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IWASAWA THEORY OF ELLIPTIC CURVES AND
GALOIS MODULE STRUCTURE

A. AGBOOLA

0. Introduction. In this paper we apply techniques arising from Iwasawa theory
to study the Galois module structure of principle homogeneous spaces constructed
via points of infinite order on CM elliptic curves defined over a number field. This
theory was introduced by M. J. Taylor in [T1] (see also [ST], [CN-S], and [CN-T])
and is motivated by the fact that such principal homogeneous spaces are very closely
connected with certain rings of integers.

Let E be an elliptic curve with complex multiplication by O, the ring of
integers of an imaginary quadratic field K. If « € O, we shall often (but not always)
write [«] for the corresponding endomorphism of E. Let F/K be a finite extension
over which E is defined and acquires everywhere-good reduction. We write
A = Gal(F/K), and we assume that all endomorphisms of E are defined over F.
For any field L, we write L° for an algebraic closure of L, and we set Q; =
Gal(L/L).

Let p be an odd rational prime which splits in O, with p©O = pp*. Assume that
pt|Al. Choose m e p with p" = nO for some h > 1 and write n* for the complex
conjugate of 7. Set q = nn*.

Write G; for the subgroup of elements of E(Q°) which are killed by [n*]. Let B,
denote the Op-Hopf algebra which represents the Og-group scheme of [n*!]-torsion
on E, and let U, be the Cartier dual of B;. A detailed description of these algebras
is given in [T1] (see also [ST]). There it is shown that B, is an Og-order in the
algebra %; = Mapg,(G;, Q°) and ; is an order in the algebra o/; = (F' °G;)* (where
here Qp acts upon both G; and F¢). (Here and elsewhere, we shall omit from our
notation the dependence of our constructions upon the underlying field F unless
there is some danger of ambiguity.)

Suppose that Q € E(F) and write

Goli) = {Q' € E(@): [=*]Q' = 0}. 0.1)
Define the Kummer algebra Fy(i) by

Fy(i) = Mapg,(Go(i), Q). 0.2)
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442 A. AGBOOLA

Then [Fy(i): F] = |G|, and </, acts on Fy(i) via

(f D) agg) @)= ) a,f(Q +9) (0.3)
g9eG; geG;

for f e Fyi)and ¥, ¢, a,9 € ;.
Let Oy(i) denote the integral closure of O in Fy(i). In general, Oy(i) does not

admit an action of ;. We define the Kummer order €,(i) to be the maximal
A;-stable submodule of Oy(i), i.e.

€oli) = {x € Dyli)]x. U, < Dyli)}. (0.4)

It is shown in [T1] that €, (i) is a principal homogeneous space (phs) of B; and
that €, (i) is a locally free U;-module. Thus €y(i) defines an element (€4(i)) in the
locally free classgroup CI(%;) of ;. It follows from the definition of €4 (i) that (€4(i))
depends only upon the image of Q in E(F)/n* E(F), and so we obtain a map

Y2 E(F)/n* E(F) - CI(Y,) 0.5)

given by ¥;(Q) = (€y(i)). The map ; is in fact a homomorphism since E/F has
everywhere good reduction (see Theorem 1 of [T1]), and ¢;(Q) = 0 if and only if
€, (i) is a globally free A;-module.

Let .#; be the maximal order in &/ containing U;. By composing y; with the
natural surjection e;: CI(,;) —» CI(.#;) given by extension of scalars, we obtain a
homomorphism

@;: E(F)/n* E(F) - CI(A;) (0.6)

given by ¢/(Q) = (€,(1)), where €,(i) = €4 (i). A;.

The phs €y(i) is very closely related to the ring of integers of the field obtained
by adjoining the coordinates of the elements of G,(i) to F. Thus a knowledge of the
homomorphisms ; and ¢; yields important information on the Galois module
structure of these rings of integers. (We refer the reader to [BT] for a good general
account of applications of the theory of Hopf orders to the study of Galois module
structure.)

While the behaviour of the homomorphism ¥; on torsion points of E(F) is quite
well understood (see [ST], [CN-S]), less is known about the Galois structure of phs
arising from points of infinite order. The only general results in this direction of
which we are aware are those contained in [T3] and [T4]. In [T3], the methods of
[T1] and [Gr] are applied to Heegner points of certain modular elliptic curves. (See
also the article by Ph. Cassou-Nogués et al. in [CT] for a brief account of this work.)
In [T5], the kernel of ¥, is described (under suitable hypotheses) in terms of
congruences satisfied by special values of certain p-adic L-functions attached to K.
The purpose of this paper is to examine the behaviour of the homomorphisms ¢;
on points of infinite order. For further results in this direction, see [AT].
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We now give a brief description of the contents of this article. In §1 we show that
we may take inverse limits of (0.6) to obtain a homomorphism

¥ 2 E(F) ®¢ D,» — lim CI(4,). ©.7)

13

We then show that (assuming certain standard conjectures about elliptic curves)
¥ , is closely related to the algebraic p-adic height pairing

{., '}F,p: E(F)@D Dp X E(F)@D Dp-u—’Kp (0.8)

described in [PR1] and [PR2]. By exploiting this relationship, we are able to give
a description of Ker(‘¥ ,) up to Z,-pseudoisomorphism (see §6). One application
of this description is as follows.

Suppose tllat K is of classnumber 1, that E is defined over K, and that F/K is
abelian. Let A denote the group of characters of A and let O, (resp. O,) denote the
ring of integers in some finite extension of K, (resp. K ;) which contains all of the
character values of A. Let ¥ denote the contragredient of .

Define r, = rank o [(E(F) ®g ©,)*)], where the superscript x denotes the yx-
equivariant eigenspace for the action of A. Let III(F)(p) be the p-primary component
of the Tate-Shafarevitch group II(F) of E/F.

THEOREM 0.1.  Suppose that {., .}r, , is nondegenerate modulo torsion and that
LI(F)(p) is finite. Suppose also that r, > 1. Then

rank o, [(Ker(¥ 4) ®c O,)*] = 1.

We remark that similar one-dimensional subspaces of the completed Mordell-
Weil group have arisen in the work of several authors in different contexts (see [G1],
[P], [R]).

As a consequence of Theorem 0.1, we are able to deduce the following theorem.

THEOREM 0.2.  Suppose that the hypotheses of Theorem 0.1 hold and that r, = 1
for some y € A. Then there is a point Q € E(F) of infinite order such that ¢;(Q) =0
for all i.

It is interesting to note that the corresponding version of Theorem 0.2 is false in
the analogous situation for CM abelian varieties defined over global function fields
(see [A]).

The results contained in this paper formed a portion of my Ph.D. thesis (Colum-
bia University, 1991). It is with the greatest of pleasure that I thank my advisor,
Professor T. Chinburg, for all of his help, kindness, and encouragement. I also wish
to extend my warmest thanks to Professor M. J. Taylor for a great deal of extremely
generous advice and to Professor K. Rubin for many very helpful conversations
and suggestions. I would like to acknowledge with thanks the hospitality of the
MSRI, Berkeley, where this paper was written. Finally, I am very grateful to the
referee for pointing out some mistakes in the original version of the manuscript.
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1. Classgroups. In this section we recall various facts we shall require concern-
ing the Hom description of the locally free classgroups C1(2;) and Cl(.#;) in terms
of character maps.

We begin by giving a description of the group of characters G, which will be
particularly well suited to certain calculations we shall carry out later. Recall that
q = nn*. Let

Wit Epei X Egi = phy: (1.1)
denote the Weil pairing on E. For each R € E,;, we define a character 3 e Gi by
1@ =w(g,R)  VgeE m. (1.2)

This identifies G, with E..If o € Qpand y € G, then w acts on y via x°(g) = x(g*™")*.
The identification (1.2) preserves this action since the Weil pairing is Qg-equivariant.

Let J(@Q°) denote the group of finite ideles of Q¢ (i.e., the direct limit of the finite
idele groups of all finite extensions of Q) and write U(®°) for the subgroup of finite
unit ideles of @°. Set U(Y;) = [ 1< U, Where the direct product runs over all
finite places of O. (Here and elsewhere, we write €4 (i), (resp. U; ) for the semilocal
completion of €, (i) (resp. ;) at q.)

Suppose that u e U(;). Then u determines a map Det(u) € Mapg, (E,:, J(Q°))
which is defined by

Det(u)(R), = x¥(u,). (1.3)

Using the identification (1.2) above in Frohlich’s Hom-description of classgroups
(see [F, Ch. 1, §2] or [T2, Ch. I, §3]), we obtain isomorphisms

Mapg (E, J(Q°))
1(2A.) = F 14
CIOW) = ST @) Mapa (E., @) a4
and
Cla) = Mapa, (Er, /(@) (1.5

Mapg, (E.i, U(®°)). Mapg, (E.i, Q)

We now recall a method for explicitly constructing a representing map for
(€4() € CI(2,) and (&) € CI(4)).
For each a € Fy(i) and x§ € G;, the y@-resolvent (a|x¥) € Map(Gy(i), Q°) of a is
defined by
@x®) = Y xR(g™Ha’. (1.6)
9eGy
Choose d € Fy(i) such that Fy(i) =dg.s, and for each prime q of Or,
choose my, , € €y(i), such that €y(i), =mg ,=mg . U; , Then the map hj e
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Mapq,(E., J(Q)) given by
hQ(R), = (mg, o xR) (@G 1xR) ™ (1.7)
represents both (€,(i)) e CI(U;) and ((i_Q(i_)) € Cl(4,).
For any field L, we let L(Q; i) denote the field obtained by adjoining the coordi-

nates of all points in Gy(i) to L. We shall have need of the following result on the
evaluation of local resolvents which is proved in [T1] (Theorem 3).

PROPOSITION 1.1.  Let q be a prime of O and choose m € € (i) such that €, (i), =
m. U, .. Then for all Q'€ Gy(i), n*7'Y, ,.6,m(Q + g)g™" is a unit in the ring
W,(F(Q; 1)), O

We shall also require the following result regarding a change of basefield.

PROPOSITION 1.2.  Let L/F be a finite extension. Then the diagrams

E(L) —Ys CLAL(L))

) o .
E(F) — CI(U,(F))

and

E(L) —2+ Cl(#(L))

Tn./rl 1Res (1.9
E(F) —— Cl(A(F))

commute. Here Try is the usual trace map and Res is the restriction map on
classgroups which is induced by the corestriction map

- Mapg, (Ey, J(@°)) — Mapg, (Eq, J(Q) (1.10)
defined by
(V)(R) = 1j1f<wa“)wf VR € Ey (1.11)

where {®,, ..., w,} is a transversal of Q;\Q.

Proof. See (1.2) of [T1] for a proof of (1.8). An identical argument also works
for (1.9). O
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2. Inverse limits. In this section we shall construct the homomorphism ¥, of
(0.7). To do this we shall first describe the relationship between (€4(i)) € CI(;) and
(€o())) € CI(Y;) for 0 < j < i using the method of §2 of [ST].

We begin by noting that the natural surjection [z*~]: G;— G; induces a
surjective homomorphism .o/; — .o/; of Hopf algebras (which we shall also denote
by [n*7/]) given by

[n*i'j]( ) 06,,9>= 2 o([7*1g). 2.1)

9€G; gel;

Similarly, the inclusion G; — G; induces an inclusion .«/; - ., of Hopf algebras.
Passing to the integral level, we deduce that 2; may be viewed either as a quotient
algebra or as a subalgebra of .

Next, we observe that G; acts on Map(G;, @°) via translations, i.e.

f'(R)=flg+h)  VYfeMap(G, Q), g,heG;. 22

For each i > j > 0, there is a group isomorphism G;/G; ~ G;_;. This induces
identifications

QG = (Q°G)% (23)
and
Map(G;_;, Q°) = Map(G;, @°)%. (24)

(2.3) and (2.4) in turn induce isomorphisms of ;_; with a subalgebra of 2; and B,_;
with a subalgebra of B,. We also observe that the identification of G; w1th G, /G
induces an 1dent1ﬁcat10n of G with E,; via the map Ry, R € E,;.

PROPOSITION 2.1.  There are isomorphisms

Fo(j) = Z;_;Fy(i) 2.5)

as s/;-modules, and

€)= *._,%(t) 2.6)

as W;-modules.
Here Z_ = dec ‘g viewed as an element of <, and <f; (resp. ;) acts on the
right-hand side of (2. s ) (resp. (2.6) ) via the homomorphism [n*‘ .

Proof. See §2 of [ST], especially Proposition 1. O
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LEMMA 2.2. The homomorphism

pi,j: Mapg, (Ei, J(Q°)) - Mapg,(E,;, J(Q°))
defined by p; j(f) = f|E,; induces homomorphisms
Cl(;) - CI(Y,) 2.7 ()
and
Cl(A;) » CUM;). (2.7)(v)

We denote both of these homomorphisms by p; ;.

Proof. We shall just prove that (2.7)(a) holds, as the proof of (2.7)(b) is entirely
similar.
We have to show that

pi,(Det(U(Ay)). Mapg,(E, Q) < Det(U(Y))). Mapg, (E,;, Q). (2.8)

It is plain that p ;[Mapg (E., Q)] < Mapg,(E,;, Q°*). Now suppose that u e
Det(U(%;)) and R € E,,. Then

1R (ug) = xR Juy) (29)

and [n*~]u, € W¥,. Hence p; ;(Det(u)) = Det([n*'~/]u) e Det(U(%;)), and this es-
tablishes the result. 0O

PROPOSITION 2.3.  Suppose that f € Mapg (E.:, J(Q°)) is a representing map for
(€p(i)) € CI(,). Then f|E,; is a representing map for (€y(j)) e CI(,) for all
0<j<i

Proof. Choose d € Fy(i) such that Fy(i) = dy.%;. Then (2.6) implies that
Fo(j) ~ (d9 .(Z;j/n*™)). o}, (where o acts on the right-hand side of this last
isomorphism via the homomorphism [7*!77]).

Let H;; be a collection of coset representatives of G;/G;_; and suppose that R € F,.
Then

s (a9 Zi5 ) g = 3 d9. 25 Y g, B)
9€G; & ¥ g9eG; A

= a9 Zici ' {(h, R
= ) Q] wi(h, R)

heH;;

= Y d§ow(g, R)

g€G;

= @l
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Similarly, if for each place q of F we choose m) , € €4(i), such that €y(i), =
mQ ..U, ., then we obtain

z; . .
2 (’"(é) *1—]) 1R(9) = (M@ o[ x®)m™~".
9cG; T

g, = 5 (mgo Z2) o || 5, (a0 22) o

= h@(R),,

Hence,

and now the result follows from (1.6). O

Thus, if red: E(F)/n* E(F) —» E(F)/n*'E(F) denotes the natural reduction

homomorphism, then we have commutative diagrams

E(F)/n*E(F) —Ys CI)

red Pii-1 (2. 10)(a)

E(F)/n* E(F) —j— CI(%,.,)
and

E(F)r5E(F) —%— ClU(M))

red Pi.i-1 (2 10) (b)

E(F)/n*" ' E(F) —— Cl(M;_,).
Taking inverse limits yields homomorphisms
¥: E(F) ®p Oy — li_rp Cl(Y,) (2.11)(a)

i

and

¥ 4 E(F) ®p O, — ligl Cli(A4,). (2.11)(b)

i

3. The homomorphism ¥’,. The purpose of this section is to describe certain
technical results which will enable us to relate the homomorphism ¥, to the

Iwasawa theory of E in §5.
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We begin by establishing a useful property of a representing map for (€4(i)) €
CI(,) (resp. (€4(i)) € CI(A,)).

PROPOSITION 3.1.  Let h)) € Mapg, (E,«, J(Q°)) beasin (1.7). Then for eachr € N,
the Qg-map given by R+— h“’(rR). h@(R)™" represents the trivial class in CL(2,) (resp.
in CI(,)).

Proof. Suppose that Q'€ Gy(i) and let w € Qp. Write Q'° = Q' + h,,, with
h,, € E, . Choose d) € Fy(i) such that F,(i) = d) . o,. Then for each R € E,; and
reN,both} 6 d(Q —g)[rlgand ), ¢ dJ(Q — g)gliein (F(Q; i)). We have

[( Y —g)[r]g) (z d9(Q —g)g)_']m

- (3 e - o) < ( 3, dee -

geG; geG;

5 d‘é’(Q’—g“’+hw)[r]g”’> (z d9(Q' — g° + h)g )

geG; 9eG;

ge Gy 9€G;

( Y d9Q —g).[r1(g + hw)) < 2 4@ —g).(g + hw))-'

Z 3@ —g) [r]g> x ( Y d9Q - g)g>_ .

g€G; geG;

Thus

< Y d2Q —9) [r]g)< Y, d3Q — g)g)nre(Q‘Gi)"’ = o,

geG; g€ G;

and similar reasoning also shows that this expression is independent of the choice
of Q" € Gp(i).

For each place q of O choose m§) , € €, (i), such that €4 (i), = m§ ,%; .. Proposi-
tion 1.1 implies that

Y m@(Q —g)g, Y md(Q — g)[rlg e U(F(Q; )E.

geG; geG;

Reasoning exactly as above, we conclude that

("*" ) mzsiq(Q'—g)[rlg) (n Py m%’q(Q’—g)!I)—rG[?Ii(F(Q; DHRERS

€G; €G;
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Thus, it now follows from (1.4) (resp. (1.5)) that the map R — h§([r]R). h3(R)™"
represents the trivial class in CI(;) (resp. CI(.#;). O

Remark 3.2. It may in fact easily be shown that, if f € Mapq, (E., J(Q°)) is any
representing map for (€o(i)) € CI(U,), then f = hy for suitable choices of d and
mg

For each Re E,;, we let F[R] denote the field obtained by adjoining the
coordinates of R to F (with similar notation F[R'] for R’ € E,«). We write F, =
\Urer FIR] and F{ = | J g .. F[R']. We shall now give a description of Cl(.#;)
in terms of certain ideal classgroups.

LEMMA 3.3. Let E_.\Q denote a set of representatives of Qg-orbits of E,:. Then
we have isomorphisms

(@) o ~ l_[ReE,i\ﬂpF[R]a

(b) A; ~ HReE,-\QF Orry»

(c) Cl(A;) ~ I-,[ReE,i\Qp CI(DF[R])-

Proof. (b) and (c) follow immediately from (a), which we shall now prove. Let
{w;, ..., w,} be a transversal of Qz\Qy,. then o, = (Q°G,)* = (F; G, is generated
over F by all elements of the form ), 1“g®, where | € F{ and g € G;. Suppose that
Re E,and A € Q. Then

A

A
(Z l’*’x‘é’(a“’)) = (Z I°w(R, g”’))
= Z lwlwi(RAa gwl)
= ; 1°%(g°).

Hence (F{ G)* < [ | rer,nq, F[R]. Since both sides of the inclusion have the same
dimension over F as F-vector spaces, it follows that (a) holds. O

If « € CI(4;) is represented by f € Mapg, (E,:, J(Q°)), then the image of « under
the isomorphism 3.3(b) is obtained by evaluating f on elements of E_\\Q and then
taking ideal content. Thus every element of Cl(.#;) may be represented by a map
R I, with Iy € CI(Dpgy) satisfying I = I for all w € Q. Conversely, every such
map defines an element of CI(.#,).

LEMMA 3.4.  Choose dy) € Fy(i) such that Fy(i) € d) . oZ;. Suppose that Q' € Gy (i)
andlet R e E,, withQ < r < i. Then

@ Yoo, [497 (@)12(9)] € FIRI(Q; i),
(b) Tges, [ (@)12(9))" € FIR].

(Recall that F[R](Q; i) denotes the field obtained by adjoining the coordinates of all
points in Gy(i) to F[R].)
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Proof. We shall just prove (b) since the proof of (a) is very similar. Let w € Qpg,
and write Q'“ = Q' + h,,, with h, € E_ .. Recall that ¢ = nn*. Then

<[: Z d(z)g (Q )X(l)(g)]q >‘° Z d(l)(Qlw w).wi(gw, Rw)]q

g9€G; | 9€G;

= Wi(hws Rw) ZG d(é)(Q’ - g) Wi(g9 Rw):l

| T @ -9 .w R)]q .

geG;

Hence [} ,.6,d9(Q — g).wi(g, R)]¥ € F[R] and is independent of the choice of
Q. O
Now Proposition 1.1 implies that

c(h(R). Oprrygin = @ 1%R)(Q)- 7* " . Oppaygsn» G1

where ¢ denotes ideal content. If d3 is chosen to be an U; ,-basis of €, (i), for all
primes q|7*, then (from Proposmon 1.1 again) (49| x¥)(Q’) . 7* " is a unit at all such
g. Since we have assumed that E/F has everywhere good reduction, it follows from
the criterion of Néron-Ogg-Shafarevitch that F[R](Q; i)/F[R] is unramified at all
primes away from p*. As (d@|x¥)(Q")" € F[R] (sce Lemma 3.4(b)), it follows that
(d31x)(Q). Opry:» is an ambiguous ideal, i.e., that we have

(d“’lx“’)(Q’) -Orrioin = Ir- Orrigsn (32)
where g is an Opg-ideal.
Hence, in the notation of the remarks following Lemma 3.3, we deduce that
(€q(i)) € Cl(A,) is represented by the map
Ri—(9)7! (3.3)

where (9g) denotes the class of the ideal g in Opgy.
Foreach R € F,, it follows from (3.1) and (3.2), together with Proposition 3.1, that

(9)* = (93 OrFir) (G4

in Cl(Opg). Now [F[R]:F[qR]] = [F[R]:F[nR]] = q if the order of R is
sufficiently large. Thus, if [F[R]: F[qR]] = q, then

(qu) = NF[R]/F[qR]('gR) (3~5)

in Cl(Dgygy), Where Npigyrigr) is the norm from F[R] to F[¢R].
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We now observe that F[R] € F,, and so via the natural homomorphism
Cl(Ogiry) = CU(Dr,), (9g) € Cl(Dpyg,) defines an element of C1(Of,). Thus ¢; induces
a homomorphism

@9 E(F)/n* E(F) » Mapg,(E, CI(Op,)) (3.6)
defined by
?(Q)(R) = (3. D). (3.6)(a)

Now Proposition 3.1 implies that c(h@(rR)h@(R)™") is a principal ideal for each
r € N. Hence

(‘grR . DF,) = (‘gR . DFi)',
and so we in fact have
¢9: E(F)/n*'E(F) -» Homyg, (E,:, CI(Dy,),) 3.7)

where CI(Dy,), denotes the p-primary part of CI(Dp,).
We next observe that the restriction of [7*] to E,: is an automorphism. For each
Q € E(F), define ¢{(Q) € Homg, (E,:, CI(Dy,),) by

?/(Q)(R) = ¢(Q)([n*]'R). (3-8)

Let Trg,f,, denote the trace map from F; to F;_;. Since Trg,_,(R) = [q]R for all
sufficiently large i, it follows that

Neyr,, (@:/(@)(R) = ¢i-,(Q)([7]R) (3.9

(for i sufficiently large), where N, , is the norm from F; to F,_;. In other words,
the diagram

E(F)/n*E(F) —%— Homg,(E, CI(Dy,),)
red Niji-1 (3.10)

E(F)/n*~1E(F) - Homg, (Ei-1, CI(Dp,_,),)

commutes.
Here N,;_, is defined by

Nyi-1 (@i (@) (R)) = Niyr,_,(0i(Q)(R) (3.11)

where R’ is any element of E,; satisfying [x]R’ = R. It is easily checked that this is
well defined.
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Taking inverse limits of (3.10), we obtain a homomorphism

¥, E(F) @50, — Homnp<7;, lim c1(opl,),,> (3.12)

13

where T, is the n-adic Tate module of E and the inverse limit li_rp Cl(Dy,), is taken
with respect to the norm maps Ng,f, . i

It is clear that the homomorphism W', completely determines ¥ ,. In particular,
we have the following lemma.

LemMma 3.5. Ker(¥',) = Ker(¥,). O

4. Selmer groups. In this section we recall various results that we shall require
concerning Selmer groups.

Set F,, = | J;F;and F,, = | ), F/. Let N,,/F be the unique Z,-extension contained
in F,/F and write I' = Gal(N,,/F). We may identify I' with Gal(F,/F(E,)), and
Gal(F(E,)/F)with Gal(N,,/F,). Let x,: Gal(F,/F) - D% denote the character giving
the action of Gal(F,,/F) on F,.. We have

Gal(F,,/F) ~ Gal(F,/F(E,)) x Gal(F(E,)/F)
~T x Gal(F(E,)/F).

Write ¢ (resp. k) for the restriction of x,, to Gal(F(E,)/F) (resp. I).

Choose a topological generator y of I' and write A for the power series ring Z,,[ T'.
Then we may identify A with the completed group ring Z,[I'] in the usual manner
via the map y— T + L.

For each i, let 5#,/F,; be the maximal everywhere unramified abelian pro-p exten-
sion of F; and let %;/F; be the maximal abelian pro-p extension of F; which is
unramified away from primes dividing p. Set H; = Gal(s#,/F;), X; = Gal(%,/F;) and
write H,, (resp. X,,) for the inverse limit of the J# (resp. %;).

If g is a prime of F, we write k, for the residue field of F at q, and we let E(kq)
denote the reduction of E(F) at q. Write E, ,(F) for the kernel of reduction of E(F)
at q and define E, ,(F) = E,(F) via exactness of the sequence

0— E,(F) - E(F) > ['] E(k,). 4.1

We now recall the definitions of the Selmer and the Tate-Shafarevitch groups of
E. Let L be any extension of K over which E is defined. The Selmer group S(L)*"
is defined to be the kernel of the natural homomorphism

HY(Q, E «) > ]:[L HI(QLq, E). 4.2)
qo
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The enlarged Selmer group S'(L)™" is the kernel of the homomorphism

H'Qy, E,)~> [] H'@,, B). 4.3)

alp*

The Selmer groups S(L)™ and §'(L)* are defined similarly. We set S(L) = hm S(LY*,
and we write Y(L) for the Pontryagin dual of S(L).
The Tate-Shafarevitch group (L) of E/L is defined to be the kernel of the map

H' QL E)- [] H‘(QLq, E). 4.4)

qof L

Define Z(F)™*" to be the subgroup of S(F)*" which makes the sequence

0 — Z(F)™™ - S(F)*" — [ H"(Qf, Exw)
vlp

exact, and set X(F) = lg_n Z(F)""'. Then there is a natural injection E, (F) ®p D,+ —
2 (F). The following result is shown in Corollaire 3.3 of [PR1].

LemMma 4.1, If |III(F)(p*)| < oo, then E{(F) ®p O, =Z(F). O

ProposITION 4.2 (J. Coates). There are A-module isomorphisms

(@) S(N,) ~ Hom(X), E,.),
(b) Y(N,) ~ Hom(T,, X3).

Proof. (a) See Theorems 12 and 9 of [Co].

(b) Write D, = K,/O,. Choosing a generator t of T, over O, is equivalent to
fixing an isomorphism O, — T, such that 1+ ¢. This in turn induces an isomor-
phism ¢: D, — E,... Via such a choice of t, we may define a pairing

(., .): Hom(T,, X¥) x Hom(X%®, E,..) > D, @4.5)

by (f1, f2) = ¢~ (f2(f1(1))). It is easy to check that (., .) is independent of the choice
of t, is nondegenerate, and is Qg-equivariant, which gives the result. 0O

We conclude this section with a description of the weak p-adic Leopoldt conjec-
ture for F. Let L/K be a finite extension and, for each prime q of L, let U(L,) denote
the group of units of the local completion L, of L at q. Write U(L) for the group of
global units of L. Then there is a natural injection

i:UL)—~ H U(L,) (4.6)
alp

given by the diagonal embedding i(x) = (x, x, ..., X).
Let i, (U(L)) denote the closure of i; (U(L)) with respect to the p-adic topology.
Write 6(L) for the difference between the Z,-rank of U(L) and the Z,-rank of
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i,(U(L)). Then the weak p-adic Leopoldt conjecture for F asserts that the numbers
d(L) are bounded independently of L as L runs through the set of all finite extensions
of F which are contained in F,.

We shall assume for the rest of this paper that the weak p-adic Leopoldt conjec-
ture holds for F. This is known to be the case if F/K is abelian, via work of A.
Brumer (see [Br]). We shall also assume that |III(F)(p*)| < oo and so, in particular,
that Lemma 4.1 holds.

5. The algebraic p-adic height pairing. In this section we describe the p-adic
height pairing on E/F and explain its relationship to the homomorphism ¥’,. We
refer the reader to §3 of [PR1] or Chapter IV of [PR2] for full details of the results
we use concerning p-adic heights.

Let J(F;) denote the ideles of F,. Write U™ for the subgroup of J(F;) consisting
of ideles which are equal to 1 at all places above p, and which are units elsewhere.
Set 4, = J(F)/U™F* and let W, = [] 4p #qi(F;, o). It is shown in §3.2 of [PR1] that
there is an isomorphism

Hom(E,, %(p))"

JLE(F)
m N (B, W

(5.1)

where ;(p) denotes the p-primary part of 4; and I', = Gal(F,/F).
Supposethat T € E; ,(F) ®p O,«andlet T;denote the image of T'in (F)"" under
projection. Then it follows from the construction of #; given in §3.2 of [PR] that

(¢ {(T)(R)) = o?(T))(R). (5:2)
Define

Hom(En'9 %(p))rl

E;: Z(F)™™
¢ 2 = A om(E, ., W

(5.3)

by E;(s)(R) = #,(s)(n*'R). For each i, the global Artin map yields a surjection
(=, Zi/F): %(p) > X,
and this induces a homomorphism
7 Z(F)™ = Hom(E i, X;) (5.4)
which is defined by y,(s) = (—, &;/F;) o E,(s).
It is shown in §3.2 of [PR1] that we may take inverse limits of (5.4) to obtain an

isomorphism

®p: Z(F) - Hom(T,, X, ). (5.5)
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(The reader should note that our ®; is slightly different from the @, of [PR1],
because there E; is defined by E;(s)(R) = E;(s)(R) = #;(s)(6"*n*"'R), where é =
[F(E,): F1)

We shall now use the isomorphism @ to construct a pairing

{., Jr o EF)®p O, x E{(F)®p D, = O,, (5.6)

as follows.

Suppose that S € E; ,(F) ®p O,+and P € E(F) ®p O,. Let t be a generator of T,
(asan O,-module). Set x5 = ®x(S)(t) € X,.. Foreach j € N, let P; € E(F) be such that
the image of P; under the projection E(F) — E(F)/n/E(F) is equal to the image of
P under the projection E(F) ®g O, — E(F)/n’E(F). Choose any Pj € E(F) such
that [n/]P/ = P Then the map n /¢~ (P/* — P;) induces an element 7€
Hom(D,, D,). There is an isomorphism

¢: O, - Hom(D,, D,)

given by &(a)(o) = a.a, where a € O, and o € D,. We set {P, S} , = £71(q).
As [E(F): E{(F)] < o, {., .}F,, may be extended to a pairing

{os 3r.pt E(F)®0 O, x E(F) ®0 O, ~ K. (5.7)

{., .}r., is the algebraic p-adic height pairing on E/F and is conjectured to be
nondegenerate modulo torsion. One of the main results of [PR1] (p. 370; see also
Chapter IV, Théoréme 22 of [PR2]) asserts that, if this is the case and if in addition
|II(F)(p*)| < oo, then the p-adic L-function Z,(E/F, s) associated to E/F vanishes
to order rank o(E(F)) at s = 1.

Let

® 4 £(F) > Hom(T,, H,))"" (5.8)
be the map obtained by composing @, with the projection Hom(T,, X,)'* -

Hom(T,, H,)". Write ®” for the map obtained by composing ¥, with the natural
map li_rp CI(Oy,)(p) = H,, arising from classfield theory. The link between the Galois

structtre of phs and the p-adic height pairing on E/F is given by the following
lemma.

LemMa 5.1, Ker(®"|Z(F)) = Ker(®,,).

Proof. This follows immediately from the definition of ¥, together with (5.2)
and the definition of ®;. O

6. Unramified points. In this section we shall obtain a description of Ker ¥ ,
in terms of the pairing {., . }r,,. We begin by introducing some notation. We shall
say that two Z,-modules A4, B are pseudoisomorphic (as Z,-modules) and write
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A ~ B if there is a homomorphism 4 — B with finite kernel and cokernel. Thus, if
A and B are finitely generated, then 4 ~ B if and only if rank z,(A4) = rankz (B); in
particular, 4 ~ B if and only if B ~ A.

Let Z, = Gal(Z,,/#,). Then Hom(T,, X,)'* = Hom(T,, X%=)), and so @, is
simply the composition of @ with the natural projection

Hom(T,, X)) - Hom(T,, (X,,/Z,)*).

The following proposition immediately implies that this projection is in fact
surjective up to finite index. I would like to thank Karl Rubin for showing me the
proof of this resuit.

PROPOSITION 6.1. X@=)/Z%=) ~ (X /Z )%=,

Proof. The exact sequence

0-2Z,->X,~>X,/Z,—0 (6.1
yields
0 ZU) - X0 5 (X [ Z,0) %) 6.2)
and
0-5Z9 > X - (X,/Z,.)°. (6.2)(a)

Since A is a finite group, we deduce from (6.2)(a) that
rankz (X¥)) = rankz (X,,/Z,)® + rankg (Z9).

We claim that the right-hand arrow of (6.2) is surjective up to finite index. For,
if this were not the case, then we would have

rankz (X,/Z,)* + rankz (Z%~)) > rankg (X%~). (6.3)
Now Hom(T,, X%~)) ~ E,(F) ® O, (from (5.5) and Lemma 4.1), and so
rankz (X%<)) = rankz (E(F) ®o Op+) = ng, (6.4)
say. (Here we have identified O« with Z,.) Hence we obtain
rankz (X$) = rank z (X,./Z,,)” + rankz (Z$)
> rankz (X,,/Z,,)* + rankg (ZF)

> rank z (X3~)

= nE/F .
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This implies that the p-adic L-function .Z,(E/F, s) associated to E/F vanishes to
order strictly greater than ngp at s = 1. Since we have assumed that |ILI(F)(p)| < o
and {., .}, , is nondegenerate modulo torsion, this is a contradiction (see [PR1,
p.370]). O

We now introduce a certain subgroup U of E(F) ® O, which we shall call the
group of unramified points of E(F) ®p O,. Suppose that P € E(F) ®p O, and, for
each j e N, choose P, € E(F) such that the image of P, under the projection E(F) —
E(F)/mE(F) is equal to the image of P under the projection E(F)®g O, —
E(F)/n’E(F). Choose any P/ € E(F°) such that [n"]Pj’ = P,. Then we may define a
homomorphism

hi: X9 - E,. (6.5)

by hj(w) = P{® — P{. We say that P is an unramified point if h; vanishes on Z% for
alljeN.

PROPOSITION 6.3. The orthogonal complement [®5!'(Hom(T,, Z*<))]t of
®;' (Hom(T,, Z¥~) with respect to the pairing {., .}, is equal to U.

Proof. Tt is clear from the definitions that
U < [@F' (Hom(T,, ZZ)]*.

Suppose conversely that P € E(F) ®o O, is orthogonal to all points S which lie in
@' (Hom(T,,, Z*”) < E,(F) ®9 O, Then (using the notation of §5)

P —P =0 YjeN,VSe[® (Hom(T,, Z&)].

Let w € Z,,. Since @ is an isomorphism, it follows that (again using the notation
of §5)

xs = Op(S)(t) = w
for some S € [®7*(Hom(T,, Z*<")]. Thus we deduce that
P®—P =0 YVjieN,VoeZ.

Hence P € U, and this establishes the result. O
COROLLARY 6.4. Ker(¥ ,) ~ Ut and (Ker(¥ )+ ~ U.

Proof. We deduce from Lemmas 3.5 and 5.1 and the remarks immediately
preceding Proposition 6.1 that Ker ¥, = [®7'(Hom(T,, Z*~")]. The result now
follows from Proposition 6.3 together with the fact that {., .} , is nondegenerate
modulo torsion. 0O
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We shall now give another description of the group U up to pseudoisomorphism.
For each prime P of F lying above p, we write E,(Fgy) for the kernel of reduction
of E(Fg). Then E,(Fgq) is an O ,-module, and we have a natural homomorphism

fo:Ey ,(F)®p O, = E,(Fg) (6.6)
which induces

SiE; (F)®¢p Dv"!;[pEl(F‘B)~ 6.7)

ProrosITION 6.5. U ~ Ker(f).

Proof. We shall show that (U n E,(F) ®p O,) ~ Ker(f). (This will suffice since
[E(F)®p O, :E;(F)®p D,] < ©.)Suppose that P € E,(F) ®p O,.Foreachie N
and P|p, let F,, ((1/7;)fu(P)) be the field obtained by adjoining n‘th roots of f(P)
(taken with respect to the formal group law on E) to F,, 4. Then P is unramified if
and only if the extension F,,_4((1/7")f4(P))/F,. ¢ is unramified for all B|p and all
i € N. As we are only concerned with modules up to pseudoisomorphism, we may
assume that either fy(P) = 0 or that f(P) is of infinite order. However, if fy(P) is
of infinite order, then F, 4((1/n')fu(P))/F,, ¢ is nontrivial and ramified for all
sufficiently large i (see [CW] Th. 11], and so f(P) ¢ U. The result follows. O

Let us now give an application of this result. Suppose now that rank o E(F) = 1.
Then ranko (Im(f)) = 1 and so, from Proposition 6.5, this implies that the group
U is finite. It therefore follows from Corollary 6.4 (together with the nondegeneracy
of the pairing {., .}, ,) that rank g (Ker(¥ ) =1, which in turn implies that the
image of ¥ , is finite. Hence we have the following theorem.

THEOREM 6.6. Suppose that rank o E(F) = 1. Then Im(¥_,) is finite, and so if
Q € |Im(\Y_,)|. E(F) is a point of infinite order, then ¢,(Q) =0 for all i > 1. Hence
Cy(i) is a globally free Mi-module for alli>1. O

We remark that Theorem 6.6 does not hold in the analogous situation over global
function fields (see [A]).

Let L/F be any finite extension. It is shown in Theorem 2 of [ST] that, if E(F) is
finite and P € E(L), then €p(i; L) ~ U,(L) as A,(F)-modules for all i. We have a
similar result in our situation if rank 5 E(F) = 1.

THEOREM 6.7. Suppose that rank o E(F) = 1 and let P € |Im(¥Y , ¢)|. E(L). Then
there is an isomorphism

Cp(i; L)(L) ~ A(L) (6.8)
of M (F)-modules for all i > 1

Proof. This follows immediately from Theorem 6.6 together with the trace-
restriction diagram (1.9). O
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7. Galois action on Ker(¥ ,). We shall now give a proof of Theorem 0.1.
Hence, in this section we assume that K has classnumber 1 and that E is defined
over K.

Write &), ,,(F ) = [ ] wp E1(Fy) and recall that we have a natural homomorphism
f:E{(F)®p D, = & ,(F). Itisclear that f is a A-homomorphism. For each charac-
ter xeA set r = rank o (E(F) ®p O~ Suppose that y, e A with r,, = 1. Let
{X1s e s Xm} be the set of all characters in A lying in the Qg-orbit of %1 Then
Py =Ty 21 for all 1 <j < m, and so it follows that E(F) n ((—B}';l (E{(F) ®p 2,))
contains a point Q of infinite order. Since f is a A-homomorphism and f(Q) is of
infinite order, we deduce that [ |72, (&, ,(F) ®c O,)* has O,-rank at least 1. But
this implies that

sy, = rank g, (6}, ,(F) ®o Oy )V 2 1 7.1)

forall 1 <j<msinces, =s,, forall suchj.

However in fact s, = 1 for all x € A. This latter assertion holds because 6, ,(F)
contains a subgroup of finite index which is isomorphic to | [ ¢, DF (see, e.g., [Si,
Chapter VII, Proposition 6.3]). It follows from the above remarks that we have
shown

rank o (Ker(f) ®o O )* = rank g (U ®o O )
(7.2)
=r,—1

forall y e A withr, > 1.
Now since we have assumed that E is defined over K, it may be shown that the
pairing {., .}, , is Q-equivariant. Hence (7.1) implies that, if , > 1, then

rank o (U ®c O,)F = 1. (1.3)

But U+ ~ Ker(¥_,) (Corollary 6.4), and now the result follows. O

We remark that the proof of Theorem 0.1 in fact shows that, if rank o, [(E(F) ®¢o
0,)*] = 1, then rank o, [(Ker(¥ ) ®o O,)*] = 1.

COROLLARY 7.1.  Suppose that rank o, [ (E(F) ®p O,)*] = 1 for some y € A. Then
there is a point Q € E(F) of infinite order with ¥ ,(Q) =0

Proof. Let {y = y1,..., xm} be the set of all characters lying in the Qy orbit of
x- Then
rank o, [(E(F) ®s 0,41 =1, 1<j<m.

Hence E(F) n PP, (E(F) ®o D, )% contains a point of infinite order.
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Theorem 0.1 implies that

[(m-D (E(F) @ O,)": (m—D (Ker(¥_,) ®o Dz)xj] < .

j=1 Jj=1

Therefore E(F) n P, (Ker(¥_,) ®o O,)* also contains a point of infinite order,
which proves the result. O

[A]
[AT]

[B]
[BT]

[CN-S]
[CN-T]
[Co]

[ct]

[CW]
[F]
[G]

[Gr]

[P]
[PR1]

[PR2]
[R]
[Si]
[ST]
[T1]
[T2]

(T3]

REFERENCES

A. AGBOOLA, Abelian varieties and Galois module structure in global function fields, to appear
in Math. Z.

A. AGBOOLA AND M. J. TAYLOR, Class invariants of Mordell-Weil groups, to appear in J. Reine
Angew. Math.

A. BRUMER, On the units of algebraic number fields, Mathematika 14 (1967), 121-124.

N. P. BYoTT AND M. J. TAYLOR, “Hopf orders and Galois module structure” in Group Rings
and Class Groups, DMV Sem. 18, Birkhduser, Boston, 1992, 153-210.

PH. Cassou-NOGUES AND A. SRIVASTAV, On Taylor’s conjecture for Kummer orders, Sém.
Théor. Nombres Bordeaux 2 (1990), 349-363.

PH. CAssou-NOGUES AND M. J. TAYLOR, Elliptic Functions and Rings of Integers, Progr. Math.
66, Birkhduser, Boston, 1987.

J. CoarTes, “Infinite descent on elliptic curves with complex multiplication” in Arithmetic and
Geometry, Progr. Math. 35, Birkhiuser, Boston, 1983, 107-137.

J. CoATES AND M. J. TAYLOR, L-functions and Arithmetic: Proceedings ofthe Durham Sym-
posium, London Math. Soc. Lecture Note Ser. 153, Cambridge Univ. Press, Cambridge,
1991.

J. CoATES AND A. WILES, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39
(1977), 223-251.

A. FROHLICH, Galois Module Structure of Algebraic Integers, Ergeb. Math. Grenzgeb. (3) 1,
Springer-Verlag, Berlin, 1983.

R. GREENBERG, “Iwasawa theory for p-adic representations” in Algebraic Number Theory—
in Honor of K. Iwasawa, Adv. Stud. Pure Math. 17, Academic Press, Boston, 1989, 97—
137.

B. H. Gross, “Heenger points on Xy(N)” in Modular Forms, Ellis-Horwood, Chichester, 1984,
87-106.

A. PLATER, Height pairings on elliptic curves, Cambridge Univ. Ph.D. Thesis, 1991.

B. PERRIN-RI0OU, Déscente infinite et hauteur p-adique sur les courbes elliptiques a multiplication
complexe, Invent. Math. 70 (1983), 369-398.

, Arithmétique des Courbes Elliptiques et Théorie d’Iwasawa, Mém. Soc. Math. France
(N.S.) 112 (1984), no. 17.

K. RUBIN, p-adic L-functions and rational points on elliptic curves with complex multiplication,
Invent. Math. 107 (1992), 323-350.

J. SILVERMAN, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-
Verlag, New York, 1986.

A. SRIVASTAV AND M. J. TAYLOR, Elliptic curves with complex multiplication and Galois module
structure, Invent. Math. 99 (1990), 165-184.

M. J. TAYLOR, Mordell-Weil groups and the Galois module structure of rings of integers, Illinois
J. Math. 32 (1988), 428-452.

, Classgroups of Group Rings, London Math. Soc. Lecture Note Ser. 91, Cambridge

Univ. Press, Cambridge, 1984.

, Rings of integers of fields obtained by the division of Heegner points, handwritten

manuscript.




462 A. AGBOOLA

[T4] , The Galois module structure of certain arithmetic principal homogeneous spaces, J.

Algebra, 153 (1992), 203-214.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, 1000 CENTENNIAL DRIVE, BERKELEY, CALIFORNIA
94720, USA

CURRENT ADDRESS: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA
94720, USA



