divisor divides e(χq∗)µq(K, 1) if and only if Wp−2 = −1, where
Wp−2 is the sign in the functional equation of ψ2(p−2)+1. Let m denote the
number of roots of unity in K. Proposition 1 of [5], together with the fact
that p ≡ 1 (mod m), implies that Wp−2 = −W . �

Corollary 2.1.5. — The measure µp(D∞, ψp∗) is nonzero if and only
if W = −1. The measure µp∗(D∞, ψp∗) is nonzero if and only if W = 1.
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Proof. — Let q = p or p∗. We have µq(D∞, ψp∗) = 0 if and only if
Twηp∗ (Θ) divides µq(K∞, ψp∗), which occurs if and only if Θ divides

Twη−1
p∗

(
µq(K∞, ψp∗)

)
= Twψ−1

p∗

(
e(1)µq(K, ψp∗)

)
= e(χp∗)Twψ−1

p∗

(
µq(K, ψp∗)

)
= e(χp∗)µq(K, 1).

The claim now follows from Theorem 2.1.4. �

Corollary 2.1.5 shows that one of the measures µp(D∞, ψp∗), µp∗(D∞, ψp∗)
(depending upon the value of W ) is non-zero. We conclude this subsec-
tion by describing an alternative approach to showing this fact, using root
number calculations and non-vanishing theorems for complex-valued L-
functions.

Suppose that θ is a C×-valued idele class character of K, of conductor
fθ. Then we may write θ =

∏
v θv, where the product is over all places of

K. We define the integer n(θ) by the equality θ∞(z) = zn(θ)|z|s. Hence, if
θ is associated to a grossencharacter of K of type (k, j), then

θ∞(z) = zkz̄j = zk−j |z|2j ,

and so n(θ) = k − j.
Let Wθ denote the root number associated to θ. It follows easily from

standard properties of root numbers (see, for example [9], especially Propo-
sition 2.2 on page 30 and the definition on page 32) that Wθ = Wθ/|θ|.

Proposition 2.1.6 (Weil). — Suppose that θ1 and θ2 are C×-valued
idele class characters of absolute value 1. Assume also that fθ1 and fθ2 are
relatively prime. Then

Wθ1Wθ2θ1(fθ2)θ2(fθ1) =

{
Wθ1θ2 if n(θ1)n(θ2) > 0;

(−1)νWθ1θ2 if n(θ1)n(θ2) < 0,

where ν = inf{|n(θ1)|, |n(θ1)|} mod 2.

Proof. — See [26], pages 151-161 (especially Section 79). �

Let K[pn] denote the ring class field of K of conductor pn, and set
K[p∞] = ∪n>1K[pn].

Proposition 2.1.7. — Let ξ be a grossencharacter of K whose associ-
ated Galois character factors through Gal(K[p∞]/K) and is of finite order.

(a)(Greenberg) The following equality holds

Wξψ = Wψ.
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(b) Let e be a positive integer, and let ε be a grossencharacter of type
(−e, e) associated toK, of trivial conductor (such a grossencharacter always
exists for a suitable choice of e). Then

Wεξψ = −Wψ.

Proof. — (a) This is proved on page 247 of [5]. (Note that the proof given
in [5] assumes that the Galois character associated to ξ factors through
Gal(D∞/K). It is easy to see that the same proof holds if we instead assume
that the Galois character associated to ξ factors through Gal(K[p∞]/K).)

(b) From part (a), we see that it suffices to show that

Wεξψ = −Wξψ.

The proof of this equality proceeds by applying Proposition 2.1.6 to the
idele class characters θ1 = ξψ/|ξψ| and θ2 = ε/|ε|.

We first note that since ε has trivial conductor, the same is true of θ2,
and so θ1(fθ2) = 1. Next, we observe that since E is defined over Q, it
follows that f̄θ1 = fθ1 . Since ε is of type (e,−e) and has trivial conductor,
this implies that θ2(fθ1) = 1.

Let δK denote the different of K/Q. It follows from standard formulae
for global root numbers (see [8], Chapter XIV, §8, Corollary 1, for example)
that

(2.5) Wε = i−2eε(δ−1
K ) = (−1)eε(δ−1

K ).

It is not hard to check that the different of any imaginary quadratic field of
class number one has a generator δ satisfying δ/|δ| = i. This implies (since
ε has trivial conductor and is of type (e,−e)) that ε(δ−1

K ) = (−1)e. It now
follows from (2.5) that

Wε = 1 = Wθ2 .

Finally, we note that n(θ1) = 1 and n(θ2) = −2e, whence it follows that
ν = 1. Putting all of the above together gives

Wθ1θ2 = −Wθ1Wθ2 ,

from which we deduce that

Wεξψ = −Wξψ = −Wψ,

as claimed. �

Now suppose that Wψ = −1, and let κ = εξ be a grossencharacter as
in Proposition 2.1.7(b) whose associated Galois character factors through
Gal(D∞/K). (Note that once a choice of ε is fixed, then there are infinitely
many choices of ξ such that the Galois character associated to εξ factors

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC IWASAWA THEORY 1021

through Gal(D∞/K).) Then κψ̄−1 is of type (−e, e−1), and so it lies within
the range of interpolation of (2.3). Hence we have (from (2.3) and (2.4))∫

κ−1
p dµp(D∞;ψp∗ , a) = ip(κ−1ψ̄(a)−Na)Lp,f(κψ̄−1)

= ip(κ−1ψ̄(a)−Na)
(
1− κ(p)−1

p

)
L∞,fp∗(κψ̄−1, 0)

= ip(κ−1ψ̄(a)−Na)
(
1− κ(p)−1

p

)
L∞,fp∗(κψ, 1),

where for the last equality we have used the fact that ψψ̄ = N.
Next we note that Proposition 2.1.7(b) implies that Wκψ = 1. It now

follows from a theorem of Rohrlich (see page 384 of [19]) that, for all but
finitely many choices of κ, we have L∞,fp∗(κψ, 1) 6= 0. Hence the measure
µp(D∞;ψp∗ , a) is non-zero, and so the same is true of µp(D∞;ψp∗).

We now turn to the measure µp∗(D∞;ψp∗). Suppose thatWψ = 1, and let
ξ be any character of Gal(D∞/K) of finite order. Then the grossencharacter
ξψ−1 is of type (−1, 0), and so lies within the range of interpolation of (2.3).
Hence, just as above, we have∫

ξ−1
p∗ dµp∗(D∞;ψp∗ , a) = ip∗(ξ−1ψ(a)−Na)Lp∗,f(ξψ−1)

= ip∗(ξ−1ψ(a)−Na)
(
1− ξ(p∗)−1

p

)
L∞,fp(ξψ−1, 0)

= ip∗(ξ−1ψ(a)−Na)
(
1− ξ(p∗)−1

p

)
L∞,fp(ξψ̄, 1).

Now Proposition 2.1.7(a) implies that that W (ξψ̄) = W (ψ) = 1 . It
therefore follows from the theorem of Rohrlich quoted above that, for all but
finitely many choices of ξ, we have L∞,fp(ξψ̄, 1) 6= 0. This in turn implies
that µp∗(D∞;ψp∗ , a) is non-zero, whence it follows that µp∗(D∞;ψp∗) is
non-zero also.

2.2. Elliptic units

If F/K is any finite extension and q = p or p∗, we define Uq(F ) to be the
direct sum over all places w dividing q of the principal units of Fw. If F/K
is any (possibly infinite) extension, we define Uq(F ) to be the inverse limit
with respect to the norm maps of the groups Uq(F ′) as F ′ ⊂ F ranges over
the finite extensions of K. Let a be an OK-ideal with (a, fp) = 1, and let
I(a) denote the set of all ideals of OK prime to a.
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If L ⊂ C is a lattice with CM by OK , we define an elliptic function

Θ(z;L, a) =
∆(L)

∆(a−1L)

∏ ∆(L)
(℘(z, L)− ℘(u, L))6

where the product is over the nontrivial u ∈ a−1L/L, and ∆ is the modular
discriminant. For any m ∈ I(a), let wm be the number of roots of unity
congruent to 1 modulo m. If m is not a prime power then Θ(1;m, a) is a
unit of K(m), and if l ∈ I(a) is prime we have the distribution relation

NormK(ml)/K(m)Θ(1;ml, a)e =

{
Θ(1;m, a) if l | m
Θ(1;m, a)1−σ

−1
l else

where e = wm/wml. In particular, the sequence Θ(1; fpk, a) is norm com-
patible for k > 0. We denote by β(a) and β∗(a) the images of this sequence
in Up(K(fp∞)) and Up∗(K(fp∞)), respectively.

Define J ⊂ Λ(K(fp∞))R0 to be the annihilator of µp∞ . Then J is the
ideal generated by σb −N(b) as b ranges over integral ideals prime to fp.

Theorem 2.2.1. — (Yager) There are isomorphisms of Λ(K(fp∞))R0-
modules

Up(K(fp∞))R0
∼= J, Up∗(K(fp∞))R0

∼= J,

which take

β(a) 7→ (σa −N(a)) · µp, β∗(a) 7→ (σa −N(a)) · µp∗ .

Proof. — This is Proposition III.1.4 of [25]. �

2.3. The twisted Euler system

We continue to denote by a a nontrivialOK-ideal prime to fp. If m ∈ I(a),
define a unit

ϑa(m) = NormK(mfp)/K(m)Θ(1;mfp, a).

If we let Ka = ∪m∈I(a)K(m), the elements

ϑa(m) ∈ H1(K(m),Zp(1)),

with a fixed, form an Euler system for (Zp(1), fp,Ka) in the sense of [24].

Proposition 2.3.1. — Let q = p or p∗. There is an Euler system c = ca
for (Tp, fp,Ka) and an injection (the Coleman map)

Colq : H1(K(fp∞)q, Tp)R0 −→ Λ(K(fp∞))R0

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC IWASAWA THEORY 1023

with the following property: if we set

z = lim
←
c(K(fpk)) ∈ H1(K(fp∞), Tp),

and let locq(z) be its image in H1(K(fp∞)q, Tp), then Colq sends

locq(z)⊗ 1 7→ µq(K(fp∞), ψp∗ , a).

The image of Colq is Twψp∗ (J), the ideal generated by all elements of the
form σb − ψp(σb) with b prime to fp.

Proof. — This follows from the “twisting” theorems of Chapter 6 of [24].
The GK-module Tp is isomorphic to the twist of Zp(1) by the character
ω−1ψp = ψ−1

p∗ , where ω is the cyclotomic character. A choice of such an
isomorphism determines an isomorphism of Zp-modules

H1(K(fp∞),Zp(1))
φ−→ H1(K(fp∞), Tp)

satisfying φ ◦ Tw−1
ψp∗

(λ) = λ ◦ φ for any λ ∈ Λ(K(fp∞)). Similarly, if q = p

or p∗, there is an isomorphism of Zp-modules

Uq(K(fp∞)) ∼= H1(K(fp∞)q,Zp(1))
φq−−→ H1(K(fp∞)q, Tp)

which is compatible with φ and the localization map locq.
The Euler system ca is the twist of ϑa by ψp∗ , and by construction

z = φ(lim
←
ϑa(fpk)) = φ(lim

←
Θ(1; fpk, a)).

See Section 6.3 of [24], especially Theorem 6.3.5. In particular, locq(z) =
φq(βa), and if we define Colq to be the composition

H1(K(fp∞)q, Tp)R0

φ−1
q−−→ Uq(K(fp∞))R0

∼= J
Twψp∗−−−−→ Twψp∗ (J)

then Colq is an isomorphism of Λ(K(fp∞))R0-modules with the desired
properties. �

Definition 2.3.2. — We say that the prime p is anomalous if p divides

(1− ψ(p))(1− ψ(p∗)),

or equivalently if there is any p-torsion defined over Z/pZ on the reduction
of E at p.

Lemma 2.3.3. — Let F ⊂ K∞ contain K and let q = p or p∗. The
natural corestriction map

(2.6) H1(K∞,q, Tp)⊗Λ(K∞) Λ(F ) −→ H1(Fq, Tp)
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is an isomorphism if either q = p∗ or if q = p and p is not anomalous. If
F = CmDn for some 0 6 m,n 6 ∞, then the map is injective with finite
cokernel.

Proof. — Let v be any place of K∞ above p∗, and denote also by v the
place of F below it. By Lemma 1.1.2, E(K∞,v)[p∗] = 0, and the inflation-
restriction sequence shows that

H1(Fv,Wp∗) −→ H1(K∞,v,Wp∗)Gal(K∞,v/Fv)

is an isomorphism. This implies that the restriction map

H1(Fp∗ ,Wp∗) −→ H1(K∞,p∗ ,Wp∗)Gal(K∞/F )

is an isomorphism. By local duality, the map

H1(K∞,p∗ , Tp)⊗Λ(K∞) Λ(F ) −→ H1(Fp∗ , Tp)

is an isomorphism. If p is not anomalous then E(L)[p] = 0 for any p-power
extension L/Kp, and the same argument as above shows that

H1(K∞,p, Tp)⊗Λ(K∞) Λ(F ) −→ H1(Fp, Tp)

is an isomorphism.
Now suppose F = CmDn, let v be a place of K∞ above p, and suppose

also that p is anomalous; this implies that all p∗-power torsion of E is
defined over K∞,v, and in fact is defined over the unique unramified Zp-
extension of Kv. Set L = C∞Dn, and define

B = H0(Lv,Wp∗) = H0(Kunr
v ∩ Lv,Wp∗).

Note that B is finite, since Kunr
v ∩ Lv is a finite extension of Qp. We have

the inflation-restriction sequence

H1(Lv/Fv, B) −→ H1(Fv,Wp∗)
res−−→ H1(Lv,Wp∗)Gal(Lv/Fv)

−→ H2(Lv/Fv, B).

Since Gal(Lv/Fv) ∼= Zp is of cohomological dimension one, the final term of
this sequence is trivial, and so the map res is surjective. The first term of the
sequence is isomorphic to B/(γ − 1)B for any generator γ of Gal(Lv/Fv),
and this is finite since B is.

Now consider the restriction map

H1(Lv,Wp∗) −→ H1(K∞,v,Wp∗)Gal(K∞,v/Lv).

Since K∞,v/Lv is a Zp-extension, the restriction is surjective, exactly as
above. Similarly, the kernel is isomorphic to Wp∗/(σ − 1)Wp∗ for any gen-
erator σ of Gal(K∞,v/Lv). Such a σ acts on Wp∗ through some scalar 6= 1,
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and since Wp∗ is divisible the kernel of restriction is trivial. As above, local
duality gives the stated results. �

Proposition 2.3.4. — Let F ⊂ K∞ be a (possibly infinite) extension
of K, and let q = p or p∗. Suppose that one of the following holds

(1) q = p∗,
(2) q = p and p is not anomalous,
(3) q = p and F = DmCn for 0 6 m,n 6∞.

There is an injection of ΛR(F )-modules

H1(Fq, Tp)R −→ Λ(F )R

taking locq(c(F )) ⊗ 1 to µq(F ;ψp∗ , a). The image of this map is the ideal
generated by λ(F ;ψp∗ , a) as a varies, and if F = D∞ the map is an iso-
morphism. If p does not divide [K(f) : K] and if either (1) or (2) holds, the
result is true with R replaced by R0.

Proof. — Let w be a place of K(fp∞) above p, set

H = Gal(K(fp∞)w/K∞,w)

and consider the inflation-restriction sequence

H1(H,Wp∗) −→ H1(K∞,w,Wp∗) −→ H1(K(fp∞)w,Wp∗)

−→ H2(H,Wp∗).

The first and last terms are finite. If p does not divide [K(f) : K] then p

does not divide |H|, and so the kernel and cokernel of restriction are trivial.
Applying local duality and considering the semi-local cohomology, we see
that the map

H1(K(fp∞)q, Tp)⊗Λ(K(fp∞)) Λ(K∞) −→ H1(K∞,q, Tp)

has finite kernel and cokernel, and is an isomorphism if [K(f) : K] is prime
to p.

By Lemma 2.3.3 the natural map

H1(K(fp∞)q, Tp)⊗Λ(K(fp∞)) Λ(F ) −→ H1(Fq, Tp)

has finite kernel and cokernel, and so becomes an isomorphism upon ap-
plying first ⊗̂R0 and then ⊗R. Tensoring the Coleman map of Proposition
2.3.1 with Λ(F ) yields the desired map. If F = D∞ then F is disjoint from
the extension of K cut out by ψp, and it follows that the image of the map
above is the ideal of Λ(F )R generated by all elements of the form γ − α,
where γ runs over Gal(D∞/K) and α runs over Z×p . This ideal is all of
Λ(F )R. �
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2.4. Main conjectures

Throughout this subsection we fix a topological generator
γ ∈ Gal(K∞/D∞), and we let I = (γ − 1)Λ(K∞).

Denote by W the sign in the functional equation of L(ψ, s). Let a be an
integral ideal of OK prime to pf, and recall that Ka is the union of all ray
class fields of K of conductor prime to a. Let ca be the Euler system for
(Tp, fp,Ka) of Proposition 2.3.1, and for any F ⊂ K∞, let

ca(F ) = lim
←
ca(F ′) ∈ H1(F, Tp).

be the limit as F ′ ranges over subfields of F finite over K. Let Ca(F ) be
the Λ(F )-submodule of Srel(F, Tp) generated by ca(F ), and let C(F ) be the
submodule generated by Ca(F ) as a varies over all ideals prime to pf. Define

Z(F ) = Srel(F, Tp)/C(F ),

and define Za(F ) similarly, replacing C by Ca.

Remark 2.4.1. — It is clear from the definitions that Selrel(F, Tp) =
H1(F, Tp) for every extension F/K. In particular ca(F ) ∈ Srel(F, Tp).

Lemma 2.4.2. — For every F ⊂ Ka finite over K, the class ca(F ) is
unramified at every prime of F not dividing p.

Proof. — This follows from Corollary B.3.5 of [24], and the fact that the
class ca(F ) is a universal norm in the cyclotomic direction. �

Proposition 2.4.3. — The submodule locp∗(C(D∞))⊂H1(D∞,p∗ , Tp)
is nontrivial if and only ifW=1. The submodule locp(C(D∞))⊂H1(D∞,p, Tp)
is nontrivial if and only if W=−1. In particular, C(D∞) 6= 0 regardless of
the value of W .

Proof. — Suppose W = 1. By Corollary 2.1.5,

µp(D∞, ψp∗) = 0, µp∗(D∞, ψp∗) 6= 0.

We may choose a so that λ(D∞;ψp∗ , a) 6= 0, and then Proposition 2.3.4
implies that locp∗(Ca(D∞)) 6= 0. Therefore locp∗(C(D∞)) 6= 0. On the
other hand, for every choice of a, µp(D∞;ψp∗ , a) = 0, and so Proposition
2.3.4 implies that locp(Ca(D∞)) is trivial in H1(D∞,p, Tp)R By Proposi-
tion 1.1.6, H1(D∞,p, Tp) is torsion-free, and so locp(Ca(D∞)) is trivial in
H1(D∞,p, Tp). The case W = −1 is entirely similar. �

Now armed with a nontrivial Euler system, we may apply the general
theory introduced by Kolyvagin and developed by Kato, Perrin-Riou, and
Rubin.
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Proposition 2.4.4. — The Λ(D∞)-module X∗str(D∞) is torsion and
Srel(D∞, Tp) is torsion free of rank one. Furthermore, we have the divisi-
bility of characteristic ideals

char(X∗str(D∞)) divides char(Z(D∞)).

If W = 1 then the Λ(D∞)-module X∗(D∞) is torsion. If W = −1 then
X∗(D∞) has rank one and S(D∞, Tp) = Srel(D∞, Tp).

Proof. — By Proposition 2.4.3, we may choose some a so that Ca(D∞) 6=
0. The first claim follows from Theorem 2.3.2 of [24] (together with Lemma
2.4.2 and the remarks of Section 9.2 of [24]), and the second then follows
from Lemmas 1.1.9 and 1.2.1 and Theorem 1.2.2. Applying Theorem 2.3.3
of [24] as a varies over all integral ideals prime to pf, one obtains the
divisibility of characteristic ideals.

Suppose W = 1. The image of C(D∞) under

locp∗ : Srel(D∞, Tp) −→ H1(D∞,p∗ , Tp)

is nontrivial by Proposition 2.4.3, and since both modules are torsion-free of
rank one this map must be injective with torsion cokernel. By Proposition
1.1.7 we obtain the exact sequence

0 −→ Srel(D∞, Tp) −→ H1(D∞,p∗ , Tp) −→ X∗(D∞) −→ X∗str(D∞) −→ 0

which shows that X∗(D∞) is torsion.
Suppose W = −1. By Proposition 2.4.3 and the exact sequence (1.3),

C(D∞) ⊂ S(D∞, Tp). Since C(D∞) 6= 0 and S(D∞, Tp) ⊂ Srel(D∞, Tp),
it follows that S(D∞, Tp) is torsion free of rank one. From Lemma 1.2.1
and Proposition 1.2.2, we see that X∗(D∞) has rank one. Furthermore, the
image of locp∗ in the exact sequence (1.3) (with F = D∞) must be a torsion
module, and hence must be trivial. Therefore S(D∞, Tp) = Srel(D∞, Tp).

�

Let K = K(E[p∞]) and define abelian extensions of K as follows:
• Mrel is the maximal abelian pro-p-extension of K unramified out-

side of p,
• M is the maximal abelian pro-p-extension of K unramified outside

of p∗,
• Mstr is the maximal abelian pro-p-extension of K unramified ev-

erywhere.
Let E be the inverse limit of the groups O×F ⊗ Zp over subfields F ⊂ K
containing K. For any integral ideal a of K prime to pf, let Ua ⊂ E be the
submodule generated by the (untwisted) elliptic unit Euler system ϑa of
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§2.3. Let U be the submodule generated by all such Ua. By Kummer theory
we may view U ⊂ E ⊂ H1(K,Zp(1)).

The following result is essentially due to Coates (see [3] Theorem 12).

Lemma 2.4.5. — There is a group isomorphism

α : H1(K,Qp/Zp) ∼= H1(K,Wp∗)

satisfying α◦Twψ∗(λ) = λ◦α for every λ ∈ Λ(K), where Twψp∗ : Λ(K) −→
Λ(K) is the ring automorphism of §2.1. This map restricts to an isomor-
phism (of groups, not Λ(K)-modules)

Hom(Gal(M/K),Qp/Zp) ∼= Sel(K,Wp∗)

and similarly for the relaxed and restricted Selmer groups, replacingM by
Mrel and Mstr, respectively. Similarly, there is a group isomorphism

β : H1(K,Zp(1)) ∼= H1(K, Tp)

satisfying β ◦ Tw−1
ψp∗

(λ) = λ ◦ β for every λ ∈ Λ(K). This isomorphism
identifies E with Srel(K, Tp) and U with C(K).

Proof. — The existence of

α : H1(K,Qp/Zp) ∼= H1(K,Wp∗)

follows from the twisting theorems of [24, §6.2], once one fixes an isomor-
phism Wp∗

∼= (Qp/Zp)(ψp∗). From the definitions, together with Proposi-
tion 1.1.7, we have the following characterizations of our Selmer groups in
H1(K,Wp∗):

• Selrel(K,Wp∗) consists of the classes locally trivial away from p,
• Sel(K,Wp∗) consists of the classes locally trivial away from p∗,
• Selstr(K,Wp∗) consists of the classes everywhere locally trivial.

The isomorphism α identifies each of these Selmer groups with the subgroup
of classes in H1(K,Qp/Zp) satisfying the same local conditions, and so it
suffices to check that for every place v of K, the condition “locally trivial
at v” agrees with the condition “unramified at v”. For v not dividing p this
is [24, Lemma B.3.3] , and the case v|p is identical: fix a place v of K and
note that regardless of the rational prime below v, Kv always contains the
unique unramified Zp-extension of Kv. In particular, if Kunr is the maximal
unramified extension of K, then Gal(Kunr/K) has trivial pro-p-part, and so
H1(Kunr/K,Qp/Zp) = 0.

For the compact cohomology groupH1(K, Tp) the existence of β is proved
in the same fashion, using the fact that ψpψp∗ is the cyclotomic character.
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That β identifies the relaxed Selmer group with the unit group is a conse-
quence of the discussion above, since local duality shows that the unram-
ified conditions agree with the relaxed conditions everywhere locally. The
identification of Ua with Ca(K) is immediate from the construction of the
twisted Euler system ca from the elliptic units ϑa in Proposition 2.3.1. �

Decompose
Gal(K/K) ∼= ∆×Gal(K∞/K)

where ∆ ∼= Gal(K(E[p])/K), and let ψq = χqηq be the associated decom-
position of ψq, for q = p of p∗.

Corollary 2.4.6. — We have the equality of characteristic ideals in
Λ(K∞)

Tw−1
η∗p

(
char(Gal(M/K)χp∗ )

)
= char(X∗(K∞))

and similarly for the relaxed and restricted Selmer groups. Also,

Tw−1
η∗p

(
char(E/U)χp∗

)
= char(Z(K∞)).

Proof. — This follows easily by taking ∆-invariants of the Λ(K/K)-
modules of the Lemma above (cf. e.g. [24, Lemma 6.1.2]). One must remem-
ber our convention, Remark 1.1.8, about the Λ(K)-action on X∗(K). �

Theorem 2.4.7. — (Rubin) The Λ(K∞)-module X∗(K∞) is torsion,
Srel(K∞, Tp) has rank one, and

char(X∗(K∞)) = char
(
H1(K∞,p∗ , Tp)/locp∗C(K∞)

)
char(X∗str(K∞)) = char(Z(K∞)).

Proof. — In view of Lemma 2.4.5 and its corollary, this is a twisted form
of the main results of [20]. �

Remark 2.4.8. — The fact that X∗(K∞) is torsion is originally due to
Coates [3].

The following proposition follows from a deep result of Greenberg.
Strictly speaking, it is not needed to prove the main result of this sec-
tion, Theorem 2.4.17 below, but it is helpful for understanding the case
W = 1. See Remark 2.4.18.

Proposition 2.4.9. — The Λ(K∞)-modules X∗rel(K∞) and X∗(K∞)
have no nonzero pseudo-null submodules.

Proof. — It is a theorem of Greenberg [4] that Gal(Mrel/K) has no non-
zero pseudo-null submodules, and so Lemma 2.4.5 implies that X∗rel(K∞)
also has none. By [16, §II.2, Théorème 23], X∗(K∞) also has no nontrivial
pseudo-null submodules. �
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Lemma 2.4.10. — For q = p or p∗, the kernel of the restriction map

H1(D∞,q,Wp∗) −→ H1(K∞,q,Wp∗)

is finite.

Proof. — The kernel of the restriction map is isomorphic to

H0(K∞,q,Wp∗)/IH0(K∞,q,Wp∗)

by the inflation-restriction sequence and [24, Lemma B.2.8]. The finiteness
follows from Lemma 2.3.3 and local duality. �

Lemma 2.4.11. — The semi-local restriction map⊕
w|f

H1(D∞,w,Wp∗) −→
⊕
w|f

H1(K∞,w,Wp∗).

is injective.

Proof. — This is [16, II.7, Lemme 13] (or [25, proof of Lemma IV.3.5]),
together with the isomorphism

H1(L,Wp∗) ∼= H1(L,E)[p∗∞]

for any algebraic extension L/Kw (it suffices to prove this isomorphism for
finite extensions, where it is a consequence of the Kummer sequence and
the fact that E(L) has a finite index pro-` subgroup, where ` 6= p is the
residue characteristic of w). �

We will need the following slight generalization of the control theorems
of Mazur and Perrin-Riou.

Proposition 2.4.12. — The dual to the restriction map

(2.7) Selrel(D∞,Wp∗) −→ Selrel(K∞,Wp∗)[I]

is an isomorphism of Λ(D∞)-modules

X∗rel(K∞)/IX∗rel(K∞) −→ X∗rel(D∞).

The analogous maps for X∗ and X∗str are surjective with finite cokernel.

Proof. — Let S be the set of places of K consisting of the archimedean
place and the primes dividing pf, and denote by KS/K the maximal exten-
sion of K unramified outside S. By Lemma 1.1.2 H0(KS/K∞,Wp∗) = 0,
and so the inflation-restriction sequence shows that the restriction map

H1(KS/D∞,Wp∗) −→ H1(KS/K∞,Wp∗)[I]

is an isomorphism. As in the proof of Lemma 1.1.5, for w a prime of D∞
not lying above a prime of S the local condition H1

f (D∞,w,Wp∗) is equal
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to the unramified condition, and similarly for K∞. >From the definition
of the relaxed Selmer group, we have the commutative diagram with exact
rows

0 // Selrel(D∞,Wp∗) //

��

H1(KS/D∞,Wp∗) //

��

⊕
H1(D∞,w,Wp∗)

��
0 // Selrel(K∞,Wp∗)[I] // H1(KS/K∞,Wp∗)[I] // ⊕H1(K∞,w,Wp∗)

where the direct sums are over places w|f. In particular, since the middle
vertical arrow is an isomorphism, the restriction map (2.7) is injective, and
to bound the cokernel of this map it suffices to bound the kernel of the
right vertical arrow in the diagram above. This kernel is trivial by Lemma
2.4.11. This completes the proof for the relaxed Selmer groups.

In order to prove the result for the true Selmer groups, we replace the
top and bottom rows of the commutative diagram above with the exact
sequence (1.6) applied with F = D∞ and F = K∞, respectively. Again by
the snake lemma, it then suffices to bound the kernel of restriction

H1(D∞,p,Wp∗) −→ H1(K∞,p,Wp∗),

and this is the content of Lemma 2.4.10. Similarly, one deduces the result
for the strict Selmer group from the result for the true Selmer group by
using the exact sequence (1.4), together with another application of Lemma
2.4.10. �

Definition 2.4.13. — We define the descent defect D ⊂ Λ(D∞) by

D = charΛ(D∞)(X∗str(K∞)[I]).

Corollary 2.4.14. — The descent defect D is nonzero, and we have
the equality of ideals in Λ(D∞)

charΛ(D∞)(X∗str(D∞)) = charΛ(K∞)(X∗str(K∞)) ·D

If W = 1 then

charΛ(D∞)(X∗(D∞)) = charΛ(K∞)(X∗(K∞)).

Proof. — By Proposition 2.4.4 X∗str(D∞) is a torsion Λ(D∞)-module,
and so by Proposition 2.4.12, the same is true of X∗str(K∞)/IX∗str(K∞).
The claim now follows from [20, Lemma 6.2 (i)].

When W = 1, X∗(D∞) is a torsion module and the proof is identical,
except that now [20, Lemma 6.2 (i)] and Proposition 2.4.9 above show that
X∗(K∞)[I] = 0. �
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Recall from Propositions 2.4.3 and 2.4.4 that Z(D∞) is a torsion Λ(D∞)-
module. The following proposition gives the other half of the descent from
K∞ to D∞.

Proposition 2.4.15. — The natural maps of Λ(D∞)-modules

Srel(K∞, Tp)/ISrel(K∞, Tp) −→ Srel(D∞, Tp)

Z(K∞)/IZ(K∞) −→ Z(D∞)

are injective, and their cokernels have characteristic ideal D. The same
holds with Z replaced by Za for any ideal a prime to pf.

Proof. — Let L ⊂ K∞ be finite over K. As always, let S the set of places
of K consisting of the archimedean place and the primes dividing pf. Let
KS/K be the maximal extension of K unramified outside S. >From the
Poitou-Tate nine-term exact sequence we extract the exact sequence

0 −→ X∗str(L) −→ H2(KS/L, Tp) −→
⊕
v∈S

H0(Lv,Wp∗)∨,

(for example, by taking Bv = 0 in [18, Proposition 4.1]). Passing to the
limit as L varies and taking I-torsion gives

0 −→ X∗str(K∞)[I] −→ H2(KS/K, Tp ⊗ Λ(K∞))[I]

−→
⊕
v|pf

H0(K∞,v,Wp∗)∨[I],

where we have used Shapiro’s lemma to identify

H2(KS/K, Tp ⊗ Λ(K∞)) ∼= lim
←
H2(KS/L, Tp).

The final term in the exact sequence is the Pontryagin dual of⊕
v|pf

H0(K∞,v,Wp∗)/(γ − 1)
⊕
v|pf

H0(K∞,v,Wp∗)

∼=
⊕
v|pf

H1(K∞,v/D∞,v,H0(K∞,v,Wp∗)),

which is the kernel of restriction⊕
v|pf

H1(D∞,v,Wp∗) −→
⊕
v|pf

H1(K∞,v,Wp∗).

Lemmas 2.4.10 and 2.4.11 (for v|p and v|f, respectively) show that this
kernel is finite. By Corollary 2.4.14 we conclude that H2(KS/K, Tp ⊗
Λ(K∞))[I] is a torsion Λ(D∞)-module with characteristic ideal equal to D.
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>From the Gal(KS/K)-cohomology of

0 −→ Tp ⊗ Λ(K∞)
γ−1−−−→ Tp ⊗ Λ(K∞) −→ Tp ⊗ Λ(D∞) −→ 0

we deduce that the map

H1(KS/K, Tp ⊗ Λ(K∞))⊗Λ(K∞) Λ(D∞) −→ H1(KS/K, Tp ⊗ Λ(D∞))

is injective with torsion cokernel of characteristic ideal D. Again using
Shapiro’s lemma, together with Lemma 1.1.5, we see that the map

Srel(K∞, Tp)/ISrel(K∞, Tp) −→ Srel(D∞, Tp)

is injective with cokernel of characteristic ideal D. The map

C(K∞)/IC(K∞) −→ C(D∞)

is visibly surjective, since this merely asserts that the twisted elliptic units
are universal norms in the cyclotomic direction. The snake lemma now
proves the claim. �

Proposition 2.4.16. — We have the equality of characteristic ideals

char(X∗str(D∞)) = char(Z(D∞)).

Proof. — Let a be an ideal of K prime to pf. Using the fact that I is
principal, the snake lemma gives the exactness of

Srel(K∞, Tp)[I] −→ Za(K∞)[I] −→ Ca(K∞)/ICa(K∞).

The leftmost term is trivial by Lemma 1.1.9, and the term on the right
is isomorphic to Λ(D∞), since Ca(K∞) is free of rank one over Λ(K∞).
Therefore Za(K∞)[I] is a torsion-free Λ(D∞)-module. On the other hand,
the quotient Za(K∞)/IZa(K∞) is a torsion Λ(D∞)-module (by Proposi-
tions 2.4.4 and 2.4.15), and so [20, Lemma 6.2 (i)] tells us that Z(K∞)[I]
is a torsion Λ(D∞)-module. We conclude that Za(K∞)[I] = 0. Now by [20,
Lemma 6.2 (ii)],

charΛ(K∞)(Za(K∞)) · Λ(D∞) = charΛ(D∞)(Za(K∞)/IZa(K∞)).

Applying Proposition 2.4.15 gives

charΛ(K∞)(Za(K∞)) ·D = charΛ(D∞)(Za(D∞)).

Now let a vary and apply Theorem 2.4.7 and Proposition 2.4.14 to get

charΛ(D∞)(X∗str(D∞)) = charΛ(K∞)(X∗str(K∞)) ·D
= charΛ(K∞)(Z(K∞)) ·D

proving the claim. �
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Theorem 2.4.17.

(1) If W = 1, then
(a) S(D∞, Tp) = 0,
(b) X∗(D∞) is a torsion Λ(D∞)-module,
(c) the ideal of ΛR(D∞) generated by char(X∗(D∞)) is equal to

the ideal generated by the p-adic L-function µp∗(D∞, ψp∗). If
p does not divide [K(f) : K] the same holds with R replaced
by R0.

(2) If W = −1, then
(a) S(D∞, Tp) is a torsion-free Λ(D∞)-module of rank one,
(b) X∗(D∞) has rank one,
(c) char

(
X∗str(D∞)

)
= char

(
S(D∞, Tp)/C(D∞)

)
.

Proof. — The first two claims of (1) and (2) all follow from Lemma 1.1.9,
Theorem 1.2.2, and Proposition 2.4.4. When W = 1 the determination of
the characteristic ideal follows from Propositions 2.3.4 and 2.4.16, using
the exact sequence

0 −→ Z(D∞) −→ H1(D∞,p∗ , Tp)/locp∗C(D∞) −→ X∗(D∞)

−→ X∗str(D∞) −→ 0.

When W = −1 the claim follows from the final statement of Proposi-
tion 2.4.4 and from Proposition 2.4.16. �

Remark 2.4.18. — The case W = 1 can be deduced more directly from
the first equality of Theorem 2.4.7 and the second part of Corollary 2.4.14
(which requires Proposition 2.4.9), by using Lemma 2.3.3, the local ana-
logue of Proposition 2.4.15. This avoids the application of the Euler system
machinery directly over D∞ (Proposition 2.4.4) needed to prove Propo-
sition 2.4.15, or, more precisely, to prove the nontriviality of D. When
W = −1, the ideals appearing in the first equality of Theorem 2.4.7 have
trivial image in Λ(D∞), so one seems to have no recourse but to prove some
form of Proposition 2.4.15.

3. The p-adic height pairing

Throughout this section we assume W = −1 and we set

∆ = Gal(D∞/K), Γ = Gal(C∞/K).

We will frequently identify Γ ∼= Gal(K∞/D∞). For any nonnegative integer
n, let ∆n = ∆/∆pn and similarly for Γ. Let I be the kernel of the natural
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projection Λ(C∞) −→ Λ(K) and set J = I/I2. Many authors use some
choice of “logarithm” λ : Γ −→ Zp to define the p-adic height pairing.
Following the fashion of the day, we instead take

λ : Γ −→ J

to be the isomorphism γ 7→ γ−1, and so obtain a J -valued height pairing.

3.1. The linear term

Choose a generator γ ∈ Γ and fix some integral ideal a ⊂ OK prime to
fp. For every K ⊂ L ⊂ K∞ we set

ca(L) = lim
←
ca(L′),

where ca is the Euler system of Proposition 2.3.1 and the limit is taken
over all subfields L′ ⊂ L finite over K. We may identify

Λ(K∞)R0
∼= Λ(D∞)R0 [[Γ]]

and expand µp∗(K∞, ψp∗ , a) as a power series in γ − 1,

µp∗(K∞, ψp∗ , a) = La,0 + La,1(γ − 1) + La,2(γ − 1)2 + · · · .

Similarly we may expand

µp∗(K∞, ψp∗) = L0 + L1(γ − 1) + L2(γ − 1)2 + · · · .

By Corollary 2.1.5 and the assumption that W = −1, we have

L0 = µp∗(D∞, ψp∗) = 0.

It follows that also La,0 = 0. By Proposition 2.3.4 the image of ca(D∞) in
H1(D∞,p∗ , Tp) is trivial, and so by Proposition 1.1.7, ca(D∞) ∈ S(D∞, Tp).

Lemma 3.1.1. — Set Fn = DnC∞. For every n there is a unique element

βn ∈ H1(Fn,p∗ , Tp)R

such that
(γ − 1)βn = locp∗

(
ca(Fn)

)
.

Let αn be the image of βn in H1(Dn,p∗ , Tp)R. The elements αn are norm-
compatible and they define an element α∞ ∈ H1(D∞,p∗ , Tp)R. The Cole-
man map of Proposition 2.3.4 identifies

H1(D∞,p∗ , Tp)R ∼= Λ(D∞)R

and takes α∞ to La,1.
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Proof. — This is immediate from Proposition 2.3.4, the fact that La,0 =
0, and the definition of La,1. �

Tate local duality defines a pairing

〈 , 〉n : H1(Dn,p∗ , Tp)×H1(Dn,p∗ , Tp∗) −→ Zp

whose kernel on either side is the Zp-torsion submodule, and the induced
pairing on the quotients by the torsion submodules is perfect.

The height pairing of the following theorem has been studied by many
authors, including Mazur-Tate, Nekovář, Perrin-Riou, and Schneider. The
fourth property of the pairing, the height formula, is due to Rubin, and
plays a crucial role in what follows.

Theorem 3.1.2. — For every nonnegative integer n there is a canonical
(up to sign) p-adic height pairing

hn : Sel(Dn, Tp)× Sel(Dn, Tp∗) −→ Qp ⊗ J

satisfying the following properties
(1) there is a positive integer k, independent of n, such that hn takes

values in p−kZp ⊗ J
(2) if a ∈ Sel(Dn, Tp), b ∈ Sel(Dn, Tp∗), and σ ∈ ∆n, then

hn(aσ, bσ) = hn(a, b)

(3) if an ∈ Sel(Dn, Tp), bn+1 ∈ Sel(Dn+1, Tp∗), and res and cor are the
restriction and corestriction maps relative to Dn+1/Dn, then

hn+1(res(an), bn+1) = hn(an, cor(bn+1))

(4) (height formula) for every b ∈ Sel(Dn, Tp∗), we have (up to sign)

hn
(
ca(Dn), b

)
= 〈αn, locp∗(b)〉n ⊗ (γ − 1).

Proof. — This will be proved in the next section. �

Define the Λ(D∞)-adic Tate pairing

〈 , 〉∞ : H1(D∞,p∗ , Tp)R ⊗Λ(D∞)R H
1(D∞,p∗ , Tp∗)ιR ∼= Λ(D∞)R

by
〈a∞, b∞〉∞ = lim

←

∑
σ∈∆n

〈aσn, bn〉n · σ−1

and define the Λ(D∞)-adic height pairing

h∞ : S(D∞, Tp)R ⊗Λ(D∞)R S(D∞, Tp∗)ιR −→ Λ(D∞)R ⊗Zp J

similarly. The element α∞ ∈ H1(D∞,p∗ , Tp) satisfies

(3.1) h∞(ca(D∞), b∞) = 〈α∞, locp∗(b∞)〉∞ ⊗ (γ − 1)
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for every b∞ ∈ S(D∞, Tp∗).

Definition 3.1.3. — Define the anticyclotomic regulator, R, to be the
characteristic ideal of the cokernel of h∞.

Define R(Ca) to be the characteristic ideal of the cokernel of

h∞|Ca : Ca ⊗Λ(D∞)R S(D∞, Tp∗)ι −→ Λ(D∞)R ⊗Zp J ,

and let η be the ideal

η = char
(
H1(D∞,p∗ , Tp∗)/locp∗(S(D∞, Tp∗))

)
.

From Proposition 2.4.4 and the results of Section 1.2 we have that
Sstr(D∞, Tp∗) is trivial. The exactness of (1.5) then shows that η 6= 0.

Proposition 3.1.4. — There is an equality of ideals in Λ(D∞)R

R · char
(
S(D∞, Tp)/Ca

)
= R(Ca)
= (La,1) · ηι.

Proof. — The first equality is clear. The height formula (3.1) implies
that the image of h∞|Ca is equal to

〈α∞, locp∗(S(D∞, Tp∗)R)ι〉∞ ⊗ J ⊂ Λ(D∞)R ⊗Zp J

The second equality now follows from Lemma 3.1.1 and the fact that the
Λ(D∞)-adic Tate pairing is an isomorphism. �

Theorem 3.1.5. — Let X denote the ideal of Λ(D∞)R generated by
the characteristic ideal of the Λ(D∞)-torsion submodule of X∗(D∞). Then
we have the equality of ideals

R · X = (L1).

Proof. — If we replace p by p∗ and take F = D∞ in the second pair of
exact sequences of Proposition 1.1.7, we obtain the exact sequence

0 −→ H1(D∞,p∗ , Tp∗)/locp∗(S(D∞, Tp∗)) −→ Xrel(D∞) −→ X(D∞) −→ 0.

Taking Λ(D∞)-torsion and applying Lemma 1.2.1 and Theorem 1.2.2 we
obtain

char
(
X∗str(D∞)

)
= ηι · X .

Letting a vary in Proposition 3.1.4, the claim follows from Theorem 2.4.17
(2), part (c). �
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3.2. The height formula

In this section we sketch Perrin-Riou’s construction of the p-adic height
pairing

hn : Sel(Dn, Tp)× Sel(Dn, Tp∗) −→ Qp ⊗ J

of Theorem 3.1.2, as well Rubin’s proof of the height formula. Our exposi-
tion closely follows that of [22], to which we refer the reader for details.

For every 0 6 k 6∞, let Lk = DnCk.

Lemma 3.2.1. — Fix a place v of Dn and some extension of it to L∞.
The submodule of H1

f (Dn,v, Tp) defined by

H1
f (Dn,v, Tp)univ =

⋂
k

cor H1
f (Lk,v, Tp)

has finite index, and the index is bounded as v and n vary.

Proof. — First assume that v divides p∗, so that H1
f (Dn,v, Tp) is the tor-

sion submodule ofH1(Dn,v, Tp), which is in turn isomorphic toH0(Dn,v,Wp).
It clearly suffices to show that this is bounded as n varies. But Kv(Wp) is
unramfied, and D∞,v is a ramified Zp-extension of Kv, so this is clear.

>From now on suppose that v does not divide p∗, so that

H1
f (Lk,v, Tp) = H1(Lk,v, Tp).

By local duality, it suffices to bound the kernel of restriction

H1(Dn,v,Wp∗) −→ H1(L∞,v,Wp∗),

which is H1(L∞,v/Dn,v,M), where M = E(L∞,v)[p∗∞].
If v does not divide p then L∞,v is the unique unramified Zp-extension

of Kv (in particular it does not vary with n). If E does not have any
p∗-torsion defined over Kv, then Kv(E[p∗])/Kv is a nontrivial extension of
degree dividing p−1, so E has no p∗-torsion defined over any p-extension of
Kv, and so M = 0. Assume E[p∗] is defined over Kv, and that E has good
reduction at v. Then Kv(E[p∗∞]) = L∞,v and so M = Wp∗ is p-divisible.
If γ is a generator of Gal(L∞,v/Dn,v) then

H1(L∞,v/Dn,v,M) ∼= M/(γ − 1)M.

Since γ acts as a scalar 6= 1 on M , this group is trivial. If E has bad
reduction at v then M is finite by the criterion of Néron-Ogg-Shafarevich,
and the order of M does not vary with n (since L∞,v does not vary).
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Now assume that v divides p. The extension of Kv generated by E[p∗∞]
is unramified, and since Kunr

v ∩L∞,v is a finite extension of Kv, M is finite.
If γ generates Gal(L∞,v/Dn,v) then using the exactness of

0 −→ Mγ=1 −→ M
γ−1−−−→ M −→ M/(γ − 1)M −→ 0

we see that the order of H1(L∞,v/Dn,v,M) is equal to the order of

Mγ=1 = E(Dn,v)[p∗∞].

Since D∞,v is a ramified Zp-extension of Kv, this order is bounded as n
varies. �

Fix a ∈ Sel(Dn, Tp) and b ∈ Sel(Dn, Tp∗). In view of the above lemma, it
suffices to define the height pairing of a and b under the assumption that
both are everywhere locally contained in H1

f (Dn,v, Tp)univ. Viewing b as an
element of the larger group H1(Dn, Tp∗), b defines an extension of Galois
modules

0 −→ Tp∗ −→ M∗b −→ Zp −→ 0,

and taking Zp(1)-duals we obtain an exact sequence

(3.2) 0 −→ Zp(1) −→ Mb −→ Tp −→ 0.

If L/Dn is any finite extension, we may consider the global and local Galois
cohomology

H1(L,Zp(1)) //

��

H1(L,Mb)
πL //

��

H1(L, Tp)
δL //

��

H2(L,Zp(1))

��
H1(Lw,Zp(1)) // H1(Lw,Mb)

πLw // H1(Lw, Tp)
δLw // H2(Lw,Zp(1)).

Lemma 3.2.2. — Let L be a finite Galois extension of Dn and suppose
a′ ∈ H1(L, Tp) satisfies cor(a′) = a. Then a′ is in the image of πL. For
every place w of L, H1

f (Lw, Tp) is contained in the image of πLw

Proof. — Let res be the restriction map from Dn to L. The connecting
homomorphism δL is given (up to sign) by ∪res(b). If w is any place of L
and v is the place of Dn below it,

locw(δ(a′)) = locw(a′ ∪ res(b)) = locv(a ∪ b) = 0,

since a and b are everywhere locally orthogonal under the Tate pairing.
Thus δL(a′) is everywhere locally trivial, and by a fundamental fact of
class field theory it is globally trivial. The proof of the second claim is
similar. �
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Let A×Dn denote the group of ideles of Dn. Class field theory gives a
homomorphism

ρ : A×Dn −→ Gal(DnC∞/Dn) ∼= Γ λ−→ J

and we factor ρ =
∑
v ρv, the sum over all places of Dn. By local Kummer

theory we may view ρv as a map

ρv : H1(Dn,v,Zp(1)) −→ J ,

which can also be described as follows: the homomorphism

Gal(DnC∞/Dn) ∼= Γ λ−→ J

defines a class λ ∈ H1(Dn,J ) (we always regard J as having trivial Galois
action), and cup product with locv(λ) defines a map

H1(Dn,v,Zp(1)) −→ H2(Dn,v,J (1)) ∼= J

which agrees (up to sign) with ρv.
Taking L = Dn and a′ = a in Lemma 3.2.2, we may choose some yglob ∈

H1(Dn,Mb) with πDn(yglob) = a. Fix a place v of Dn and an extension of
v to L∞, and for every k choose yk,v ∈ H1

f (Lk,v, Tp) which corestricts to
locv(a). By Lemma 3.2.2 we may choose some y′k,v ∈ H1(Lk,v,Mb) such
that πLk,v (y′k,v) = yk,v. Let cor(y′k,v) be the image of y′k,v in H1(Dn,v,Mb).
Then locv(yglob)− cor(y′k,v) comes from some wk,v ∈ H1(Dn,v,Zp(1)), and
we define

hn(a, b) = lim
k→∞

∑
v

ρv(wk,v)

This limit exists and is independent of all choices made.
We now sketch the proof of the height formula. Suppose that a = ca(Dn),

and set ak = ca(Lk),

a∞ = lim
←
ak ∈ lim

←
Selrel(Lk, Tp).

By Lemma 3.2.2 there is a sequence zk ∈ H1(Lk,Mb) with πLk(zk) = ak.
Working semi-locally above q = p or p∗, we have defined in the preceeding
paragraph a sequence y′k,q ∈ H1(Lk,q,Mb) which lifts yk,q. The image of

tk,q = locq(zk)− y′k,q ∈ H1(Lk,q,Mb)

in H1(Dn,q,Mb) comes from some sk,q ∈ H1(Dn,q,Zp(1)).

Proposition 3.2.3. — With notation as above

hn(a, b) = lim
k→∞

[ρp(sk,p) + ρp∗(sk,p∗)].

Proof. — This is Proposition 5.3 of [22]. �

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC IWASAWA THEORY 1041

Define Hk,q by the exactness of

0 −→ Hk,q −→ H1(Lk,q, Tp)
cor−−→ H1(Dn,q, Tp).

In [22, Section 4], one finds the definition of a derivative operator

Derk,q : Hk,q −→ H1(Dn,q, Tp/p
kTp)⊗ J .

>From the definition of tk,q, it is immediate that πLk,q(tk,q) ∈ Hk,q. We
set

t′k,q = Derk,q(πLk,q(tk,q)) ∈ H1(Dn,q, Tp/p
kTp)⊗ J .

Proposition 4.3 of [22] then reads

λ ∪ sk,q = δDn,q(t′k,q) ∈ H2(Dn,q, (Z/pkZ)(1))⊗ J

and so up to sign

ρq(sk,q) ≡ invq(δDn,q(t′k,q)) (mod pk)(3.3)

= invq(t′k,q ∪ locq(b))

where invq is the semi-local invariant

H2(Dn,q, (Z/pkZ)(1))⊗ J −→ J /pkJ .

From the definition of Sel(Dn, Tp∗), we see that locp(b) is a torsion element.
If p`locp(b) = 0 then (3.3) implies that ρp(sk,p) is divisible by pk−`. Letting
k →∞, we have ρp(sk,p)→ 0, leaving

(3.4) hn(a, b) = lim
k→∞

ρp∗(sk,p∗).

Lemma 3.2.4. — Suppose dk ∈ Hk,p∗ is such that dk∪z = locp∗(ak)∪z
for every z ∈ H1

f (Lk,p∗ , Tp∗). Then for any sequence xk ∈ H1
f (Lk,p∗ , Tp∗)

such that the image of xk in H1
f (Dn,p∗ , Tp∗) is constant,

lim
k→∞

invp∗(Derk,p∗(dk) ∪ x0) = lim
k→∞

∑
σ∈Γk

〈locp∗(ak), σ · xk〉Lk,p∗ ⊗ λ(σ)

where λ is viewed as a character Γk −→ J /pkJ .

Proof. — This is Lemma 5.1 of [22]. �

Recall that Lemma 3.1.1 provides, for some choice of generator γ ∈ Γ, a
β ∈ H1(L∞,p∗ , Tp) such that

(γ − 1)β = locp∗(a∞).

Let α be the image of β in H1(Dn,p∗ , Tp). Write

β = lim
←
βk ∈ lim

←
H1(Lk,p∗ , Tp)
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so that β0 = α. Fix some sequence xk ∈ H1
f (Lk,p∗ , Tp∗) lifting locp∗(b).

Applying Lemma 3.2.4 with dk = πLk,p∗ (tk,p∗) and comparing with (3.3)
and (3.4) gives

hn(a, b) = lim
k→∞

ρp∗(sk,p∗)

= lim
k→∞

∑
σ∈Γk

〈locp∗(ak), xσk〉Lk,p∗ ⊗ λ(σ)

= lim
k→∞

∑
σ∈Γk

〈(γ − 1)βk, σ · xk〉Lk,p∗ ⊗ λ(σ)

= lim
k→∞

pk−1∑
i=1

〈(γ − 1)βk, iγi · xk〉Lk,p∗ ⊗ (γ − 1)

= lim
k→∞

〈βk,NormΓkxk〉Lk,p∗ ⊗ (γ − 1)

= 〈α, locp∗(b)〉Dn,p∗ ⊗ (γ − 1).

This completes the proof of the height formula.

Appendix A. Proof of Theorem B by Karl Rubin

In this appendix we prove Theorem B of the introduction. Essentially
what we need to prove is that the anticyclotomic regulator R of Definition
3.1.3 is nonzero. The key tool is Theorem A.1 of Bertrand below, which
says that on a CM elliptic curve the p-adic height of a point of infinite
order is nonzero. This is much weaker than saying that the p-adic height is
nondegenerate, but it suffices for our purposes.

We assume throughout this appendix that the sign in the functional
equation of L(E/Q, s) is −1.

We need to consider a slightly more general version of p-adic heights than
appears in the main text. If F is a finite extension of K in K∞, then there
is a p-adic height pairing

hF : Sel(F, Tp)⊗ Sel(F, Tp∗)→ Gal(K∞/F )⊗Qp.

We are interested in three specializations of this pairing. Namely,

hF,cycl : Sel(F, Tp)⊗ Sel(F, Tp∗)→ Gal(FC∞/F )⊗Qp,

hF,anti : Sel(F, Tp)⊗ Sel(F, Tp∗)→ Gal(FD∞/F )⊗Qp,

hF,p : Sel(F, Tp)⊗ Sel(F, Tp∗)→ Gal(FL∞/F )⊗Qp

where L∞ is the unique Zp-extension of K which is unramified outside of
p, are defined by restricting the image of hF to the appropriate group. If
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P ∈ E(F ), we will write hF (P ) = hF (a, b) where a is the image of P in
Sel(F, Tp) and b is the image of P in Sel(F, Tp∗).

The p-adic height pairing hn of Theorem 3.1.2 is the composition of
hDn,cycl with the isomorphism Gal(DnC∞/Dn) ∼= Gal(C∞/K) ∼= J .

Theorem A.1 (Bertrand [2]). — Suppose F is a number field and P ∈
E(F ) is a point of infinite order. Then the p-adic height hF,p(P ) is nonzero.

Lemma A.2. — Suppose a ∈ Sel(F, Tp) and b ∈ Sel(F, Tp∗). If two of
hF,cycl(a, b), hF,anti(a, b), hF,p(a, b) are zero, then so is the third.

Proof. — Since Gal(K∞/F ) ∼= Z2
p, the projections

Gal(K∞/F )→ Gal(FC∞/F ), Gal(K∞/F )→ Gal(FD∞/F ),

and
Gal(K∞/F )→ Gal(FL∞/F )

are linearly dependent. It follows that each of the three heights is a linear
combination of the other two. �

Definition A.3. — For every n define a submodule of Sel(Dn, Tp), the
universal norms, by

Sel(Dn, Tp)univ =
⋂
m>n

corDm/DnSel(Dm, Tp).

Define Sel(Dn, Tp∗)univ similarly.

Lemma A.4. — For every n we have

hDn,anti(Sel(Dn, Tp)univ ⊗ Sel(Dn, Tp∗)univ) = 0.

Proof. — This is a basic property of the p-adic height (see for example
Proposition 4.5.2 of [11]). �

Proposition A.5. — The natural maps

X(D∞)⊗ Λ(Dn)→ X(Dn)

have kernel and cokernel which are finite and bounded independently of n.

Proof. — This is the standard “Control Theorem”, see for example [12].
�

Recall that ∆n = Gal(Dn/K).

Lemma A.6. — For every n, Sel(Dn, Tp)univ⊗Qp and Sel(Dn, Tp∗)univ⊗
Qp are free of rank one over Qp[∆n].
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Proof. — This is proved in exactly the same way as Theorem 4.2 of [14]
(which proves a stronger statement about universal norms in Mordell-Weil
groups, assuming that all relevant Tate-Shafarevich groups are finite), using
Theorem 2.4.17. For completeness we give a proof here.

The exact sequence 0 → E[pk] → Wp → Wp → 0 and the fact that
E(Dn) ∩E[p] = 0 show that Sel(Dn, E[pk]) = Sel(Dn,Wp)[pk] for every k.
This and the Control Theorem (Proposition A.5) give us maps

Sel(Dn, Tp) = lim←−
k

Sel(Dn, E[pk]) = lim←−
k

Hom(Sel(Dn, E[pk])∧,Z/pkZ)

= lim←−
k

Hom(X(Dn),Z/pkZ) = Hom(X(Dn),Zp)

= HomΛ(Dn)(X(Dn),Λ(Dn))→ HomΛ(D∞)(X(D∞),Λ(Dn))

with finite kernel and cokernel bounded independently of n. This gives the
bottom row, and passing to the inverse limit over n gives the top row, of
the commutative diagram with horizontal isomorphisms

S(D∞, Tp)⊗Qp
∼−−−−→ HomΛ(D∞)(X(D∞),Λ(D∞))⊗Qpy y

Sel(Dn, Tp)⊗Qp
∼−−−−→ HomΛ(D∞)(X(D∞),Λ(Dn))⊗Qp

By Theorem 2.4.17, the upper modules are free of rank one over Λ(D∞)⊗
Qp. The kernel of the right-hand vertical map is InHomΛ(D∞)(X(D∞),
Λ(D∞))⊗Qp where In is the kernel of the map Λ(D∞)→ Λ(Dn), and so
the kernel of the left-hand vertical map is InS(D∞, Tp) ⊗ Qp. Hence the
image of the left-hand vertical map is free of rank one over Qp[∆n]. But
that image is precisely Sel(Dn, Tp)univ ⊗Qp.

The proof for Sel(Dn, Tp∗)univ ⊗Qp is the same. �

Proposition A.7. — If the anticyclotomic regulatorR is zero, then the
p-adic height pairing hn is identically zero on Sel(Dn, Tp)univ⊗
Sel(Dn, Tp∗)univ.

Proof. — Suppose n > 0, a = (an) ∈ S(D∞, Tp) and b = (bn) ∈
S(D∞, T ∗p ). Recall that ∆n = Gal(Dn/K). Using property (3) of Theo-
rem 3.1.2 and the definition of h∞, we see that projecting h∞(a,b) to
Zp[∆n]⊗ J gives

∑
σ∈∆n

hn(aσn, bn)σ
−1.

Now suppose vn ∈ Sel(Dn, Tp)univ and v∗n ∈ Sel(Dn, Tp∗)univ. Since vn
and v∗n are universal norms we can choose a = (an) ∈ S(D∞, Tp) and b =
(bn) ∈ S(D∞, T ∗p ) with an = vn and bn = v∗n. If R = 0, then h∞(a,b) = 0,
and projecting to Zp[∆n]⊗ J shows that hn(vn, v∗n) = 0. �
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Proposition A.8. — If n is sufficiently large then there are points P ∈
E(Dn) of infinite order such that the image of P in Sel(Dn, Tp) lies in
Sel(Dn, Tp)univ and the image of P in Sel(Dn, Tp∗) lies in Sel(Dn, Tp∗)univ.
I.e., there are Dn-rational points of infinite order which are universal norms
in the Selmer group.

Proof. — Let ψ denote the Hecke character of K attached to E, so that
L(E/Q, s) = L(ψ, s). Fix an integer n.

Choose a character χ of ∆n of order pn (any two such characters are
conjugate under GQ, so the choice will not matter). The Hecke L-function
L(ψχ, s) is the L-function of a modular form fχ on Γ0(Np2n), where N is
the conductor of E. Let An denote the simple factor over Q of the Jacobian
J0(Np2n) corresponding to fχ. Comparing L-functions we see that there is
an isogeny of abelian varieties over K

An × ResDn−1/KE ∼ ResDn/KE

where Res stands for the restriction of scalars. Passing to Mordell-Weil
groups we get

(An(K)⊗Q)× (E(Dn−1)⊗Q) ∼= E(Dn)⊗Q,

and therefore, if γ is a topological generator of ∆∞,

(A.1) An(K)⊗Q ∼= (1− γp
n−1

)E(Dn)⊗Q.

It follows from our assumption about the sign in the functional equation
of L(E/Q, s) that L(ψρ, 1) = 0 for every character ρ of finite order of ∆∞.
By a theorem of Rohrlich [19], there are only finitely many characters ρ of
∆∞ such that the derivative L′(ψρ, 1) = 0. Suppose now that n is large
enough so that

(a) L′(ψχ, 1) 6= 0,
(b) char(X(D∞)tor) is relatively prime to (γp

n − 1)/(γp
n−1 − 1).

Since L′(ψχ, 1) 6= 0, the theorem of Gross and Zagier [6] shows that

(A.2) rankZAn(Q) > dim An = pn − pn−1.

On the other hand, using (A.1) and the Control Theorem (Proposition A.5)
we get

rankZAn(Q) 6 rankZp(1− γp
n−1

)X(Dn)(A.3)

= rankZp(1− γp
n−1

)X(D∞)/(1− γp
n

)X(D∞)
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Since X(D∞) has Λ(D∞)-rank one (Theorem 2.4.17(2)), we conclude from
condition (b) on n that

rankZp(1− γp
n−1

)X(D∞)/(1− γp
n

)X(D∞) = pn − pn−1.

It follows that we must have equality in (A.2) and (A.3), and

dimQp
(1−γp

n−1
)Sel(Dn, Tp)⊗Qp = rankZp(1−γp

n−1
)X(Dn) = pn−pn−1.

Since (1− γpn−1
)Qp[∆n] is a simple Qp[∆n]-module it follows that

(1− γp
n−1

)Sel(Dn, Tp)⊗Qp
∼= (1− γp

n−1
)Qp[∆n]

By Lemma A.6 we now see that

(1− γp
n−1

)Sel(Dn, Tp)univ ⊗Qp = (1− γp
n−1

)Sel(Dn, Tp)⊗Qp.

In particular if P is any point of infinite order in (1 − γpn−1
)E(Dn) (and

we know that such points exist by (A.1)) then some multiple of the image
of P in Sel(Dn, Tp) lies in Sel(Dn, Tp)univ. In exactly the same way some
multiple of the image of P in Sel(Dn, Tp∗) lies in Sel(Dn, Tp∗)univ, and the
proposition is proved. �

Proof of Theorem B. — Using Proposition A.8, find an n and a point
of infinite order P ∈ E(Dn) whose images in Sel(Dn, Tp) and Sel(Dn, Tp∗)
are universal norms.

By Bertrand’s Theorem A.1, we have hDn,p(P ) 6= 0. By Lemma A.4 we
have hDn,anti(P ) = 0, and therefore by Lemma A.2 we have that hDn,cycl(P )
(and hence hn(P )) is nonzero.

It now follows from Proposition A.7 that the anticyclotomic regulator R
is nonzero, and so by Theorem 3.1.5 the leading term L1 is nonzero. This
is Theorem B. �

Remark A.9. — In the notation of Proposition A.8, the abelian variety
An is isogenous to its twist by the quadratic character of K/Q, and so
there are isomorphisms

An(K)⊗Q ∼= (ResK/QAn)(Q)⊗Q ∼= (An ×An)(Q)⊗Q.

Thus

pn − pn−1 =
1
2

rankZAn(K)

= rankOKE(Dn)− rankOKE(Dn−1)

for n� 0. This implies that there is a constant c such that

rankOKE(Dn) = pn + c

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC IWASAWA THEORY 1047

for n � 0. The same asymptotic formula holds for the corank of the p-
primary Selmer group (by Theorem 2.4.17 and Proposition A.5), and so
the Op-corank of of X(E/Dn)p∞ is bounded as n varies.

BIBLIOGRAPHY

[1] T. Arnold, “Anticyclotomic main conjectures for CM modular forms”, Preprint,
2005.

[2] D. Bertrand, “Propriétés arithmétiques de fonctions thêta à plusieurs variables”,
in Number theory, Noordwĳkerhout 1983, Lecture Notes in Math., vol. 1068,
Springer, Berlin, 1984, p. 17-22.

[3] J. Coates, “Infinite descent on elliptic curves with complex multiplication”, in
Arithmetic and Geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston,
MA, 1983, p. 107-137.

[4] R. Greenberg, “On the structure of certain Galois groups”, Invent. Math. 47
(1978), no. 1, p. 85-99.

[5] ——— , “On the Birch and Swinnerton-Dyer conjecture”, Invent. Math. 72 (1983),
no. 2, p. 241-265.

[6] B. H. Gross & D. B. Zagier, “Heegner points and derivatives of L-series”, Invent.
Math. 84 (1986), no. 2, p. 225-320.

[7] B. Howard, “The Iwasawa theoretic Gross-Zagier theorem”, Compos. Math. 141
(2005), no. 4, p. 811-846.

[8] S. Lang, Algebraic number theory, second ed., Graduate Texts in Mathematics,
vol. 110, Springer-Verlag, New York, 1994.

[9] J. Martinet, “Character theory and Artin L-functions”, in Algebraic number fields:
L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975),
Academic Press, London, 1977, p. 1-87.

[10] B. Mazur, “Modular curves and arithmetic”, in Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (Warsaw), PWN, 1984,
p. 185-211.

[11] B. Mazur & J. Tate, “Canonical height pairings via biextensions”, in Arithmetic
and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983,
p. 195-237.

[12] B. Mazur, “Rational points of abelian varieties with values in towers of number
fields”, Invent. Math. 18 (1972), p. 183-266.

[13] B. Mazur & K. Rubin, “Elliptic curves and class field theory”, in Proceedings
of the International Congress of Mathematicians, Vol. II (Beĳing, 2002) (Beĳing),
Higher Ed. Press, 2002, p. 185-195.

[14] ——— , “Studying the growth of Mordell-Weil”, Doc. Math. (2003), no. Extra Vol.,
p. 585-607 (electronic), Kazuya Kato’s fiftieth birthday.

[15] ——— , “Kolyvagin systems”, Mem. Amer. Math. Soc. 168 (2004), p. viii+96.
[16] B. Perrin-Riou, “Arithmétique des courbes elliptiques et théorie d’Iwasawa”,

Mém. Soc. Math. France (N.S.) (1984), no. 17, p. 130.
[17] ——— , “Fonctions L p-adiques, théorie d’Iwasawa et points de Heegner”, Bull.

Soc. Math. France 115 (1987), no. 4, p. 399-456.
[18] ——— , “Théorie d’Iwasawa et hauteurs p-adiques”, Invent. Math. 109 (1992),

no. 1, p. 137-185.
[19] D. E. Rohrlich, “On L-functions of elliptic curves and anticyclotomic towers”,

Invent. Math. 75 (1984), p. 383-408.

TOME 56 (2006), FASCICULE 4



1048 Adebisi AGBOOLA & Benjamin HOWARD

[20] K. Rubin, “The “main conjectures” of Iwasawa theory for imaginary quadratic
fields”, Invent. Math. 103 (1991), no. 1, p. 25-68.

[21] ——— , “p-adic L-functions and rational points on elliptic curves with complex
multiplication”, Invent. Math. 107 (1992), no. 2, p. 323-350.

[22] ——— , “Abelian varieties, p-adic heights and derivatives”, in Algebra and number
theory (Essen, 1992), de Gruyter, Berlin, 1994, p. 247-266.

[23] ——— , “Elliptic curves with complex multiplication and the conjecture of Birch
and Swinnerton-Dyer”, in Arithmetic theory of elliptic curves (Cetraro, 1997), Lec-
ture Notes in Math., vol. 1716, Springer, Berlin, 1999, p. 167-234.

[24] ——— , Euler systems, Annals of Mathematics Studies, vol. 147, Princeton Univer-
sity Press, Princeton, NJ, 2000, Hermann Weyl Lectures. The Institute for Advanced
Study.

[25] E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Per-
spectives in Mathematics, vol. 3, Academic Press Inc., Boston, MA, 1987.

[26] A. Weil, “Automorphic Forms and Dirichlet Series”, in Dirichlet series and au-
tomorphic forms. Lezioni fermiane., Lecture Notes in Math., vol. 189, Springer,
1971.

[27] R. I. Yager, “On two variable p-adic L-functions”, Ann. of Math. (2) 115 (1982),
no. 2, p. 411-449.

Manuscrit reçu le 15 juin 2004,
accepté le 5 décembre 2005.

Adebisi AGBOOLA
University of California
Department of Mathematics
Santa Barbara, CA 93106
agboola@math.ucsb.edu
Benjamin HOWARD
Harvard University
Department of Mathematics
Cambridge, MA 02138
Current address:
Boston College
Department of Mathematics
Chestnut Hill, MA 02467 (USA)
howardbe@bc.edu
Karl RUBIN
Stanford University
Department of Mathematics
Stanford, CA 94305
Current address:
UC Irvine
Department of Mathematics
Irvine, CA 92697 (USA)
krubin@math.uci.edu

ANNALES DE L’INSTITUT FOURIER

mailto:agboola@math.ucsb.edu
mailto:howardbe@bc.edu
mailto:krubin@math.uci.edu

	 0. Introduction and statement of results
	 0.1. Notation and conventions

	 1. A little cohomology
	 1.1. Selmer modules
	 1.2. Anticyclotomic Iwasawa modules

	 2. L-functions and Euler systems
	 2.1. The p-adic L-function
	 2.2. Elliptic units
	 2.3. The twisted Euler system
	 2.4. Main conjectures

	 3. The p-adic height pairing
	 3.1. The linear term
	 3.2. The height formula

	Appendix A. Proof of Theorem B by Karl Rubin
	 . BIBLIOGRAPHY


