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IWASAWA THEORY OF ELLIPTIC CURVES AND
GALOIS MODULE STRUCTURE

A. AGBOOLA

0. Introduction. In this paper we apply techniques arising from Iwasawa theory
to study the Galois module structure of principle homogeneous spaces constructed
via points of infinite order on CM elliptic curves defined over a number field. This
theory was introduced by M. J. Taylor in [TI-I (see also [ST], [CN-S], and [CN-T])
and is motivated by the fact that such principal homogeneous spaces are very closely
connected with certain rings of integers.

Let E be an elliptic curve with complex multiplication by O, the ring of
integers of an imaginary quadratic field K. If a 3, we shall often (but not always)
write [a] for the corresponding endomorphism of E. Let F/K be a finite extension
over which E is defined and acquires everywhere-good reduction. We write
A Gal(F/K), and we assume that all endomorphisms of E are defined over F.
For any field L, we write L for an algebraic closure of L, and we set f.
Gal(LC/L).

Let p be an odd rational prime which splits in , with p pp*. Assume that
p ]’ IAI. Choose n p with ph ) for some h > 1 and write n* for the complex
conjugate of r. Set q

Write G for the subgroup of elements of E() which are killed by [n*]. Let
denote the -Hopfalgebra which represents the e-group scheme of [n*]-torsion
on E, and let 9/ be the Cartier dual of. A detailed description of these algebras
is given in IT1] (see also [ST]). There it is shown that B is an e-order in the
algebra Mapn(G, ) and 9.I is an order in the algebra 1 (FG) (where
here fe acts upon both G and F). (Here and elsewhere, we shall omit from our
notation the dependence of our constructions upon the underlying field F unless
there is some danger of ambiguity.)

Suppose that Q E(F) and write

Go.(i {Q’ e E(): [n*’]Q’ Q}. (0.1)

Define the Kummer algebra Fo.(i by

Fo(i Mapn(Go(i), c). (0.2)
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442 A. AGBOOLA

Then [Fe(i):F] Gil, and i acts on Fe(i) via

( ) af" aog (Q’)= of(Q + g) (0.3)
gG geG

for f Fe(i) ando, ao# s.
Let ?e(i) denote the integral closure of ?r in Fe(i). In general, 3e(i does not

admit an action of 9.I. We define the Kummer order IEe(i) to be the maximal
9.1-stable submodule of De(i), i.e.

(0.4)

It is shown in IT1] that IEe(i is a principal homogeneous space (phs) of and
that ge(i) is a locally free N-module. Thus g;e(i) defines an element (g;e(i)) in the
locally free classgroup Cl(9.1) of 9.1. It follows from the definition of ge(i) that (Ee(i))
depends only upon the image of Q in E(F)/rc*E(F), and so we obtain a map

: E(F)/r*iE(F) --. Cl(9.1i) (0.5)

given by Oi(Q)= (e(i)). The map Oi is in fact a homomorphism since ElF has
everywhere good reduction (see Theorem of IT1]), and O(Q) 0 if and only if
tEe(i is a globally free 9.l-module.

Let ’ be the maximal order in containing 9.1. By composing with the
natural surjection e: C1(91) CI(’) given by extension of scalars, we obtain a
homomorphism

(p: E(F)/r*E(F) - Cl(’i) (0.6)

given by qgi(Q) (IEQ(i)), where ff,Q(i) ff,Q(i).
The phs g;e(i) is very closely related to the ring of integers of the field obtained

by adjoining the coordinates of the elements of Ge(i to F. Thus a knowledge of the
homomorphisms and qg yields important information on the Galois module
structure of these rings of integers. (We refer the reader to [BT] for a good general
account of applications of the theory of Hopf orders to the study of Galois module
structure.)

While the behaviour of the homomorphism on torsion points of E(F) is quite
well understood (see [ST], [CN-S]), less is known about the Galois structure of phs
arising from points of infinite order. The only general results in this direction of
which we are aware are those contained in [T3] and IT4]. In IT3], the methods of
IT1] and [Gr] are applied to Heegner points of certain modular elliptic curves. (See
also the article by Ph. Cassou-Nogubs et al. in [CT] for a brief account ofthis work.)
In [T5], the kernel of 1 is described (under suitable hypotheses) in terms of
congruences satisfied by special values of certain p-adic L-functions attached to K.
The purpose of this paper is to examine the behaviour of the homomorphisms
on points of infinite order. For further results in this direction, see [AT].
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We now give a brief description of the contents of this article. In 1 we show that
we may take inverse limits of (0.6) to obtain a homomorphism

tp a: E(F) (R) Dp. --. lim CI(’). (0.7)

We then show that (assuming certain standard conjectures about elliptic curves)
W,,/+ is closely related to the algebraic p-adic height pairing

{., )v,p: E(F) (R) 3 x E(F) (R) o* --+ Ko (0.8)

described in [PR1] and [PR2]. By exploiting this relationship, we are able to give
a description of Ker(q,a) up to Ep-pseudoisomorphism (see 6). One application
of this description is as follows.

Suppose that K is of classnumber 1, that E is defined over K, and that F/K is
abelian. Let A denote the group of characters of A and let 31 (resp. 2) denote the
ring of integers in some finite extension of K, (resp. Kp.) which contains all of the
character values of A. Let denote the contragredient of .

Define r rank,[(E(F)(R) 31)z)], where the superscript ;t denotes the Z-
equivariant eigenspace for the action of A. Let III(F) (p) be the p-primary component
of the Tate-Shafarevitch group III(F) of ElF.
THEOREI 0.1. Suppose that {.,. }r, is nonde#enerate modulo torsion and that

III(F)(p) is finite. Suppose also that rz > 1. Then

rank e[(Ker(q,,g) (R)e )2)] 1.

We remark that similar one-dimensional subspaces of the completed Mordell-
Weil group have arisen in the work of several authors in different contexts (see [G1-1,
[P], [R]).
As a consequence of Theorem 0.1, we are able to deduce the following theorem.

THEOREM 0.2. Suppose that the hypotheses of Theorem 0.1 hold and that rz 1
for some ;( A. Then there is a point Q E(F) of infinite order such that qgi(Q) 0
for all i.

It is interesting to note that the corresponding version of Theorem 0.2 is false in
the analogous situation for CM abelian varieties defined over global function fields
(see [A]).
The results contained in this paper formed a portion of my Ph.D. thesis (Colum-

bia University, 1991). It is with the greatest of pleasure that I thank my advisor,
Professor T. Chinburg, for all of his help, kindness, and encouragement. I also wish
to extend my warmest thanks to Professor M. J. Taylor for a great deal ofextremely
generous advice and to Professor K. Rubin for many very helpful conversations
and suggestions. I would like to acknowledge with thanks the hospitality of the
MSRI, Berkeley, where this paper was written. Finally, I am very grateful to the
referee for pointing out some mistakes in the original version of the manuscript.
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1. Classgroups. In this section we recall various facts we shall require concern-
ing the Horn description of the locally free classgroups C1(9,1i) and C1() in terms
of character maps.
We begin by giving a description of the group of characters G1 which will be

particularly well suited to certain calculations we shall carry out later. Recall that
q nr*. Let

wi: E., x E,-/q, (1.1)

denote the Weil pairing on E. For each R E,, we define a character ;t ti by
Z)(g) wi(g, R) Vg E,.,. (1.2)

This identifies ( with E,. If o9 fv and Z (, then o9 acts on Z via Z’(g) Z(g0’-’)%
The identification (1.2) preserves this action since the Weil pairing is fr-equivariant.

Let J(Oc) denote the group of finite ideles of c (i.e., the direct limit of the finite
idele groups of all finite extensions of) and write U(C) for the subgroup of finite
unit ideles of c. Set U(9/i)= 1-Iq<o 9/.q, where the direct product runs over all
finite places of3. (Here and elsewhere, we write t2(i)q (resp. 9.1i. q) for the semilocal
completion of o(i) (resp. 9.Ii) at q.)

Suppose that u U(9.1i). Then u determines a map Det(u)
which is defined by

Det(u) (R), (1.3)

Using the identification (1.2) above in Fr6hlich’s Hom-description of classgroups
(see l-F, Ch. I, 2] or IT2, Ch. I, 3]), we obtain isomorphisms

and

Mapn(E,,,
C1(9.1,)

Det(U(9.1i)). Mapn(E,,, c.) (1.4)

Mapn(E,,
C1(’i) Mapn(E,, U(C))" Mapn(E,, c.)" (1.5)

We now recall a method for explicitly constructing a representing map for
(((i)) C1(9.1) and ($e(i)) e CI(’).
For each a Fo.(i and Z) e G, the ;)-resolvent (al;)) Map(Ge(i), ) of a is

defined by
(alit()) ;(()(g-)a. (1.6)

gO

Choose d Fo.(i such that Fo.(i d().M’i, and for each prime q of )r,
choose mt2.q Eq(i)q such that Et2(i)q mo.q mo.q. 9.1i.. Then the map h
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Mapnr(E,, J()) given by

h()(R), (mo-, ,I;c))(dlX))-x (1.7)

represents both ((o-(i)) Cl(gd[i) and (tEo-(i)) Cl(’i).
For any field L, we let L(Q; i) denote the field obtained by adjoining the coordi-

nates of all points in Go.(i to L. We shall have need of the following result on the
evaluation of local resolvents which is proved in IT1] (Theorem 3).

PROPOSITION 1.1. Let q be a prime of Dr and choose m fo-(i) such that ff,o-(i)q
m.9.li, q. Then for all Q’ Go(i), x*-iaG,m(Q’+ g)O-1 is a unit in the ring
9,I,(F(Q; i))q. E!

We shall also require the following result regarding a change of basefield.

PROPOSITION 1.2. Let L/F be a finite extension. Then the diagrams

and

E(L) "". CI(,(L))

E(F) o,.’ CI(,(F))

(1.8)

E(L) ,*"’ CI(./#,(L))

E(F) CI(’(F))
Pi,F

(1.9)

commute. Here Truly is the usual trace map and Res is the restriction map on
classroups which is induced by the corestriction map

defined by

.A/’: MaPn,.(E,, j(c)) Mapn(E,, (1.10)

(f)(R) I f(R’?’)’’ VR E, (1.11)
i=1

where {o91, o.} is a transversal of
Proof. See (1.2) of [TI-I for a proof of (1.8). An identical argument also works

for (1.9). El
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2. Inverse limits. In this section we shall construct the homomorphism of
(0.7). To do this we shall first describe the relationship between (t(i)) Cl(i) and
(t2(J)) CI(9.Ij) for 0 < j < using the method of2 of [ST].
We begin by noting that the natural surjection [*i-J]: G--, Gj induces a

surjective homomorphism Mi - j of Hopf algebras (which we shall also denote
by [z*i-J]) given by

(2.1)

Similarly, the inclusion Gj G induces an inclusion s - sCi of Hopf algebras.
Passing to the integral level, we deduce that 9.1j may be viewed either as a quotient
algebra or as a subalgebra of 9.1.

Next, we observe that G acts on Map(G, c) via translations, i.e.

f(h) f(9 + h) Vfe Map(G, @c), 9, h e Gi. (2.2)

For each i> j > 0, there is a group isomorphism G/Gj G_j. This induces
identifications

cG_ (cG,) (2.3)

and

Map(G,_j, )= Map(G,, )oJ. (2.4)

(2.3) and (2.4) in turn induce isomorphisms of 9.1i_j with a subalgebra of 9.I and
with a subalgebra of B. We also observe that the identification of
induces an identification of j with E,j via the map R

PROPOSITION 2.1. There are isomorphisms

as -modules, and

Fo.(j - ,i_jVo.(i) (2.5)

Eo.(J) - 7,i-jQ(i) (2.6)

as 9.lj-modules.
Here E_j o,-jg viewed as an element of xd, and (resp. 9.lj) acts on the

right-hand side of (2.5) (resp. (2.6)) via the homomorphism

Proof. See 2 of [ST], especially Proposition 1. 12
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LEMMA 2.2. The homomorphism

p,j: Mapn(E,,, j(c)) Mapn,(E,j, J(C))

defined by p,j(f) flE,j induces homomorphisms

and

C1(9.I,) C1(9.1) (2.7)(a)

CI(/’,) CI(’j). (2.7)(b)

We denote both of these homomorphisms by Pi,.

Proof. We shall just prove that (2.7)(a) holds, as the proof of (2.7)(b) is entirely
similar.
We have to show that

p;,g(Det(U(gg,)). Mapn,(E,, *))
_

Det(U(9.I)). Mapn(E,, *). (2.8)

It is plain that p;.[Mapn,(E,,,, *)] MaPn(E,, *). Now suppose that u e
Det(U(9.l)) and R E,. Then

(2.9)

and [*i--J]Uq [,q. Hence p;,/(Det(u)) Det([z*-J]u) Det(U(9.lg)), and this es-
tablishes the result.

PROPOSITION 2.3. Suppose that f Mapn,(E,,, J()) is a representin9 map for
((i)) CI(). Then flE, is a representin9 map for (o(j)) Cl(y) for all
O<ji.

Proof. Choose d F(i) such that Fo(i)= d}.. Then (2.6)implies that
F(j) (d).(E_/n*-))., (where acts on the right-hand side of this last
isomorphism via the homomorphism [n*-Y]).

Let Hy be a collection of eoset representatives of G/G_g and suppose that R F,s.
Then

E

Z R)
gGGi
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Similarly, if for each place q of F we choose m q(i)q such that [(2(i)qm . 9.Ii. , then we obtain

Hence,

h(R),,
and now the result follows from (1.6). 121

Thus, if red: E(F)/n*iE(F) E(F)/n*-E(F) denotes the natural reduction
homomorphism, then we have commutative diagrams

E(F)/rc*’E(F) q" C1(9.I,)

E(F)/rc*i-IE(F) _,., C1(9.1,_,

and

(2.10)(a)

E(F)/r*’E(F) ". C1(/’,)

E(F)/r*’-’ E(F) Cl(//,_).

Taking inverse limits yields homomorphisms

(2.10)(b)

and

tp: E(F) (R)z . lim Cl(9l,) (2.11)(a)

a: E(F)(R) 3, - lim Cl(/,). (2.11)(b)

3. The homomorlhism ,. The purpose of this section is to describe certain
technical results which will enable us to relate the homomorphism Wt to the
Iwasawa theory of E in 5.
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We begin by establishing a useful property of a representing map for (lEo(i))
Cl(9.1) (resp. (IEo(i)) Cl(//,)).

PROPOSIXION 3.1. Let h Mapn(E,, J(llC)) be as in (1.7). Then for each r IN,
the F-map given by R h)(rR), h)(R) represents the trivial class in CI(9.1) (resp.
in CI(’)).

Proof. Suppose that Q’ Go(i and let o) fF. Write Q,O,= Q,+ h,o, with
ho E,,. Choose d Fo(i such that Fo(i d s. Then for each R E, and
r N, both ga, d)(Q g)[r]gand,d)(Q g)glieinsC(F(Q; i)). We have

gO gOi

gO gG

( )(2 dg(Q’- gO + ho,)Er]g,O x , dt(Q,_ gO +
gOi gOi

d(Q’- g). [r](g + h,) x dg(Q’- g).(g +
gO g

geGi g

Thus

and similar reasoning also shows that this expression is independent of the choice
of Q’ Go(i).
For each place q of3F choose mg e go(i), such that ;o(i), =mg 9.1. 4. Proposi-

tion 1.1 implies that

r*-’ , mg,,(Q’-g)g,
gOi

r*-i . mg ,(Q’ g)[rig 9.I,(F(Q; i)).
gOi

Reasoning exactly as above, we conclude that
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Thus, it now follows from (1.4)(resp. (1.5)) that the map Rw-h)([r]R).h)(R)
represents the trivial class in Cl(9/i)(resp. CI(V//). 121

Remark 3.2. It may in fact easily be shown that, iff Mapta(E,,, j(c)) is any
representing map for (q(i)) C1(9.I), then f h for suitable choices of d and

For each R e E,,, we let F[R] denote the field obtained by adjoining the
coordinates of R to F (with similar notation F[R’] for R’ E,,,). We write F
rE.F[R] and F’ Or,E..,F[R’]. We shall now give a description of Cl(//’i)
in terms of certain ideal classgroups.

LEMMA 3.3. Let E,\fe denote a set of representatives of De-orbits of E. Then
we have isomorphisms

(a) 1i I-Ig.\nr[R],

(c) Cl(#)
_
1-Ig,,\ Cl(3g).

Proof. (b) and (c) follow immediately from (a), which we shall now prove. Let
{091, o9,} be a transversal of fe\fe;, then i (Gi) (F[ Gi) is generated
over F by all elements of the form , l’g’, where F[ and g G,. Suppose that
R E, and 2 fe. Then

( l’z)(ff’))x-- ( l’wi(R, 9’))x
l,Xwi(RX, g,oz)

Hence(F/Gi)n’
_

I-It e.,\u F[R]. Since both sides ofthe inclusion have the same
dimension over F as F-vector spaces, it follows that (a) holds. 121

If Cl(//i) is represented by f Mapn(E,u, j(c)), then the image of under
the isomorphism 3.3(b) is obtained by evaluating f on elements of E,,\fe and then
taking ideal content. Thus every element of CI(’) may be represented by a map
R I, with la Cl()eta) satisfying I,o I for all 09 De. Conversely, every such
map defines an element of CI(’).
LEMMA 3.4. Choose a FQ(i) such that Fo.(i a del. Suppose that Q’ GQ(i)

and let R E with 0 < r < i. Then

(a) 0, [d)-’(Q’)Z’(O)] FER](Q; i),
(b) (0, Ed-’ (Q’);)(O)])" FER].

(Recall that F[R] (Q; i) denotes the field obtained by adjoinin9 the coordinates of all
points in GQ(i) to FIR].)
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Proof. We shall just prove (b) since the proof of (a) is very similar. Let o e frtRl
and write Q’’ Q’ + ho,, with h, E,,. Recall that q nn*. Then

d)g-’(Q’)g.)(g) d)(Q g,). w,(g’, R’)
gO gOi

Iw,(h,o, R’) d(Q g). wi(g, R’)

Hence [0G, d)(Q’- 9). wi(9, R)]qr6 FIR] and is independent of the choice of
(2’. rn

Now Proposition 1.1 implies that

(3.1)

where c denotes ideal content. If d is chosen to be an 9.l,q-basis of EQ(i)q for all
primes qlrc*, then (from Proposition 1.1 again) (d)lz))(Q’). n*-i is a unit at all such
q. Since we have assumed that ElF has everywhere good reduction, it follows from
the criterion of N6ron-Ogg-Shafarevitch that F[R-I (Q; i)/F[R] is unramified at all
primes away from p*. As (d)lz))(Q’)qr F[R-I (see Lemma 3.4(b)), it follows that
(dlz))(Q’) rtRtQ;)is an ambiguous ideal, i.e., that we have

(3.2)

where 9 is an 3vtm-ideal.
Hence, in the notation of the remarks following Lemma 3.3, we deduce that

(Ee(i)) CI(/) is represented by the map

(3.3)

where (OR) denotes the class of the ideal 0R in 3rtR.
For each R F, it follows from (3.1) and (3.2), together with Proposition 3.1, that

(,-gR)’ (’gqR’tR) (3.4)

in Cl(3rtR ). Now [F[R]’F[qR]] [F[R]’F[nR]] q if the order of R is
sufficiently large. Thus, if [F[R]’F[qR]-I q, then

in CI(3vtR1), where N.tR/vtqR is the norm from FIR] to F[qR].

(3.5)
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We now observe that FIR]
_

Fi, and so via the natural homomorphism
CI(tR1 - CI(F,), (gR) e Cl(tal) defines an element of Cl(F,). Thus qh induces
a homomorphism

defined by

qge)" E(F)/n*’E(F) Map.(E,,, Cl(3r,)) (3.6)

qge)(Q)(R) (R ,)" (3.6)(a)

Now Proposition 3.1 implies that c(h)(rR)h(R)-r) is a principal ideal for each
r e IN. Hence

and so we in fact have

q9(" E(F)/n,*E(F)--, Homt(E,,, Cl(3e,)p) (3.7)

where Cl()r,)p denotes the p-primary part of CI(Or,).
We next observe that the restriction of [zr*] to E, is an automorphism. For each

Q E(F), define qg;(Q) Homnr(E,,, Cl(r,)p) by

qg;(Q)(R) qg)(Q)([rc*]-’R). (3.8)

Let Trv,/v,_, denote the trace map from F to El_1. Since Trv,/v,_,(R)= [q]R for all
sufficiently large i, it follows that

Nr,/e,_, (qg;(Q)(R)) q;-1 (Q)([rr]R) (3.9)

(for sufficiently large), where Nv,/v,_, is the norm from F to F_. In other words,
the diagram

E(F)/rc*’E(F)

red]
E(F)/rc*i- E(F)

commutes.
Here N/i_ is defined by

Homnr(E,,, CI(Ov,),)

Homa(E,-,, CI(F,_,))

(3.10)

N/,_I(qg;(Q)(R)) Nri/e,_, (tp;(Q) (R’)) (3.11)

where R’ is any element of E, satisfying [r]R’ R. It is easily checked that this is
well defined.



IWASAWA THEORY OF ELLIPTIC CURVES 453

Taking inverse limits of (3.10), we obtain a homomorphism

W.’../,,: E(F)(R)cOp. Homtar (T,, li,_m Cl(3v,)p) (3.12)

where T is the n-adic Tate module of E and the inverse limit lim Cl(3v,)p is taken
with respect to the norm maps Nv,/v,_,.

It is clear that the homomorphism Wi..a completely determines Wt. In particular,
we have the following lemma.

LEMMA3.5. Ker(Wa)=Ker(W...t). 121

4. Selmer groups. In this section we recall various results that we shall require
concerning Selmer groups.

Set F iF and F iF[. Let N/F be the unique Z-extension contained
in Fo/F and write F Gal(N/F). We may identify F with Gal(F(R)/F(Eo)), and
GaI(F(E,)/F) with Gal(Noo/Foo). Let Z" Gal(F/F) 0’ denote the character giving
the action of Gal(F/F) on F,. We have

Gal(Foo/F) - Gal(Foo/F(E)) x Gal(F(Ep)/F)_
F x Gal(F(E,)/F).

Write e (resp. x) for the restriction of ;to to Gal(F(E)/F) (resp. F).
Choose a topological generator 7 off and write A for the power series ring Z[[T]].

Then we may identify A with the completed group ring 7I.F]] in the usual manner
via the map 7- T + 1.

For each i, let t/F be the maximal everywhere unramified abelian pro-p exten-
sion of Fi and let /Fi be the maximal abelian pro-p extension of Fi which is
unramified away from primes dividing p. Set Hi Gal(//F), Xi Gal(Y’i/Fi) and
write H (resp. Xoo) for the inverse limit of the

If q is a prime of F, we write kq for the residue field of F at q, and we let E(ko)
denote the reduction of E(F)at q. Write E,o(F)for the kernel of reduction of E(F)
at q and define E x, o(F) Ex(F) via exactness of the sequence

0 E(F)--, E(F)--, 1--I ff,(ko). (4.1)

We now recall the definitions of the Selmer and the Tate-Shafarevitch groups of
E. Let L be any extension of K over which E is defined. The Selmer group S(L)*’
is defined to be the kernel of the natural homomorphism

HI(r, E,,) -- H H(flz, E). (4.2)
qofL
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The enlarged Selmer group S’(L)*’ is the kernel of the homomorphism

H(f,., E,,.,) l--I H(,.,, E). (4.3)

The Selmer groups S(L)’ and S’(L)’ are defined similarly. We set $(L) li_.,m S(L)"’,
and we write Y(L) for the Pontryagin dual of S(L).
The Tate-Shafarevitch group III(L)ofElL is defined to be the kernel ofthe map

H(f,., E) I-I H(f,., E). (4.4)
of L

Define E(F)t’*q to be the subgroup of S(F)*’ which makes the sequence

0 E(F)t’*q - S(F)’*’ I-I H(fl, E,,,)

exact, and set E(F) lim E(F)"*’. Then there is a natural injection E1 (F) (R)e D0*
E(F). The following result is shown in Corollaire 3.3 of [PR1].
LEMMA 4.1. If IIII(F)(p*)I < , then El(F) (R) , E(F). 121

PROPOSITION 4.2 (J. Coates). There are A-module isomorphisms

(a) $(N(R)) - Hom(.,oo. E,),
(b) Y(Noo) - Hom(T, X).
Proof. (a) See Theorems 12 and 9 of [Co].
(b) Write D0 Ko/o. Choosing a generator of T, over )0 is equivalent to

fixing an isomorphism 0 - T, such that - t. This in turn induces an isomor-
phism b: D - E. Via such a choice of t, we may define a pairing

(., .): Hom(T,, X’) Hom(X’, E,.) D0 (4.5)

by (f, f2) -1 (f2(f (t))). It is easy to check that (., .) is independent of the choice
of t, is nondegenerate, and is fe-equivariant, which gives the result. El

We conclude this section with a description of the weak p-adic Leopoldt conjec-
ture for F. Let L/K be a finite extension and, for each prime q of L, let U(Lq) denote
the group of units of the local completion Lq of L at q. Write U(L) for the group of
global units of L. Then there is a natural injection

i." U(L) 1-I U(Lq) (4.6)

given by the diagonal embedding i(x) (x, x, x).
Let iL(U(L)) denote the closure of it.(U(L)) with respect to the p-adic topology.

Write di(L) for the difference between the Z,-rank of U(L) and the Z,-rank of
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iL(U(L)). Then the weak p-adic Leopoldt conjecture for F asserts that the numbers
6(L) are bounded independently ofL as L runs through the set of all finite extensions
of F which are contained in Foo.
We shall assume for the rest of this paper that the weak p-adic Leopoldt conjec-

ture holds for F. This is known to be the case if F/K is abelian, via work of A.
Brumer (see [Br]). We shall also assume that IIII(F)(p*)l < c and so, in particular,
that Lemma 4.1 holds.

5. The algebraic p-adic height pairing. In this section we describe the p-adic
height pairing on ElF and explain its relationship to the homomorphism P. We
refer the reader to 3 of [PR ] or Chapter IV of [PR2-] for full details of the results
we use concerning p-adic heights.

Let J(F) denote the ideles of Ft. Write Up) for the subgroup of J(F) consisting
of ideles which are equal to at all places above p, and which are units elsewhere.
Set % J(Fi)/UP)F* and let W Nqlopq,(Fi, q). It is shown in 3.2 of [PR1] that
there is an isomorphism

q-L E(F)(*’)_ Hom(E,, %(p))r,
Hom(E,, W)r’ (5.1)

where cgi(p) denotes the p-primary part of cg and F1 Gal(Foo/F).
Suppose that T E1. o(F) (R) , and let T denote the image of T in E(F)’*’ under

projection. Then it follows from the construction of rh given in 3.2 of [PR-I that

Define

(c(r/-I(T/)(R)))-- tple)(T/)(R).

E," E(F)("*’) - Hom(E,,, cg(p))r,
Hom(E,, W)r’ (5.3)

by E(s)(R) l(s)(n*-R). For each i, the global Artin map yields a surjection

and this induces a homomorphism

Yi: E(F)’*’ Hom(E,,,, Xi)r’ (5.4)

which is defined by 7i(s) (-, f,/F) o E(s).
It is shown in 3.2 of [PR1] that we may take inverse limits of (5.4) to obtain an

isomorphism

@v: E(F) - Hom(T, Xoo)r’
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(The reader should note that our Dv is slightly different from the Dv of [PR1],
because there Ei is defined by Ei(s)(R)= Ei(s)(R)= rh(s)(f-ln*-iR), where 6
[F(Eo) F].)
We shall now use the isomorphism Dr to construct a pairing

{’,-}’,o: E(F)(R)e 3o Ex(F) (R)e o* (5.6)

as follows.
Suppose that S EI,o(F) (R) 3o. and P E(F) (R) 3o. Let be a generator of T

(as an O0-module). Set xs Dv(S)(t) X+. For eachj IN, let P E(F) be such that
the image of P under the projection E(F) E(F)/rcJE(F) is equal to the image of
P under the projection E(F)(R) 0 o E(F)/rdE(F). Choose any Pj E(Fc) such
that [n]Pj P. Then the map 7--b-(Pjxs- Pj)induces an element z
Hom(D0, Do). There is an isomorphism

: o Hm(D0, Do)

given by (a)() a., where a O0 and D0. We set {P, S},0 -x(z).
As [E(F)" El(F)] < , {., "}’,0 may be extended to a pairing

{., }e,o: E(F) (R)e 3o x E(F) (R) o* --+ Ko" (5.7)

{.,.}v,0 is the algebraic p-adic height pairing on E/F and is conjectured to be
nondegenerate modulo torsion. One of the main results of [PR1] (p. 370; see also
Chapter IV, Th6or6me 22 of [PR2]) asserts that, if this is the case and if in addition
IIII(F)(p*)l < , then the p-adic L-function o(E/F, s) associated to ElF vanishes
to order rank c(E(F)) at s 1.

Let

D.tr: E(F)+ Hom(T,, H+)r’ (5.8)

be the map obtained by composing De with the projection Hom(T,, Xo)r’

Hom(T, H)r. Write D" for the map obtained by composing W, with the natural
map li_m Cl(3v,) (p) H(R) arising from classfield theory. The link between the Galois

structure of phs and the p-adic height pairing on ElF is given by the following
lemma.

LEMMA 5.1. Ker(D"IZ(F)) Ker(D.).

Proof. This follows immediately from the definition of q, together with (5.2)
and the definition of De. 13

6. Unramified points. In this section we shall obtain a description of Ker Wt
in terms of the pairing {.,. }, 0. We begin by introducing some notation. We shall
say that two -modules A, B are pseudoisomorphic (as Z-modules) and write
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A B if there is a homomorphism A B with finite kernel and cokernel. Thus, if
A and B are finitely generated, then A B if and only if rankzp(A) rankzp(B); in
particular, A B if and only if B A.

Let Zoo Gal(SYoo/3foo). Then Hom(T, Xoo)r’ Hom(T, X)), and so t is
simply the composition ofv with the natural projection

Hom(T,, X)) --. Hom(T,

The following proposition immediately implies that this projection is in fact
surjective up to finite index. I would like to thank Karl Rubin for showing me the
proof of this result.

PROPOSITION 6.1. XtX)/Zt) (Xoo/Zoo)tx).

Proof. The exact sequence

yields

and

o- zo - xoo --, x./zoo -o

o - z{* -, x’ (xoo/zoo)

(6.1)

(6.2)

(6.2)(a)

Since A is a finite group, we deduce from (6.2)(a) that

rank%(X)) rank z,,(Xoo/Zoo)() + rank%(
We claim that the right-hand arrow of (6.2) is surjective up to finite index. For,

if this were not the case, then we would have

rank%(Xoo/Zoo)t} + rankp(Z) > rank%(X).
Now Hom(T, X})

_
E1 (F) (R)e O. (from (5.5) and Lemma 4.1), and so

(6.3)

rank%(X}) rank%(EI(F) (R)e )o*) ne/F,

say. (Here we have identified )o* with Z;,.) Hence we obtain

(6.4)

rank( rank p(Xoo/Zoo)( + rank(Z))

> rank%(Xoo/Zoo)(x)+ rankz,(Z))
> rankz,(X})

hEF
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This implies that the p-adic L-function o(E/F, s) associated to E/F vanishes to
order strictly greater than nr/v at s 1. Since we have assumed that IIII(F)(p)I < oz
and {.,. },, is nondegenerate modulo torsion, this is a contradiction (see [PR1,
p. 370]). El

We now introduce a certain subgroup U of E(F) (R) p which we shall call the
group of unramified points of E(F) (R) (3. Suppose that P E(F) (R) and, for
each j IN, choose P E(F) such that the image of P under the projection E(F)
E(F)/rdE(F) is equal to the image of P under the projection E(F)(R)e 3
E(F)/rdE(F). Choose any Pj E(F) such that [rd]Pj P. Then we may define a
homomorphism

h: X:> --+ E, (6.5)

by h(o) pjo, pj. We say that P is an unramified point if h vanishes on Z+) for
all j IN.

PROPOSITION 6.3. The orthooonal complement [O71(Hom(T.,Z=))] +/- of
l(Hom(T., Z) with respect to the pairin {., }v,o is equal to U.

Proof. It is clear from the definitions that

U __. [(I);l(Hom(T,, Z))] +/-

Suppose conversely that P E(F) (R) 3 is orthogonal to all points S which lie in
,gl(Hom(T, Z) El(F)(R) .. Then (using the notation of 5)

P; P; 0 Vj e IN, VS [+;(Hom(T,, Z-))].

Let o e Z(R). Since Ov is an isomorphism, it follows that (again using the notation
of5)

Xs tI)r(S)(t) 09

for some S [tI)(Hom(T,, Z+))]. Thus we deduce that

Hence P U, and this establishes the result.

COROLLARY 6.4. Ker(P.+) U +/- and (Ker(W.)) U.

Proof. We deduce from Lemmas 3.5 and 5.1 and the remarks immediately
preceding Proposition 6.1 that Ker P.+ [(1);(Hom(T,, Z))-I. The result now
follows from Proposition 6.3 together with the fact that {.,. }e, is nondegenerate
modulo torsion.
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We shall now give another description of the group U up to pseudoisomorphism.
For each prime of F lying above p, we write E1 (F) for the kernel of reduction
of E(F.). Then E1 (F.) is an )p-module, and we have a natural homomorphism

f: Ex,p(F) (R) 9o Ex(F) (6.6)

which induces

f: E,,p(F)(R)e )p l--I EI(F,). (6.7)

PROPOSITION 6.5. U Ker(f).

Proof. We shall show that (U c E(F) (R) )p) Ker(f). (This will suffice since
[E(F) (R) )p Ex (F) (R) 3] < .) Suppose that P E1 (F) (R) 3. For each ]N
and IP, let F, ((1/zi)f(P)) be the field obtained by adjoining nth roots off,(P)
(taken with respect to the formal group law on E) to F, . Then P is unramified if
and only if the extension F, ,t((1/rci)f,(P))/F, ,. is unramified for all 31p and all

IN. As we are only concerned with modules up to pseudoisomorphism, we may
assume that either f(P) 0 or that f(P)is of infinite order. However, if f(P) is
of infinite order, then Fo,,((1/rc)f,(P))/Foo,, is nontrivial and ramified for all
sufficiently large (see [CW] Th. 11], and so f(P) U. The result follows. 121

Let us now give an application of this result. Suppose now that rank E(F) 1.
Then rank %(Im(f)) and so, from Proposition 6.5, this implies that the group
U is finite. It therefore follows from Corollary 6.4 (together with the nondegeneracy
of the pairing {., }v, ) that rank . (Ker(q)) 1, which in turn implies that the

is*
mage of q./e is finite. Hence we have the following theorem.

TI-IZORZM 6.6. Suppose that rank E(F)= 1. Then Im(qt) is finite, and so if
Q IIm(q/e)l. E(F) is a point of infinite order, then goi(Q) 0 for all > 1. Hence
fo(i) is a 91obally free l-module for all > 1. 121

We remark that Theorem 6.6 does not hold in the analogous situation over global
function fields (see [A]).

Let L/F be any finite extension. It is shown in Theorem 2 of [ST] that, if E(F) is
finite and P E(L), then (e(i; L)-lli(L) as 9.1i(F)-modules for all i. We have a
similar result in our situation if rank E(F) 1.

THEOREM 6.7. Suppose that rank c E(F) and let P IIm(q,//,v)l E(L). Then
there is an isomorphism

e(i; L)(L)
_

I,(L) (6.8)

of /li(F)-modules for all > 1.

Proof. This follows immediately from Theorem 6.6 together with the trace-
restriction diagram (1.9). El
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7. Galois action on Ker(.//). We shall now give a proof of Theorem 0.1.
Hence, in this section we assume that K has classnumber and that E is defined
over K.

Write 81,p(F) I-I ,)lp EI(F,)) and recall that we have a natural homomorphism
f: E1 (F) (R) 1, (F). It is clear that f is a A-homomorphism. For each charac-

)x. Suppose that ;tl A with rx, > 1. Letter g e A, set rz rank e,(E(F) (R) 31
{1 gin} be the set of all characters in A lying in the fr-orbit of gl. Then
rzj rx, > for all <j < m, and so it follows that E(F)((:i’= (Ex(F) (R) 31)zj)
contains a point Q of infinite order. Since f is a A-homomorphism and f(Q) is of
infinite order, we deduce that 1-I’=1 (gl,(F)(R)e (31)x has 31-rank at least 1. But
this implies that

sx rank, (Ogl, (F) (R) 1)z >_ (7.1)

for all < j < rn since sx sx, for all^such j.
However in fact sz for all Z A. This latter assertion holds because 81, p(F)

contains a subgroup of finite index I-I ip ,, (see, [si,which is isomorphic to 3v. e.g.,
Chapter VII, Proposition 6.3]). It follows from the above remarks that we have
shown

rankc,(Ker(f) (R) 1)x ranke,(U (R)e gb)x
(7.2)

for all ) A with rx > 1.
Now since we have assumed that E is defined over K, it may be shown that the

pairing {.,. },, is fr-equivariant. Hence (7.1)implies that, if rx > 1, then

rank (U (R)e 2) 1. (7.3)

But U +/- Ker(P,.e) (Corollary 6.4), and now the result follows. 121

We remark that the proof of Theorem 0.1 in fact shows that, if rank [(E(F) (R)
32)x] > 1, then rank e[(Ker(P,a)(R)e 32)x] 1.

COROLLARY 7.1. Suppose that rank e[(E(F) (R) 2)x] 1 for some Z A. Then
there is a point Q E(F) of infinite order with Pce(Q) O.

Proof. Let {Z Z1,..., Z,,} be the set of all characters lying in the fr orbit of
Z. Then

rank e[(E(F) (R)e 2)xj] 1, l <j<m.

Hence E(F) c =1 (E(F) (R)e g3)x contains a point of infinite order.
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Theorem 0.1 implies that

(E(F) (R) g?): @ (Ker(.,) (R)e g?) <
j=l j=l

Therefore E(F) n ()j"=l (Ker(te../:) (R)e D2)x; also contains a point of infinite order,
which proves the result. El
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