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Abstract. Let K be a number field and G a finite abelian group. We study the
asymptotic behaviour of the number of tamely ramified G-extensions of K with ring of in-
tegers of fixed realisable class as a Galois module.

1. Introduction

Suppose that K is a number field with ring of integers OK , and let G be a fixed, finite
group. If Kh=K is a tamely ramified Galois algebra with Galois group G, then a classical
theorem of E. Noether implies that the ring of integers Oh of Kh is a locally free OKG-
module. It therefore determines a class ðOhÞ in the locally free class group ClðOKGÞ of
OKG. We say that a class c A ClðOK GÞ is realisable if c ¼ ðOhÞ for some tamely ramified
G-algebra Kh=K, and we write RðOKGÞ for the set of realisable classes in ClðOKGÞ. These
classes are natural objects of study, and they arise, for instance, in the context of obtaining
explicit analogues of known Adams–Riemann–Roch theorems for locally free class groups
(see e.g. [1], §4 and the references cited there; see also the work of B. Köck ([6], [7]) on this
and related topics). We also remark that the problem of describing RðOK GÞ for arbitrary
finite groups G may be viewed as being a Galois module theoretic analogue of the inverse
Galois problem for finite groups.

When G is abelian, Leon McCulloh has obtained a complete description of RðOKGÞ
in terms of certain Stickelberger homomorphisms on classgroups (see [9]). In particular,
he has shown that RðOKGÞ is in fact a group. Suppose now that c A RðOKGÞ, and
write Ndiscðc;X Þ for the number of tame G-extensions Kh=K for which ðOhÞ ¼ c and
discðKh=QÞeX , where discðKh=QÞ denotes the absolute value of the discriminant of
Kh=Q. The following very natural counting problem appears to have received surprisingly
little attention.
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Question 1.1. What can be said about Ndiscðc;XÞ as X ! y? For example, if

MdiscðXÞ denotes the number of tame G-extensions Kh=K for which discðKh=QÞeX , is

lim
X!y

Ndiscðc;X Þ
MdiscðXÞ

independent of the realiasable class c?

The only previous results concerning this question of which the author is aware
are those contained in the unpublished University of Illinois Ph.D. thesis of Kurt Foster
(see [5]). Foster considers the case in which G is an elementary abelian l-group for some
prime l. Using earlier work of McCulloh on realisable classes for elementary abelian
groups (see [8]), he proves the following result.

Theorem A ([5]). Suppose that G is an elementary abelian l-group. Then

Ndiscðc;X Þ@ b � Y � ðlog YÞr�1

as X ! y, where

� Y fðjGjÞ�discðK=QÞ
�jGj ¼ X (here f denotes the Euler f-function);

� b is a positive constant that depends upon K and G, but not on c;

� r is a positive integer that depends only upon K and G.

Hence, when G is an elementary abelian group, then asymptotically Ndiscðc;X Þ is in-
dependent of c, and so we see that the tame G-extensions of K are equidistributed amongst
the realisable classes as X ! y.

Let us say a few words about the main ideas involved in the proof of Theorem A. One
begins by considering the series

P
Kh=K tame;

GalðKh=KÞFG
ðOhÞ¼c

discðKh=QÞ�s; s A C:ð1:1Þ

Of course it is not a priori clear that this series converges anywhere; one establishes conver-
gence in some right-hand half-plane by showing that it may be written as an Euler product

over rational primes. The series may therefore be written in the form
Py
n¼1

ann�s. One de-

duces from this that in general, the series will have finitely many poles (whose locations
may be determined), and that the number Ndiscðc;XÞ is equal to

P
neX

an. This last quantity

may then be estimated by using a suitable version of the Délange–Ikehara Tauberian
theorem.

Our goal in this paper is to investigate similar counting problems when G is an arbi-
trary finite abelian group. We shall do this by combining Foster’s approach with later work
of McCulloh (see [9]) on realisable classes for arbitrary finite abelian groups.
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A special case of our main result (see Theorem 8.1) may be described as follows. Let G

be an arbitrary finite abelian group. For any tame G-extension Kh=K, let DðKh=KÞ denote
the absolute norm of the product of the primes of K that ramify in Kh=K. If c A RðOKGÞ,
then we write NDðc;XÞ for the number of tame G-extensions Kh=K such that ðOhÞ ¼ c,
DðKh=KÞeX , and Kh=K is unramified at all places dividing jGj. The following result
shows that asymptotically, NDðc;X Þ is independent of c.

Theorem B. With notation and hypotheses as above, we have

NDðc;X Þ@ b1 � X � ðlog XÞr1�1;

as X ! y. Here b1 is a constant depending only upon K and G, but not upon c, and r1 is a

positive integer that depends only upon K and G.

For arbitrary finite abelian G, our results concerning Ndiscðc;X Þ are unfortunately
not so precise (see (3.6) and Section 10). The results that we obtain indicate that it is very
unlikely that the analogue of Foster’s equidistribution result holds in general, although at
present we are unable to prove this. This fact, namely that when tame G-extensions of K

are counted by discriminant, then in general, they are probably not equidistributed amongst
the realisable classes, was rather surprising to us. It is interesting to compare the results
of this paper with recent work of Melanie Wood on a quite di¤erent type of counting prob-
lem (see [11]). Wood studies the probabilities of various local completions of a random
G-extension of K. She proves that these probabilities are well-behaved and are—for the
most part—independent when G-extensions of K are counted by conductor; as she points
out, this is in close analogy with Chebotarev’s density theorem. When G-extensions of K

are counted by discriminant however, she proves that these probabilities are poorly be-
haved and in general are not independent. It would be interesting to obtain a better under-
standing of the relationship, if any, between the results described in the present paper and
those of [11].

An outline of the contents of this paper is as follows. In Section 2 we review Mc-
Culloh’s theory of realisable classes. In Section 3, we use the methods of [5] to set up a
counting problem that will enable us to analyse the distribution of tame G-extensions of K

amongst realisable classes. In Sections 4 and 5 we study analogues of the series (1.1) in our
setting. We show that they are Euler products, and we apply a Tauberian theorem in order
to state a result concerning their asymptotic behaviour. In Section 6 we introduce certain
Dirichlet L-series; these are then used in Section 7 to determine the location of the poles of
the series introduced in Section 4. We state our main result in Section 8, and we explain
how it may be used to recover Theorem A and to prove Theorem B. In Section 9, we dis-
cuss why, in many cases, it makes no di¤erence if we count tamely ramified Galois field
extensions of K with Galois group G, rather than tamely ramified G-algebra extensions
of K. Finally, in Section 10 we explain why our results indicate that the analogue of Fos-
ter’s equidistribution result probably does not hold in general, and we discuss what would
need to be done to produce an explicit counterexample.

Acknowledgments. It will be clear to the reader that this paper owes a great deal to
the work of L. McCulloh and K. Foster. I am very grateful to Leon McCulloh for sending
me a copy of Foster’s thesis. I would also like to thank Jordan Ellenberg for his interest,
Melanie Wood for sending me a copy of her paper [11], and the anonymous referee for
many extremely helpful comments.
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Notation and conventions. If L is a number field, we write OL for its ring of integers.
We set WL :¼ GalðLc=LÞ, where Lc denotes an algebraic closure of L, and we write IðOLÞ
for the group of fractional ideals of L.

The symbol G will always denote a finite, abelian group. If H is any abelian group,
we write ĤH for the group of characters of H, and 1H (or simply 1 if there is no danger of
confusion) for the trivial character in ĤH.

We identify G-Galois algebras of K with elements of H 1ðK ;GÞFHomðWK ;GÞ (see
2.2 below). If h A H 1ðK;GÞ, then we write Kh=K for the corresponding G-extension of K,
and Oh for the integral closure of OK in Oh. We write H 1

trðK;GÞ for the subgroup of
H 1ðK ;GÞ consisting of those h A H 1ðK ;GÞ for which Kh=K is tamely ramified.

If L=K is any finite extension, then NL=K denotes the norm map from L to K.

2. Review of McCulloh’s theory of realisable classes

In this section we shall briefly describe McCulloh’s theory of realisable classes of
tame extensions. The reader is strongly encouraged to consult McCulloh’s paper [9] for
full details.

2.1. Locally free class groups ([9], Section 3). In this subsection we shall recall some
basic facts concerning the Picard group ClðOK GÞ of OKG.

Let JðKGÞ denote the group of finite ideles of KG, i.e. the restricted direct product of
the groups ðKvGÞ� with respect to the subgroups ðOK; vGÞ�. Then there is a natural isomor-
phism

ClðOK GÞF JðKGÞ�Q
v

ðOK ; vGÞ�
�
ðKGÞ�

:ð2:1Þ

Suppose that Kh=K is a tamely ramified Galois algebra with GalðKh=KÞFG. Then by
Noether’s theorem, the ring of integers Oh of Kh is a locally free OKG-module of rank
one. Let b A Kh be a KG-generator of Kh, and, for each finite place v of K , choose an
OK; vG-generator av of Oh; v. We refer to b as a normal basis generator and to av as a normal

integral basis generator. Then there exists cv A ðKvGÞ� such that av ¼ cvb. It may be shown
that c ¼ ðcvÞv A JðKGÞ. The idele c is a representative of ðOhÞ A ClðOKGÞ.

Now let

j : JðKGÞ ! ClðOKGÞ

denote the surjective homomorphism a¤orded by the isomorphism (2.1), and suppose that c

is any idele in JðKGÞ. How can we tell whether or not the class jðcÞ is realisable? In
order to describe the answer to this question, we need to introduce some further ideas and
notation.
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2.2. Resolvents ([9], Section 1). If h : WK ! G is any continuous homomorphism,
then we may define an associated G-Galois K-algebra Kh by

Kh :¼ MapWK
ðhG;K cÞ;

where hG denotes the set G endowed with an action of WK via the homomorphism h,
and Kh is the algebra of K c-valued functions on G that are fixed under the action of WK .
The group G acts on Kh via the rule

asðtÞ ¼ aðtsÞ

for all s; t A G. It may be shown that every G-Galois K-algebra is isomorphic to an algebra
of the form Kh for some h. Every G-Galois K-algebra may therefore be viewed as lying in
the K c-algebra MapðG;K cÞ. It is therefore natural to consider the Fourier transforms of
elements of MapðG;K cÞ. These arise via the resolvent map

rG : MapðG;K cÞ ! K cG; a 7!
P
s AG

aðsÞs�1:

The map rG is an isomorphism of left K cG-modules, but not of algebras, because it does
not preserve multiplication. It is not hard to show that for any a A MapðG;K cÞ, we have
that a A Kh if and only if rGðaÞo ¼ rGðaÞhðoÞ for all o A WK (where here WK acts on K cG

via its action on the coe‰cients). It may also be shown that an element a A Kh generates Kh

as a KG-module if and only if rGðaÞ A ðK cGÞ�. Two elements a1; a2 A MapðG;K cÞ with
rGða1Þ; rGða2Þ A ðK cGÞ� generate the same G-Galois K-algebra as a KG-module if and
only if rGða1Þ ¼ b � rGða2Þ for some b A ðKGÞ�.

We define

HðKGÞ :¼ fa A ðK cGÞ� : ao=a A G Eo A WKg;

HðKGÞ :¼ HðKGÞ=G:

The group HðKGÞ consists precisely of resolvents of normal basis generators of G-Galois
K-algebras lying in MapðG;K cÞ. The group HðKGÞ may be naturally identified with the
set of all normal basis generators of G-Galois K-algebras lying in MapðG;K cÞ.

For each finite place v of K, we define HðKvGÞ and HðOK ; vGÞ analogously. We
write H

�
AðKGÞ

�
for the restricted direct product of the groups HðKvGÞ with respect to

the groups HðOK; vGÞ. Then the natural maps

ðKvGÞ� ! HðKvGÞ

induce a homomorphism

rag : JðKGÞ ! H
�
AðKGÞ

�
:

McCulloh shows that if c A JðKGÞ, then jðcÞ A ClðOK GÞ is realisable if and only if
ragðcÞ admits a certain local decomposition. This local decomposition involves certain
Stickelberger maps that we shall now describe.
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2.3. Stickelberger maps ([9], Section 4). Let ĜG denote the group of complex-valued
characters of G, and write Gð�1Þ for the group G endowed with an WK -action via the
inverse cyclotomic character. There is a natural pairing

h ; i : QĜG �QG ! Q

defined by

wðgÞ ¼ expð2pihw; giÞ; 0e hw; gi < 1

for w A ĜG and g A G. This pairing may in turn be used to define a Stickelberger map

Y : QĜG ! QG; a 7!
P

g AG

ha; gig:

Let AĜG denote the kernel of the determinant map

det : ZĜG ! ĜG;
P
w A ĜG

aww 7!
Q
w A ĜG

waw :

Then the standard isomorphism

ðK cGÞ�FHom
�
ZĜG; ðK cÞ�

�
induces an isomorphism

ðK cGÞ�=G FHom
�
AĜG; ðK

cÞ�
�
:

Proposition 2.1 ([9]). If a A ZĜG, then YðaÞ A ZG if and only if a A AĜG.

Proof. See [9], Proposition 4.3. r

Proposition 2.1 implies that, via restriction, Y defines a homomorphism (which we
denote by the same symbol)

Y : AĜG ! ZG:

Dualising this homomorphism, and twisting by the inverse cyclotomic character yields an
WK -equivariant transpose Stickelberger homomorphism

Yt : Hom
�
ZGð�1Þ; ðK cÞ�

�
! Hom

�
AĜG; ðK

cÞ�
�
F ðK cGÞ�=G:

Now set

L :¼ HomWK

�
ZGð�1Þ;OK c

�
¼ MapWK

�
Gð�1Þ;OK c

�
;

KL :¼ HomWK

�
ZGð�1Þ;K c

�
¼ MapWK

�
Gð�1Þ;K c

�
:

Then Y t above induces a homomorphism

Y t : ðKLÞ� ! ½ðK cGÞ�=G�WK ¼ HðKGÞ:
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For each finite place v of K, we can apply the discussion above with K replaced by Kv to
obtain a local version

Y t
v : ðKvLvÞ� ! HðKvGÞð2:2Þ

of the map Y t. The homomorphism Yt commutes with local completion.

For all places v of K not dividing the order of G, it may be shown that
Y tðLvÞLHðOK; vGÞ. Hence if we write JðKLÞ for the restricted direct product of the
groups ðKvLvÞ� with respect to the groups L�

v , then the homomorphisms Y t
v combine to

yield an idelic transpose Stickelberger homomorphism

Y t : JðKLÞ ! H
�
AðKGÞ

�
:ð2:3Þ

2.4. Prime F-elements ([9], Section 5). Let v be a finite place of K , and write qv for
the order of the residue field at v. Fix a local uniformiser pv of K at v. Write Gðqv�1Þ for the
subgroup of G consisting of all elements in G of order dividing qv � 1.

For each element s A Gðqv�1Þ, define fv; s A ðKvLvÞ� ¼ Map
�
Gð�1Þ; ðK c

v Þ
��WK by

fv; sðtÞ ¼
pv; if t ¼ s3 1;

1; otherwise.

�
ð2:4Þ

Note in particular that fv;1 ¼ 1.

Write

Fv :¼ f fv; s j s A Gðqv�1Þg:

The non-trivial elements of Fv are called the prime F-elements lying above v. We define
FH JðKLÞ by

f A F , f A JðKLÞ and fv A Fv for all v:

In other words, each non-trivial element of F is a finite product of prime F -elements lying
over distinct places v of K; in particular, if f A F, then fv ¼ 1 for almost all v.

We can now state two results of McCulloh. The first result (see [9], Theorem 6.7)
characterises tame G-extensions of K in terms of resolvents of normal basis generators.
The second (see [9], Theorem 6.17) gives a precise characterisation of those ideles
c A JðKGÞ for which jðcÞ A ClðOKGÞ is realisable.

Set

H
�
AðOKGÞ

�
:¼
Q
v

HðOK; vGÞ:

Theorem 2.2 ([9]). Suppose that c A JðKGÞ. Then jðcÞ is realisable if and only if there

exist b A HðKGÞ, f A F and u A H
�
AðOK GÞ

�
such that

ragðcÞ ¼ b�1 �Ytð f Þ � u A H
�
AðKGÞ

�
:
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Let Kh=K denote the Galois G-extension determined by b. Then Kh=K is tame, and

jðcÞ ¼ ðOhÞ. Furthermore, Kh=K is ramified at precisely those places v of K for which

fv 3 1.

Theorem 2.3 ([9]). Suppose that c A JðKGÞ. Then jðcÞ A ClðOKGÞ is realisable if and

only if ragðcÞ A HðKGÞ �H
�
AðOKGÞ

�
�Yt

�
JðKLÞ

�
.

3. A counting problem

In this section we shall explain how to set up a counting problem that will enable us
to study the distribution of tame G-extensions of K amongst realisable classes. We apply a
modified version of a method described by Foster [5], Chapters II and III.

Set

CðOKGÞ :¼
H
�
AðKGÞ

�
½ðKGÞ�=G� �H

�
AðOKGÞ

� :ð3:1Þ

Definition 3.1. We define a homomorphism

c : H 1ðK;GÞ ! CðOKGÞð3:2Þ

as follows. Let Kh=K be the Galois G-extension of K corresponding to h A H 1ðK ;GÞ, and
let b A Kh be any normal basis generator. We define cðhÞ to be the image of h under the
composition of maps

H 1ðK;GÞ ! HðKGÞ
ðKGÞ� ! CðOKGÞ;

where the first arrow is given by h 7! ½rGðbÞ�, and the second arrow is induced by the diag-
onal embedding

HðKGÞ !
Q
v

HðKvGÞ:

It is not hard to check that cðhÞ is independent of the choice of b, and that c is a homo-
morphism.

Definition 3.2. We define

r : ClðOKGÞF JðKGÞ
ðKG�Þ �

Q
v

ðOK; vGÞ� ! CðOKGÞ

to be the homomorphism induced by the composition of maps

JðKGÞ ! H
�
AðKGÞ

�
! H

�
AðKGÞ

�
:
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Here the first arrow is the diagonal embedding, and the second map is the obvious quotient
homomorphism.

Definition 3.3. We define

y : JðKLÞ ! CðOKGÞ

to be the composition

JðKLÞ !Y
t

H
�
AðKGÞ

�
! CðOK GÞ;

where the second arrow denotes the natural quotient map.

Proposition 3.4. (a) We have that h A KerðcÞ if and only if Kh=K is unramified at all

finite places of K and Oh is OKG-free. In particular, KerðcÞ is finite.

(b) The homomorphism r is injective.

(c) The map yjF is injective.

Proof. (a) Suppose that h A KerðcÞ, with Kh ¼ KG � b. Then it follows from the de-
finition of c that the image of rGðbÞ under the diagonal embedding HðKGÞ !

Q
v

HðKvGÞ

lies in ðKGÞ� � H
�
AðOKGÞ

�
. Hence, replacing b by a � b for a suitably chosen element

a A ðKGÞ�, we may in fact assume that the image of rGðbÞ under this diagonal embedding
lies in H

�
AðOKGÞ

�
. This happens if and only if Kh=K is unramified (see [9], (2.12) and

(2.13)) and Oh is OKG-free (see [9], Theorem 5.6).

(b) It follows directly from the definitions of JðKGÞ and H
�
AðOKGÞ

�
that inQ

v

HðKvGÞ, we have

JðKGÞXH
�
AðOKGÞ

�
¼
Q
v

ðOK; vGÞ�:

The injectivity of r is now a direct consequence of (3.1), (2.1), and the definition of r.

(c) We first recall from the definition of F that if f ¼ ð fvÞ A F, then fv ¼ 1 for almost
all v. The proof of [9], Proposition 5.4 shows that for each finite place v of K, and
s1; s2 A Gqv�1, we have Y tð fv; s1

Þ ¼ Y tð fv; s2
Þ if and only if s1 ¼ s2. It follows that the restric-

tion of the homomorphism Y t to F is injective.

Next we note that if fv 3 1, then plainly fv B L�
v , and it is not hard to check that

Y tð fvÞ B HðOK; vGÞ. We deduce that, in
Q
v

HðKvGÞ, we have

Y tðFÞX
�
ðKGÞ� � H

�
AðOKGÞ

��
¼ f1g;

and this in turn implies that the restriction of the quotient map H
�
AðKGÞ

�
! CðOKGÞ to

Y tðFÞ is injective. It follows that the restriction of y to F is injective, as claimed. r
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Remark 3.5. (1) Suppose that h A H 1
trðK;GÞ. Then Theorem 2.2 implies that there

exists a unique c A ClðOKGÞ (namely ðOhÞ) and a unique f A F such that

rðcÞ ¼ cðhÞ�1yð f Þ:ð3:3Þ

For fixed c A RðOKGÞ and fixed f A F, Proposition 3.4(a) implies that if (3.3) is satisfied by
some h A H 1

trðK ;GÞ, then in fact there are exactly jKerðcÞj elements h A H 1
trðK ;GÞ which

satisfy (3.3).

(2) Theorem 2.3 implies that we have

r
�
RðOK GÞ

�
¼ ImðrÞX ½ImðyÞ � ImðcÞ�: r

Definition 3.6. We define

Py :¼ fx A JðKLÞ j yðxÞ A ImðcÞg:

Proposition 3.7. Suppose that c A ClðOKGÞ with

rðcÞ ¼ cðhÞ�1yðlÞ

for some h A H 1ðK ;GÞ and l A JðKLÞ. Then, for any m A JðKLÞ, there exists hm A H 1ðK ;GÞ
such that

rðcÞ ¼ cðhmÞ�1yðmÞ

if and only if m A lPy.

In particular, for any coset xPy of Py in JðKLÞ, it follows that either

yðxPyÞL ImðcÞ � ImðrÞ

or

yðxPyÞX ½ImðcÞ � ImðrÞ� ¼ j:

Proof. Suppose that

rðcÞ ¼ cðhÞ�1yðlÞ ¼ cðhmÞ�1yðmÞ;

with hm A H 1ðK;GÞ and m A JðKGÞ. Then we have

yðlÞyðmÞ�1 ¼ cðhÞcðhmÞ�1;

and so lm�1 A Py, as claimed.

Conversely, if

rðcÞ ¼ cðhÞ�1yðlÞ
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and l ¼ mn for some n A Py, then we have

rðcÞ ¼ cðhÞ�1yðlÞ

¼ cðhÞ�1yðmÞyðnÞ

¼ ½cðhÞcðhnÞ��1yðmÞ

for some hn A H 1ðK;GÞ, since n A Py.

This establishes the result. r

We now observe that if c A RðOK GÞ with

rðcÞ ¼ cðhÞ�1yðlÞ

for some h A H 1ðK;GÞ and l A JðKLÞ, then Theorem 2.3 implies that in fact h A H 1
trðK ;GÞ

(cf. also Remark 3.5(1) above). We can therefore see from Proposition 3.7 that counting
tame Galois G-extensions of K with a given realisable class is essentially equivalent to
counting elements in FX lPy for a fixed coset lPy of Py in JðKLÞ. We therefore now focus
our attention on obtaining a good description of FX lPy.

Fix a set of representatives T of WKnGð�1Þ, and for each t A T , let KðtÞ be the small-
est extension of K such that WKðtÞ fixes t. Then the Wedderburn decomposition of KL is
given by

KL ¼ MapWK

�
Gð�1Þ;K c

�
F
Q

t AT

KðtÞ;ð3:4Þ

where the isomorphism is induced by evaluation on the elements of T .

Definition 3.8 (see [9], §6). Let M be an integral ideal of OK . For each finite place v

of K we set UMðOc
K; vÞ ¼ ð1 þMOc

K ; vÞX ðOc
K; vÞ

�. We define

U 0
MðLvÞL ðKvLÞ� ¼ MapWv

�
Gð�1Þ; ðK c

v Þ
��

by

U 0
MðLvÞ :¼ fgv A ðKvLÞ� j gvðsÞ A UMðOc

K ; vÞ Es3 1g

(with gvð1Þ allowed to be arbitrary).

Set

U 0
MðLÞ :¼

�Q
v

U 0
MðLvÞ

�
X JðKLÞ:

The modified ray class group modulo M of L is defined by

Cl 0MðLÞ :¼ JðKLÞ
ðKLÞ� � U 0

MðLÞ :
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The group Cl 0MðLÞ is finite, and is isomorphic to the product of the ray class groups mod-
ulo M of the Wedderburn components KðtÞ, t3 1 (see (3.4)) of KL. r

The following result shows that each coset lPy of Py in JðKLÞ is a disjoint union of
cosets of U 0

MðLÞ � KL in J
�
KðLÞ

�
for any suitably chosen ideal M of OK .

Proposition 3.9. Let M be an integral ideal of OK that is divisible by both jGj and

expðGÞ2 (where expðGÞ denotes the exponent of G). Then there is a natural quotient homo-

morphism

fM : Cl 0MðLÞ ! JðKLÞ
Py

:

In particular, the group JðKLÞ=Py is finite.

Proof. Set

PM :¼ ðKLÞ� � U 0
MðLÞL JðKLÞ:

McCulloh has shown (see [9], Proposition 6.9) that if M is divisible by both jGj and
expðGÞ2, then

Y t
�
U 0
MðLÞ

�
LH

�
AðOKGÞ

�
;

whence it follows from the definition of y that yðPMÞ ¼ 0. This implies that

PM LPy L JðKLÞ;

and so there is a natural quotient homomorphism fM, as asserted. Since Cl 0MðLÞ is finite, it
follows that the same is true of JðKLÞ=Py. r

Let IðLÞ denote the group of fractional ideals of L. Via the Wedderburn decomposi-
tion (3.4) of L, each ideal A in IðLÞ may be written A ¼ ðAtÞt AT , where each At is a frac-
tional ideal of OKðtÞ.

For any idele l A JðKLÞ, we write coðlÞ A IðLÞ for the ideal obtained by taking the
idele content of l. The following proposition describes exactly which ideals in IðLÞ arise via
taking the idele content of elements in FL JðKLÞ.

Proposition 3.10. Let F be the subset of IðLÞ defined by

F ¼ fcoð f Þ j f A Fg:

Then F consists precisely of those ideals f ¼ ðftÞt AT such that

� f1 ¼ OK ;

� NKðLÞ=KðfÞ :¼
Q

t AT

NKðtÞ=KðftÞ is a squarefree OK-ideal;

� ft is coprime to the order jtj of t.
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In particular, if we view Fv as being a subset of F via the obvious embedding

ðKvLÞ�L JðKLÞ, then

Fv :¼ fcoð fvÞ j fv A Fvg

consists precisely of the invertible prime ideals of L arising via (3.4) from the invertible prime

ideals of relative degree one over v in those Wedderburn components KðtÞ of L for which

t3 1 and vðjtjÞ ¼ 0.

Proof. See [9], pages 288–289. r

Example 3.11. Suppose that h A H 1
trðK;GÞ. Recall (see Remark 3.5) that there exist

unique c A RðOK GÞ and f A F such that rðcÞ ¼ cðhÞ�1yð f Þ. Let

coð f Þ ¼ f ¼ ðftÞt AT :

Then each ideal ft of OKðtÞ may be written as a product

ft ¼ Pt;1 � � �Pt; it

of primes of relative degree one in KðtÞ=K . Each finite place v of K that ramifies in Kh=K

lies beneath exactly one ideal Pt; j, and in this case the ramification index of v in Kh=K is
equal to the order jtj of t (see [9], Proposition 5.4). It therefore follows from the standard
formula for tame discriminants that

discðKh=KÞ ¼
Q

t AT

NKðtÞ=KðftÞðjtj�1ÞjGj=jtj:

Hence the absolute norm DðKh=KÞ of discðKh=KÞ is given by

DðKh=KÞ ¼
�

OK :
Q

t AT

NKðtÞ=KðftÞðjtj�1ÞjGj=jtj
	
:

Let dðfÞ ¼
�
dðftÞ

�
t AT

denote the ideal in IðLÞ defined by dðfÞ1 ¼ OK and

dðfÞt ¼ f
ðjtj�1ÞjGj=jtj
t

for t3 1. Then since

½OKðtÞ : ft� ¼ ½OK : NKðtÞ=KðftÞ�;

for each t3 1, it follows that we have

DðKh=KÞ ¼ ½L : dðfÞ�: r

Example 3.11 motivates the following definitions.

Definition 3.12. We say that a function

W : T ! Zf0

is a weight function on T (or just a weight for short) if Wð1Þ ¼ 0 and WðtÞ3 0 for all t3 1.
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For any weight W, we set

aW :¼ minfWðtÞ : t3 1g: r

Definition 3.13. Suppose that W is a weight and A ¼ ðAtÞt AT is an ideal in IðLÞ.
We write dWðAÞ ¼

�
dWðAÞt

�
t AT

for the ideal in IðLÞ defined by dWðAÞt ¼ A
WðtÞ
t . r

Definition 3.14. Suppose that h A H 1
trðK;GÞ with rðcÞ ¼ cðhÞ�1yð f Þ. For any weight

function W on T , we set

DWðKh=KÞ :¼
�
L : dW

�
coð f Þ

��
:ð3:5Þ

Example 3.15. Let Kh=K be any tamely ramified Galois G-extension of K.

(1) Define a weight function Wdisc on T by WdiscðtÞ ¼ ðjtj � 1ÞjGj=jtj for t3 1. Then
we see from Example 3.11 that DWdisc

ðKh=KÞ is equal to the absolute norm of the relative
discriminant of Kh=K .

(2) Define a weight function Wram on T by WramðtÞ ¼ 1 for t3 1. Then DWram
ðKh=KÞ

is equal to the absolute norm of the product of the primes of K that are ramified in Kh=K .
r

We now fix once and for all an integral ideal M of OK that is divisible by both jGj
and expðGÞ2, and we also fix a weight function W on T .

Definition 3.16. For each c A RðOK GÞ and each real number X > 0, we write
NWðc;X ;MÞ for the number of tame Galois G-extensions Kh=K for which ðOhÞ ¼ c,
DWðKh=KÞ is coprime to M, and DWðKh=KÞeX .

We define MWðX ;MÞ to be the number of tame Galois G-extensions Kh=K for which
DWðKh=KÞeX and DWðKh=KÞ is coprime to M.

Question 3.17. What can be said about the behaviour of NWðc;X ;MÞ as X ! y?
For example, is

ZWðc;MÞ :¼ lim
X!y

NWðc;X ;MÞ
MWðX ;MÞ

independent of c? r

For each coset c of PM in JðKLÞ, set

kWðc;X ;MÞ ¼


� f A FX c j

�
coð f Þ;M

�
¼ 1 and

�
L : dW

�
coð f Þ

��
eX

�

:
Then it follows from Remark 3.5(1) and Proposition 3.7 that there is a unique coset lcPy

of Py in JðKLÞ such that

NWðc;X ;MÞ ¼ jKerðcÞj �


� f A F X lcPy j

�
coð f Þ;M

�
¼ 1 andð3:6Þ �

L : dW
�
coð f Þ

��
eX

�


¼ jKerðcÞj �

P
c A f �1

M
ðcÞ
kWðc;X ;MÞ:
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We therefore see that the behaviour of NWðc;X ;MÞ as X ! y is governed by that of the
kWðc;X ;MÞ. For example, if kWðc;X ;MÞ is asymptotically independent of c (see Defini-
tion 5.3 below), then it follows that asymptotically, NWðc;X ;MÞ is independent of the real-
isable class c A RðOKGÞ.

4. Euler products

Recall (see Proposition 3.10) that F denotes the subset of IðLÞ defined by

F ¼ fcoð f Þ j f A Fg:

Definition 4.1. We define functions DðsÞ and DMðsÞ of a complex variable s by

DðsÞ :¼
P
a AF

½L : dWðaÞ��s; DMðsÞ :¼
P
a AF

ða;MÞ¼1

½L : dWðaÞ��s:ð4:1Þ

For any c A Cl 0MðLÞ, we set

DcðsÞ :¼
P

a AFXc

½L : dWðaÞ��s; Dc;MðsÞ :¼
P

a AFXc

ða;MÞ¼1

½L : dWðaÞ��s:ð4:2Þ

Each of the functions above also depends upon the choice of W; we omit this depen-
dence from our notation. r

Let w be any character of Cl 0MðLÞ, and set T 0 :¼ Tnf1g. Then via the Wedderburn
decomposition (3.4) of L, we may write w ¼ ðwtÞt AT 0 , where each wt is a character of the
ray class group modulo M of KðtÞ. We may view w as being a map on the set of all integral
ideals a ¼ ðatÞt AT in the standard manner by setting wðaÞ ¼ 0 if a1 3OK or if a is not co-
prime to M.

Definition 4.2. For each character w of Cl 0MðLÞ, we define

Dðs; wÞ ¼
P
a AF

wðaÞ½L : dWðaÞ��s: rð4:3Þ

With the above definitions, we have

Dc;MðsÞ ¼ 1

jCl 0MðLÞj
P
w

wðcÞDðs; wÞ;ð4:4Þ

where the sum is over all characters w of Cl 0MðLÞ.

Definition 4.3 (cf. [4], Chapter I). Let a ¼ ðatÞt AT be any ideal in IðLÞ. We define
the module index ½L : a�OK

to be the OK -ideal given by

½L : a�OK
:¼
Q

t AT

NKðtÞ=KðatÞ: rð4:5Þ
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Lemma 4.4. For each integral OK-ideal b, set

nðbÞ :¼ jfa A F j ½L : dWðaÞ�OK
¼ bgj:

Then n is multiplicative, i.e. if b1, b2 are coprime OK -ideals, we have

nðb1b2Þ ¼ nðb1Þnðb2Þ:

Proof. It follows from Proposition 3.10 that if a1, a2 are in F, and ½L : dWða1Þ�OK

and ½L : dWða2Þ�OK
are coprime, then a1a2 lies in F also. Hence, for any choice of ideals

a1; a2 A F with ½L : dWðaiÞ�OK
¼ bi ði ¼ 1; 2Þ, we have

½L : dWða1a2Þ�OK
¼ ½L : dWða1Þ�OK

� ½L : dWða2Þ�OK

¼ b1 � b2;

and so we deduce that nðb1b2Þf nðb1Þnðb2Þ.

To show the reverse inequality, set b ¼ b1b2, and let a A F be any ideal such that
½L : dWðaÞ�OK

¼ b. For each i ¼ 1; 2, let ai be the product of all primes P of L with P a
prime factor of a and ½L : P�OK

a prime factor of bi. Then we have

a ¼ a1a2; ai A F; and ½L : ai�OK
¼ bi ði ¼ 1; 2Þ:ð4:6Þ

Furthermore, it follows via uniqueness of factorisation in L and OK that a1 and a2 are the
unique ideals satisfying (4.6). This implies that nðb1b2Þe nðb1Þnðb2Þ, and so we finally de-
duce that nðb1b2Þ ¼ nðb1Þnðb2Þ as asserted. r

Proposition 4.5. The functions DðsÞ and Dðs; wÞ admit Euler product expansions over

the rational primes:

DðsÞ ¼
Q
p

DpðsÞ; Dðs; wÞ ¼
Q
p

Dpðs; wÞ:

Proof. Suppose that a A F, with ½L : dWðaÞ�OK
¼ b. Then it follows from Proposi-

tion 3.10 that

½L : dWðaÞ� ¼ ½OK : b�:

This in turn implies that

DðsÞ ¼
P
a AF

½L : dWðaÞ�

¼
P

b A IðOK Þ
bLOK

nðbÞ½OK : b��s:

Since n is multiplicative, we have

DðsÞ ¼
Q

p A IðOK Þ
p prime

DpðsÞ;
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where

DpðsÞ ¼ 1 þ
Py

m¼1

nðpmÞ½OK : p��ms:

Next, we observe that since a A F implies that a is squarefree (see Proposition 3.10), it
follows that we can find a positive integer N, say, independent of p, such that nðpmÞ ¼ 0 for
all m > N. (In fact N ¼ jGj � maxfWðtÞ j t A Tg will do.) We may therefore write

DpðsÞ ¼ 1 þ
PN

m¼1

nðpmÞ½OK : p��ms;

and we define DpðsÞ by

DpðsÞ ¼
Q
p j p

DpðsÞ:

Thus we see that

DðsÞ ¼
Q
p

DpðsÞ;

as claimed.

We now show that Dðs; wÞ also admits an Euler product expansion. For each rational
prime p, set

FðpÞ :¼ fa A F j ½L : a� is a non-negative power of pg:

Observe that a A FðpÞ if and only if all prime factors of a in L lie above p, and we have
that

DpðsÞ ¼ 1 þ
P

a AFðpÞ
½L : dWðaÞ��s:

A very similar argument to that given above now shows that

Dðs; wÞ ¼
Q
p

Dpðs; wÞ;

where

Dpðs; wÞ ¼ 1 þ
P

a AFðpÞ
wðaÞ½L : dWðaÞ��s:ð4:7Þ

This establishes the desired result. r

5. The asymptotic behaviour of kW (c,X ;M )

In this section we shall obtain an expression for

kWðc;X ;MÞ :¼


� f A FX c j

�
coð f Þ;M

�
¼ 1 and

�
L : dW

�
coð f Þ

��
eX

�
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for each c A JðKLÞ=PM when X is large. We shall do this by appealing to the following
version of the Délange–Ikehara Tauberian theorem.

Theorem 5.1. Suppose that f ðsÞ ¼
Py
n¼1

ann�s is a Dirichlet series with non-negative co-

e‰cients, and that it is convergent for <ðsÞ > a > 0. Assume that in its domain of conver-

gence,

f ðsÞ ¼ gðsÞðs � aÞ�w þ hðsÞ

holds, where gðsÞ, hðsÞ are holomorphic functions in the closed half-plane <ðsÞf a, gðaÞ3 0,
and w > 0. Then, as X ! y, we have

P
neX

an @
gðaÞ

a � GðwÞ � X a � ðlog X Þw�1:

Proof. See [10], p. 121. r

We see from (4.4) that each function Dc;MðsÞ is convergent in some right-hand half-
plane, because Dðs; wÞ has an Euler product expansion for all characters w of Cl 0MðLÞ. It
also follows from the definitions that each Dc;MðsÞ is a Dirichlet series with non-negative
coe‰cients. If we write

Dc;MðsÞ ¼
Py
n¼0

ann�s;

then we have

kWðc;X ;MÞ ¼
P

neX

an:

For each c A JðKLÞ=PM, let bðc;MÞ denote right-most pole of Dc;MðsÞ in the com-
plex plane. It follows from a theorem of Landau that bðc;MÞ is real (see [10], Theorem
3.5). Let dðc;MÞ denote the order of this pole. Write

tðc;MÞ :¼ lim
s!bðc;MÞ

�
s � bðc;MÞ

�dðc;MÞ
Dc;MðsÞ:

Proposition 5.2. As X ! y, we have

kWðc;X ;MÞ@ tðc;MÞ
bðc;MÞ � G

�
dðc;MÞ

� � X bðc;MÞ � ðlog XÞdðc;MÞ�1:

Proof. This follows directly from Theorem 5.1. r

Definition 5.3. If

kWðc1;X ;MÞ@ kWðc2;X ;MÞð5:1Þ
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as X ! y for all c1; c2 A Cl 0MðLÞ, then we shall say that kWðc;X ;MÞ is asymptotically in-

dependent of c.

It is not hard to see that (5.1) holds for all c1; c2 A Cl 0MðLÞ if and only if the numbers
tðc;MÞ, bðc;MÞ, and dðc;MÞ do not vary with c. r

We shall see in Section 7 that, in general, kWðc;X ;MÞ is not asymptotically indepen-
dent of c.

6. Dirichlet L-series

We now turn our attention to certain Dirichlet L-series associated to L. These will be
used in the next section to study the behaviour of the functions DðsÞ and Dðs; wÞ.

Definition 6.1. Suppose that w ¼ ðwtÞt AT 0 is a character of Cl 0MðLÞ. We define

LLðs; wÞ :¼
P

a A IðLÞ
aLL

wðaÞ½L : dWðaÞ��s: r

Remark 6.2. (1) For each character w ¼ ðwtÞt AT 0 of Cl 0MðLÞ, the function LLðs; wÞ is
a product of L-functions of number fields. If we set

Ltðs; wtÞ ¼
P

b A IðOKðtÞÞ
bLOKðtÞ

wtðbÞb�WðtÞs;

then corresponding to the Wedderburn decomposition (3.4) of KL, we have

LLðs; wÞ ¼
Q

t AT 0
Ltðs; wtÞ:ð6:1Þ

It follows from standard properties of Dirichlet L-series that Lt

1

WðtÞ ; wt

� �
3 0 if

wt 3 1 and that Ltðs; 1tÞ has a simple pole at s ¼ 1=WðtÞ.

(2) The function LLðs; wÞ has an Euler product given by

LLðs; wÞ ¼
Q
p

LL;pðs; wÞ;

where

LL;pðs; wÞ ¼ 1 þ
P
a

wðaÞ½L : dWðaÞ��s;

here the sum is over all integral ideals a of L lying above the rational prime p.

Let P1; . . . ;PnðpÞ be the invertible primes of L which lie above the rational prime p.
(Note that the integer nðpÞ is bounded above independently of p.) Then we also have

LL;pðs; wÞ ¼
QnðpÞ

i¼1

�
1 � wðPiÞ½L : dWðPiÞ��s

��1
: r
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In Section 7 we shall compare the functions LLðs; wÞ and Dðs; wÞ by examining corre-
sponding terms in their Euler product expansions. In order to do this, we shall need the
following two technical lemmas from [5].

Lemma 6.3 ([5], Lemma 1.1). Expand

Fðz1; . . . ; znÞ :¼
Qn
i¼1

ð1 � ziÞ�1

as an infinite series of monomials in z1; . . . ; zn. Suppose that 0 < re r0 < 1, and that there is

a positive integer me n such that jzije r and i em and jzij < r2 for i > m.

Then, if f ðz1; . . . ; znÞ is any subseries of the series for Fðz1; . . . ; znÞ containing the terms

1 þ
Pm
i¼1

zi, we have

jFðz1; . . . ; znÞ � f ðz1; . . . ; znÞje
nðn þ 1Þ

2ð1 � r0Þnþ2
þ n

" #
r2:

Proof. Since the series for F � f has only positive coe‰cients, it follows that an
upper bound for jF � f j may be obtained by setting zi ¼ r for iem, and zi ¼ r2 for

i > m, and by replacing f ðz1; . . . ; znÞ with 1 þ
Pm
i¼1

zi.

For the terms of degree one in F � f , we have





 Pn
i¼mþ1

zi





e nr2:

Also, as each term of degree k with k f 2 has absolute value at most rk, and there are
n þ 1 � k

k

� �
such terms, it follows that the sum of all such terms (for all k f 2) has abso-

lute value at most ð1 � rÞ�n � ð1 þ nrÞ. By comparing the terms in the binomial expansions
of

h1ðxÞ ¼ ð1 � xÞ�n � ð1 þ nxÞ; h2ðxÞ ¼
nðn þ 1Þ

2ð1 � xÞnþ2
x2

we see that the inequality

0 < ð1 � rÞ�n � ð1 þ nrÞe nðn þ 1Þ
2ð1 � rÞnþ2

� r2

holds. Therefore, since re r0 < 1, we obtain

jFðz1; . . . ; znÞ � f ðz1; . . . ; znÞje
nðn þ 1Þ

2ð1 � rÞnþ2
� r2 þ nr2:

This completes the proof. r
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Lemma 6.4 ([5], Lemma 1.2). Let fðsÞ and f�ðsÞ be Dirichlet series with Euler

products

fðsÞ ¼
Q
p

fpðsÞ; f�ðsÞ ¼
Q
p

f�
p ðsÞ

over the rational primes. Suppose that fðsÞ and f�ðsÞ are absolutely convergent for <ðsÞ > 1.

Suppose further that:

(i) For every p, fpðsÞ and f�
p ðsÞ are analytic for <ðsÞ > 0.

(ii) Given a real number s0 with 0 < s0 < 1, there exists Bðs0Þ ¼ B > 0 such that

f�
pðsÞ � fpðsÞ

f�
pðsÞ












< B � p�2s0

for every p and s ¼ <ðsÞf s0.

Then fðsÞ ¼ f�ðsÞcðsÞ, where cðsÞ is analytic for <ðsÞ > 1=2. If z A C satisfies

<ðzÞ > 1=2, and if fpðzÞ3 0 for all p, then cðzÞ3 0.

Proof. We first observe that (i) implies that fpðsÞ=f�
pðsÞ is meromorphic for

<ðsÞ > 0, and so it follows from (ii) that in fact fpðsÞ=f�
pðsÞ is analytic for <ðsÞ > 0. For

<ðsÞ > 1, define

cðsÞ ¼
Q
p

fpðsÞ
f�

p ðsÞ
¼
Q
p

1 �
f�

pðsÞ � fpðsÞ
f�

p ðsÞ

" #
:

We see from (ii) that this product converges whenever
P

p

p�2s converges, i.e. for

<ðsÞ ¼ s > 1=2. This implies that cðsÞ is analytic for <ðsÞ > 1=2.

It is easy to verify that we have fðsÞ ¼ f�ðsÞcðsÞ as a formal identity. If fpðzÞ3 0 for
all p, then none of the factors of cðzÞ are zero. Since the product defining cðzÞ is absolutely
convergent, it follows that cðzÞ3 0, as claimed. r

7. The poles of D(s, w) and Dc,M (s)

In this section, using techniques described in [5], we shall examine the poles of Dðs; wÞ
and Dc;MðsÞ. We shall do this by comparing the Euler product expansion of Dðs; wÞ with
that of LLðs; wÞ and applying Lemmas 6.3 and 6.4.

Proposition 7.1. For each rational prime p with pFM, we have

jLL;pðs; wÞ � Dpðs; wÞje
nðn þ 1Þ

ð1 � 2�s0Þnþ2
þ n

" #
p�2aW<ðsÞ;
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for any real number s0 satisfying 0 < so < aW<ðsÞ. Here n ¼ nðpÞ, the number of primes

of L lying above p.

Proof. We first observe that the series defining Dpðs; wÞ is a subseries of the series
defining LL;pðs; wÞ. Also, the series defining Dpðs; wÞ contains the terms

1 þ
Pm
i¼1

wðPiÞ½L : dWðPiÞ��s;

where the Pi are arranged so that P1; . . . ;Pm satisfy ½L : Pi� ¼ p, and Pmþ1; . . . ;Pn satisfy
½L : Pi�f p2.

In Lemma 6.3, we take

zi :¼ wðPiÞ½L : dWðPiÞ��s; Fðz1; . . . ; znÞ :¼ LL;pðs; wÞ; f ðz1; . . . ; znÞ :¼ Dpðs; wÞ:

We observe that, for 1e ie n, we have

½L : dWðPiÞ�f paW ;

and so

j½L : dWðPiÞ��sje jp�aWsj

¼ p�aW<ðsÞ:

Hence, if we set r ¼ p�aW<ðsÞ and r0 ¼ 2�s0 with 0 < s0 e aW<ðsÞ, then we have
0 < re r0 < 1, jzije r for 1e iem, and jzije r2 for m þ 1e i e n. So, the conditions
of Lemma 6.3 are satisfied, and we have

jLL;pðs; wÞ � Dpðs; wÞje
nðn þ 1Þ

ð1 � 2�s0Þnþ2
þ n

" #
p�2aW<ðsÞ;

as claimed. r

Proposition 7.2. For each character w ¼ ðwtÞt AT 0 of Cl 0MðLÞ, we may write

Dðs; wÞ ¼ LLðs; wÞ � cðs; wÞ;

where cðs; wÞ is analytic for <ðsÞ > 1=ð2aWÞ.

If z A C satisfies <ðzÞ > 1=ð2aWÞ, and Dpðz; wÞ3 0 for all p, then cðz; wÞ3 0.

Proof. To prove the desired result, we are going to apply Lemma 6.4 with

fðsÞ ¼ Dðs; wÞ; f�ðsÞ ¼ LLðs; wÞ:

We first note that for each prime p with pFM, the Euler factor LL;pðs; wÞ is analytic
for <ðsÞ > 0. This implies that Dpðs; wÞ is also analytic for <ðsÞ > 0, because the series de-
fining Dpðs; wÞ is a subseries of the series defining LL;pðs; wÞ.
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Set N :¼ dimQðKLÞ. We have

jLL;pðs; wÞj�1 ¼
QnðpÞ

i¼1



�1 � wðPiÞ½L : dWðPiÞ��s
�



e ð1 þ p�aW<ðsÞÞN :

In particular, this implies that

jLL;pðs; wÞj�1
e ð1 þ 2�s0ÞNð7:1Þ

for all pFM and for all s A C with aW<ðsÞf s0. Applying Proposition 7.1 gives

jLL;pðs; wÞj �
LL;pðs; wÞ � Dpðs; wÞ

LL;pðs; wÞ










e nðn þ 1Þ

ð1 � 2�s0Þnþ2
þ n

" #
p�2aW<ðsÞ:

We therefore see from (7.1) that

LL;pðs; wÞ � Dpðs; wÞ
LL;pðs; wÞ










e nðn þ 1Þ

ð1 � 2�s0Þnþ2
þ n

" #
p�2aW<ðsÞ � ð1 þ 2�s0ÞN

¼ Bðs0Þ � p�2aW<ðsÞ;

say. Hence condition (ii) of Lemma 6.4 is satisfied, but with s ¼ aW<ðsÞ, rather than
s ¼ <ðsÞ.

Lemma 6.4 therefore implies that we may write

Dðs; wÞ ¼ LLðs; wÞ � cðs; wÞ;

where cðs; wÞ is analytic for <ðsÞ > 1=ð2aWÞ.

The final assertion follows just as in the proof of Lemma 6.4. r

Definition 7.3. For each positive integer n and each character w of Cl 0MðLÞ, set

dnðwÞ :¼ jft A T 0 j wt ¼ 1 and WðtÞ ¼ ngj:

Hence

dnð1Þ ¼ jft A T 0 jWðtÞ ¼ ngj

¼ max
w

fdnðwÞg:

Write

bnðwÞ :¼ lim
s!1

n

s � 1

n

� �dnð1Þ
Dðw; sÞ: r
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Proposition 7.4. Let 1e n < 2aW be a positive integer.

(a) The function Dð1; sÞ has a pole of exact order dnð1Þ at s ¼ 1=n.

(b) If w3 1, then Dðw; sÞ has a pole of order at most dnðwÞ at s ¼ 1=n.

(c) For each c A Cl 0MðLÞ, the function Dc;MðsÞ has a pole of order at most dnð1Þ at

s ¼ 1=n, and

lim
s!1

n

s � 1

n

� �dnð1Þ
Dc;MðsÞ ¼ 1

jCl 0MðLÞj
P
w

wðcÞbnðwÞ:

These are the only poles of the functions Dðw; sÞ and Dc;MðsÞ in the half-plane

<ðsÞ > 1=ð2aWÞ.

Proof. From (6.1) and Proposition 7.2, we have

Dðs; wÞ ¼ LLðs; wÞ � cðs; wÞ ¼
� Q

t AT 0
Ltðs; wtÞ

	
� cðs; wÞ;ð7:2Þ

where cðs; wÞ is analytic for <ðsÞ > 1=ð2aWÞ. For each t A T 0, the Dirichlet L-function
Ltðs; wtÞ is entire unless wt ¼ 1t in which case it has a single (simple) pole at s ¼ 1=WðtÞ.
This implies that, for any positive integer n, the function LLðs; wÞ has a pole of order exactly
dnðwÞ (which of course may be equal to zero!) at s ¼ 1=n.

If 1e n < 2aW, then it follows from (7.2) that Dðs; wÞ has a pole of exact order dnðwÞ
at s ¼ 1=n, unless cð1=n; wÞ ¼ 0, in which case the pole might be of lower order. We note
that each Euler factor Dpð1=n; 1Þ is non-zero because it is a finite sum of positive terms.
Hence Proposition 7.2 implies that cð1=n; 1Þ3 0, and so Dðs; 1Þ has a pole of order exactly
dnð1Þ at s ¼ 1=n, as claimed. This proves parts (a) and (b).

Part (c) follows immediately from (4.4). The final assertion of the proposition is a
direct consequence of (7.2), (4.4) and Proposition 7.2. r

Lemma 7.5. For any positive integer n with 1e ne 2aW, the number

lim
s!1

n

s � 1

n

� �dnð1Þ
Dc;MðsÞ

is independent of c if and only if bnðwÞ ¼ 0 for all w3 1.

Proof. This follows directly from Proposition 7.4(c), via linear independence of
characters. r

We can now state a necessary and su‰cient condition for kWðc;X ;MÞ to be asymp-
totically independent of c.

Proposition 7.6. We have that kWðc;X ;MÞ is asymptotically independent of c if and

only if baWðwÞ ¼ 0 for all w3 1.
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Proof. This follows directly from Lemma 7.5 and Definition 5.3. We first note that
Proposition 7.4(a) implies that baWð1Þ is always strictly greater than zero. If baWðwÞ ¼ 0
for all w3 1, then it is easy to see that the numbers tðc;MÞ, bðc;MÞ and dðc;MÞ are
independent of c, which in turn implies that kWðc;X ;MÞ is asymptotically independent
of c.

On the other hand, if baWðwÞ3 0 for some w3 1, then Proposition 7.4(c) implies (via
linear independence of characters) that tðc;MÞ is not independent of c, and so we deduce
that kWðc;X ;MÞ cannot be asymptotically independent of c. r

Corollary 7.7. (a) If kWðc;X ;MÞ is asymptotically independent of c, then for each

c A Cl 0MðLÞ we have that bðc;MÞ ¼ 1=aW. Also, Dc;MðsÞ has a pole of exact order daWð1Þ
at s ¼ 1=aW, and

lim
s! 1

aW

s � 1

aW

� �daWð1Þ

Dc;MðsÞ ¼ baWð1Þ:

(b) If W is constant on T 0 (so WðtÞ ¼ aW for all t A T 0), then kWðc;X ;MÞ is asymp-

totically independent of c, and dWð1Þ ¼ jT 0j. We have

kWðc;X ;MÞ@ tðMÞaW
GðjT 0jÞ � X 1=aW � ðlog XÞjT

0j�1ð7:3Þ

as X ! y, where here we have written tðMÞ rather than tðc;MÞ as this term is independent

of c.

Proof. This follows readily from the definitions, together with Proposition 5.2. r

The following result gives an example of a situation in which kWðc;X ;MÞ is not
asymptotically independent of c.

Proposition 7.8. Suppose that KL is totally split over K (i.e. in the Wedderburn de-

composition (3.4) of KL, we have KðtÞ ¼ K for all t A T), and that the weight W is not con-

stant on T 0. Then kWðc;X ;MÞ is not asymptotically independent of c.

Proof. It su‰ces to show that if KL is totally split over K and W is not constant on
T 0, then there exists a non-trivial character w of Cl 0MðLÞ with daWðwÞ ¼ daWð1Þ such that
Dðs; wÞ has a pole of exact order daWð1Þ at s ¼ 1=aW (see Proposition 7.6). We see immedi-
ately from Proposition 7.2 that to do this, it su‰ces to exhibit a non-trivial w satisfying
daWðwÞ ¼ daWð1Þ and Dpð1=aW; wÞ3 0 for all rational primes p.

Suppose that p is a prime of OK . Since KL is totally split, it follows from Propo-
sition 3.10 that the set of ideals of FL IðLÞ lying above p consists precisely of all ideals
of the form aðsÞ ¼

�
aðsÞt

�
t AT

for each s A T 0, where aðsÞt ¼ OK if t A T with t3 s, and
aðsÞs ¼ p. For each character w ¼ ðwÞt AT of Cl 0MðLÞ, set

Dpðs; wÞ :¼ 1 þ
P

s AT 0
wsðpÞ½OK : p��WðsÞs:

25Agboola, On counting rings of integers



Then it is not hard to check that (see (4.7))

Dpðs; wÞ ¼
Q
p j p

Dpðs; wÞ:ð7:4Þ

We now observe that, as W is not constant on T 0, we may choose t0 A T 0 such that
Wðt0Þ > aW. Let Sðt0Þ denote the set of all characters w of Cl 0MðLÞ such that wt ¼ 1 for all
t3 t0. Plainly jSðt0Þj ¼ jClMðOKÞj > 1, where CMðOKÞ denotes the ray class group mod-
ulo M of OK , and we have daWðwÞ ¼ daWð1Þ for all w A Sðt0Þ. Now, for any w A Sðt0Þ, we
have

Dpð1=aW; wÞ ¼ 1 þ
� P

s AT 0
s3t0

½OK : p��WðsÞ=aW
�
þ wt0

ðpÞ½Ok : p��Wðt0Þ=aW :ð7:5Þ

Since jwt0
ðpÞ½Ok : p��Wðt0Þ=aW j < 1, it follows from (7.5) that jDpð1=aW; wÞj > 0, and so we

deduce from (7.4) that Dpð1=aW; wÞ3 0 also, as required. r

8. An equidistribution result

Let c A RðOKGÞ be a realisable class. In this section we shall discuss the number
NWðc;X ;MÞ of tame Galois G-extensions Kh=K for which ðOhÞ ¼ c,

�
DWðKh=KÞ;M

�
¼ 1

and DWðKh=KÞeX , under the assumption that kWðc;X ;MÞ is asymptotically indepen-
dent of c.

Suppose therefore that kWðc;X ;MÞ is asymptotically independent of c. Recall (see
Definition 3.1) that we have a homomorphism

c : H 1
trðK ;GÞ ! CðOK GÞ

with finite kernel, and a surjective homomorphism (see Proposition 3.9)

fM : Cl 0MðLÞ ! JðKLÞ
Py

:

Theorem 8.1. With the above hypotheses and notation, we have

NWðc;X ;MÞ ¼ jKerðcÞj � jKerð fMÞj � kWðc;X ;MÞ

@
aW � jKerðcÞj � jKerð fMÞj � baWð1Þ

G
�
daWð1Þ

� � X
1

aW � ðlog XÞdWð1Þ�1

as X ! y.

Proof. This follows directly from (3.6), Proposition 5.2 and Corollary 7.7. r

We thus see that if kWðc;X ;MÞ is asymptotically independent of c, then the tame
Galois G-extensions Kh of K with DWðKh=KÞ coprime to M are equidistributed amongst
the realisable classes in ClðOKGÞ as X ! y.
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Example 8.2. Let us now consider the case treated by K. Foster [5]. Let l be a prime,
and suppose that G is an elementary abelian l-group of order l k. Suppose also that
W ¼ Wdisc (see Example 3.15(1)). For each t A T 0, we have

WðtÞ ¼ ðjtj � 1ÞjGj
jtj ¼ ðl � 1Þl k

l
¼ l k�1ðl � 1Þ ¼ fðjGjÞ;

where f denotes the Euler f-function. Hence W is constant on T 0, and so Corollary 7.7(b)
implies that kðc;X ;MÞ is asymptotically independent of c. If we take

M ¼ jGj2L ¼ l2kL;

then for each c A RðOKGÞ, we have NWðc;X ;MÞ ¼ Ndiscðc;XÞ because, since G is an
l-group, a G-extension Kh=K is tamely ramified if and only if it is unramified at all primes
dividing l.

We have that aW ¼ fðjGjÞ, and dWð1Þ ¼ jT 0j. Theorem 8.1 and Corollary 7.7 there-
fore imply that

NWðc;XÞ@ fðjGjÞ � jKerðcÞj � jKerð fMÞj � baWð1Þ
GðjT 0jÞ � X 1=fðjGjÞ �

�
logðXÞ

�jT 0j�1
:ð8:1Þ

The tower law for discriminants implies that for each tamely ramified G-extension Kh=K we
have

discðKh=QÞ ¼ DWðKh=KÞ discðK=QÞjGj

and this in turn implies that

Ndiscðc;X Þ ¼ NW

�
c;X=discðK=QÞjGj�:ð8:2Þ

From (8.1) and (8.2), we have

Ndiscðc;XÞ@ fðjGjÞ � jKerðcÞj � jKerð fMÞj � baWð1Þ
GðjT 0jÞ � X

discðK=QÞjGj

 !1=fðjGjÞ

� log
X

discðK=QÞjGj

 !0
@

1
A
jT 0j�1

¼ jKerð fMÞj � jKerðcÞj � baWð1Þ
GðjT 0jÞ � Y �

�
logðY Þ

�jT 0 j�1
;

where Y fðjGjÞ � discðK=QÞjGj ¼ X .

Theorem A of the Introduction now follows immediately. r

Example 8.3. Suppose now that G is any finite abelian group. Let W ¼ Wram (see
Example 3.15(2)), and set M ¼ jGj2L. Then, for each c A RðOKGÞ, it follows from the
definitions that NDðc;X Þ (see Theorem B of the Introduction) is equal to NWðc;X ;MÞ.
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As W is constant on T 0, Corollary 7.7(b) implies that kWðc;X ;MÞ is asymptotically
independent of c. It is not hard to check that aW ¼ 1 and dWð1Þ ¼ jT 0j. Theorem 8.1 now
implies that

NWðc;X ;MÞ@ jKerðcÞj � jKerð fMÞj � baWð1Þ
GðjT 0jÞ � X � ðlog XÞjT

0j�1:

This implies Theorem B of the Introduction. r

9. Field extensions

In this section we shall show that, in a large number of cases, it makes no di¤erence
if we work with tame Galois field extensions of K with group G, rather than tame Galois
G-algebra extensions of K (see Proposition 9.5 below). We shall do this via a modification
of a technique described by Foster ([5], Corollary 1.6 and Lemma 4.15).

Recall that, via the Wedderburn decomposition (3.4) of L, each ideal a in IðLÞ may
be written a ¼ ðatÞt AT , where each at is a fractional ideal of OKðtÞ.

Definition 9.1. For each coset c of PM in JðKLÞ and each t A T 0, set

k
ðtÞ
Wðc;X ;MÞ :¼



� f A FX c j
�
coð f Þ;M

�
¼ 1; coð f Þt ¼ OKðtÞ andð9:1Þ �

L : dW
�
coð f Þ

��
eX

�

:
Define

k full
W ðc;X ;MÞ :¼ kWðc;X ;MÞ �

P
t AT 0

k
ðtÞ
Wðc;X ;MÞ:ð9:2Þ

We see that k full
W ðc;X ;MÞ is equal to the number of ideles f A FX c such that�

coð f Þ;M
�
¼ 1,

�
L : dW

�
coð f Þ

��
eX , and coð f Þt 3OKðtÞ for all t A T 0. r

Proposition 9.2. Suppose that W is constant on T 0, so WðtÞ ¼ aW for all t A T 0.

Then for each t A T 0, we have

lim
X!y

k
ðtÞ
Wðc;X ;MÞ

kWðc;X ;MÞ ¼ 0;ð9:3Þ

and so

kWðc;X ;MÞ@ k full
W ðc;X ;MÞ

as X ! y.

Proof. The second assertion is an immediate consequence of the first, and so we
shall just explain how to prove (9.3).
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Let LðtÞ denote the algebra L with the Wedderburn component corresponding to t

deleted. Then, carrying out all of the arguments of Sections 4–7 with L replaced by LðtÞ,
we see from the variant of Corollary 7.7(b) that we obtain in this way that

k
ðtÞ
Wðc;X ;MÞ@ t1ðMÞaW

GðjT 0jÞ � X 1=aW � ðlog XÞjT
0j�2:

Since, from the original version of Corollary 7.7(b), we have that

kWðc;X ;MÞ@ tðMÞaW
GðjT 0jÞ � X 1=aW � ðlog XÞjT

0j�1;

the equality (9.3) follows at once. r

Remark 9.3. Proposition 9.2 does not necessarily hold if W is not constant on T 0.
r

Proposition 9.4 ([9]). Suppose that h A H 1
trðK ;GÞ with ðOhÞ ¼ c A RðOKGÞ. Recall

that there exists a unique f A F such that rðcÞ ¼ cðhÞ�1yð f Þ (see Remark 3.5(1)). If

coð f Þt 3OKðtÞ for all t A T 0, then Kh is a field.

Proof (see [9], proof of Theorem 6.7(a)–(b)). The essential idea is as follows. One
first shows that if Kh is not a field, then it contains a Galois subalgebra extension H=K

with K 3H and H=K unramified. One then establishes that, on the other hand, if
coð f Þt 3OKðtÞ for all t A T 0, then every Galois subalgebra extension H=K of Kh with
H 3K is in fact ramified. Hence, if coð f Þt 3OKðtÞ for all t A T 0, then it follows that Kh

must be a field. r

For each c A RðOKGÞ, and each real number X > 0, write N
f
Wðc;X ;MÞ for the num-

ber of tame Galois G-extensions Kh=K for which ðOhÞ ¼ c, DWðKh=KÞ is coprime to M,
DWðKh=KÞeX , and Kh is a field.

Proposition 9.5. Suppose that W is constant on T 0. Then, for each c A RðOKGÞ, we

have

N
f
Wðc;X ;MÞ@NWðc;X ;MÞð9:4Þ

as X ! y.

Proof. If W is constant on T 0, then kWðc;X ;MÞ is asymptotically independent of c.
Hence we have that (see Theorem 8.1)

NWðc;X ;MÞ ¼ jKerðcÞj � jKerð fMÞj � kWðc;X ;MÞð9:5Þ

for any c A JðKLÞ=PM.

Proposition 9.4 implies that

jKerðcÞj � jKerð fMÞj � k full
W ðc;X ;MÞeN

f
Wðc;X ;MÞeNWðc;X ;MÞ:ð9:6Þ
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Now from (9.5), we see that

lim
X!y

jKerðcÞj � jKerð fMÞj � k full
W ðc;X ;MÞ

NWðc;X ;MÞ ¼ lim
X!y

kfull
W ðc;X ;MÞ
kWðc;X ;MÞ ¼ 1;

where the second equality follows from Proposition 9.2. Hence (9.6) implies that

lim
X!y

N
f
Wðc;X ;MÞ

NWðc;X ;MÞ ¼ 1

also. r

10. Further questions

Theorem 8.1 implies that if kWðc;X ;MÞ is asymptotically independent of c, then the
second part of Question 3.17 has an a‰rmative answer, i.e. the limit

ZWðc;MÞ :¼ lim
X!y

NWðc;X ;MÞ
MWðXÞ

is independent of c A RðOKGÞ. What happens if the assumption that kWðc;X ;MÞ is a
asymptotically independent of c is dropped? We see from (3.6) that if c1; c2 A RðOKGÞ,
then

NWðc1;X ;MÞ@NWðc2;X ;MÞ

as X ! y if and only if

P
c A f �1

M
ðc1Þ

kWðc;X ;MÞ@
P

c A f �1
M

ðc2Þ
kWðc;X ;MÞð10:1Þ

as X ! y.

If kWðc;X ;MÞ is not asymptotically independent of c, then it seems unreasonable to
expect (10.1) to hold for all c1; c2 A RðOKGÞ. In this case, it is therefore probably no longer
true in general that ZWðc;MÞ is independent of c, and one would expect the behaviour of
ZWðc;MÞ with respect to c to depend very much upon the choice of W. At present we have
no results or examples in this situation. In order to produce an explicit example in which
ZWðc;MÞ depends upon c, there are two main issues that need to be addressed.

Suppose that G is a finite abelian group which is such that RðOKGÞ3 0. (It is possi-
ble to produce such examples for many di¤erent K using work of Brinkhuis [2].) One would
first have to show that, in the example under consideration, kWðc;X ;MÞ is not independent
of c. This can be done in many cases by appealing to Proposition 7.8 above. One would
then have to show that (10.1) fails for some c1; c2 A RðOKGÞ. The point here is that this is
not directly implied by kWðc;X ;MÞ being asymptotically dependent upon c: one has to rule
out the (admittedly unlikely) possibility of the kWðc;X ;MÞ varying with c in such a way
that (10.1) always holds.
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One possible approach towards dealing with these issues would be to try and work
with L-functions constructed directly from JðKLÞ=Py directly, avoiding the use of the
group Cl 0MðLÞ entirely (cf. [3], for example). An additional advantage of such an approach
is that it would also presumably allow us to consider G-extensions Kh=K in which the
places dividing jGj are allowed to be tamely ramified. Finally, we remark also that it should
be possible to use the methods of this paper to investigate similar questions in the setting of
function fields (see [1]). We hope to return to these topics in future work.
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