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1 Introduction 

In [T1] M.J.Taylor began the study of the Galois module structure of certain 
Kummer orders arising from group laws of abelian varieties defined over number 
fields (see also [ST], [CN-S] and [CN-T]). The purpose of  this paper is to study 
similar Kummer orders which are derived from CM abelian varieties over global 
function fields. 

For any field F we shall write F c for a separable closure of F and J2F for 
Gal(FC/F). Let C be a smooth, geometrically irreducible curve defined over a 
field k C ~p. Set L = k(C), the function field of C over k. Let S = {Vl, . . .  ,vt} 
be a fixed nonempty set of places of L and let DL = DL,s denote the ring of  
functions in L which are regular away from S..OL is the function field analogue 
of  the ring of  integers of  a number field. Write D" for the integral closure of DL 
in L c. 

Let AlL be a simple abelian variety defined over L with complex multiplica- 
tion. This implies (see [M] p.220) that A is either a constant or a twisted constant 
variety over L. In what follows, we shall always assume that S contains all places 
of  bad reduction of A. We shall also suppose that all endomorphisms of A that 
we consider are defined over L. The endomorphism ring ~ =End(A) of A is an 
order in a finite-dimensional semisimple division algebra .~zg' over Q. If ,gd  is 
non-abelian, then (since A is simple) A is isogenous (possibly after an extension 
of  L) to a supersingular elliptic curve and .~zd" is isomorphic to the quaternion 
division algebra over Q which splits at all primes l r p,cx~ (see e.g. [Mu] p. 
256). Choose an endomorphism A E ~ such that the degree of A is both greater 
than one and coprime to p. 

Denote by G the group of all points of A(L c) which are killed by A. The 
DL-group scheme of A-torsion points on A is affine and etale (since (IG[,p) = 1) 
and is therefore equal to Spec(~3(L; A)), where ~ (L;  A) = MapoL(G, fY), the DL- 
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Hopf algebra consisting of DL-maps from G to O c. It follows that the OL-Cartier 
dual of ~3(L; A) is 9.1(L; A) = (D"G) aL (here J'2L acts on both D c and G). 92(L; A) 
is thus the unique OL-maximal order in the L-algebra, f~(L; A) = (LCG) oL since 
D"G is the unique O"-maximal order in the algebra UG. 

Now suppose that Q E A(L) and write 

GQ()Q={Q'EA(L  c) I AQ' =Q}. 

Define the L-algebra LQ()~) (the Kummer algebra) by LQ(A) = MapoL(GQ, LC), 
and let L(~Q) be the field obtained by adjoining the coordinates of the points of 
GQ(.~) to L. Let Q m ) , . . . ,  Q,(.,') be a set of representatives of J2L-orbits of GQ()~). 
Then (as an L-algebra), 

S 

LQ(/k) ~_ H L[Q '(i)] (1.1) 
i=1 

where L[Q t(i)] is the field obtained by adjoining the coordinates of Q,(i) to L. 
(Explicitly, the isomorphism is given by f H 1-I~=lf(Q'(i)), for f E LQ()O. 
Note also that if G C_ A(L), then all the fields L[Q t(i)] are the same.) Hence 
[LQ()~) :L] = IGI., ~g(L; A) acts on LQ(A) via 

e. Z agg)(O')= a r(Q' + g), 
9 g 

f o r f  6 LQ(A) and Y'~9 ao9 6 LT~(L; A)(L). 
Let OQ(L;)~) denote the integral closure of OL in LQ(A). Then OQ(L; A) 

(the Kummer order) is an 9A(L; )~)-module. Since S contains all places of bad 
reduction of A and (IG[,p) = 1, it follows from (1.1) above and the criterion of 
Neron-Ogg-Shafarevitch that LQ(/~)/L is unramified at all places of Or. (This 
fact, and slight variants of it will be used several times in the sequel.) As 92(L; A) 
is the maximal order of t.~(L;/~), it follows that D0(L; A) is a locally free 92(L; )~) 
module (see e.g. [CR] Proposition 3 1.2). Thus, if CI(9.1(L; A)) denotes the locally 
free classgroup of 9.1(L; A), then we have a map 

r : A(L)/.L4(L) , CI(9.1(L; )~)~ 

given by ~(Q) = (OQ(L;~)), where (O0(L;A)) is the class of OQ(L;)~) in 
cI(gA(L; A)). As A has good reduction at all places of OL, it follows exactly 
as in [T1] that ~ is a homomorphism, and so in particular the image of ~ is 
annihilated by IG I- Observe that since G is abelian, 9.1(L; A) satisfies the Eichler 
condition. Hence Do(L; )~) is a free ~(L; )~)-module if and only if ~p(Q) = 0. 

We are now able to state the first result of this paper. 

Theorem 1.2 Let Q c A(L) be a point of infinite order. Suppose that the image of 
Q has order m > 1 in A(L)/(XA(L)+A(L)tors), where A(L)tors denotes the torsion 
subgroup of  A(L). Then there is an integer N1 (which is independent of Q) such 
that ~b(Q ) ~ 0 if m > NI. Furthermore, if A is a constant variety and if S consists 
of a single place of degree one, then ~b(Q ) ~ O, i.e. we may take N1 = 1. 
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We refer the reader to [A] and [AT] for an analysis of  the Galois module 
structure of  Kummer orders arising from points of infinite order on CM elliptic 
curves defined over number fields. 

The first three sections of  this paper are devoted to the proof of  Theorem 1.2. 
In the fourth section, we give a geometric interpretation of the homomorphism 

when A is a constant variety over L. We then show how the zeta function of 
A/k  may be used to obtain precise information concerning the image of ~ in the 
case that A is a cyclic endomorphism of prime degree. 

The results contained in this paper formed a portion of  my Ph.D. thesis 
(Columbia University 1991). It is with the greatest of pleasure that I thank my 
advisor, Professor T. Chinburg for all of  his help, kindness and encouragement. 
I also wish to thank Professor M. J. Taylor for suggesting that I look at function 
fields and for much generous advice, and Professor K. Rubin for many very 
helpful conversations. Thanks also to Dr. R. J. Chapman, Professor R. Friedman, 
and Mr. J. McKernan for interesting discussions. 

2 Preliminary remarks 

We shall first prove Theorem 1.2 for constant varieties and then deduce the result 
for twisted constant varieties. Thus, from now on until further notice, A denotes 
a constant abelian variety. We remark that in this case, A(L)t,,r.,. = A(k). 

The following proposition is an extension of a result shown to me by Professor 
K. Rubin. 

Proposition 2.1 Let Q c A(L) be a point of infinite order and write L' = L| k c. 
l f  Q has order m' in A(L')/AA(L'), then Q has order dividing m' in A(L)/(,kA(L)+ 
A(k)). 

Thus, if Q is not divisible by A in A(L)/A(k), then Q is not divisible by A in 
A(LI )/a(kl ), where kl /k is anyfinite extension and Ll = L| Hence L'( �89 )/L' 
is a nontrivial finite extension. 

Proof Consider the natural homomorphism 71 : A(L)/AA(L) --. A(U)/AA(L') 
induced by the inclusion A(L) "--* A(L'). We have the following commutative 
diagram 

A(L)/,kA(L) ~ A(L')/XA(L') 

1, I 
H I(GaI(L'/L), G) ~ H M(GaI(U/L), G) ~ H J(Gal(U/L'), G) 

Res 

(2.2) 

where the vertical arrows are injective and the bottom row is exact. 
From the exactness of the bottom row, we deduce that Ker(Res) has or- 

der at most ]HI(GaI(L'/L), G) I. On the other hand, the natural homomorphism 
A(k)/AA(k) --~ A(L)/AA(L) is an injection because k is the constant subfield of  
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L. Clearly A(k)/AA(k) C Ker(~), from which it follows that Ker(Res) has order 
at least [A(k )/ AA(k ) I. 

Now Gal(L'/L) ~ ~k, and the isomorphism respects the action of these 
groups on G because G is defined over k c. Hence H I(GaI(L'/L), G) ~- H l ( ~ ,  G). 
Kummer theory on A(k c) yields the exact sequence 

0 --~ A(k)/AA(k) ~ n~(S2k, G) ---, nl(I2k,A(kC)). 

It is a theorem of Lang (see [L]) that a principal homogeneous space of any 
algebraic group defined over a finite field is trivial. Hence HI(S2k,A(kr = 0 
and so IA(k)/AA(k)I = In ~(~k, G)I. Thus Ker(Res)= i(A(k)/AA(k)). 

Now since rn~Q = 0 in A(L')/AA(L') i.e. m'Q E Ker(r/), we have that 
i(m'Q) c i(A(k)/AA(k)). Therefore m'Q c A(k)+ AA(L), and so Q has order 
dividing m '  in A(L)/(A(k ) + AA(L)). 

The final paragraph of the proposition now follows immediately. [ ]  

Now let kl /k  be any finite extension such that G C_ A(kl), and write Ll = 
L |  Then,  ~/~(Ll ; A) = LIG =, .~/~(L; A)@kkl, 9.1(L1 ; A) = L3t.lG = 9A(L; A)Qkkl, 

and DQ (Ll; A) = DQ(L; A)| Hence if DQ(LI; A) is not free over 92(L1; A) then 
L~Q(L; ,~) is not free over 9A(L; A). Furthermore, it follows from Proposition 2.1 
and the hypotheses of Theorem 2.2 that the order of Q in A(L1)/(A(kl)+ A,4(L1 )) 
is at least as large as the order of Q in A(L)/(A(k) + AA(L)). Thus, for the proof 
of  Theorem 1.2, we may assume without loss of generality that G C A(L), 
, -/~(L; A)= LG, ~(L; A) = DLG, and that L contains the ]G[th roots of unity. We 
shall make these assumptions. 

We caution the reader that where there is no danger of  ambiguity, we shall 
feel free to drop the dependence on L and/or A in our notation for 92(L;A), 
DQ(L; A), LQ(A), etc. 

3 Classgroup theory 

We now recall some elementary facts from the theory of tame classgroups over 
global function fields. For details of these results we refer the reader to [C1] or 
[C3]. 

Let R6 denote the ring of virtual characters of  G and write t~ for the group 
of irreducible characters of G. Since L contains the IGlth roots of unity, the 
maximal order L3LG of LG splits, i.e. 9LG "~ I-[x6C 9L. Hence we have 

Hom(Rc,  Divs (L)) 
CI(Dt.G) -~ Map((~, CI(DL)) --~ Horn(Re, Ds(L*)) " 

Here Divs(L) is the group of divisors of  L with support away from S. Ds(L*) is 
the subgroup of Divs(L) consisting of the image of the natural map that sends an 
element x E L* to its associated divisor ~ v~(x)q3. We shall sometimes 

prime of t.9 L 
view elements of  Divs(L) as ideals of  DL. 



Galois module structure 411 

A homomorphism in Hom(Ra,  Divs (L)) which represents the class (23 0 (L)) E 
CI(23LG) = CI(9J(L)) may be contructed as follows: 

Suppose that a E LQ and X E ~ .  Then the resolvent of a at X is 

(a]x) = E x(g-I)ag E LQ. 
gEG 

Choose dQ E LQ such that LQ = dQ.LG. For each place q3 of 23L, let L~L,r 

(resp. 23Q,g~(L)) denote the semi-localisation of 23L (resp. 23Q(L)) at r Choose 
a ~  E 23Q,gffL) such that 23Q,~3(L) = a~.DL,~G. Then (ag3lx)(dQlX) -j E L, and 
the homomorphism we require is given by 

X ~  ~ v~((a~lx)(dQIX)-~)q3 (3.1) 
q3 of DL 

extended to RG via linearity. 
We now make some further remarks on resolvents. Since 

(dQ IX) g = x(g)(dQ IX) (3.1 (a)) 

and [LQ : L ]  = tGI, we have the following direct sum decomposition of LQ into 
G-eigenspaces: 

LQ = 0 L.(dQ IX). (3.2) 
xEG 

It thus follows from (1.1) and (3.2) that 

1 
L(~ Q ) = L({(dQIX)(Q')}xe~ ), 

where Qt is any fixed element of GQ. Since 

(3.3) 

[(do IXI)(dQ IX2)] g = Xl (g)x2(g)[(da IXI )(dQ Ix2)l 

for all Xl, X2 E O, we conclude that, for all X E 0 

(3.3(a)) 

(dQIX) r = ~x(da lx  r) (3.4) 

for some 3'x E L. 
As A/L  has good reduction at all places of L (since A/L is a constant variety) 

and ( IG[ ,p)  = 1, it follows from the criterion of Neron-Ogg-Shafarevitch and the 
definition of  LQ that LQ/L is unramified at all places of  L (and not just at all 
places of DL as in w The fbllowing result is a simple extension of Proposition 
4.3 in Ch. I of  [F] from fields to Galois algebras. 

Proposition 3.5 Let a,~j E 23Q,,j3(L) be such that DO,~(L) = a,~.~.23t~,~G. Then 
for all x E G, we have (a,]jlX) E 23~ ,]3. [] 
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Let us now recall the isomorphism (1.1) and focus our attention on a fixed 
component L[Q 'r say, of L O. Write D(Q'O)) for the integral closure of DL in 
L[Q'CJ)]. From (3.1(a)), we deduce that (dQ[X)(Q'O)) lal E L* for all X E G. As 
L[Q~O)]/L is unramified at all places of L, it follows that the D(Q~CJ))-submodule 
(dQ Ix)(Q'(i)).D(Q '(i)) of L[Q '(/)] is an ambiguous ideal, i.e. that 

(dQ Ix)(a'q)).L3(a 'q)) = ~xD(a'q)), (3.6) 

where ~ x  is a fractional DL ideal. (Here, by a fractional DL-ideal, we mean a 
finitely generated DL-SUbmodule of L. Note that the remarks immediately after 
(1.1) together with (3.2) and the fact that L contains the IGIth roots of unity 
imply that ~ x  is independent of the choice of component L[Q'O)]/L.) 
Write 

~x = E v~3(~x )g3" (3.7) 
of L~ L 

From (3.1), (3.5) and (3.6), we deduce that (DQ) E CI(DLG) is represented by 
the element of Map(G, CI(L~L)) given by 

X H (Ox) -I (3.8) 

where (0x) denotes the class of Ox in CI(DL). 
We remark that this map in fact lies in Hom(G, CI(tDL)) since it follows from 

equation (3.4) that 
(0xr) = (0x) r. (3.9) 

4 Kummer theory 

Consider the homomorphism e / : A(L) --~ HomoL(G,L*/L*I61) given by Q ~-~ 
{X H (dQIX)IGI}. Suppose that Q E Ker(e'). Then (dQIx) C L* for all X C G, 
and so from (3.3(a)) we deduce that L(�89 = L i.e. that Q c .kA(L). Hence 
e' induces an injective homomorphism e :A(L)/XA(L) ~ Hom~t(G ,L*/L*IGI). 
The following proposition is essentially the same as Proposition 8 of [T1]. 

Proposition 4.1 Let U denote the group of units Of DL. Then Q E Ker(~b) if and 
only if e(Q) E HomsTt(G, U.L *IGI /L*IGI). 

Proof Using the notation of w we have that ~/,(Q) = 0 if and only if for all 
X E ~, ~x = XxDL for some X x E L*. If this is the case, then (dQIx)Xxl is a 

unit of DQ and so e(Q)(x) is represented by [(dQ I x)Xx 1]1cl E U. [ ]  

Now since L(�89 = L({(dQIX)}x~O), it follows from Proposition 4.1 that 

if ~p(Q) = 0, then L(�89 is a Kummer extension of L obtained by adjoining 
IGlth roots of various units of DL. Moreover, from Proposition 2.1, L(�89 
is a non-trivial, non-constant extension. Also, as remarked in w L(�89 is 
unramified at all places of L since A/L is a constant variety. An element of L is 
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a unit of  DL if and only if it is an S-unit of L. In particular, we may observe 
at this point that if S consists of  a single place of degree one, then O~ = k*, 
and Theorem 1.2 in this case follows immediately from Propositions 2.1 and 4.1 
above. To proceed further, we need the following result. 

Proposi t ion 4.2 Write L ~ = L | k c and let n E N with n coprime to p. Let S ~ 
denote the set o f  places o f  f f  lying above S and suppose that there is an S~-unit 

o f  L ~ such that L ' (a l /n ) /L '  is an everywhere unramified extension o f  degree n. 
Then there is an integer N depending only upon S ~ and L ~ such that nlN.  

Proof  Write U(S ' )  for the group of S'-units of L', and let Div~ ~) be the group 
of  divisors of degree zero of  C / k  c whose support is contained in S'.  Then we 
have an exact sequence 

0 ~ k c• ~ U(S ' )  --* Div~ ') --~ T ~ 0, (4.3) 

where T is a finite group. 
Write (c0 for the divisor of c~, and suppose that 

d 

(Ol) = ~ aivi, 
i=1 

where ai E Z and the '/)i are places of  L r. Since L~(t~l/n)/L ' is everywhere 
unramified, we have that nlai for i = 1 , . . . d .  Set 

d 
D = ~-~ ai " ~  73 i �9 

i=l 

As L'(oll /n)/L ' has degree n and k c C L', it follows that the image of  D in T 
has order n. Hence, taking N = IT[, the proposition follows. [ ]  

The next result relates the order of Q in A(L') /XA(L')  to the degree of the 
extension L'( �89  

L e m m a  4.4 Let d = [L'(�89 : L'] and write m I for  the order o f  Q in 
A(L') /XA(L') .  Then m'ld.  

Proof Write H = Gal(L ' (~Q)/L ' ) ,  and fix Q '  E G 0. For each h E H,  we have 

ath = QI + sh, with sh E G C A(kC). Hence 

p = ~ Q , h  = d . Q ' + s ,  (4.5) 

h E H  

with P E A(L') and s E A(kC). Thus d.Q = A ( P - s ) ,  i .e .d .Q = 0 in A(L')/XA(L') ,  
and now the result follows. [ ]  
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Now suppose that A has dimension t, and write AIG [ for the group of  [G I- 
torsion points of  A(kC). Then AIG I ~-- (Z / IGIZ)  2t, and G is a subgroup of AIG I. 
Hence there exist X l , . . . , X s  with 1 < s < 2t such that G = <  X1, . - . ,Xs  >. 

! I s From (3.3) and (3.3(a)), it follows that L'(~Q) = L ({dQIXi)(Q)}/=1)- Thus if 
for example d = [L'( �89 : L'] > 2N 2t, then we must have [L'((dQIXj)(Q') : 
U] > N for at least one j ,  1 < j <_ s. If this is the case, then we deduce using 
Proposition 4.2 that (dQIXj)(Q') IGI ~ U.L*IGI/L *IGI (where U = DT.), which 
(from Proposition 4.1) implies that ~b(Q) ~ 0. 

Recall that m > 1 is the order of  Q in A(L)/(XA(L)+ A(L)tors) and that 
A(L)tors = A(k), since A is a constant variety. From Proposition 2.1 and Lemma 
4.4, we have that m _< m ~ < d. Hence if e.g. m > 2N 2t, then ~b(Q) ~ 0, which 
completes the proof of  Theorem 1.2 for constant abelian varieties. 

We now turn to the case in which A is a twisted constant variety. Thus, 
from now on until further notice, assume that A is a twisted constant variety and 
let M / L  be a finite extension over which A becomes isomorphic to a constant 
variety. Write dl = [M " L] and let d2 = IA(M)torsl. 

Associated to the field M and the set of  places SM of M lying above S is an 
integer ArM as in Proposition 4.2. Suppose e.g. that m > 2dld2N 2t. It follows via 
the natural injections A(L)/XA(L) --~ H i (Gal(L c/L), G) and A(M)/.L4(M ) 
H l(Gal(MC/M), G), together with the inflation-restriction sequence of Galois 
cohomology, that the kernel of  the natural map A(L)/AA(L) --~ A(M)/XA(M) is 
killed by dl. Hence the image of Q in A(M )/(.,kA(M)+A(M)tor~) has order at least 
m/dld2 = 2N 2t. Now reasoning exactly as in the already treated constant case, 
we deduce that ( D o ( M ;  A))~ 0 in CI(P,I(M; A)). As DQ(M; A)= Do(L; A)| 
L3M and 9.1Q(M;A) = P, IQ(L;A)|  DM, this implies that (DQ(L;A)) ~ 0 in 
CI(~(L; A)), as required. 

Let us now return to the case of an arbitrary CM abelian variety A as in 
the statement of  Theorem 1.2. We conclude this section with some remarks 
on a simple consequence of the proof of  that theorem. It is well known that 
A(L~)/A(L~)tors is a finitely generated ._~-module. Hence, if Q c A(L) is a point 
of  infinite order, then Q is not infinitely divisible by A in A(L'). This implies 
that the degree of the extension U(-~Q)/L'  tends to i0finity with n. 

Theorem 4.5 Let Q E A(L) be a point of infinite order. Then for all sufficiently 
large n, L~Q(L; A n ) is not a free f~Q(L; An)-module. 

Proof Let M,  NM, and t be as above (so in particular if A is a constant variety, 
then M = L). Suppose that n is sufficiently large that [M'(~-~ Q) : M ' ]  > 2diN 2t. 
Then DQ(M;A n) is not a free ~(M;An)-module,  which in turn implies that 
DQ(L; A n) is not ~(L;  An )-free. [ ]  
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5 Realisable classes 

In this section we give a geometric interpretation of the homomorphism ~b which 
enables us to relate the image of  ~b to the Hasse-Weil zeta function of A when 
A is a constant variety. This raises interesting questions regarding the analogous 
situation over number fields which we hope to pursue elsewhere. 

Let us begin by recalling certain basic facts regarding the theory of  class- 
groups of sheaves (see [C2]). We identify C with its associated scheme over 
Speck  c, and we write t~' for the structure sheaf of C/k  c. Set L p = L@k k c. The 
places of  L' may be identified with the set of closed points of C/k  c. Let G be a 
finite group with (LGI, p)  = 1. Define ~ G  to be the sheaf of rings whose sections 
over each open set U of  C/k  c are given by ~'G(U)  = ~ ( U ) G .  If S is a finite 
collection of  closed points of C and U = C - S then t~G(C - S) = L3L,,sG, 
where here LOL,,S G denotes the ring of functions in L' which are regular away 
from S. 

Let 9~ be a sheaf of  ~t~G-modules. ~ is said to be locally free of rank r 
if each stalk 9~e is a free C'~pG-module of  rank r. Thus, if U = C - S is an 
open subset of  C as above, then 9Yt(U) is a locally free ~ 'G(U)-module.  The 
locally free classgroup C I ( ~ G )  of ~ G  is defined to be Map((~, Pic(C)), where 
Pic(C) denotes the Picard group of  C. Each locally free OG-module  931: defines 
an element (9~) E CI(~ 'G)  as described in w of [C2]. It is shown in [C2] 
that for all such open subsets U of C, (~Y~(U)) E CI(~ 'G(U))  = CI(L~L, sG) is 
completely determined by (9~) E CI(6~G). 

Assume throughout this section that A/k is a constant variety. Suppose that 
A E End(A) is such that the kernel of A : A(k c) ~ A(k c) is cyclic of prime order 
l with ( l ,p)  = 1. Suppose that Q E A(L). Then Q defines a k-rational section 

: C --~ A of  the structure map A ~ C, and for each i E N, we may form the 
pullback diagram (of varieties over kC): 

A ~ CQ(i) 

A~ C 

(5.1) 

CQ(i)/C is a possibly reducible, everywhere unramified Galois cover with Galois 
g r o u p  Gi ~- Ker(A i : A(k c) ~ A(kC)) which is cyclic of  order l i. As CQ(i)/C is 
Galois, all of  the irreducible components of CQ(i) are isomorphic to a variety Bi, 
say. Since (5.1) is a pullback diagram, it follows that the function field kC(Bi) of 
Bi/k c is isomorphic to the field L' (~Q) .  We deduce from this and from (1.1) 

that the algebra of functions on CQ(i)/k c is isomorphic to MapstL ' (GQ()~ i), L c) = 

L~2(Ai) = L~(i), say. 
Let OQ(i) be the structure sheaf of the variety CQ(i)/k c. Since CQ(i)/C 

is everywhere unramified, the direct image sheaf rl(i).OQ(i) is a locally free 
•Gi-module,  and so it yields an element (rl(i),~Q(i)) E CI(~Gi) .  We have a 
decomposition (see e.g. [M] p.72) 
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where 

77(i),C?Q(i) = ~ ~ (5.2) 
xEt~i 

~ x  = {ce G ~(i),~Q(i) : c~ g = X(9)c~} V 9 C G i (5.3) 

Let (S(• denote the class of ~ x  in Pic(C)(kC). The following proposition is 
simply a reformulation of certain results contained in w of [C2]. 

Proposition 5.4 The class of rl(i),~Q(i) in Cl(OGi) is given by the map X 

Proof Write ~ for the generic point of CQ(i)/C. Then (O~i) ~ = L'Gi and 
(rl(i).Oa(i))~ = UQ(i). If P is a closed point of C, then (('~Gi)? = ~pGi ,  

while the stalk (rl(i).(~Q(i))p is equal to the semilocal ring of LQ at P. 
Since ~7(i).OQ(i) is a locally free ~ G i  module of rank one, we may choose 
dQ E UQ(i) such that (rl(i) ,~Q(i))~ = dQ.((~Gi)~, and a? C L'Q(i) such that 
07(i),~Q(i))e = ap.(~Gi)p for each closed point P. This implies that the stalks 
of the line bundle ~ x  are given by 

~x,~ = (dQ Ix).~ (5.5(a)) 

~ x , e  = (aelx) .~, ,  e closed (5.5(b)) 

Hence the Weil divisor associated to ~ •  is given by 

Dx = Z vp((aelx)(dalx)-l)e (5.6) 
Pclosed 

However it is shown in w of [C2] (see Proposition 1 and the remarks following 
Lemma 4) that (rl(i).c"~Q(i)) E CI(~'Gi) is given by the map X ~-~ (Dx), where 
(D• denotes the class of (D• in Pic(C)(U). This establishes the result. [ ]  

Now if S is a non-empty set of closed points of C/k"  and U = C - S, 
then rl(i).CQ(i)(U) = DQ(L';Ai), and ~Gi (U)  = L~L, Gi = P.~(Lt;)~i), us- 
ing the notation of w Thus (r/(i).U~Q(i)) E CI(~;Gi) completely determines 
(DQ(L'; Ai)) E CI(~(L'; Ai)) for all choices of S. 

If S consists of a single place of degree one over k, then somewhat more is 
true. For each i, we have a Wedderburn decomposition 

! 

�9 :g(L; A i) = (LCGi) r~L = 1-ILr . 
r= l  

(5.7) 

Each Lr/L is a constant field extension, since the values taken by the characters 
in t~i lie in k c. It follows from (5.7) that 

! 

~(L; A i) = (D"Gi) t~L = I I  DL, 
r = l  

(5.8) 
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where DLr denotes the integral closure of DL in Lr. 
Since S consists of  a single place of degree one over k, the natural homo- 

morphism CI(L3Lr) --~ CI(DL,) is injective for each r (see e.g. [C3], Lemma 
2). This implies that the natural homomorphism C1(92(L; Ai)) --*.CI(~(U; Ai)) is 
also injective. Hence, in this case (DQ(L;Ai)) E CI(9.1(L;Ai)) is determined by 
(rl(i).GQ(i)) C CI((~Gi). In particular, if A i does not divide Q in A(L'), then it 
follows from Theorem 1.2 that (rl(i).OQ(i)) r 0 in CI(LDGi). 

Suppose for the rest of this section that A E End(A) is such that the kernel 
of A : A(k c) ~ A(k c) is cyclic of prime order l with (l,p) = 1. We now turn 
our attention to the line bundles ~%:x, X E Gi. Since CQ(i ) /C  is everywhere 
unramified, the degree of the line bundle detOT(i).(~Q(i)) is zero (see e.g. [H] 
Ch. IV Ex. 2.6). A s  CQ( i ) /C  is cyclic and ~ x ,  |  = ~Xl)(2 for X,, Xz C Gi, 
we deduce that 2~  x is a line bundle of degree zero for all X E t~i. Thus in fact 
(o~x) E Pic~ c) = j(kC), where J denotes the Jacobian of C. Let HQ(i) be 
the subgroup of J(k c) generated by {(5,(~• i . We shall refer to HQ(i) as the 

associated subgroup of Q (at level i). HQ(i) is cyclic of order dividing I i, and it 
determines Ca(i  ) up to isomorphism. It follows immediately from the definitions 
of CQ(i) and HQ(i) that HQ(i - 1) = l.HQ(i). 

Let Ql, �9 �9 -, Qr be a basis of A(L) modulo torsion. For each Qj, let AsJ denote 
the highest power of  A which exactly divides Qj in A(U). (So (rl(i).(~.Q(i))) E 
CI(OGi)  is trivial for 0 _< i < sj and is non-trivial otherwise.) Write Hj = 
li__m HQ~ (i + sj), where the inverse limit is taken with respect to the multiplication 

i 
by l map. Theorem 1.2 implies that H h AHj2 = 0 if j l  r  Set H = HI x . . .  x Hr. 
Then H is a subgroup of Tt(J), the l-adic Tate module of J .  

Suppose that ,-7r6 ~ = li__mo~, �9 is a subgroup of Tt(J) with each ~ cyclic of 
i 

order dividing l i . We shall say that ,~6 ~ is realisable if oq~ is a subgroup of H.  
This is equivalent to saying that for each i, there is a point Q(i) G A(L) such that 
,.9;r~,. = HQ~i~(i). 

Let a E Ok denote the Frobenius element of k. Write PA(X) for the char- 
acteristic polynomial of a acting on Tt(A). The following result characterises 
realisable subgroups. 

Theorem 5.9 Let ~ be a subgroup of Tt(J ) as above. Then , ~  is realisable if 
and only if .~q pA(x) = O. 

Proof Let OA denote the structure sheaf of A/k c. Exactly as in the discussion 
concerning the sheaf 71(i).OQ (i), we have a direct sum decomposition 

Ai*~ = ~ )  ~ x  (5.10) 

x E ~  

where the ~ x  are line bundles of degree zero. For any point Q E A(L), the 
" * ~ S . . '  , ' 3 " ~ '  group HQ(i) is generated by {(Q • where ~ x denotes the pullback 

of ~ x  along Q. As A and C are defined over k, we have 



418 A. Agboola 

(Q ~ x  ) = ( Q  x )  V X E t ~ i .  (5.11) 

It is a theorem of Tate (see e.g. the Main Theorem of [Ta] or Theorem 1 of 
Appendix 1 of  [M]) that the natural homomorphism 

gt | Homk(A,A) ---* Homzt(Tt(A), Tt(A)) t?k (5.12) 

is an isomorphism. This implies that P,~(cr) annihilates Pic~ It follows 
from (5.1 l) that H eA(') = 0, and so in particular that ~eA( , , )  = 0. 
For the converse, recall that from standard theory we have 

r = rank(A(L)) = rankz [Homk (J ,  A)]. (5.13) 

Via the theorem of Tate quoted earlier, 

rankz[Homk(J ,A)]  = rankzt[HOmzl(Tt(J), Tt(A))S~k]. (5.14) 

As a acts semisimply on Tt(J) and Tt(A), it follows that 

Ker(PA(Cr) : Tt(J) ---+ Tt(J)) -~ g~ (5.15) 

(c .f .e .g.  Theorem 1 of [Ta] or Theorem 2 of Appendix I of [M]). Write H '  = 
Ker(PA(a) : Tt(J) ~ Tt(J)). Then H C H ' ,  H -~ Z~, and Hj is not contained in 
l .Tt (J )  for j = 1 , . . . ,  r. Hence H '  = H .  [ ]  

Recall that P.~(x) is the numerator of the zeta function of A/k.  Thus, as in 
the tame number field case (see [T2] or [F]), and the cyclotomic function field 
case (see [C2]), we have yet another instance of the Galois module structure of  
rings of  integers being determined by an L-function. 
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