


A NOTE ON ELLIPTIC CURVES AND GALOIS MODULE STRUCTURE
IN GLOBAL FUNCTION FIELDS

By A. AGBOOLA

Abstract. In this paper we study the Galois module structure of certain Kummer orders obtained by
dividing torsion points on an elliptic curve defined over a global function field. We prove that such
Kummer orders are globally free as Galois modules. This is the analogue over function fields of a
conjecture first stated by M. J. Taylor for CM elliptic curves defined over number fields.

0. Introduction and statement of results. The purpose of this paper is to
study the Galois module structure of certain Kummer orders obtained by dividing
torsion points on an elliptic curve defined over a global function field.

For any field L, we shall write Lc for a separable closure of L, and ΩL

for Gal(Lc=L). Let r be a prime, and let F r denote the finite field containing r
elements. Let k be a field such that either k � F c

r or k � C . Suppose that C
is a smooth, geometrically irreducible curve defined over k. Set F = k(C), the
function field of C over k. Let S = fv1, : : : , vtg be a fixed, non-empty, finite set
of places of F, and let OF,S = OF denote the ring of functions in F which are
regular away from S. OF is the function field analogue of the ring of integers of
a number field. Write Oc for the integral closure of OF in Fc. If L=F is any finite
extension of F, then we shall write OL for the integral closure of OF in L.

Let E=F be an abelian variety defined over F. In what follows, we shall
always assume that S contains all places of bad reduction of E. We shall also
suppose that all endomorphisms of E that we consider are defined over F. We
write O for the origin of the group law on E.

Let p > 3 be a rational prime with p 6= r if k � F c
r , and write Gi for

the subgroup of elements of E(Fc) which are killed by the endomorphism [pi]
of E. The OF-group scheme of pi-torsion points on E is affine and étale and
is therefore equal to Spec(Bi(F)), where Bi(F) = Bi = Map (Gi, Oc)ΩF is the
OF-Hopf algebra consisting of ΩF-maps from Gi to Oc. (Thus Bi is the unique
OF-maximal order in the algebra Bi(F) := Map (Gi, Fc)ΩF .) It follows that the
OF-Cartier dual of Bi is Ai(F) = Ai = (OcGi)ΩF (here ΩF acts on both Oc and
Gi). Ai(F) is thus the unique OF-maximal order in the F-algebra Ai(F) = Ai =
(FcGi)ΩF .

Manuscript received June 10, 1994; revised June 26, 1995.
Research supported in part by an NSF Postdoctoral Research Fellowship.
American Journal of Mathematics 118 (1996), 427–438.

427



428 A. AGBOOLA

Now suppose that Q 2 E(F), and write

GQ(i) = fQ0 2 E(Fc): [pi]Q0 = Qg.(0.1)

Define the Kummer algebra FQ(i) by

FQ(i) = Map (GQ(i), Fc)ΩF .(0.2)

Then [FQ(i): F] = jGij, and Ai acts on FQ(i) via

0
@f .

X
g2Gi

agg

1
A (Q0) =

X
g2Gi

agf (Q0 + g).(0.3)

for f 2 FQ(i) and
P

g2Gi
agg 2 Ai.

The F-algebra structure of FQ(i) may be described as follows. Let Q
0(1), : : : ,

Q
0(s) be a set of representatives of the ΩF-orbits of GQ(i). Then, as an F-algebra,

we have

FQ(i) '
sY

i=1

F[Q
0(i)]

where F[Q
0(i)] is the field obtained by adjoining the coordinates of Q

0(i) to F.
Explicitly, the isomorphism is given by f 7!

Qs
i=1 f (Q

0(i)) for f 2 FQ(i). Note also
that if Gi � E(F), then all the fields F[Q

0(i)] are the same.
Let OQ(i) denote the integral closure of OF in FQ(i). Then OQ(i) (the Kummer

order) is an Ai-module. As Ai is the maximal order of Ai, it follows that OQ(i) is
a locally free Ai-module (see e.g. [CR], proposition 31.2). Thus, if Cl(Ai) denotes
the locally free classgroup of Ai, then we have a map

 i: E(F) �! Cl(Ai)(0.4)

given by  i(Q) = (OQ(i)), where (OQ(i)) is the class of OQ(i) in Cl(Ai). As E has
good reduction at all places of OF, it follows exactly as per theorem 1 of [T] that
 i is a homomorphism, and so in particular that the image of  i is annihilated by
jGij. Observe that since Gi is abelian, Ai satisfies that Eichler condition. Hence
OQ(i) is a globally free Ai-module if and only if  i(Q) = 0.

We are now able to state the main result of this paper.

THEOREM 1. Suppose that E is an elliptic curve. Then E(F)torsion � ker ( i).

Theorem 1 is the function field analogue of a conjecture first stated by
M. J. Taylor for CM elliptic curves over number fields (see [T]). A large part of
this conjecture (for CM elliptic curves) was proved in [ST]. The main technique
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of proof in [ST] was the use of modular functions and the q-expansion principle
to prove integrality statements concerning certain resolvent elements that arise
as special functions on E. A different proof relying upon elementary intersec-
tion theory rather than modular functions, and valid for all elliptic curves with
everywhere good reduction, was given in [A2]. The techniques used in proving
Theorem 1 of the present paper are very similar to (albeit somewhat easier than)
those used in treating the corresponding result over number fields as described
in [A2]. For further results on the class invariant homomorphism over function
fields, we refer the reader to [A1].

1. Preliminary results. In this section we recall certain preliminary results
concerning Kummer orders that we shall require. We first of all give an alternative
description of OQ(i) as a Q-twist of the algebra Bi (cf. x4 of [T]).

Let N=F be a finite extension containing the coordinates of Gi and GQ(i).
Then there is an isomorphism of N-algebras (and Ai-modules) Bi(N) ' NQ(i)
induced by translation by any Q0 2 GQ(i). So there is an isomorphism of N-
algebras and Ai-modules given by

�: Bi 
F N �! FQ(i)
F N(1.1)

where �(b
 n)(Q0 + g) = b(g)n for b 2 Bi, n 2 N, and g 2 Gi. (Here ΩF acts on
both terms of (1.1) via the second factor.) Then we have

OQ(i) = [�(Bi 
OF ON)]ΩF .(1.2)

For any finite extension M of F, it follows that

OQ(i)(M) = OQ(i)(F)
OF OM, OQ(i)(F) = OQ(i)(M)ΩF .(1.3)

We shall now describe the relationship between (OQ(i)) 2 Cl(Ai) and
(OQ( j)) 2 Cl(Aj) for 0 < j < i, using the methods of x2 of [ST].

The natural surjection [pi�j]: Gi ! Gj induces a surjective homomorphism
Ai ! Aj of Hopf algebras (which we shall also denote by [pi�j]) given by

[pi�j]

0
@X

g2Gi

�gg

1
A =

X
g2Gi

�g([pi�j]g).(1.4)

Similarly, the inclusion Gj ! Gi induces an inclusion Aj ! Ai of Hopf algebras.
Since these maps are induced by homomorphisms of group schemes, we deduce
that Aj may be viewed as either a quotient algebra or a subalgebra of Ai.

Next, we observe that Gi acts on Map (Gi, Fc) via translations, i.e.

f g(h) = f (g + h) 8f 2 Map (Gi, Fc) and g, h 2 Gi.(1.5)
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The isomorphism Gi=Gj ' Gi�j induces identifications

FcGi�j = (FcGi)
Gj(1.6)

and

Map (Gi�j, Fc) = Map (Gi, Fc)Gj .(1.7)

The identifications (1.6) and (1.7) in turn induce isomorphisms of Ai�j with a
subalgebra of Ai and Bi�j with a subalgebra of Bi.

PROPOSITION 1.1. There are isomorphisms

FQ( j) ' Σi�j.FQ(i)(1.8)

as Aj-modules, and

OQ( j) ' Σi�j.OQ(i)(1.9)

as Aj-modules. These isomorphisms are compatible with the inclusions OQ( j) !
FQ( j) and OQ(i) ! FQ(i).

Here Σi�j = Σg2Gi�jg is viewed as an element of Ai, and Aj (resp. Aj) acts on
the right-hand side of (1.8) (resp. (1.9)) via the surjective homomorphism [pi�j].

Proof. Via (1.3), together with the fact that 
OF ON is faithfully flat, we may
assume that the field F contains the coordinates of Gi and GQ(i). Next, we observe
that (1.2) allows us to assume in addition that P = O, i.e. that OQ(i) = Bi and
OQ( j) = Bj. The result now follows via the discussion immediately preceding
the statement of Proposition 1.1.

Proposition 1.1 implies that in order to prove Theorem 1, we may replace pi

by a higher power of p. Let l and l0 be distinct odd primes not equal to p. Suppose
further that (r, ll0) = 1 if k � F r . Then, by replacing pi by a higher power of p if
necessary, we shall henceforth assume that

pi � 1 mod(ll0).(1.10)

We next observe that it follows from the definition of OQ(i) that  i(Q) in
fact depends only upon the image of Q in E(F)=piE(F). Hence, in order to prove
Theorem 1, we may in fact assume that Q 2 E(F) is a p-power torsion point. We
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shall make this assumption from now on. Observe that, with this assumption, we
have

pi.(CQ(i)) = 0(1.11)

in Cl(Ai).
Our next result deals with the valuations of certain Lagrange resolvents.

Suppose that a 2 FQ(i) and � is a character of G. The resolvent of a at � is
defined by

(aj�) =
X
g2Gi

�(g�1)ag 2 FQ(i).

For each place v of OF, let OF,v (resp. OQ,v(i), resp. Ai,v(F)) denote the
semi-local completion of OF (resp. OQ(i), resp. Ai(F)) at v. Choose av 2 OQ,v(i)
such that OQ,v(i) = av .Ai,v(F). As E=F has good reduction at all places of OF,
it follows from the criterion of Néron-Ogg-Shafarevitch and the description of
FQ(i) given in x0 that FQ(i)=F is unramified at all places of OF. The following
result is a simple extension of proposition 4.3 in chapter 1 of [F] from fields to
Galois algebras.

PROPOSITION 1.3. Let av be as above. Then for all� 2 Ĝi, we have that (av j�) 2
OQ,v(i)�.

We conclude this section by recalling the following result from [T] regarding
a change of basefields. (The result in [T] is proved for number fields, but it is
easy to see that the proof given there carries over to our present situation.) For
any finite extension M=F, there is a commutative diagram

E(M)
 i,M
���! Cl(Ai(M))

TrM=F

??y ??yRes

E(F)
 i,F

���! Cl(Ai(F))

(1.12)

where TrM=F is the trace map, and Res is the restriction map on classgroups
defined as per x4 of [T].

2. Intersection multiplicities and an integrality principle. In this section
we shall describe a method for proving integrality statements about special values
of functions defined on E.

Write Div0(E) for the group of divisors of degree zero on E. If Z 2 Div0(E)
is the divisor of a rational function f on E, and Z0 =

P
ni(Pi) is a 0-cycle on E
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whose support is disjoint from that of Z, then we set

f (Z0) =
Y

i

f (Pi)
ni .(2.1)

It is easy to see that this is well-defined.
Let E=OF denote the Nèron minimal model of E=F over OF. If Z =

P
i ni(Pi)

is any divisor on the generic fibre EF of E , then we write Z =
P

i ni(Pi) for
the Zariski closure of Z on E . If v is a place of OF, and D1, D2 are horizontal
divisors on E which intersect properly, then we write iv(Di.D2) for the intersection
multiplicity of D1 and D2 at v (see e.g. chapter III of [L] for definitions and
further details regarding intersection multiplicities). Our principal tool for proving
integrality results will be the following proposition.

PROPOSITION 2.1. Let f be a function on E with divisor Z, and suppose that
Z0 2 Div0(E) with supp(Z) disjoint from supp(Z0). (Here supp(Z) denotes the
support of Z, with similar notation for Z0.) Assume that all components of Z, Z0 are
rational over F. Then for each place v of OF, we have that

ordv( f (Z0)) = iv(Z.Z0).(2.2)

In particular, f (Z0) is integral at v if and only if iv(Z.Z0) � 0.

Proof. This proposition simply summarises certain elementary facts concern-
ing intersection multiplicities. See e.g. chapter III of [L] (especially theorems 5.1
and 5.2) for full details.

Let us now explain how we use this proposition. Suppose that P1, P2 are
distinct torsion points on E(F), with each of order prime to the characteristic of
F. Let v be a place of OF. Then P1, P2 remain disjoint when reduced modulo v,
and so we have that iv(P1.P2) = 0. The following result is now immediate.

PROPOSITION 2.2. Let the notation be as in Proposition 2.1. Suppose in addition
that supp(Z) and supp(Z0) consist of disjoint sets of torsion points of E(F) of order
prime to the characteristic of F. Then

ordv ( f (Z0)) = iv(Z.Z0) = 0(2.3)

for each place v of OF. Hence f (Z0) is integral over OF.

We conclude this section by introducing a piece of notation. Suppose that
a, b 2 Oc. Then we write a � b if a=b 2 Oc�.

3. Special functions. The purpose of this section is to describe two special
functions that will play a major role in the proof of Theorem 1. These functions



ELLIPTIC CURVES AND GALOIS MODULE STRUCTURE 433

are the same as those used to prove the corresponding result in the number field
case (cf. x4 of [A2]).

Recall that E=F is an elliptic curve with good reduction at all places of
F not in S. The numbers l and l0 are distinct odd primes not equal to p or r,
and Q 2 E(F) is a p-power torsion point. We suppose further that p satisfies
pi � 1(ll0).

Let El (resp. El0) denote the group of l (resp. l0) torsion points of E, and write
F(El) for the field obtained by adjoining the coordinates of the points in El to F.
Let � and � be two independent l-torsion points. Choose a function D�,�, rational
over F(El) such that the divisor of D�,� is given by

(D�,�) =
l�1X
k=0

(k�)�
l�1X
k=0

(� + k�).(3.1)

(In what follows, we shall write D for D�,�.) D(z) and D(z + �) have the same
divisor, and so,

D(z + �) = !.D(z) ! 2 F(El).(3.2)

Since l.� = O, it follows that !l = 1.
Write

w: Gi � Gi �! �pi(3.3)

for the Weil pairing on Gi � Gi. Suppose that � 2 Gi. Then we define a homo-
morphism �� : Gi ! �pi by

��() = w(l., �),  2 Gi.(3.4)

It follows that the characters of Gi are precisely the ��’s.
Next, consider the function H(z) = D(piz)=D(z). H(z) has neither a zero nor

a pole at z = O and H(O) = pi. The following result is immediate.

LEMMA 3.1. The divisor of the function H(z) is given by

(H(z)) =
X

g2GinO

"
l�1X
k=0

(k� + g)�
l�1X
k=0

(� + k� + g)

#
.

Define the resolvent function R�(z) by

R�(z) =
1
pi

X
2Gi

D(piz)
D(z + )

��(� ).(3.5)

Note that R�(z) is well-defined independently of the choice of D, and that R�(O) =
1. Our next result tells us about the divisor of R�(z).
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PROPOSITION 3.2.

(a) If � = O, then R�(z) = 1.

(b) If � 6= O, then

(R�(z)) =
X
g2Gi

"
l�1X
k=0

(� 0 + k� + g + �)�
l�1X
k=0

(k� + g + �)

#

where � 0 is any point in E(Fc) satisfying [pi]� 0 = �.

Proof. This may be proved exactly as in the number field case. We refer the
reader to proposition 4.2 of [A2] for details.

4. Integrality results. We shall now use the results in x2 and x3 to obtain
integrality statements concerning special values of the functions R�(z) and H(z).

We retain the notation of the previous sections. Fix a choice of � 2 Gi with
� 6= 0, and set Z1 = (R�(x)), Z2 = (H(z)) (these are divisors on EF); so,

Z1 :=
X
g2Gi

"
l�1X
k=0

(� 0 + k� + � + g)�
l�1X
k=0

(g + k� + �)

#
(4.1)

and

Z2 :=
X

g2GinO

"
l�1X
k=0

(k� + g)�
l�1X
k=0

(g + k� + �)

#
.(4.2)

(Note that the divisor Z1 depends upon our choice of �, although we omit this
dependence from our notation.)

Now let  be a primitive l0-torsion point of E, and let � be any p-power
torsion point of E. Define a divisor Z3 on EF by

Z3 = (� +  )� (O).(4.3)

Choose N=F to be a sufficiently large extension so that all components of
Z1, Z2, Z3 are rational over N, and regard each Zi as being a divisor on EN . We
observe that

(a) supp(Z3) is disjoint from supp(Z1) [ supp(Z2).

(b) Z3 and Zi (i = 1, 2) do not intersect on any vertical fibre of E . This is
because for each place v of OL, the divisors Z3 and Zi (i = 1, 2) remain distinct
when reduced modulo v.

The following result is an immediate consequence of these observations.

PROPOSITION 4.1. Let v be a place of ON. Then iv(Zi.Z2) = 0 for 1 = 1, 2.
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By combining Proposition 4.1 with Proposition 2.2, we obtain the following
result.

PROPOSITION 4.2. (a) R�(� +  ) 2 Oc� for all p-power torsion points � of E
and all � 2 Gi. Thus, if �1,�2 are any p-power torsion points of E, then we have
in particular that

R�(pi(�1 +  )) � R�(pi(�2 +  )) � 1

for all � 2 Gi.
(b) H(� +  ) 2 Oc� for all p-power torsion points � of E.

5. Proof of Theorem 1. In this section we shall use our earlier results to
give a proof of Theorem 1. The method used is the same as in the number field
case.

Let M be the field F(Ell0), and define a function h on E by

h(z) =
D(piz +  )
D(z +  )

.(5.1)

Then the functions D(z) and h(z) both lie in the function field M(E).

LEMMA 5.1. For the field M as above, we have

[M : F]j[l(l + 1)(l� 1)2][l0(l0 + 1)(l0 � 1)2].

Proof. The group Gal(M=F) is a subgroup of GL2(F l)�GL2(F l0 ). The result
now follows from the fact that for any prime q, the group GL2(Fq) is of order
q(q + 1)(q� 1)2.

LEMMA 5.2. Let S be the set of odd rational primes satisfying l 6= p and
(if k � F r ) l 6= r. (If k � C then we simply ignore this latter condition.) Let
w = HCFfl(l + 1)(l� 1)2jl 2 Sg. Suppose that q > 3 is a prime. Then q - w.

Proof. Choose a prime l1 2 S such that l1 � 3(q). (This may be done via
Dirichlet’s theorem on primes in an arithmetic progression.) Then q - l1(l1+1)(l1�
1)2, and the result follows.

Next, we observe that if Q is any p-power torsion point in E(F), the function
h defines an element hQ of MQ(i) by the rule

hQ(Q0) = h(Q0), Q0 2 GQ(i).(5.2)
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Note that hQ(Q0) is always finite. If we take Q = O, then we have that GO(i) = Gi,
and (5.2) defines a function hO on Gi. We define a resolvend element � 2 Ai(M)
by

� =
1
pi

X
g2Gi

hO(g)g�1.(5.3)

PROPOSITION 5.3. Let Q 2 E(F) be a p-power torsion point. Then hQ 2
OQ(i)(M).

Proof. Let N be some finite extension of F containing the coordinates of
all points of Gi and GQ(i). From x1 (see (1.1)-(1.3)) it follows that OQ(i)(M) =
�(Bi(N)) \ MQ. Hence, since hQ 2 MQ, the result will follow if we show that
hQ 2 �(Bi(N)). But this is certainly the case, because Bi(N) is the unique ON-
maximal order in Bi(N), and so Proposition 4.2(b) implies that ��1(hQ) 2 Bi(N)�.

Recall that Ai(M) is the unique OM-maximal order in Ai(M). The following
corollary is an immediate consequence of this fact.

COROLLARY 5.4. The resolvend element � lies in Ai(M).

We now prove a special case of Theorem 1.

THEOREM 5.5. Let Q 2 E(F) be a p-power torsion point. Then

OQ(i)(M).� = hQ.Ai(M),

and so OQ(i)(M) is Ai(M)-free.

Proof. We shall show that the equality holds everywhere locally; this will
imply the desired result.

Let v be a place of OM. Then we may write OQ,v(i)(M) = xvAi,v(M). For
some �v 2 Ai(Mv), we have

xv .��v = hQ.(5.4)

We shall show that in fact �v 2 Ai,v(M)�; this will establish the result.
Recall that if x 2 MQ and � 2 Gi, then we have the Lagrange resolvent

(xj��) =
X
g2Gi

xg��(g�1).(5.5)

If g0 2 Gi, then (xg0 j��) = (xj��).��(g0), and so for each � 2 FcGi, we have

(x�j��) = (xj��).��(�).(5.6)
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Hence, (5.4) implies that

(xqj��).��(�).��(�q) = (hQj��).(5.7)

Now Proposition 1.3 implies that if Q0 2 GQ(i), then (x� j��)(Q0) � 1. Also,
we have that ��(�) = R�( ) � 1 and (hQj��)(Q0) = piR�(Q0 +  ) � 1 (cf. propo-
sition 4.2). Hence, evaluating (5.7) at Q0 2 GQ(i), we obtain

��(��) � 1.(5.8)

Therefore �� 2 Ai,v(M)�, and this implies the desired result.

We now prove Theorem 1.
Consider the trace-restriction square (1.12):

E(M)
 i,M
���! Cl(Ai(M))

TrM=F

??y ??yRes

E(F)
 i,F

���! Cl(Ai(F)).

(5.9)

If Q 2 E(F) is a p-power torsion point, we may regard Q as lying in E(M), and
Theorem 5.5 implies that

 i,F(Tr(Q)) = Res( i,M(Q)) = 0.(5.10)

Next, we observe that we also have

 i,F(Tr(Q)) =  i,F([M : F]Q) = [M : F]. i,F(Q).(5.11)

Hence we obtain that

[M : F] i,F(Q) = 0,(5.12)

i.e.

[M : F](OQ(i)) = 0.(5.13)

Now let l and l0 vary among all odd primes not equal to p or r. Then it
follows from Lemma 5.1 that w2 i,F(Q) = 0. Now recall that pi i,F(Q) = 0 (see
(1.11)). Since p > 3, we have that (p, w) = 1 by Lemma 5.2, and so finally we
deduce that (OQ(i)(F)) = 0 in Cl(Ai(F)). This completes the proof of Theorem 1.
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[F] A. Fröhlich, Galois Module Structure of Algebraic Integers, Springer-Verlag, New York, 1983.
[L] S. Lang, Introduction to Arakelov Theory, Springer-Verlag, New York, 1988.
[ST] A. Srivastav and M. J. Taylor, Elliptic curves with complex multiplication and Galois module structure,

Invent. Math. 99 (1990), 165–184.
[T] M. J. Taylor, Mordell-Weil groups and the Galois module structure of rings of integers, Illinois J. Math.

32 (1988), 428–452.


